[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101701670B1 - Perovskite solar cells containing N-type semiconductors modified with oxygen and halogen atoms, and fabricating method thereof - Google Patents

Perovskite solar cells containing N-type semiconductors modified with oxygen and halogen atoms, and fabricating method thereof Download PDF

Info

Publication number
KR101701670B1
KR101701670B1 KR1020160003049A KR20160003049A KR101701670B1 KR 101701670 B1 KR101701670 B1 KR 101701670B1 KR 1020160003049 A KR1020160003049 A KR 1020160003049A KR 20160003049 A KR20160003049 A KR 20160003049A KR 101701670 B1 KR101701670 B1 KR 101701670B1
Authority
KR
South Korea
Prior art keywords
salt
type semiconductor
hfo
hclo
hio
Prior art date
Application number
KR1020160003049A
Other languages
Korean (ko)
Inventor
한윤수
조성일
신동원
남혜정
이민호
김민정
이경진
안효진
성혜경
Original Assignee
대구가톨릭대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대구가톨릭대학교산학협력단 filed Critical 대구가톨릭대학교산학협력단
Priority to KR1020160003049A priority Critical patent/KR101701670B1/en
Application granted granted Critical
Publication of KR101701670B1 publication Critical patent/KR101701670B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a perovskite solar cell having an N-type semiconductor modified with oxygen and halogen atom. More particularly, a recombination blocking agent composed of oxygen and halogen atom is adsorbed on the surface of an N-type semiconductor, thereby preventing interface recombination between N-type semiconductor and hole transport agent and improving the photoelectric conversion efficiency of a solar cell.

Description

산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지 및 그 제조방법 {Perovskite solar cells containing N-type semiconductors modified with oxygen and halogen atoms, and fabricating method thereof}TECHNICAL FIELD [0001] The present invention relates to a perovskite solar cell having an N-type semiconductor modified with oxygen and a halogen atom, and a perovskite solar cell having a perovskite solar cell containing N-type semiconductors modified with oxygen and halogen atoms,

본 발명은 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지에 관한 것으로, 더욱 상세하게는 N형 반도체 표면에 산소와 할로겐 원자로 구성된 재결합 차단제를 흡착시킴으로써 N형반도체- 정공수송제 간의 계면 재결합을 방지하여 태양전지의 효율을 향상시킬 수 있는 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지 및 그 제조방법에 관한 것이다. The present invention relates to a perovskite solar cell having an N-type semiconductor modified with oxygen and a halogen atom, and more particularly to a perovskite solar cell having an N-type semiconductor-hole transporting material by adsorbing a recombination blocking agent composed of oxygen and halogen atoms on the surface of the N- And an n-type semiconductor modified with oxygen and halogen atoms capable of improving the efficiency of a solar cell by preventing interface recombination between the n-type semiconductor and the n-type semiconductor, and a method for manufacturing the same.

태양전지(Solar Cell 또는 Photovoltaic Cell)는 태양광을 직접 전기로 변환시키는 태양광발전의 핵심소자이며, 현재 우주에서부터 가정에 이르기까지 전원공급용으로 광범위하게 활용되고 있다. 태양전지가 처음 만들어진 초기에는 주로 우주용으로 사용되었으나, 1970년대 2차례의 석유파동을 겪으면서 지상용 전원으로 활용하기 위한 가능성에 주목을 받게 되었고, 활발한 연구개발에 의해 1980년대부터 제한적으로 지상발전용으로 사용이 시작되었다. 최근에는 항공, 기상, 통신분야에까지 사용되고 있으며, 태양광 자동차, 태양광 에어컨 등도 주목받고 있다. Solar Cells (Photovoltaic Cells) are a key component of photovoltaic power generation that convert sunlight directly into electricity and are now widely used for power supply from space to homes. In the early days when the solar cell was first made, it was mainly used for space use. However, since the 1970s, when it was undergoing two oil fluctuations, it became possible to use it as a ground power source. It began to be used as a dragon. Recently, it has been used in aeronautical, meteorological and telecommunication fields.

이러한 태양전지는 주로 실리콘 반도체를 이용하고 있으나, 고순도(6N~9N) 실리콘 반도체의 원자재 가격 및 이를 이용한 태양전지 셀 제조공정의 복잡성으로 인해 발전단가가 높다는 문제가 있다. 즉, 종래의 화석연료에 의한 발전단가보다 3~10배 높기 때문에 각국 정부의 보조금 정책에 의해서 시장이 성장하고 있다는 한계를 안고 있다. 이러한 이유로 실리콘을 사용하지 않는 태양전지의 연구개발이 활성화 되었고, 1990년대부터는 유기반도체 소재인 염료를 이용한 염료감응형태양전지(Dye-Sensitized Solar Cell; DSSC)와 전도성고분자를 이용한 고분자태양전지(Polymer Solar Cell: PSC)가 본격 연구되기 시작하였다. 이러한 DSSC와 PSC와 같은 유기반도체 기반 태양전지가 학계와 산업계의 많은 노력에도 불구하고 사업화 단계에까지 이르지 못하였으나, 최근 DSSC와 PSC의 장점을 융합한 페로브스카이트 태양전지 (perovskite solar cell)의 출현에 의해 차세대 태양전지에 대한 기대감이 한층 높아지고 있는 상황이다.   Although such a solar cell mainly uses silicon semiconductor, there is a problem that the cost of power generation is high due to the raw material cost of a high purity (6N to 9N) silicon semiconductor and the complexity of the manufacturing process of the solar cell using the same. In other words, it is 3 to 10 times higher than the conventional unit price of fossil fuel, so it is limited by the government subsidy policy. For this reason, research and development of silicon-free solar cells have been promoted. In the 1990s, Dye-sensitized solar cells (DSSC) using organic semiconductor materials and polymer solar cells using conductive polymers Solar Cell: PSC) has started to be studied in earnest. Although organic semiconductor-based solar cells such as DSSC and PSC have not reached commercialization stage despite the efforts of academia and industry, the emergence of perovskite solar cell, which recently combines the merits of DSSC and PSC The expectations for next-generation solar cells are rising.

페로브스카이트 태양전지는 종래 DSSC와 PSC의 융합형 태양전지로서, DSSC와 같이 액체전해질을 사용하지 않아서 신뢰성이 우수하며, 페로브스카이트의 광학적 우수성으로 인해 고효율이 가능한 태양전지이며 최근 공정개선, 소재개선 및 구조개선을 통하여 지속적으로 효율이 향상되고 있다. 이러한 페로브스카이트 태양전지의 구조를 도 1에 나타내었다. 도 1을 참조하면, 페로브스카이트 태양전지는 기판, 제1전극, 블로킹층(blocking layer), N형반도체(금속산화물)와 P형반도체(페로브스카이트)로 구성된 광활성층, 정공수송층, 제2전극으로 구성된다. 이러한 페로브스카이트 태양전지의 작동 원리는 다음과 같다.    Perovskite solar cells are fusion solar cells of conventional DSSC and PSC. They do not use liquid electrolyte like DSSC and have high reliability. They are solar cells that can be highly efficient due to optical superiority of perovskite. , Material improvement and structural improvement have been continuously improving efficiency. The structure of such a perovskite solar cell is shown in Fig. Referring to FIG. 1, a perovskite solar cell includes a substrate, a first electrode, a blocking layer, a photoactive layer composed of an N-type semiconductor (metal oxide) and a P-type semiconductor (perovskite) , And a second electrode. The operation principle of such a perovskite solar cell is as follows.

태양빛에 의해 여기 된 페로브스카이트 화합물들이 전자를 N형반도체(주로 금속산화물)의 전도대에 주입하고, 그 주입된 전자들은 N형반도체 및 블로킹층을 통과하여 제1전극에 수집된 후 외부회로로 전달된다. 만약, 블로킹층이 없다면 제1전극에 도달한 모든 전자들이 외부회로로 전달될 수 없다. 즉 블로킹층이 없을 경우 제1전극 상부표면은 N형반도체와 대부분 접촉하고 있지만 일부는 정공수송층과도 접촉해 있으므로, 제1전극에 도달된 전자들 중 일부는 외부회로로 전달되지 못하고 전공수송제(hole transporting material; HTM)와 반응하여 소실된다. 이러한 현상을 제1전극-정공수송제 계면 재결합(recombination) [이하 제1재결합 현상이라 칭한다]이라 하며, 광전변환 효율을 저하시키는 원인이 된다. 이러한 제1전극-정공수송제 계면 재결합 현상을 최소화하기 위하여 도 1에 제시된 바와 같이 블로킹층을 형성하여 제1전극과 정공수송제의 직접적인 접촉을 막아준다. 한편, 전자는 외부회로를 거쳐 제2전극에 도달한 후 정공수송층을 거쳐 P형 반도체에 전자를 전달하여 줌으로써 태양전지 작동이 완성된다. The perovskite compounds excited by sunlight inject electrons into the conduction band of an N-type semiconductor (mainly metal oxide), and the injected electrons pass through the N-type semiconductor and the blocking layer and are collected on the first electrode, Circuit. If there is no blocking layer, all electrons reaching the first electrode can not be transferred to the external circuit. That is, in the absence of the blocking layer, the upper surface of the first electrode is mostly in contact with the N-type semiconductor, but a portion of the electrons reaching the first electrode is not transmitted to the external circuit. (HTM) and is lost. This phenomenon is referred to as a first electrode-hole transport interface recombination (hereinafter referred to as a first recombination phenomenon), which causes a decrease in photoelectric conversion efficiency. In order to minimize the recombination phenomenon of the interface between the first electrode and the hole transport agent, a blocking layer is formed as shown in FIG. 1 to prevent direct contact between the first electrode and the hole transport agent. On the other hand, the electrons reach the second electrode via the external circuit, and then transfer electrons to the P-type semiconductor through the hole transport layer, thereby completing the solar cell operation.

현재 페로브스카이트 태양전지의 상용화를 앞당기고 종래 고가의 실리콘 태양전지를 대체하기 위해서는 광전변환 효율의 향상이 가장 선행되어야 할 항목이다. 도 1에 제시된 페로브스카이트 태양전지에서, P형반도체인 페로브스카이트 화합물이 N형반도체 표면 전체에 걸쳐 존재하지 못한다. 따라서, N형반도체의 일부 표면은 정공수송제와 직접 접촉하는 부분이 존재하며, 결국 N형반도체로 주입된 전자가 정공수송제와 반응하여 소실되므로 전류와 전압을 감소시키는 문제점이 있다. 이러한 현상을 N형반도체-정공수송제 계면 재결합(이하 제2재결합 현상이라 칭한다)이라 하며 페로브스카이트 태양전지의 효율을 저하시키는 문제점으로 작용하고 있다.Currently, the commercialization of perovskite solar cells is accelerated, and in order to replace conventional high-priced silicon solar cells, improvement of photoelectric conversion efficiency should be preceded. In the perovskite solar cell shown in Fig. 1, the perovskite compound which is the p-type semiconductor does not exist over the entire surface of the n-type semiconductor. Therefore, a part of the surface of the N-type semiconductor exists in direct contact with the hole transporting agent. As a result, electrons injected into the N-type semiconductor react with the hole transporting agent and disappear. This phenomenon is referred to as an N-type semiconductor-hole transport interface recombination (hereinafter referred to as a second recombination phenomenon), which is a problem of lowering the efficiency of a perovskite solar cell.

대한민국공개특허 제10-2015-0124412호Korean Patent Publication No. 10-2015-0124412 대한민국공개특허 제10-2015-0124413호Korean Patent Publication No. 10-2015-0124413 대한민국등록특허 제10-1492022호Korean Patent No. 10-1492022

G.S. Han et al, J. Mater. Chem. A, 3, 9160-9164(2015)G.S. Han et al, J. Mater. Chem. A, 3, 9160-9164 (2015) D.H.Cao, APL MATERIALS, 2, 091101-1~091101-7(2014)D. H. Cao, APL MATERIALS, 2, 091101-1 ~ 091101-7 (2014)

본 발명은 종래 N형 반도체와 정공수송제간의 제2 재결합 현상을 방지하여 태양전지의 효율성을 향상시키기 위하여 안출된 것으로, 산소와 할로겐원자가 공유결합 되어 있으면서 비공유전자쌍이 5개 이상인 것을 특징으로 하는 재결합 차단제가 N형 반도체 표면에 흡착되어 개질된 N형 반도체를 얻고, 이러한 개질된 N형 반도체를 이용함으로써 N형 반도체와 정공수송제와의 직접적인 접촉을 막아서 제2 재결합 현상을 방지함으로써 태양전지의 효율을 향상시킬 수 있는 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지 및 그 제조방법에 관한 것이다. The present invention has been conceived to improve efficiency of a solar cell by preventing a second recombination phenomenon between a conventional N-type semiconductor and a hole transport agent, and is characterized in that five or more unshared electron pairs are covalently bonded with oxygen and halogen atoms, The blocking agent is adsorbed on the surface of the N-type semiconductor to obtain the modified N-type semiconductor. By using the modified N-type semiconductor, direct contact between the N-type semiconductor and the hole transporting agent is prevented to prevent the second recombination phenomenon, And an N-type semiconductor modified with oxygen and a halogen atom capable of improving the performance of a perovskite solar cell and a method of manufacturing the same.

이하, 본 발명의 구성요소 및 제조방법을 상세하게 설명하면 다음과 같다. Hereinafter, the constituent elements and the manufacturing method of the present invention will be described in detail.

<기판/제1전극 준비 및 세정> &Lt; Substrate / First electrode preparation and cleaning >

상기 기판 상부에 형성된 제1전극을 아세톤, 에탄올, 증류수 혹은 이들의 혼합용액에 담근 후 초음파 세정을 실시한다. 기판으로는 유리, 플라스틱 등 광학적으로 투명한 것이면 무엇이든 사용할 수 있다. 상기 제1전극으로는 FTO(F-doped tin oxide), ITO(In-doped tin oxide), IZO(In-doped zinc oxide), ZnO-Ga2O3, ZnO-Al2O3, SnO2-Sb2O3 과 같이 투명하면서 전도성이 있는 투명전극이 이용될 수 있다.The first electrode formed on the substrate is immersed in acetone, ethanol, distilled water or a mixed solution thereof, followed by ultrasonic cleaning. Any substrate that is optically transparent, such as glass or plastic, may be used. The first electrode is FTO (F-doped tin oxide) , ITO (In-doped tin oxide), IZO (In-doped zinc oxide), ZnO-Ga 2 O 3, ZnO-Al 2 O 3, SnO 2 - Transparent and conductive transparent electrodes such as Sb 2 O 3 can be used.

<제1전극 상부에의 &Lt; 블로킹층의Blocking layer 형성> Formation>

앞서 언급한 바와 같이 블로킹층은 제1재결합(제1전극과 정공수송제 계면 재결합) 현상을 방지하여 효율을 향상시키기 위하여 형성되며, 이러한 블로킹층 용의 소재로는 TiO2, ZnO와 같은 물질을 예로 들 수 있다. 블로킹층을 형성하는 한 방법을 예로 들면, 상기 세정된 기판/제1전극을 40 mM 농도의 전구체용액(TiCl4)에 침적시키고 70℃에서 30분간 방치하면, titanium oxy chloride가 제1전극 표면에 코팅되며, 이를 증류수와 에탄올로 세정한 후 고온(450~500℃)에서 소성하면 TiO2 블로킹층이 형성된다. 또 다른 방법으로는 Ti(IV) bis(ethylacetoacetato)-diisopropoxide, titanium(IV) isopropoxide 과 같은 Ti 전구체를 용매에 용해시킨 후 스핀코팅 혹은 spray 코팅 후 고온소성 시키면 제1전극 상부에 TiO2 블로킹층을 형성시킬 수 있다. 한편, ZnO의 경우는 zinc acetate dihydrate과 ethanolamine을 용매(2-methoxy ethanol)에 용해시킨 후 스핀코팅 등의 방법으로 제1전극에 코팅, 건조하여 ZnO 블로킹층을 형성시킬 수 있다. 이러한 블로킹층은 페로브스카이트 태양전지의 광전변환효율을 향상시킬 목적으로 형성시킨 것이기 때문에 블로킹층이 없어도 태양전지의 작동에는 문제가 없다. As described above, the blocking layer is formed to improve the efficiency by preventing the first recombination (interface recombination of the first electrode and the hole transporting material), and a material such as TiO 2 or ZnO is used as the material for the blocking layer For example. For example, if the cleaned substrate / first electrode is immersed in a precursor solution (TiCl 4 ) at a concentration of 40 mM and left at 70 ° C for 30 minutes, a titanium oxychloride is formed on the surface of the first electrode , Washed with distilled water and ethanol, and then fired at a high temperature (450 to 500 ° C.) to form a TiO 2 blocking layer. Another method is to dissolve a Ti precursor such as Ti (IV) bis (ethylacetoacetato) -diisopropoxide or titanium (IV) isopropoxide in a solvent, and then spin coating or spray coating to form a TiO 2 blocking layer . On the other hand, in case of ZnO, ZnO blocking layer can be formed by dissolving zinc acetate dihydrate and ethanolamine in a solvent (2-methoxy ethanol) and then coating and drying on the first electrode by spin coating or the like. Since the blocking layer is formed for the purpose of improving the photoelectric conversion efficiency of the perovskite solar cell, there is no problem in the operation of the solar cell without the blocking layer.

<< 블로킹층Blocking layer 상부에의  Upper N형반도체층N-type semiconductor layer 형성> Formation>

N형반도체 나노입자를 포함하는 페이스트를 상기 블로킹층 위에 코팅하여 박막을 형성한 후, 공기 중 또는 산소 분위기에서 약 30~60분간 열처리(450~550℃)를 실시하여, 블로킹층 상부에 N형반도체층을 형성할 수 있다. 경우에 따라서는 상기 N형반도체층을 TiCl4 용액에 침적, 방치시킨 후, 열처리(450~550℃)를 실시하여 N형반도체 입자간의 공극을 채워주어 추가적인 효율향상을 유도하기도 한다. 상기 N형반도체층용 소재로는 TiO2, Al2O3, SnO2, ZnO, WO3, Nb2O5, TiSrO3, ZrO2 및 이들의 조합들로 이루어진 군으로부터 선택되는 금속산화물을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 또한, 상기 N형반도체를 상기 블로킹층 상부에 코팅하는 방법으로는 닥터블레이드 코팅, 스크린프린팅, 플렉소그라피(Flexography)방식, 그라비아 프린팅 방식 등이 이용될 수 있다. A paste containing N-type semiconductor nanoparticles is coated on the blocking layer to form a thin film, followed by heat treatment (450 to 550 DEG C) in air or oxygen atmosphere for about 30 to 60 minutes to form an N-type A semiconductor layer can be formed. In some cases, the N-type semiconductor layer is formed of TiCl 4 (450 ~ 550 ° C) to fill the pores between the N-type semiconductor particles to induce additional efficiency improvement. The material for the N-type semiconductor layer may include a metal oxide selected from the group consisting of TiO 2 , Al 2 O 3 , SnO 2 , ZnO, WO 3 , Nb 2 O 5 , TiSrO 3 , ZrO 2 , But may not be limited thereto. As a method of coating the N-type semiconductor on the blocking layer, a doctor blade coating, a screen printing, a flexography method, a gravure printing method, or the like may be used.

<< N형반도체N-type semiconductor 표면에 재결합차단제의 흡착에 의한  By adsorption of recombination blocking agent on the surface N형반도체N-type semiconductor 표면개질> Surface modification>

상기 금속산화물계의 N형반도체 표면에 산소와 할로겐원자로 구성된 재결합차단제를 흡착시키기 위해, 본 발명에서는 재결합차단제를 용매에 가하여 침적용액을 제조하고 여기에 상기 N형반도체층이 형성된 기판을 침적시켜, 재결합차단제를 N형반도체 표면에 흡착시킨다. 금속산화물계의 N형반도체 표면에 존재하는 수산기와 재결합차단제의 음이온성 작용기가 화학적흡착(chemisorption) 및/혹은 물리적흡착(physisorption)에 의해 금속산화물계의 N형반도체 표면에 재결합차단제를 흡착시킬 수 있다. 이때, 침적시간은 0.1분 ~ 24시간 정도면 적당하며, 침적이 끝난 뒤 증류수 및 알콜류의 용매를 이용하여 세정을 실시하고, 이를 60~70℃정도의 온도에서 10~20분 정도 건조하여, 금속산화물(N형반도체) 표면에 재결합차단제를 흡착할 수 있다. In order to adsorb a recombination blocking agent composed of oxygen and halogen atoms on the surface of the N-type semiconductor of the metal oxide system, in the present invention, a deposition solution is prepared by adding a recombination blocking agent to a solvent, and a substrate on which the N- The recombination blocking agent is adsorbed on the N type semiconductor surface. The hydroxyl groups present on the surface of the N-type semiconductor of the metal oxide system and the anionic functional groups of the recombination blocking agent can adsorb the recombination blocking agent to the surface of the N-type semiconductor of the metal oxide system by chemisorption and / or physisorption have. In this case, the immersion time is suitably about 0.1 minute to 24 hours. After the immersion, the substrate is washed with distilled water and a solvent of alcohols, dried at a temperature of about 60 to 70 ° C for about 10 to 20 minutes, It is possible to adsorb the recombination blocking agent on the surface of the oxide (N-type semiconductor).

본 발명의 재결합차단제는 산소와 할로겐원자가 공유결합으로 연결된 구조로서, 재결합차단제 분자 내에 비공유전자쌍이 최소 5개 이상 가지고 있음을 특징으로 한다. 바람직하게는 분자내 비공유전자쌍이 5 내지 8개이다. 이러한 재결합차단제의 종류로는 HClO3, HClO3의 금속염[LiClO3, CsClO3, Ca(ClO3)2, Cr(ClO3)2 등], HClO3의 아민염[NH4ClO3, NH(C2H5)3ClO3], HClO4, HClO4의 금속염[NaClO4, FrClO4, Sr(ClO4)2, Mo(ClO4)2 등], HClO4의 아민염[NH4ClO4, NH(C2H5)3ClO4], HClO2, HClO2의 금속염[NaClO2, FrClO2, Sr(ClO2)2, Mo(ClO2)2 등], HClO2의 아민염[NH4ClO2, NH(C4H9)3ClO2], HClO, HClO의 금속염[NaClO, FrClO, Sr(ClO)2, Mo(ClO)2 등], HClO의 아민염[NH4ClO, NH(C3H7)3ClO]과 같이 염소계화합물, HBrO3, HBrO3의 금속염[LiBrO3, CsBrO3, Ca(BrO3)2, Cr(BrO3)2 등], HBrO3의 아민염[NH4BrO3, NH(C2H5)3BrO3], HBrO4, HBrO4의 금속염[NaBrO4, FrBrO4, Sr(BrO4)2, Mo(BrO4)2 등], HBrO4의 아민염[NH4BrO4, NH(C2H5)3BrO4], HBrO2, HBrO2의 금속염[NaBrO2, FrBrO2, Sr(BrO2)2, Mo(BrO2)2 등], HBrO2의 아민염[NH4BrO2, NH(C4H9)3BrO2], HBrO, HBrO의 금속염[NaBrO, FrBrO, Sr(BrO)2, Mo(BrO)2 등], HBrO의 아민염[NH4BrO, NH(C3H7)3BrO]과 같이 브롬계화합물, HIO3, HIO3의 금속염[LiIO3, CsIO3, Ca(IO3)2, Cr(IO3)2 등], HIO3의 아민염[NH4IO3, NH(C2H5)3IO3], HIO4, HIO4의 금속염[NaIO4, FrIO4, Sr(IO4)2, Mo(IO4)2 등], HIO4의 아민염[NH4IO4, NH(C2H5)3IO4], HIO2, HIO2의 금속염[NaIO2, FrIO2, Sr(IO2)2, Mo(IO2)2 등], HIO2의 아민염[NH4IO2, NH(C4H9)3IO2], HIO, HIO의 금속염[NaIO, FrIO, Sr(IO)2, Mo(IO)2 등], HIO의 아민염[NH4IO, NH(C3H7)3IO]과 같이 요오드계화합물, HFO3, HFO3의 금속염[LiFO3, CsFO3, Ca(FO3)2, Cr(FO3)2 등], HFO3의 아민염[NH4FO3, NH(C2H5)3FO3], HFO4, HFO4의 금속염[NaFO4, FrFO4, Sr(FO4)2, Mo(FO4)2 등], HFO4의 아민염[NH4FO4, NH(C2H5)3FO4], HFO2, HFO2의 금속염[NaFO2, FrFO2, Sr(FO2)2, Mo(FO2)2 등], HFO2의 아민염[NH4FO2, NH(C4H9)3FO2], HFO, HFO의 금속염[NaFO, FrFO, Sr(FO)2, Mo(FO)2 등], HFO의 아민염[NH4FO, NH(C3H7)3FO]과 같이 불소계화합물을 예로 들 수 있으며 단독 혹은 복수로 사용할 수 있다. The recombination blocking agent of the present invention is characterized in that oxygen and halogen atoms are linked by a covalent bond, and at least five unshared electron pairs are contained in the recombination blocking agent molecule. Preferably 5 to 8 non-covalent electron pairs in the molecule. Examples of such a recombination blocking agent include metal salts of HClO 3 and HClO 3 [LiClO 3 , CsClO 3 , Ca (ClO 3 ) 2 , Cr (ClO 3 ) 2 and the like], amine salts of HClO 3 [NH 4 ClO 3 , NH C 2 H 5) 3 ClO 3 -, HClO 4, a metal salt [NaClO 4, FrClO 4, Sr (ClO 4) 2, Mo (ClO 4) 2 , etc.], salts of HClO 4 of HClO 4 [NH 4 ClO 4 , NH (C 2 H 5) 3 ClO 4], HClO 2, metal salts [NaClO 2, FrClO 2, Sr (ClO 2) 2, Mo (ClO 2) 2 , etc.], salts of HClO 2 of HClO 2 [NH 4 ClO 2, NH (C 4 H 9) 3 ClO 2], HClO, of HClO metal salt [NaClO, FrClO, Sr (ClO ) 2, Mo (ClO) 2 , etc.], salts of HClO [NH 4 ClO, NH (C 3 H 7) 3 ClO ] and chlorinated compounds, HBrO 3, metal salt [LiBrO 3, CsBrO 3, Ca (BrO 3) 2, Cr (BrO 3) 2 , etc.], salts of HBrO 3 of HBrO 3 as [ NH 4 BrO 3, NH (C 2 H 5) 3BrO 3], HBrO 4, HBrO 4 metal salt [NaBrO 4, FrBrO 4, Sr (BrO 4) 2, Mo (BrO 4) 2 , etc.], the HBrO 4-amine salt [NH 4 BrO 4, NH ( C 2 H 5) 3 BrO 4], HBrO 2, metal salts of HBrO 2 [NaBrO 2, FrBrO 2 , Sr (BrO 2) 2, Mo (BrO 2) 2 , etc.], HBrO 2 of the amine [NH 4 BrO 2, NH ( C 4 H 9) 3 BrO 2], HBrO, of HBrO metal salt [NaBrO, FrBrO, Sr (BrO ) 2, Mo (BrO) 2 , etc.], salts of HBrO [NH 4 BrO , NH for (C 3 H 7) 3 BrO ] and like bromine-based compounds, HIO 3, HIO 3 of metal salt [LiIO 3, CsIO 3, Ca (IO 3) 2, Cr (IO 3) 2 , etc.], HIO 3 salt [NH 4 IO 3, NH ( C 2 H 5) 3 IO 3], HIO 4, HIO 4 of metal salt [NaIO 4, FrIO 4, Sr (IO 4) 2, Mo (IO 4) 2 , etc.], amine salts of HIO 4 [NH 4 IO 4, NH (C 2 H 5) 3 IO 4], HIO 2, metal salts of HIO 2 [NaIO 2, FrIO 2 , Sr (IO 2) 2, Mo (IO 2) 2 (NaIO, FrIO, Sr (IO) 2 , Mo (IO) 2, etc.) of the amine salts of NHIO 2 [NH 4 IO 2 , NH (C 4 H 9 ) 3 IO 2 ], HIO, (LiFO 3 , CsFO 3 , Ca (FO 3 ) 2 , Cr (FO 3 ), and the like) of an iodine compound, HFO 3 and HFO 3 as well as an amine salt of HIO [NH 4 IO, NH (C 3 H 7 ) 3 IO] ) 2], salts of HFO 3 [NH 4 FO 3, NH (C 2 H 5) 3 FO 3], HFO 4, metal salts of HFO 4 [NaFO 4, FrFO 4 , Sr (FO 4) 2, Mo (FO 4 ) 2 ], the amine salt of HFO 4 [NH 4 FO 4 , NH (C 2 H 5 ) 3 FO 4 ], HFO 2 , HFO 2 Of metal salt [NaFO 2, FrFO 2, Sr (FO 2) 2, Mo (FO 2) 2 , etc.], salts of HFO 2 [NH 4 FO 2, NH (C 4 H 9) 3 FO 2], HFO, A fluorine-based compound such as a metal salt of HFO (NaFO, FrFO, Sr (FO) 2 , Mo (FO) 2 etc.) and an amine salt of HFO [NH 4 FO, NH (C 3 H 7 ) 3 FO] Or may be used in plural.

상기 용매로는 터셔리부틸알콜(tertiary butyl alcohol), 아세트로니트릴(acetronitrile), 테트라하이드로퓨란(tetrahydrofuran), 에탄올(ethanol), 이소프로필알콜(isopropyl alcohol), 메탄올(methanol), 아세톤(acetone), 프로판올(propanol), 메틸에틸케톤(methylethylketone), 부틸알콜(butylalcohol), 물(water), 포름아마이드(formamide), N-메틸포름아마이드(N-methylformamide), N,N-디메틸포름아마이드(N,N-dimethylformamide), 아세트아마이드(acetamide), N-메틸아세트아마이드(N-methylacetamide), N,N-디메틸아세트아마이드(N,N-dimethylacetamide), N-메틸프로피온아마이드(N-methylpropionamide), 피롤리돈(2-pyrrolidone), N-메틸피롤리돈(N-methyl pyrrolidone), 메틸설폭사이드(methyl sulfoxide), 디메틸설폭사이드(dimethyl sulfoxide), 설포레인(sulfolane), 디페닐설폰(diphenyl sulfone)을 단독 혹은 복수로 사용될 수 있으며, 본 발명이 이들에 한정되는 것은 아니다. Examples of the solvent include tertiary butyl alcohol, acetonitrile, tetrahydrofuran, ethanol, isopropyl alcohol, methanol, acetone, Propanol, methylethylketone, butylalcohol, water, formamide, N-methylformamide, N, N-dimethylformamide (N N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropionamide, 2-pyrrolidone, N-methyl pyrrolidone, methyl sulfoxide, dimethyl sulfoxide, sulfolane, diphenyl sulfone, ) May be used singly or in plural, and the present invention is not limited thereto It is not.

도 2는 본 발명에 의한 재결합차단제의 역할을 개념도로 표시한 것으로서, 재결합차단제가 금속산화물(N형반도체) 표면에 흡착되어 정공수송제(hole transporting material; HTM)와 직접적 접촉을 막음으로서 제2 재결합(N형반도체-정공수송제 계면 재결합) 현상을 방지할 수 있음을 보여준다. 또한, 본 발명에 의한 재결합차단제는 그 분자 내에 산소와 할로겐원자가 공유결합으로 연결되어 있으며, 도 2와 같이 산소 및 할로겐원자에 비공유전자쌍을 많이 가지고 있기 때문에 광여기에 의해 N형반도체로 주입된 전자와 상호 반발하는 효과가 있으므로 이로인해 제2 재결합 현상을 방지하는 효과가 있다. 이와 같이 본 발명에 의한 재결합차단제는 (1) N형반도체와 정공수송재 간의 직접적 접촉을 막아서 제2 재결합 현상을 방지함과 동시에, (2) 산소와 할로겐원자에 포함된 비공유전자쌍(최소 5개이상)과 N형반도체에 주입된 전자와의 반발력이 작용하여 추가적으로 제2 재결합 현상을 방지하는 효과가 있다. 또한, (3) 본 발명의 산소와 할로겐원자로 이루어진 재결합차단제는 절연성 물질이기 때문에 전자 차단효과가 훨씬 클 뿐만 아니라, (4) 단순 침적공정으로 반도체층 표면에 흡착이 가능하다는 장점이 있다.   FIG. 2 is a conceptual view illustrating the role of the recombination blocking agent according to the present invention. The recombination blocking agent is adsorbed on the surface of a metal oxide (N-type semiconductor) to prevent direct contact with a hole transporting material (HTM) It is possible to prevent recombination (N-type semiconductor-hole transport interface recombination) phenomenon. The recombination blocking agent according to the present invention has oxygen and halogen atoms covalently bonded in the molecule thereof and has a large number of non-covalent electron pairs in oxygen and halogen atoms as shown in Fig. 2, So that the second recombination phenomenon can be prevented. As described above, the recombination blocking agent according to the present invention prevents (2) a recombination phenomenon by preventing direct contact between the N-type semiconductor and the hole transporting material, (2) a non-covalent electron pair Or more) and the electrons injected into the N-type semiconductor act in addition to the effect of preventing the second recombination phenomenon. (3) Since the recombination blocking agent made of oxygen and halogen atoms of the present invention is an insulating material, the electron blocking effect is much larger, and (4) the semiconductor layer can be adsorbed onto the surface of the semiconductor layer by a simple deposition process.

<< N형반도체N-type semiconductor 표면에  On the surface P형반도체의P-type semiconductor 접합> Junction>

태양전지로서 작동하기 위해서는 N형반도체와 P형반도체가 접합을 이루어야 하며, 도 2와 같이 상기 재결합차단제가 흡착된 N형반도체 표면에 P형반도체가 접합이 되어야 한다. 이러한 P형반도체는 광을 흡수함으로써 기저상태에서 여기상태로 전자가 전이하여 전자-홀 쌍을 이루게 되며, 여기상태의 전자는 상기 N형반도체의 전도대로 주입된 후 블로킹층을 거쳐 제1전극으로 이동하여 기전력을 발생하게 된다.In order to operate as a solar cell, an N-type semiconductor and a P-type semiconductor must be bonded, and a P-type semiconductor must be bonded to the surface of the N-type semiconductor on which the recombination blocking agent is adsorbed, as shown in FIG. The p-type semiconductor absorbs light, and electrons are transferred from the ground state to the excited state to form an electron-hole pair. The electrons in the excited state are injected into the conduction band of the n-type semiconductor, So that an electromotive force is generated.

상기 P형반도체 물질로는 널리 알려진 페로브스카이트 결정구조를 가지는 RMX3로 표시되는 화합물을 이용할 수 있다. 여기서 R은 CnH2n + 1NH3 + (n은 1 내지 9의 정수), NH4 +, HC(NH2)2 +, CS+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 +, SbH4 + 및 이들의 조합들로 이루어진 군으로부터 선택되는 1가의 양이온을 의미하고, M은 Pb2 +, Sn2 +, Ge2 + 및 이들의 조합들로 이루어진 군으로부터 선택되는 2가의 금속 양이온을 의미하며, X는 F-, Cl-, Br-, I-와 같은 할로겐 음이온을 의미한다.As the P-type semiconductor material, a compound represented by RMX 3 having a well-known perovskite crystal structure can be used. Wherein R is CnH 2n + 1 NH 3 + ( n is an integer from 1 to 9), NH 4 +, HC (NH 2) 2 +, CS +, NF 4 +, NCl 4 +, PF 4 +, PCl 4 + , CH 3 PH 3 +, CH 3 AsH 3 +, CH 3 SbH 3 +, PH 4 +, AsH 4 +, SbH 4 + , and means a monovalent cation selected from the group consisting of a combination thereof, and M is Means a divalent metal cation selected from the group consisting of Pb 2 + , Sn 2 + , Ge 2 +, and combinations thereof, and X means a halogen anion such as F - , Cl - , Br - , or I - .

N형반도체 표면에 P형반도체를 접합시키기 위한 방법으로는 여러 가지가 알려져 있으며, 여기서는 R이 alkylammonium ion인 경우를 예로 들어 간단히 설명하면 다음과 같다. 페로브스카이트의 전구체물질인 alkylammonium halide와 metal halide를 혼합하여 용액으로 제조한 후 상기 N형반도체 상부에 코팅(spin coating, dip coating 등)시킨 후 열처리(40~300℃)하여 P-N접합을 형성시키는 방법이 가능하다. 또한, alkylammonium halide 용액과 metal halide 용액을 별도로 제조한 후 상기 N형반도체를 포함하는 기판을 순차적으로 침적 혹은 스핀 코팅시킨 후 열처리하여 P-N접합을 형성시키는 방법이 가능하다. 이상의 방법 이외에도 alkylammonium halide 전구체와 metal halide 전구체를 진공증착시키는 방법, 최종 합성된 페로브스카이트 물질을 진공증착시키는 방법 등이 가능하다. 상기 전구체 혹은 페로브스카이트 물질의 용액을 제조하여 P-N 접합공정을 진행할 경우 사용가능한 용매로는 γ-butyrolactone, dimethylsulfoxide, dimethylformamide, N-methyl-2-pyrrolidone, dimethylacetamide 등이 이용 가능하다. A variety of methods for bonding a P-type semiconductor to an N-type semiconductor surface are known. Hereinafter, a case where R is an alkylammonium ion will be briefly described as follows. (Spin coating, dip coating, etc.) on the N-type semiconductor, followed by heat treatment (40 to 300 ° C) to form a PN junction . Alternatively, a method may be used in which an alkylammonium halide solution and a metal halide solution are separately prepared, a substrate including the N-type semiconductor is successively deposited or spin coated, and then heat-treated to form a P-N junction. In addition to the above methods, a method of vacuum deposition of an alkylammonium halide precursor and a metal halide precursor, and a method of vacuum depositing a finally synthesized perovskite material are possible. When a solution of the precursor or perovskite material is prepared and the P-N bonding process is performed, γ-butyrolactone, dimethylsulfoxide, dimethylformamide, N-methyl-2-pyrrolidone and dimethylacetamide may be used.

이상과 같이, 상기 N형반도체 표면에 재결합차단제의 흡착과 P형반도체를 접합시키는 방법을 설명하였으나, 상기 방법에 한정되지 않는다. 상기 방법은 재결합차단제를 먼저 흡착시키고, P형반도체를 접합하는 방법이지만 그 순서를 상호 바꾸어도 태양전지 작동에는 문제가 되지 않는다. 즉, 상기 제시된 방법으로 P형반도체를 먼저 접합시킨 후 재결합차단제를 흡착시키는 방법도 가능하다. As described above, the method of bonding the P-type semiconductor to the adsorption of the recombination blocking agent on the surface of the N-type semiconductor has been described, but the method is not limited thereto. The above method is a method of first adsorbing a recombination blocking agent and bonding a P-type semiconductor, but there is no problem in the operation of a solar cell even if the order is changed. That is, it is also possible to bond the p-type semiconductor first by the above-described method and adsorb the recombination blocking agent.

<< 정공수송층의Hole transport layer 형성> Formation>

P형반도체인 페로브스카이트가 광을 흡수하여 전자-정공쌍을 형성하며, 이때 생성된 정공을 제2전극으로 전달시키는 역할을 하는 것이 정공수송층이다. 정공수송층을 구성하는 재료로서는, 정공을 수송하는 능력을 갖고, 전자를 차단하는 특성 뿐 아니라 박막 형성 능력이 우수한 화합물이 바람직하다. 구체적으로는 프탈로 시아닌계 화합물, 인디고, 티오인디고계 화합물, 멜로시아닌 화합물, 시아닌 화합물, 아릴아민 화합물 등의 저분자 화합물, thiophene계 고분자, 아릴아민기(aryl amine group)를 가지는 고분자 및 무기물물 소재가 가능하다. 상기 저분자 화합물로는 대표적으로 Spiro-OMeTAD [2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene]를 예로 들 수 있다. 상기 고분자 소재로는 대표적으로 PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate)], G-PEDOT [poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate):polyglycol(glycerol)], PANI:PSS[polyaniline:poly(4-styrene sulfonate)], PANI:CSA(polyaniline:camphor sulfonic acid), PDBT[poly(4,4'-dimethoxy bithophene)], 폴리(3-헥실티오펜) (P3HT), (폴리[2,1,3-벤조티아디아졸-4,7-디일[4,4-비스(2-에틸헥실-4H-사이클로펜타[2,1-b:3,4-b']디티오펜-2,6-디일]] (PCPDTBT), (폴리[[9-(1-옥틸노닐)-9H-카바졸-2,7-디일]-2,5-티오펜디일-2,1,3-벤조티아디아졸-4,7-디일-2,5-티오펜디일]) (PCDTBT), 또는 폴리(트리아릴아민) (PTAA)을 예로 들 수 있다. 상기 무기물 소재로서 대표적으로 MoO3, V2O5, NiO, WO3, CuI, CuSCN 등을 예로 들 수 있지만 특별히 이들에 한정되는 것은 아니다. 상기 정공수송층용 소재로서 저분자화합물, 고분자화합물 및 무기물을 예로 들었지만, 이들은 추가적으로 도펀트(dopant)를 함유할 수 있다. 이러한 도펀트로는 4-tertbutylpyridine, lithium bis(trifluoromethanesulfonyl) imide[LiN(CF3SO2)2], butylmethyl imidazolium iodide, 3-propyl-1-methyl-imidazolium iodide, lithium iodide 등이 있으며 단독 혹은 복수로 적용할 수 있다. The P-type semiconductor, perovskite, absorbs light to form electron-hole pairs, and the hole transport layer serves to transfer the generated holes to the second electrode. As the material constituting the hole transporting layer, a compound having a capability of transporting holes and having not only a property of blocking electrons but also an ability of forming a thin film is preferable. Specifically, a low molecular weight compound such as a phthalocyanine compound, an indigo, a thioindigo compound, a melocyanine compound, a cyanine compound or an arylamine compound, a thiophene polymer, a polymer having an arylamine group, Material is possible. Typical examples of the low-molecular compound include Spiro-OMeTAD [2,2 ', 7,7'-tetrakis- (N, N-di-4-methoxyphenylamino) -9,9'-spirobifluorene]. Poly (3,4-ethylenedioxythiophene): poly (4-styrene sulfonate)], G-PEDOT [poly (3,4-ethylenedioxythiophene) poly (4-styrene sulfonate), PANI: polyaniline (camphor sulfonic acid), PDBT (poly (4,4'-dimethoxy bithophene) (Hexylthiophene) (P3HT), (poly [2,1,3-benzothiadiazole-4,7-diyl [ 3,4-b '] dithiophene-2,6-diyl]] (PCPDTBT), (poly [[9- (1-octylnonyl) -9H- carbazole- 2,5-thiophenediyl]) (PCDTBT), or poly (triarylamine) (PTAA). Examples of the inorganic material include, but are not limited to, MoO 3 , V 2 O 5 , NiO, WO 3 , CuI, CuSCN and the like. The low- Yes , But they may additionally contain dopants such as 4-tertbutylpyridine, lithium bis (trifluoromethanesulfonyl) imide [LiN (CF 3 SO 2 ) 2 ], butylmethyl imidazolium iodide, methyl-imidazolium iodide, and lithium iodide, which can be used singly or in combination.

정공수송층의 형성 방법으로는 스핀 코팅법, 스프레이 코팅법, 스크린 인쇄법, 바(bar) 코팅법, 닥터블레이드 코팅법 등에 의해 형성될 수 있으며, 진공하에서 열증착이나 스퍼터링 방식에 의해 형성될 수도 있다. 상기 정공 수송층의 두께는 5~300 nm 정도로 형성하면 적합하다. The hole transport layer may be formed by a spin coating method, a spray coating method, a screen printing method, a bar coating method, a doctor blade coating method, or the like, or may be formed by thermal deposition or sputtering under vacuum . The thickness of the hole transport layer is preferably about 5 to 300 nm.

<제2전극의 형성>&Lt; Formation of second electrode &

상기 정공수송층 상부에 형성되는 제2전극은 정공을 수집하는 역할(즉, 정공수송층으로부터 정공을 받아들이는 역할)을 수행하며, 높은 전기전도도 특성을 가져야 하며, 정공수송층과 오믹 접합이 가능하고, 안정성이 우수하여야 한다. 이러한 제2전극용 소재로는 일함수가 상대적으로 큰 은(Ag), 백금(Pt), 텅스텐(W), 구리(Cu), 몰리브데늄(Mo), 금(Au), 니켈(Ni), 팔라듐(Pd), 인듐(In), 루테늄(Ru), 로듐(Rh), 이리듐(Ir), 오스뮴(Os), 전도성 탄소, 전도성 고분자를 예로 들 수 있으며 단독 혹은 복수로 선택되어 사용할 수 있다. 이러한 제2전극은 DC 스퍼터링방식, 열증착 또는 이와 달리 화학적 증착법(CVD), 원자층 증착(ALD), 전기도금 및 각종 프린팅기술과 같은 습식방식 등에 의해 형성될 수 있으며, 두께는 약 0.1~5μm 정도이면 적합하다. The second electrode formed on the hole transport layer performs a role of collecting holes (that is, a function of receiving holes from the hole transport layer), has high electrical conductivity, is capable of ohmic junction with the hole transport layer, Should be excellent. As materials for the second electrode, silver (Ag), platinum (Pt), tungsten (W), copper (Cu), molybdenum (Mo), gold (Au) (Pd), In, ruthenium (Rh), iridium (Ir), osmium (Os), conductive carbon and conductive polymer. . Such a second electrode may be formed by a DC sputtering method, thermal evaporation or alternatively by a wet method such as chemical vapor deposition (CVD), atomic layer deposition (ALD), electroplating and various printing techniques, .

본 발명에 의한 페로브스카이트 태양전지는 동작 중에 수분과 산소에 의해 열화가 될 수 있으므로, 대기로부터 형성된 각 층을 차단시킬 필요가 있다. 우선 유리 혹은 금속재질의 보호캡 중앙에 수분을 흡수할 수 있는 흡습제를 부착하고, 테두리 부위에는 실링재를 디스펜싱 시킨다. 다음으로 제작된 소자(기판/제1전극/N형반도체:P형반도체:정공수송제/제2전극)를 디스펜싱된 실링재 상부에 배치시킨 다음, UV 혹은 열을 가하여 실링재를 경화시킨다. 만약 UV를 이용하여 실링재를 경화시킬 경우에는 광활성층 부분에는 UV 광이 유입되지 않도록 조치해야 하며, 이는 UV에 의해 광활성층 등이 열화가 될 수 있기 때문이다. 이외에도 실링공정은 진공 하에서 다층 박막을 형성시키는 방법을 이용할 수도 있다. 이들의 실링공정은 이미 유기전계발광소자 산업분야에서 잘 확립되어 있다. 상기와 같은 구조 및 제조공정으로 구현된 본 발명의 페로브스카이트 태양전지는 추가적으로 상기 제1전극 및/혹은 제2전극에 그리드전극이 형성될 수도 있다. 그리드전극은 주로 금속 접촉층으로 이루어지고 전자빔 시스템 또는 다른 방법을 통하여 형성시킬 수 있으며, 주로 Ni, Al, Ag 등이 이용될 수 있다. 또한, 상기 투명기판 내부 혹은 외부에 반사방지층이 추가적으로 형성될 수도 있다. 태양전지에 입사되는 태양광의 반사 손실을 줄여 효율을 더욱 더 증가시키는 기능을 하는 반사방지층은 일반적으로 실리콘나이트라이드(SiNx) 등이 사용되는데 전자빔 증발법, 화학적증착법(CVD) 등에 의하여 두께가 600~1000Å 정도로 형성하여 사용될 수 있다.Since the perovskite solar cell according to the present invention may be deteriorated by moisture and oxygen during operation, it is necessary to block each layer formed from the atmosphere. First, attach a moisture absorbent that absorbs moisture to the center of the protective cap made of glass or metal, and dispense sealing material at the edge. Next, the prepared device (substrate / first electrode / N type semiconductor: P type semiconductor: hole transport agent / second electrode) is disposed on the top of the dispensed sealing material, and then the sealing material is cured by applying UV or heat. If the sealing material is cured using UV, it is necessary to prevent UV light from entering the photoactive layer, since the photoactive layer may be deteriorated by UV. In addition, a method of forming a multilayer thin film under vacuum may be used for the sealing process. These sealing processes have already been well established in the organic electroluminescent device industry. In the perovskite solar cell of the present invention, which is realized by the above-described structure and manufacturing process, a grid electrode may be further formed on the first electrode and / or the second electrode. The grid electrode mainly consists of a metal contact layer and can be formed through an electron beam system or another method, and mainly Ni, Al, Ag or the like can be used. Further, an anti-reflection layer may be additionally formed inside or outside the transparent substrate. In general, silicon nitride (SiNx) is used as an antireflection layer which functions to further increase the efficiency by reducing the reflection loss of sunlight incident on the solar cell. The thickness of the antireflection layer is preferably 600 to 600 nm by electron beam evaporation or chemical vapor deposition (CVD) 1000 &lt; / RTI &gt;

본 발명에 따른 산소 및 할로겐 원자로 구성된 재결합차단제는 첫째, N형 반도체와 정공수송제 간의 직접적인 접촉을 막아서 제2 재결합 현상을 방지할 수 있어 태양전지의 효율을 향상시킬 수 있고, 둘째, 산소와 할로겐 원자에 포함된 최소 5개 이상, 바람직하게는 5 내지 8개의 비공유전자쌍과 N형 반도체에 주입된 전자와의 반발력의 작용으로 추가적으로 제2 재결합 현상을 방지하는 효과가 있고, 셋째 본 발명의 산소와 할로겐 원자로 이루어진 재결합 차단제는 절연성 물질이므로 전자 차단효과가 훨씬 클 뿐만 아니라 넷째, 단순 침적공정으로 반도체층 표면에 흡착이 가능한 장점이 있다. The recombination blocking agent composed of oxygen and halogen atoms according to the present invention can prevent the second recombination phenomenon by preventing the direct contact between the N-type semiconductor and the hole transport agent, thereby improving the efficiency of the solar cell. Second, The second recombination phenomenon is further prevented by the action of the repulsive force between at least 5 or more, preferably 5 to 8 non-covalent electron pairs contained in the atoms and the electrons injected into the N-type semiconductor. Thirdly, Since the recombination blocking agent made of a halogen atom is an insulating material, the electron blocking effect is much greater. Fourth, the adsorption can be performed on the surface of the semiconductor layer by a simple deposition process.

도 1은 페로브스카이트 태양전지의 구조도이고,
도 2는 N형 반도체 표면에 흡착된 재결합차단제가 제 2재결합 현상을 방지하는 개념도이고,
도 3은 비교예 1에 의한 태양전지의 전류-전압특성을 나타내는 그래프이고,
도 4는 본 발명에 따른 실시예 1에 의해 제작된 태양전지의 전류-전압 특성을 나타낸 그래프이고,
도 5는 비교예 1 및 실시예 2에 의한 태양전지의 전압에 따른 dark current 그래프이다.
1 is a structural view of a perovskite solar cell,
2 is a conceptual diagram for preventing the recombination blocking agent adsorbed on the surface of the N-type semiconductor to prevent the second recombination phenomenon,
3 is a graph showing current-voltage characteristics of a solar cell according to Comparative Example 1,
4 is a graph showing current-voltage characteristics of a solar cell fabricated according to Example 1 of the present invention,
5 is a graph of dark current according to voltages of the solar cells according to Comparative Examples 1 and 2.

이하 본 발명의 페로브스카이트 태양전지 및 이의 구현방법을 실시예를 통하여 구체화 하지만, 이는 본 발명의 이해를 돕기 위하여 제시되는 것일 뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the perovskite solar cell of the present invention and its implementation method will be described in detail by way of examples. However, the present invention is not limited to the following examples.

비교예Comparative Example 1 One

먼저, 블로킹층을 형성하기 위하여 0.15M의 titanium diisopropoxide bis(acetylacetonate) 용액(용매: 1-butanol)을 제조한 후 이를 세정된 FTO 기판상부에 스핀코팅, 건조하였다. 이를 3회 반복한 후 500℃에서 20분간 열처리하여 TiO2 성분의 블로킹층을 형성시켰다. 이어서 상용(제조업체: Solaronix, TiO2 입경: 20 nm) TiO2 paste를 에탄올로 희석시킨 후 상기 블로킹층 상부에 스핀코팅(3000 rpm, 30s) 방식으로 코팅시켰으며, 500℃에서 60분간 열처리하여 N형반도체층을 형성시켰다. N형반도체인 TiO2가 형성된 기판상부에 1.0M의 PbI2 용액(용매: dimethylformamide)을 스핀코팅 후 건조하였으며, 이어서 CH3NH3I 용액(10mg/mL, 용매: 2-propanol)에 60초 동안 침적시켜 TiO2 표면에 페로브스카이트 화합물인 CH3NH3PbI3(P형반도체)를 접합시켰다. 정공수송층을 형성시키기 위하여 spiro-OMeTAD(0.085M), tert-butylpyridine, LiN(CF3SO2)2를 chlorobenzene 용매에 용해시킨 후 스핀코팅 및 건조하여 정공수송층을 형성시켰다. 정공수송층 상부에 제2전극으로서 Ag를 열증착방식으로 100nm 두께로 형성시켜 페로브스카이트 태양전지를 제조하였다. 완성된 페로브스카이트 태양전지의 광전변환효율은 solar simulator 및 I-V measurement 장비를 이용하였다. 제작된 태양전지 소자에 AM 1.5 조건(100mW/cm2)의 빛을 소자에 조사한 후, I-V curve를 확보하였고 이를 도 3에 나타내었으며, V OC (open circuit voltage)는 0.924V, J SC (short circuit current density)는 18.79 mA/cm2 및 Fill Factor는 69.8%를 나타내었으며 이로써 12.12%의 광전변환 효율을 나타내었다.First, 0.15 M titanium diisopropoxide bis (acetylacetonate) solution (solvent: 1-butanol) was prepared to form a blocking layer, and then spin-coated on the cleaned FTO substrate. This was repeated three times and then heat-treated at 500 ° C for 20 minutes to form a blocking layer of TiO 2 component. Subsequently, TiO 2 paste ( trade name : Solaronix, TiO 2 particle size: 20 nm) was diluted with ethanol and coated on the upper side of the blocking layer by spin coating (3000 rpm, 30 s) Type semiconductor layer. A 1.0 M PbI 2 solution (solvent: dimethylformamide) was spin-coated on the substrate on which TiO 2, which is an N-type semiconductor, was formed and then dried. Then, a CH 3 NH 3 I solution (10 mg / mL, solvent: 2-propanol) To deposit a perovskite compound CH 3 NH 3 PbI 3 (P type semiconductor) on the surface of TiO 2 . After dissolving the spiro-OMeTAD (0.085M), tert -butylpyridine, LiN (CF 3 SO 2) 2 in chlorobenzene solvent to form a hole transport layer by spin coating and dried to form a hole transport layer. A perovskite solar cell was fabricated by forming Ag as a second electrode with a thickness of 100 nm on the hole transport layer by a thermal deposition method. The photoelectric conversion efficiency of the completed perovskite solar cell was measured using a solar simulator and IV measurement equipment. Figure 3 shows the IV curves obtained after irradiating the device with light of AM 1.5 (100 mW / cm 2 ) to the manufactured solar cell device. V OC (open circuit voltage) is 0.924 V , J SC circuit current density was 18.79 mA / cm 2, and the fill factor was 69.8%, indicating a photoelectric conversion efficiency of 12.12%.

실시예Example 1 One

비교예 1에서 제시한 태양전지 제조과정 중에서, N형반도체(TiO2)가 형성된 기판을 100mM의 수용액에 20분간 침적시켜 TiO2 표면에 재결합차단제(LiBrO3)를 흡착시키는 공정을 추가한 것을 제외하고는 모든 조건을 비교예 1과 동일하게 하여 페로브스카이트 태양전지를 제조하였다. 제작된 태양전지 소자는 동일한 장비 및 방법으로 광전변환 효율을 측정하였다. V OC 는 1.00V, J SC 는 20.23 mA/cm2 및 Fill Factor는 70.1%를 나타내었으며 이로서 14.18%의 광전변환 효율을 나타내었으며 이를 도4에 나타내었다. 이와같이 비교예1에 비해 V OC J SC 가 큰 폭으로 증가하였으며, 이는 TiO2 표면에 흡착된 재결합차단제는 정공수송제와의 직접적 접촉을 막을 뿐만 아니라, 재결합차단제에 존재하는 8개의 비공유전자쌍과 P형반도체(CH3NH3PbI3)로부터 TiO2로 전달된 전자들 간의 반발력에 의해서 제2재결합 현상을 감소시켰기 때문이다.Except that the substrate on which the N-type semiconductor (TiO 2 ) was formed was immersed in an aqueous solution of 100 mM for 20 minutes to add a step of adsorbing the recombination blocking agent (LiBrO 3 ) on the surface of the TiO 2 in the solar cell manufacturing process shown in Comparative Example 1 A perovskite solar cell was prepared in the same manner as in Comparative Example 1 except that all conditions were changed. The photovoltaic conversion efficiency was measured by the same equipment and method. V OC was 1.00 V , J SC was 20.23 mA / cm 2, and the fill factor was 70.1%, which showed a photoelectric conversion efficiency of 14.18%, which is shown in FIG. Compared with the comparative example 1, the V OC and J SC were greatly increased. This indicates that the recombination blocking agent adsorbed on the TiO 2 surface not only prevented the direct contact with the hole transport agent but also the eight non-covalent electron pairs This is because the second recombination phenomenon is reduced by the repulsive force between the electrons transferred from the p-type semiconductor (CH 3 NH 3 PbI 3 ) to TiO 2 .

실시예Example 2 2

비교예 1에서 제시한 태양전지 제조과정 중에서, N형반도체(TiO2)가 형성된 기판을 50mM의 NH4ClO4 수용액에 30분간 침적시켜 TiO2 표면에 재결합차단제(NH4ClO4)를 흡착시키는 공정을 추가한 것을 제외하고는 모든 조건을 비교예 1과 동일하게 하여 페로브스카이트 태양전지를 제조하였다. 제작된 태양전지 소자는 동일한 장비 및 방법으로 광전변환 효율을 측정하였다. V OC 는 0.982V, J SC 는 21.01 mA/cm2 및 Fill Factor는 69.9%를 나타내었으며 이로서 14.42%의 광전변환 효율을 나타내었다. 앞서 실시예 1의 결과와 마찬가지로 비교예1에 비해 V OC J SC 가 큰 폭으로 증가하였으며, 이는 TiO2 표면에 흡착된 재결합차단제(NH4ClO4)는 정공수송제와의 직접적 접촉을 막을 뿐만 아니라, 재결합차단제에 존재하는 8개의 비공유전자쌍과 P형반도체(CH3NH3PbI3)로부터 TiO2로 전달된 전자간의 반발력에 의해서 제2재결합 현상을 감소시켰기 때문이다. 본 발명의 재결합차단제를 N형반도체(TiO2) 표면에 흡착시킬 경우 효율이 향상되는 원인을 분석하기 위하여, 비교예 1과 실시예 2의 과정으로 제작된 태양전지를 이용하여 dark current를 측정하였으며 그 결과를 도 5에 제시하였다. 도 5에서 알 수 있듯이 본 발명의 실시예 2에 따른 태양전지의 dark current가 비교예 1에 의한 태양전지의 값보다 모두 작은 값을 보였다. 이는 N형반도체(TiO2) 표면에 재결합차단제가 흡착되어 있어서 제2재결합 형상이 방지되어 dark current가 감소한 것으로서, 결국 V OC J SC 가 향상된 것으로 확인되었다.In the solar cell manufacturing process shown in Comparative Example 1, the substrate on which the N type semiconductor (TiO 2 ) was formed was immersed in an aqueous solution of 50 mM NH 4 ClO 4 for 30 minutes to adsorb the recombination blocking agent (NH 4 ClO 4 ) on the surface of the TiO 2 A perovskite solar cell was manufactured in the same manner as in Comparative Example 1 except that the process was added. The photovoltaic conversion efficiency was measured by the same equipment and method. V OC was 0.982 V , J SC was 21.01 mA / cm 2, and the fill factor was 69.9%, indicating a photoelectric conversion efficiency of 14.42%. Similar to the results of Example 1, V OC and J SC were greatly increased compared to Comparative Example 1, indicating that the recombination blocking agent (NH 4 ClO 4 ) adsorbed on the TiO 2 surface prevented direct contact with the hole transport agent This is because the second recombination phenomenon is reduced by the repulsive force between the eight non-covalent electron pairs present in the recombination blocking agent and the electrons transferred from the P type semiconductor (CH 3 NH 3 PbI 3 ) to TiO 2 . In order to analyze the reason why the recombination blocking agent of the present invention is adsorbed on the surface of the N-type semiconductor (TiO 2 ), the dark current was measured using the solar cell manufactured in the process of Comparative Example 1 and Example 2 The results are shown in Fig. As can be seen from FIG. 5, the dark current of the solar cell according to Example 2 of the present invention was smaller than that of the solar cell according to Comparative Example 1. This is because the recombination blocking agent is adsorbed on the surface of the N type semiconductor (TiO 2 ), so that the second recombination shape is prevented and the dark current is reduced. As a result, V OC and J SC are improved.

실시예Example 3 3

비교예 1에서 제시한 태양전지 제조과정 중에서, N형반도체(TiO2)가 형성된 기판을 30mM의 NaIO2 용액(에탄올 & 물 혼합용매)에 30분간 침적시켜 TiO2 표면에 재결합차단제(NaIO2)를 흡착시키는 공정을 추가한 것을 제외하고는 모든 조건을 비교예 1과 동일하게 하여 페로브스카이트 태양전지를 제조하였다. 제작된 태양전지 소자는 동일한 장비 및 방법으로 광전변환 효율을 측정하였다. V OC 는 0.945V, J SC 는 20.34 mA/cm2 및 Fill Factor는 70.2%를 나타내었으며 이로서 13.49%의 광전변환 효율을 나타내었다.From the comparison a solar cell manufacturing process presented in Example 1, N-type semiconductor (TiO 2) is NaIO 2 solution of 30mM substrate formed rejoins the TiO 2 surface by immersion for 30 minutes (ethanol and water mixed solvent) blockers (NaIO 2) A perovskite solar cell was manufactured in the same manner as in Comparative Example 1 except that all of the conditions were changed. The photovoltaic conversion efficiency was measured by the same equipment and method. V OC was 0.945 V , J SC was 20.34 mA / cm 2, and the fill factor was 70.2%, indicating a photoelectric conversion efficiency of 13.49%.

실시예Example 4 4

비교예 1에서 제시한 태양전지 제조과정 중에서 다음 2가지 공정을 달리하여 태양전지를 제작하였다. 첫째, zinc acetate dihydrate 1g, ethanolamine 0.28g, 2-methoxy ethanol 10mL를 혼합하여 ZnO sol을 제조한 후 이를 이용하여 세정된 FTO 기판상부에 스핀코팅, 열처리하여 블로킹층을 형성시켰으며, 비교예 1의 블로킹층 소재인 TiO2 대신에 ZnO를 사용하였다. 둘째, N형반도체(TiO2)가 형성된 기판을 200mM의 Mo(BrO4)2 용액(디메틸포름아마이드 & 물 혼합용매)에 30분간 침적시켜 TiO2 표면에 재결합차단제[Mo(BrO4)2]를 흡착시키는 공정을 추가하였다. 이와 같이 상기 2가지 공정조건을 제외하고는 비교예 1과 동일하게 하여 페로브스카이트 태양전지를 제조하였다. 제작된 태양전지 소자는 동일한 장비 및 방법으로 광전변환 효율을 측정하였다. V OC 는 0.107V, J SC 는 21.09 mA/cm2 및 Fill Factor는 70.6%를 나타내었으며 이로서 15.93%의 광전변환 효율을 나타내었다.In the solar cell manufacturing process shown in Comparative Example 1, the solar cell was manufactured by the following two processes. First, a ZnO sol was prepared by mixing 1 g of zinc acetate dihydrate, 0.28 g of ethanolamine, and 10 mL of 2-methoxy ethanol, and then spin coating and heat treatment were performed on the cleaned FTO substrate to form a blocking layer. ZnO was used instead of TiO 2 as a blocking layer material. Second, N-type semiconductor (TiO 2) a Mo (BrO 4) in 200mM a substrate formed of 2 solution (dimethyl formamide and water mixed solvent) recombination blockers TiO 2 surface by immersion for 30 minutes [Mo (BrO 4) 2] Was added. Thus, a perovskite solar cell was produced in the same manner as in Comparative Example 1 except for the above two process conditions. The photovoltaic conversion efficiency was measured by the same equipment and method. V OC was 0.107 V , J SC was 21.09 mA / cm 2, and the fill factor was 70.6%, indicating a photoelectric conversion efficiency of 15.93%.

실시예Example 5 5

비교예 1에서 제시한 태양전지 제조과정 중에서, N형반도체(TiO2)가 형성된 기판을 150mM의 HFO3 수용액에 1분간 침적시켜 TiO2 표면에 재결합차단제(HFO3)를 흡착시키는 공정을 추가한 것을 제외하고는 모든 조건을 비교예 1과 동일하게 하여 페로브스카이트 태양전지를 제조하였다. 제작된 태양전지 소자는 동일한 장비 및 방법으로 광전변환 효율을 측정하였다. V OC 는 0.988V, J SC 는 19.98 mA/cm2 및 Fill Factor는 70.8%를 나타내었으며 이로서 13.98%의 광전변환 효율을 나타내었다.In the solar cell manufacturing process shown in Comparative Example 1, the substrate on which the N type semiconductor (TiO 2 ) was formed was immersed in an aqueous solution of 150 mM HFO 3 for 1 minute to form TiO 2 A perovskite solar cell was manufactured in the same manner as in Comparative Example 1 except that a process of adsorbing a recombination blocking agent (HFO 3 ) on the surface was added. The photovoltaic conversion efficiency was measured by the same equipment and method. V OC is 0.988 V , J SC is 19.98 mA / cm 2 And a fill factor of 70.8%, indicating a photoelectric conversion efficiency of 13.98%.

실시예Example 6 6

실시예 1에서 제시한 태양전지 제조과정 중에서, N형 반도체를 Al2O3로 변경한 것을 제외하고는 모든 조건을 실시예 1과 동일하게 하여 페로브스카이트 태양전지를 제조하였다. 제작된 태양전지 소자는 동일한 장비 및 방법으로 광전변환 효율을 측정하였다. V OC 는 1.04V, J SC 는 20.88 mA/cm2 Fill Factor는 69.8%를 나타내었으며 이로서 15.16%의 광전변환 효율을 나타내었다.A perovskite solar cell was manufactured in the same manner as in Example 1, except that the N-type semiconductor was changed to Al 2 O 3 in the solar cell manufacturing process shown in Example 1. The photovoltaic conversion efficiency was measured by the same equipment and method. V OC was 1.04 V , J SC was 20.88 mA / cm 2, and the fill factor was 69.8%, indicating a photoelectric conversion efficiency of 15.16%.

실시예Example 7 7

실시예 1에서 제시한 태양전지 제조과정 중에서, N형반도체를 ZrO2로 변경한 것을 제외하고는 모든 조건을 실시예 1과 동일하게 하여 페로브스카이트 태양전지를 제조하였다. 제작된 태양전지 소자는 동일한 장비 및 방법으로 광전변환 효율을 측정하였다. V OC 는 0.96V, J SC 는 19.92 mA/cm2 및 Fill Factor는 70.8%를 나타내었으며 이로서 13.54%의 광전변환 효율을 나타내었다.A perovskite solar cell was manufactured in the same manner as in Example 1, except that the N-type semiconductor was changed to ZrO 2 in the solar cell manufacturing process shown in Example 1. The photovoltaic conversion efficiency was measured by the same equipment and method. V OC is 0.96 V , J SC is 19.92 mA / cm 2 And a fill factor of 70.8%, indicating a photoelectric conversion efficiency of 13.54%.

Claims (12)

기판, 상기 기판 상부에 형성된 제1전극, 상기 제1전극 상부에 형성된 블로킹층, 상기 블로킹층 상부에 형성된 광활성층, 상기 광활성층 상부에 형성된 정공수송층, 상기 정공수송층 상부에 형성된 제2전극으로 구성되는 태양전지에 있어서, 상기 광활성층은 N형반도체, 상기 N형반도체 표면에 흡착되어 있으면서, 산소와 할로겐원자로 구성되며, 비공유전자쌍이 5개 이상인 재결합차단제, 상기 N형반도체 표면에 접합된 P형반도체로 구성됨을 특징으로 하는, 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지.
A first electrode formed on the substrate, a blocking layer formed on the first electrode, a photoactive layer formed on the blocking layer, a hole transport layer formed on the photoactive layer, and a second electrode formed on the hole transport layer Wherein the photoactive layer is an N-type semiconductor, a recombination blocking agent adsorbed on the surface of the N-type semiconductor and composed of oxygen and halogen atoms and having five or more non-covalent electron pairs, a P- A perovskite solar cell comprising an N-type semiconductor modified with oxygen and a halogen atom.
제1항에 있어서,
상기 재결합차단제는 HClO3, HClO3의 금속염, HClO3의 아민염, HClO4, HClO4의 금속염, HClO4의 아민염, HClO2, HClO2의 금속염, HClO2의 아민염, HClO, HClO의 금속염, HClO의 아민염과 같이 염소계화합물; HBrO3, HBrO3의 금속염, HBrO3의 아민염, HBrO4, HBrO4의 금속염, HBrO4의 아민염, HBrO2, HBrO2의 금속염, HBrO2의 아민염, HBrO, HBrO의 금속염, HBrO의 아민염과 같이 브롬계화합물; HIO3, HIO3의 금속염, HIO3의 아민염, HIO4, HIO4의 금속염, HIO4의 아민염, HIO2, HIO2의 금속염, HIO2의 아민염, HIO, HIO의 금속염, HIO의 아민염과 같이 요오드계화합물; HFO3, HFO3의 금속염, HFO3의 아민염, HFO4, HFO4의 금속염, HFO4의 아민염, HFO2, HFO2의 금속염, HFO2의 아민염, HFO, HFO의 금속염, HFO의 아민염과 같이 불소계화합물로부터 단독 혹은 복수로 선택되어지는 것을 특징으로 하는 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지.
The method according to claim 1,
The recombination blockers of HClO 3, HClO 3 of the metal salt, HClO 3 of the amine salt, HClO 4, HClO 4 of the metal salt, HClO 4 salt, HClO 2, HClO 2 of the metal salts, amine salts, HClO, HClO of HClO 2 of Chlorinated compounds such as metal salts and amine salts of HClO; HBrO 3, amine salt of HBrO 3 metal salts, HBrO 3 of, HBrO 4, of HBrO 4 metal salt, HBrO 4 of salt, HBrO 2, the HBrO2 metal salts, amine salts of HBrO 2, HBrO, of HBrO metal salts of HBrO amine A bromine-based compound such as a salt; Of HIO 3, HIO 3 metal salts, HIO 3 of the amine salt, HIO 4, HIO 4 of the metal salt, HIO 4 of salt, HIO 2, HIO 2 of the metal salt, HIO 2 salt, HIO, the HIO metal salt, HIO of Iodine compounds such as amine salts; Of HFO 3, HFO 3 metal salts, HFO 3 of the amine salt, HFO 4, HFO 4 of the metal salt, HFO 4 of salt, HFO 2, HFO 2 of the metal salt, HFO 2 salt, HFO, the HFO metal salt, HFO of Wherein the perovskite type solar cell comprises an N-type semiconductor modified with oxygen and a halogen atom.
제1항에 있어서,
상기 기판은 광학적으로 투명한 유리, 플라스틱 중에서 선택되는 것을 특징으로 하는 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지.
The method according to claim 1,
Wherein the substrate is selected from optically transparent glass and plastic. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt; A perovskite solar cell having an N-type semiconductor modified with oxygen and halogen atoms.
제1항에 있어서,
상기 제1전극은 FTO(F-doped tin oxide), ITO(In-doped tin oxide), IZO(In-doped zinc oxide), ZnO-Ga2O3, ZnO-Al2O3, SnO2-Sb2O3 과 같이 투명하면서 전도성이 있는 투명전극임을 특징으로 하는, 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지.
The method according to claim 1,
The first electrode FTO (F-doped tin oxide) , ITO (In-doped tin oxide), IZO (In-doped zinc oxide), ZnO-Ga 2 O 3, ZnO-Al 2 O 3, SnO 2 -Sb 2 O 3 and characterized in that the transparent and conductive, transparent electrodes such as, Fe with an oxygen atom and a halogen-modified N-type semiconductor perovskite solar cells.
제1항에 있어서,
상기 블로킹층은 TiO2, ZnO 으로부터 단독 혹은 복수로 선택되는 것을 특징으로 하는, 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지.
The method according to claim 1,
Wherein the blocking layer is selected from the group consisting of TiO 2 and ZnO, singly or in combination, and the N-type semiconductor modified with oxygen and halogen atoms.
제1항에 있어서,
상기 N형반도체용 소재는 TiO2, Al2O3, SnO2, ZnO, WO3, Nb2O5, TiSrO3, ZrO2 으로부터 단독 혹은 복수로 선택되는 것을 특징으로 하는, 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지.
The method according to claim 1,
Wherein the material for the N-type semiconductor is selected from the group consisting of TiO 2 , Al 2 O 3 , SnO 2 , ZnO, WO 3 , Nb 2 O 5 , TiSrO 3 and ZrO 2 , A perovskite solar cell having an N - type semiconductor.
제1항에 있어서,
상기 정공수송층용 소재는 Spiro-OMeTAD [2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene], PEDOT:PSS [poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate)], G-PEDOT [poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate):polyglycol(glycerol)], PANI:PSS[polyaniline:poly(4-styrene sulfonate)], PANI:CSA(polyaniline:camphor sulfonic acid), PDBT[poly(4,4'-dimethoxy bithophene)], 폴리(3-헥실티오펜) (P3HT), (폴리[2,1,3-벤조티아디아졸-4,7-디일[4,4-비스(2-에틸헥실-4H-사이클로펜타[2,1-b:3,4-b']디티오펜-2,6-디일]] (PCPDTBT), (폴리[[9-(1-옥틸노닐)-9H-카바졸-2,7-디일]-2,5-티오펜디일-2,1,3-벤조티아디아졸-4,7-디일-2,5-티오펜디일]) (PCDTBT), 또는 폴리(트리아릴아민) (PTAA), MoO3, V2O5, NiO, WO3, CuI, CuSCN 으로부터 단독 혹은 복수로 선택되는 것을 특징으로 하는, 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지.
The method according to claim 1,
The material for the hole transport layer is Spiro-OMeTAD (2,2 ', 7,7'-tetrakis- (N, N-di-4-methoxyphenylamino) -9,9'- spirobifluorene], PEDOT: 4-ethylenedioxythiophene: poly (4-styrene sulfonate)], G-PEDOT [poly (4-ethylenedioxythiophene): polyglycol (glycerol)], PANI: (styrene sulfonate), PANI: polyaniline, camphor sulfonic acid, PDBT, poly (3-hexylthiophene) (P3HT) Synthesis of 3-benzothiadiazole-4,7-diyl [4,4-bis (2-ethylhexyl-4H- cyclopenta [2,1- b: 3,4- b '] dithiophene- ]] (PCPDTBT), (poly [[9- (1-octylnonyl) -9H-carbazole-2,7-diyl] -2,5-thiophenediyl-2,1,3-benzothiadiazole- (PCDTBT) or poly (triarylamine) (PTAA), MoO 3 , V 2 O 5 , NiO, WO 3 , CuI, CuSCN, , Characterized in that a perovskite solar cell having an N-type semiconductor modified with oxygen and a halogen atom, .
제1항 또는 제7항에 있어서,
상기 정공수송층에 도펀트를 추가적으로 포함할 수 있으며, 상기 도펀트가 4-터셔리부틸피리딘(4-tertbutylpyridine), 리튬비스(트리플루오르메탄설포닐)이미드(lithium bis(trifluoromethanesulfonyl) imide[LiN(CF3SO2)2]), 부틸메틸이미다졸리움아이오다이드(butylmethyl imidazolium iodide), 3-프로필-1-메틸-이미다졸리움 아이오다이드(3-propyl-1-methyl-imidazolium iodide), 리튬아이오다이드(lithium iodide)로부터 단독 혹은 복수로 선택되어지는 것을 특징으로 하는, 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지.
8. The method of claim 1 or 7,
The hole transport layer may further include a dopant, and the dopant may include 4-tertbutylpyridine, lithium bis (trifluoromethanesulfonyl) imide [LiN (CF 3 SO 2 ) 2 ]), butylmethyl imidazolium iodide, 3-propyl-1-methyl-imidazolium iodide, Wherein the perovskite solar cell has an N-type semiconductor modified with oxygen and a halogen atom, which is selected singly or in plurality from lithium iodide.
제1항에 있어서,
상기 P형반도체가 RMX3[여기서 R은 CnH2n + 1NH3 + (n은 1 내지 9의 정수), NH4 +, HC(NH2)2 +, CS+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 +, SbH4 + 및 이들의 조합들로 이루어진 군으로부터 선택되는 1가의 양이온이고, M은 Pb2 +, Sn2 +, Ge2 + 및 이들의 조합들로 이루어진 군으로부터 선택되는 2가의 금속 양이온을 의미하며, X는 F-, Cl-, Br-, I-와 같은 할로겐 음이온을 의미한다.]로 표시되는 화합물로부터 단독 혹은 복수로 선택되어지는 것을 특징으로 하는 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지.
The method according to claim 1,
It is the P-type semiconductor RMX 3 [wherein R is CnH 2n + 1 NH 3 + ( n is an integer from 1 to 9), NH 4 +, HC (NH 2) 2 +, CS +, NF 4 +, NCl 4 + , PF 4 + , PCl 4 + , CH 3 PH 3 + , CH 3 AsH 3 + , CH 3 SbH 3 + , PH 4 + , AsH 4 + , SbH 4 + And M is a divalent metal cation selected from the group consisting of Pb 2 + , Sn 2 + , Ge 2 +, and combinations thereof, and X represents F - , Cl - , Br - , I - And the same halogen anion.] The perovskite solar cell has an N-type semiconductor modified with oxygen and a halogen atom.
제1항에 있어서,
상기 제2전극으로는 은(Ag), 백금(Pt), 텅스텐(W), 구리(Cu), 몰리브데늄(Mo), 금(Au), 니켈(Ni), 인듐(In), 루테늄(Ru), 팔라듐(Pd), 로듐(Rh), 이리듐(Ir), 오스뮴(Os), 전도성 탄소, 전도성 고분자로부터 단독 혹은 복수로 선택되어지는 것을 특징으로 하는, 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지.
The method according to claim 1,
The second electrode may be at least one selected from the group consisting of Ag, Pt, W, Cu, Mo, Au, Ni, Wherein at least one selected from the group consisting of ruthenium (Ru), palladium (Pd), rhodium (Rh), iridium (Ir), osmium (Os), conductive carbon, A perovskite solar cell.
기판 상부에 제1전극을 형성하는 단계;
상기 제1전극 상부에 블로킹층을 형성하는 단계;
상기 블로킹층 상부에 광활성층을 형성하는 단계;
상기 광활성층 상부에 정공수송층을 형성하는 단계;
상기 정공수송층 상부에 제2전극을 형성하는 단계로 이루어진 태양전지 제조공정에 있어서,
상기 광활성층은 N형반도체층을 형성하는 단계;
N형반도체층 표면에 산소와 할로겐원자로 구성되며, 비공유전자쌍이 5개 이상인 재결합차단제를 흡착시키는 단계; 및
N형반도체와 P형반도체를 접합시키는 단계로 구성되어 있음을 특징으로 하는, 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지의 제조방법.
Forming a first electrode over the substrate;
Forming a blocking layer on the first electrode;
Forming a photoactive layer over the blocking layer;
Forming a hole transport layer on the photoactive layer;
And forming a second electrode on the hole transport layer,
Wherein the photoactive layer comprises an N-type semiconductor layer;
Adsorbing a recombination blocking agent composed of oxygen and halogen atoms on the surface of the N-type semiconductor layer and having five or more non-covalent electron pairs; And
A method of manufacturing a perovskite solar cell having an N-type semiconductor modified with oxygen and a halogen atom, the method comprising: bonding an N-type semiconductor and a P-type semiconductor.
제11항에 있어서,
상기 재결합차단제는 HClO3, HClO3의 금속염, HClO3의 아민염, HClO4, HClO4의 금속염, HClO4의 아민염, HClO2, HClO2의 금속염, HClO2의 아민염, HClO, HClO의 금속염, HClO의 아민염과 같이 염소계화합물; HBrO3, HBrO3의 금속염, HBrO3의 아민염, HBrO4, HBrO4의 금속염, HBrO4의 아민염, HBrO2, HBrO2의 금속염, HBrO2의 아민염, HBrO, HBrO의 금속염, HBrO의 아민염과 같이 브롬계화합물; HIO3, HIO3의 금속염, HIO3의 아민염, HIO4, HIO4의 금속염, HIO4의 아민염, HIO2, HIO2의 금속염, HIO2의 아민염, HIO, HIO의 금속염, HIO의 아민염과 같이 요오드계화합물; HFO3, HFO3의 금속염, HFO3의 아민염, HFO4, HFO4의 금속염, HFO4의 아민염, HFO2, HFO2의 금속염, HFO2의 아민염, HFO, HFO의 금속염, HFO의 아민염과 같이 불소계화합물로부터 단독 혹은 복수로 선택되어지는 것을 특징으로 하는 산소와 할로겐 원자로 개질 된 N형 반도체를 갖는 페로브스카이트 태양전지의 제조방법.
12. The method of claim 11,
The recombination blockers of HClO 3, HClO 3 of the metal salt, HClO 3 of the amine salt, HClO 4, HClO 4 of the metal salt, HClO 4 salt, HClO 2, HClO 2 of the metal salts, amine salts, HClO, HClO of HClO 2 of Chlorinated compounds such as metal salts and amine salts of HClO; HBrO 3, amine salt of HBrO 3 metal salts, HBrO 3 of, HBrO 4, of HBrO 4 metal salt, HBrO 4 of salt, HBrO 2, the HBrO2 metal salts, amine salts of HBrO 2, HBrO, of HBrO metal salts of HBrO amine A bromine-based compound such as a salt; Of HIO 3, HIO 3 metal salts, HIO 3 of the amine salt, HIO 4, HIO 4 of the metal salt, HIO 4 of salt, HIO 2, HIO 2 of the metal salt, HIO 2 salt, HIO, the HIO metal salt, HIO of Iodine compounds such as amine salts; Of HFO 3, HFO 3 metal salts, HFO 3 of the amine salt, HFO 4, HFO 4 of the metal salt, HFO 4 of salt, HFO 2, HFO 2 of the metal salt, HFO 2 salt, HFO, the HFO metal salt, HFO of Wherein the phosphorus-based compound is selected from the group consisting of a fluorine-based compound such as an amine salt, and an N-type semiconductor modified with oxygen and a halogen atom.
KR1020160003049A 2016-01-11 2016-01-11 Perovskite solar cells containing N-type semiconductors modified with oxygen and halogen atoms, and fabricating method thereof KR101701670B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160003049A KR101701670B1 (en) 2016-01-11 2016-01-11 Perovskite solar cells containing N-type semiconductors modified with oxygen and halogen atoms, and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160003049A KR101701670B1 (en) 2016-01-11 2016-01-11 Perovskite solar cells containing N-type semiconductors modified with oxygen and halogen atoms, and fabricating method thereof

Publications (1)

Publication Number Publication Date
KR101701670B1 true KR101701670B1 (en) 2017-02-01

Family

ID=58109339

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160003049A KR101701670B1 (en) 2016-01-11 2016-01-11 Perovskite solar cells containing N-type semiconductors modified with oxygen and halogen atoms, and fabricating method thereof

Country Status (1)

Country Link
KR (1) KR101701670B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833969A (en) * 2017-09-28 2018-03-23 西北工业大学 A kind of high efficiency planar heterojunction perovskite thin film solar cell and preparation method
KR101894413B1 (en) * 2017-04-04 2018-09-04 성균관대학교산학협력단 Fabrication method of a solar cell
KR20190097662A (en) * 2018-02-13 2019-08-21 대구가톨릭대학교산학협력단 Perovskite solar cells containing N-type semiconductors modified with nitrile compound, and fabricating method therof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101492022B1 (en) 2014-03-11 2015-02-11 한국화학연구원 Solar Cell Having Inorganic―Orgaic Hybrid Perovskites Compound as a Light Harvester
KR20150100216A (en) * 2014-02-25 2015-09-02 주식회사 동진쎄미켐 Solid Thin Film Solar Cell Based on Perovskite Sensitizer and Manufacturing Method Thereof
JP2015530738A (en) * 2012-08-03 2015-10-15 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Organometallic halide perovskite heterojunction solar cell and method for producing the same
KR20150124412A (en) 2014-04-28 2015-11-05 성균관대학교산학협력단 Precursor for preparing perovskite and preparing method of the same, and perovskite solar cell and preparing method of the cell
KR20150124413A (en) 2014-04-28 2015-11-05 성균관대학교산학협력단 Perovskite solar cell and preparing method of the same
KR20160076839A (en) * 2014-12-23 2016-07-01 성균관대학교산학협력단 Perovskite solar cell comprising surface treated electron carrier with hydrophilic group and method fabricating thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530738A (en) * 2012-08-03 2015-10-15 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Organometallic halide perovskite heterojunction solar cell and method for producing the same
KR20150100216A (en) * 2014-02-25 2015-09-02 주식회사 동진쎄미켐 Solid Thin Film Solar Cell Based on Perovskite Sensitizer and Manufacturing Method Thereof
KR101492022B1 (en) 2014-03-11 2015-02-11 한국화학연구원 Solar Cell Having Inorganic―Orgaic Hybrid Perovskites Compound as a Light Harvester
KR20150124412A (en) 2014-04-28 2015-11-05 성균관대학교산학협력단 Precursor for preparing perovskite and preparing method of the same, and perovskite solar cell and preparing method of the cell
KR20150124413A (en) 2014-04-28 2015-11-05 성균관대학교산학협력단 Perovskite solar cell and preparing method of the same
KR20160076839A (en) * 2014-12-23 2016-07-01 성균관대학교산학협력단 Perovskite solar cell comprising surface treated electron carrier with hydrophilic group and method fabricating thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D.H.Cao, APL MATERIALS, 2, 091101-1~091101-7(2014)
G.S. Han et al, J. Mater. Chem. A, 3, 9160-9164(2015)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101894413B1 (en) * 2017-04-04 2018-09-04 성균관대학교산학협력단 Fabrication method of a solar cell
CN107833969A (en) * 2017-09-28 2018-03-23 西北工业大学 A kind of high efficiency planar heterojunction perovskite thin film solar cell and preparation method
KR20190097662A (en) * 2018-02-13 2019-08-21 대구가톨릭대학교산학협력단 Perovskite solar cells containing N-type semiconductors modified with nitrile compound, and fabricating method therof
KR102108139B1 (en) * 2018-02-13 2020-05-26 대구가톨릭대학교산학협력단 Perovskite solar cells containing N-type semiconductors modified with nitrile compound, and fabricating method therof

Similar Documents

Publication Publication Date Title
Zhang et al. V2O5 as hole transporting material for efficient all inorganic Sb2S3 solar cells
Hamed et al. Mixed halide perovskite solar cells: progress and challenges
US9059418B2 (en) Method for manufacturing a nanostructured inorganic/organic heterojunction solar cell
KR101172534B1 (en) Inorganic-Organic Heterojunction Solar Cells with All-Solid State
KR101645872B1 (en) Inorganic-organic hybrid solar cell
KR101117127B1 (en) Tandem solar cell using amorphous silicon solar cell and organic solar cell
Xiao et al. Efficient bifacial perovskite solar cell based on a highly transparent poly (3, 4-ethylenedioxythiophene) as the p-type hole-transporting material
AU2019257470A1 (en) A Photovoltaic Device
KR101571528B1 (en) Perovskite solar cell improving photoelectric conversion efficiency and the manufacturing method thereof
KR101707050B1 (en) Preparation for method of perovskite absorber layer and perovskite solar cells comprising the perovskite absorber layer thereby
Fan et al. Delayed annealing treatment for high-quality CuSCN: exploring its impact on bifacial semitransparent nip planar perovskite solar cells
US20120090679A1 (en) Metal substrate for a dye sensitized photovoltaic cell
CN107615507B (en) Fabrication of stable perovskite-based optoelectronic devices
KR102108139B1 (en) Perovskite solar cells containing N-type semiconductors modified with nitrile compound, and fabricating method therof
KR101116250B1 (en) Nanostructured inorganic-organic heterojunction solar cells and fabrication method thereof
KR101791801B1 (en) Perovskite solar cells containing N-type semiconductors modified with chalcogens, and fabricating method therof
KR101701670B1 (en) Perovskite solar cells containing N-type semiconductors modified with oxygen and halogen atoms, and fabricating method thereof
KR102173288B1 (en) Perovskite solar cells with hole transporting layers of high water resistance, and fabricating method therof
KR101694803B1 (en) Perovskite solar cells comprising metal nanowire as photoelectrode, and the preparation method thereof
KR102167415B1 (en) Fabrication method of solar cells with metal chalcogenide-modified N-type semiconductors and solar cells prepared therefrom
KR102182902B1 (en) Transparent Electrodes for Solar Cells and Solar Cells Utilizing the Same Approach
KR102191397B1 (en) Perovskite solar cell comprising surface-treated electron transport layer and method of manufacturing the same
KR101458565B1 (en) Organic solar cell and the manufacturing method thereof
EP2538452A2 (en) All-solid-state heterojunction solar cell
KR102257985B1 (en) Hybrid solar cells with N-type semiconductors modified with nitrogen-containing polymers and the Fabrication methode thereof

Legal Events

Date Code Title Description
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200120

Year of fee payment: 4