KR101663358B1 - Fructose 1,6-bisphosphate aldolases from various microorganisms and enzymatic conversion method of tagatose 6-phosphate from fructose 6-phosphate by the same - Google Patents
Fructose 1,6-bisphosphate aldolases from various microorganisms and enzymatic conversion method of tagatose 6-phosphate from fructose 6-phosphate by the same Download PDFInfo
- Publication number
- KR101663358B1 KR101663358B1 KR1020140001709A KR20140001709A KR101663358B1 KR 101663358 B1 KR101663358 B1 KR 101663358B1 KR 1020140001709 A KR1020140001709 A KR 1020140001709A KR 20140001709 A KR20140001709 A KR 20140001709A KR 101663358 B1 KR101663358 B1 KR 101663358B1
- Authority
- KR
- South Korea
- Prior art keywords
- ala
- phosphate
- gly
- glu
- fructose
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/02—Monosaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/02—Aldehyde-lyases (4.1.2)
- C12Y401/02013—Fructose-bisphosphate aldolase (4.1.2.13)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
본 발명은 다양한 미생물 유래의 과당 1,6-이인산 알돌레이즈 및 이를 이용한 과당 6-인산으로부터 타가토스 6-인산으로의 효소 전환 방법에 관한 것이다.The present invention relates to an aldolase of 1,6-diphosphate derived from various microorganisms and a method for converting an enzyme from fructose-6-phosphate to tagatose-6-phosphate using the same.
Description
본 발명은 다양한 미생물 유래의 과당 1,6-이인산 알돌레이즈 및 이를 이용한 과당 6-인산으로부터 타가토스 6-인산으로의 효소 전환 방법에 관한 것이다.The present invention relates to an aldolase of 1,6-diphosphate derived from various microorganisms and a method for converting an enzyme from fructose-6-phosphate to tagatose-6-phosphate using the same.
단당류는 당알코올 및 aldose와 ketose로 분류되고, 4탄당에는 erythrose, threose, erythrulose, erithritol, threitol이, 5탄당에는 ribose, arabinose, xylose, lyxose, ribulose, xylulose, xyitol, ribitol, arabitol이, 6탄당에는 allose, altrose, glucose, mannose, gulose, idose, galactose, talose, fructose, psicose, sorbose, tagatose, allitol, altritol, talitol, gulitol, mannitol, glucitol, iditol, galactitol이 있으며, D-및 L-forms을 포함하여 총 56 종이다. 이들 상호간의 전환은 이성화 효소와 에피머화 효소가 관여한다.The monosaccharides are classified into sugar alcohols and aldose and ketose, and erythrose, threose, erythrulose, erithritol and threitol are contained in the quadrivalent and ribose, arabinose, xylose, lyxose, ribulose, xylulose, xyitol, ribitol, And D-and L-forms, which are allose, altrose, glucose, mannose, gulose, idose, galactose, talose, fructose, psicose, sorbose, tagatose, allitol, altitol, talitol, gulitol, mannitol, glucitol, iditol, Including 56 species. These two mutations are involved in isomerism and epimerization.
단당류 에피머화 기술은 이성화 기술과 함께 단백질 효소공학 분야에 해당되는 기술로 생물전환을 결정하는 중요한 기반적인 특징을 가지고 있다. 에피머화 효소는 단당류내의 특정 각 위치의 -OH기를 치환하는 다양한 종류가 존재하며 이러한 에피머화 효소를 이용한다면 하나의 단당류를 다양한 단당류로 전환 가능하다는 것이 특징이다. 예를 들면 D-glucose의 각 2번 탄소, 3번 탄소, 4번 탄소, 5번 탄소 각각의 -OH기를 전환하는 에피머화 효소를 이용한다면 일반적으로 천연으로부터 풍부하게 얻을 수 있는 D-glucose로부터 D-mannose, D-allose, D-galactose, L-idose와 같은 희소성이 높은 다양한 단당류로 전환이 가능하게 되고 특히, 육탄당에서 5번탄소 -OH기 와 오탄당에서 4번탄소 -OH기를 전환하는 에피머화 효소의 경우는 D-form 단당에서 자연계에는 거의 존재하지 않는 L-form 단당으로 전환이 가능하기에 단당류 전환에 에피머화 효소를 이용할 경우 새로운 개념의 산업적 생산법이 개발되어 단당류 산업의 재편까지 가능하게 되어 파급 효과는 매우 클 것으로 예상된다. 그러나 현재까지 보고된 단당 4-에피머화 효소는 보고된 바 없으며, 단당류 전환에 대한 연구 보고가 매우 미흡한 실정이다. 따라서, 이와 같은 문제점을 해결하기 위하여, 당의 에피머화에 관여하는 효소 발굴에 관하여 활발히 연구되고 있는 실정이다. The monosaccharide epimerization technique, along with the isomerization technology, is an important technology in the field of protein enzyme engineering and has important fundamental characteristics for determining bioconversion. There are various kinds of epimerizing enzymes that substitute -OH groups at specific angles in the monosaccharide. When such epimerizing enzyme is used, one monosaccharide can be converted into various monosaccharides. For example, if an epimerizing enzyme that converts the -OH group of each of the 2-carbon, 3-carbon, 4-carbon, and 5-carbon of D-glucose is used, D- it is possible to convert the monosaccharide to a variety of high-scarcity monosaccharides such as -mannose, D-allose, D-galactose and L-idose. Especially, In the case of maltase, D-form monosaccharide can be converted into L-form monosaccharide which is almost absent in nature, and when epimerase is used for monosaccharide conversion, a new concept industrial production method is developed and the monosaccharide industry can be reorganized The ripple effect is expected to be very large. However, there have been no reported 4-epimerases of monosaccharides reported to date, and reports on the conversion of monosaccharides are very poor. Therefore, in order to solve such a problem, the enzyme digestion involved in epimerization of sugar has been actively researched.
본 발명자들은 대장균 유래 과당 1,6-이인산 알돌레이즈가 과당 6-인산으로부터 타가토스 6-인산으로의 전환에 관여하는 특이성을 발견하여 이미 특허를 출원하였다(출원번호 10-2013-0089588).The present inventors have already filed a patent (Patent Application No. 10-2013-0089588) for discovering the specificity that 1,6-diphosphate phosphate fructose derived from Escherichia coli is involved in the conversion of fructose 6-phosphate into tagatose 6-phosphate.
[선행 특허 문헌] [Prior Patent Literature]
대한민국 공개번호 2004-0035683 Korea Pub. No. 2004-0035683
본 발명은 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 4번 탄소의 에피머화하는 신규한 효소를 탐색 및 규명하며 나아가 과당을 기질로 고수율의 타가토스를 제조하는 방법을 제공하는 것이다.The present invention has been made in view of the above needs, and it is an object of the present invention to provide a method for searching and identifying new enzymes for epimerizing carbon 4, and for producing tagatose in high yield using fructose as a substrate.
본 발명의 다른 목적은 타가토스를 생산할 수 있는 반응에 관여한 효소들을 선택하고, 이의 특정 효과를 입증함으로써, 효소를 사용하여 고수율의 타가토스를 생산하는 새로운 방법을 제공하는 것이다.Another object of the present invention is to provide a novel method for producing tagatose in high yield by using enzymes by selecting enzymes involved in a reaction capable of producing tagatose and proving its specific effect.
상기 목적을 달성하기 위하여, 본 발명은 과당 1,6-이인산 알돌레이즈 효소를 유효성분으로 포함하는 단당류의 4번 탄소 에피머화 반응을 매개하는 조성물을 제공한다.In order to accomplish the above object, the present invention provides a composition mediating the carbon-4 epimerization reaction of a monosaccharide containing an 1,6-diphosphate aldolase enzyme as an active ingredient.
본 발명의 일 구현예에 있어서, 상기 과당 1,6-이인산 알돌레이즈는 서열번호 1 내지 4의 아미노산 서열로 표시되는 효소 중 하나인 것이 바람직하나 이들 서열에 하나 이상의 치환, 결손, 역위, 전좌 등의 돌연변이를 통하여 본 발명의 목적을 달성하거나 기타 단당류의 4번 탄소 에피머화 반응을 매개하는 과당 1,6-이인산 알돌레이즈 효소도 본 발명의 범위에 포함된다.In one embodiment of the present invention, the
또한 본 발명은 단당류에 과당 1,6-이인산 알돌레이즈 효소를 처리하여 단당류의 4번 탄소 에피머화 반응을 야기하는 방법을 제공한다.The present invention also provides a method for treating a monosaccharide with a 1,6-diphosphate-aldolase enzyme to cause a carbon-4 epimerization reaction of the monosaccharide.
또 본 발명은 과당 1,6-이인산 알돌레이즈 효소를 유효성분으로 포함하는 타가토스 생산용 조성물을 제공한다.The present invention also provides a composition for producing tagatose comprising an 1,6-diphosphate phosphate aldolase enzyme as an active ingredient.
본 발명의 일 구현예에 있어서, 상기 과당 1,6-이인산 알돌레이즈는 서열번호 1 내지 4의 아미노산 서열로 표시되는 효소 중 하나인 것이 바람직하나 이들 서열에 하나 이상의 치환, 결손, 역위, 전좌 등의 돌연변이를 통하여 본 발명의 목적을 달성하거나 기타 타가토스 생산이 가능한 과당 1,6-이인산 알돌레이즈 효소도 본 발명의 범위에 포함된다.In one embodiment of the present invention, the
또한 본 발명은 과당 6-인산에 알돌레이즈를 첨가하여 반응시키는 단계를 포함하는 과당으로부터 타가토스 생산 방법을 제공한다.The present invention also provides a method for producing tagatose from fructose comprising the step of adding aldolase to fructose-6-phosphate and reacting.
또한 본 발명은 상기 본 발명의 생산 방법에 의하여 생산된 타가토스를 유효성분으로 하는 조성물을 제공한다.The present invention also provides a composition comprising the tagatose produced by the production method of the present invention as an active ingredient.
또한 본 발명은 상기 본 발명의 생산방법에 의하여 생산된 타가토스 6-인산을 이용하여 생산할 수 있는 타가토스를 유효성분으로 포함하는 식품 조성물을 제공한다.The present invention also provides a food composition comprising, as an active ingredient, tagatose which can be produced using the tagatose 6-phosphate produced by the production method of the present invention.
본 발명의 구현한 예에 있어서, 상기 식품은 음료, 쵸콜릿, 껌, 빵, 사탕, 유제품 및 축산제품 등이 바람직하나 이에 한정되지 아니한다.In an embodiment of the present invention, the food is preferably but not limited to beverage, chocolate, gum, bread, candy, dairy products, and livestock products.
이하 본 발명을 설명한다.Hereinafter, the present invention will be described.
본 발명은 과당 6-인산 에피머화의 활성을 가지는 서열번호 1, 2, 3, 및 4의 아미노산 서열로 표시되는 단백질을 제공한다.The present invention provides a protein represented by the amino acid sequence of SEQ ID NOS: 1, 2, 3, and 4, having an activity of fructose 6-phosphate epimerization.
또한, 다른 목적을 달성하기 위하여, 본 발명은 과당 6-인산 에피머화 효소의 활성을 가지는 서열번호 1, 2, 3, 및 4의 아미노산 서열로 표시되는 단백질을 암호화하는 유전자를 제공한다.In addition, to achieve another object, the present invention provides a gene encoding the protein represented by the amino acid sequence of SEQ ID NOS: 1, 2, 3, and 4, which has activity of fructose 6-phosphate epimerase.
또한, 또 다른 목적을 달성하기 위하여, 본 발명은 상기 유전자를 포함하는 재조합 발현벡터를 제공한다.In order to achieve still another object, the present invention provides a recombinant expression vector comprising the gene.
나아가, 본 발명은 단백질을 과당 6-인산과 반응시켜 타가토스 6-인산을 생산하는 것을 특징으로 하는 타가토스 6-인산 생산방법을 제공하므로서 타가토스 생산법을 제공한다.Furthermore, the present invention provides a method for producing tagatose 6-phosphate by providing a method for producing tagatose 6-phosphate by reacting a protein with fructose-6-phosphate to produce tagatose 6-phosphate.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 여러 다른 미생물 유래 알돌레이즈도 과당 6-인산으로부터 타가토스 6-인산으로의 전환에 관여하는 특이성을 발견하여 본 발명을 완성하였다. 본 발명에서는 Streptococcus thermophilus,Caldicellulosiruptor saccharolyticus 및 Kluyveromyces lactis 유래의 과당 1,6-이 인산 알돌레이즈를 클로닝하여 효소의 4번 탄소 에피머화 기능을 확인하고 이에 대해 본 발명자의 선행 특허에서 소개하였던 대장균 유래 과당-1,6-이인산 알돌레이즈와의 활성을 비교한 결과 활성이 더 우수하였다.The present invention has found the specificity involved in the conversion of various microorganism-derived aldolase to fructose 6-phosphate from fructose 6-phosphate, thus completing the present invention. In the present invention,
본 명세서에서 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다.Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
또한, 종래와 동일한 기술적 구성 및 작용에 대한 반복되는 설명은 생략하기로 한다.Repeated descriptions of the same technical constitution and operation as those of the conventional art will be omitted.
본 발명은 앞선 발명에서 4번 탄소 에피머화 작용을 통해 과당 6-인산으로부터 타가토스 6-인산으로의 효소 전환반응을 규명한 서열번호 5의 대장균 K-12 유래의 과당 1,6-이인산 알돌레이즈화 효소를 바탕으로 이에 대응되는 다양한 미생물의 유전자를 클로닝하고 해당 유전자를 포함한 발현벡터로 형질 전환된 미생물을 배양하여 과당 1,6-이인산 알돌레이즈 효소를 과발현시켜 효소의 특성을 규명한 결과, 기질특이성이 과당 6-인산 4번 탄소 에피머화 작용을 나타내는 효소임을 입증하고 활성을 비교하므로서Escherichia coli K-12 유래의 과당 1,6-이인산 알돌레이즈화 효소보다 높은 활성을 나타내는 효소를 발굴하고 이들의 특성을 규명하고, 상기 효소를 사용하여 타가토스 6-인산을 생산하는 것을 특징으로 한다.The present invention relates to a fructose-linked 1,6-diphosphate-derived diphosphate derived from Escherichia coli K-12 of SEQ ID NO: 5, which has identified an enzyme conversion reaction from fructose 6-phosphate to tagatose 6-phosphate through the carbon- Based on the raising enzyme, various microorganism genes corresponding thereto were cloned and the microorganism transformed with the expression vector containing the gene was cultured to overexpress the 1,6-diphosphate-aldolase enzyme to characterize the enzyme , Demonstrating that substrate specificity is an enzyme that exhibits the 4-carbon epimerization of fructose 6-phosphate, and by comparing the activity, Escherichia coli The present inventors have discovered that enzymes exhibiting higher activity than the 1,6-diphosphate aldolase of fructose derived from K-12 are identified and their characteristics are characterized and tagatose 6-phosphate is produced using the enzyme.
보다 구체적으로 본 발명에서 사용한 상기 과당 1,6-이 인산 알돌레이즈 효소의 유전자는 기존에 이미 유전자가 알려져 있지만 과당 6-인산을 이용한 4번 탄소 에피머화 작용 특성이 규명이 안 된 유전자인 서열번호 6 내지 8를 암호화하고 있는 균주들인 Streptococcus thermophilus,Caldicellulosiruptor saccharolyticus,Kluyveromyceslactis 를 사용하였으며, 이 모든 효소들이 과당 6-인산을 타가토스 6-인산으로 전환시키는 활성을 가지고 있음을 본 발명에서 입증하였다.More specifically, the gene of the 1,6-diphosphate-aldolase enzyme used in the present invention is a gene having already known genes but not yet characterized by the 4-carbon epimerization action using fructose 6-phosphate Streptococcus strains encoding 6 to 8 thermophilus , Caldicellulosiruptor saccharolyticus, Kluyveromyceslactis And all of these enzymes have proven to be active in converting fructose 6-phosphate into tagatose 6-phosphate.
이때, 효소의 특성을 규명하기 위하여, 본 발명은 종래 실험을 통해 전혀 기능적으로 규명되지 않고 다만 염기서열의 특성만으로 평가되어 명명된 공지의 과당 1,6-이인산 알돌레이즈 효소의 유전자를 함유하고 있는 Streptococcus thermophilus,Caldicellulosiruptor saccharolyticus,Kluyveromyceslactis 균주로부터 중합효소연쇄반응(polymerase chain reaction; PCR)을 통해 과당 1,6-이 인산 알돌레이즈 효소를 대량으로 수득한 후, RSF-Duet-1[Novagen] 발현 벡터에 삽입하여 과당 1,6-이 인산 알돌레이즈 효소를 포함하는 재조합 벡터를 제조한 후 상기 재조합 벡터로 적절한 미생물에 형질전환시킨 균주를 발효 배지에서 배양하여 과발현시킨 효소를 pRSF-duet-1 발현 벡터 내의 유전자의 N-terminal 6-His tag를 이용하여 정제하여 사용하는 것이 바람직하다.In order to clarify the characteristics of the enzyme, the present invention includes a gene of a known 1,6-diphosphate phosphate aldolase enzyme, which has not been identified at all by conventional experiments but is evaluated only by the characteristics of the base sequence, Streptococcus thermophilus , Caldicellulosiruptor saccharolyticus, Kluyveromyceslactis A large amount of
그리고, 본 발명의 타가토스 생산 방법은 종래 과당 1,6-이인산 알돌레이즈로 명칭되는 단백질에 과당 6-인산을 기질로 반응시켜 타가토스 6-인산으로 전환한다.The method for producing tagatose according to the present invention converts a protein called 1,6-diphosphate aldolase to fructose 6-phosphate by reacting fructose 6-phosphate with a substrate.
또한, 본 발명은 타가토스 생산방법에서 사용되는 과당 1,6-이인산 알돌레이즈화 효소는 서열번호 1, 2, 3, 4의 아미노산 서열에 국한되는 것이 아니라, 과당 6-인산을 타가토스 6-인산으로 전환시켜줄 수 있는 것이라면 서열번호 1에서 일부 아미노산이 치환 (substitution), 삽입 (insertion), 소실 (deletion)이 있는 경우에도 사용할 수 있다.The
그리고, 본 발명의 타가토스 6-인산 생산 방법에서 과당 1,6-이인산 알돌레이즈 효소유전자를 클로닝할 때 사용되는 발현벡터는, RSF Duet-1를 비롯하여 유전자 재조합에 이용되어 온 벡터라면 어느 벡터를 사용해도 무방하고, 재조합 벡터로 형질전환시킬 수 있는 균주는, 대장균 BL21(DE3)을 사용하는 것이 바람직하나 유전자 재조합 벡터로 형질 전환된 다음 원하는 유전자를 과발현하여 활성이 있는 단백질을 생산할 수 있는 균주라면 어느 균주를 사용해도 된다. In the tagatose 6-phosphate production method of the present invention, the expression vector used for cloning the 1,6-diphosphate aldolase enzyme gene is RSF Duet-1 and any vector that has been used for gene recombination May be used, and Escherichia coli BL21 (DE3) is preferably used as a strain that can be transformed into a recombinant vector. However, a strain capable of producing an active protein by overexpressing a desired gene after transformation with a gene recombinant vector Any strain may be used.
보다 구체적으로 본 발명에서 미생물 배양은 과당 1,6-이인산 알돌레이즈 효소를 얻기 위한 재조합 균주로, 대장균 BL21(DE3)[Escherichia coli BL21(DE3) 균주를 사용하고, 미생물 생산 배지로는 LB를 사용하였고 효소 생산배지로는 글리세롤 10 g/l, 펩톤 1 g/l, 효모 추출물 30 g/l, 이인산칼륨 0.14 g/l, 일인산나트륨 1 g/l로 구성된 배지를 사용하였다. 냉동 보관된 BL(DE21) 균주를 LB 배지 50ml가 들어있는 250 ml의 플라스크에 접종하여, 600에서의 흡광도가 2.0이 될 때까지 37℃의 진탕배양기에서 배양하고, 상기 배양액을 발효 배지 5l가 들어있는 7l의 발효조 (바이오트론, 한국)에 첨가하여 600 nm에서의 흡광도가 2.0이 될 때까지 배양한 다음, 1 mM ITPG를 첨가하여 과발현되는 효소의 생산을 유도하고 이때, 상기 과정 중의 교반 속도는 500 rpm, 통기량은 1.0 vvm, 배양 온도는 37℃으로 유지하는 것이 과당 1,6-이인산 알돌레이즈 효소의 대량생산에 바람직하다.More specifically, in the present invention, the microorganism culture is a recombinant strain for obtaining the 1,6-diphosphate aldolase enzyme, and E. coli BL21 (DE3) [ Escherichia E. coli BL21 (DE3) strain was used, LB was used as a microorganism producing medium, 10 g / l of glycerol was used as an enzyme producing medium, A medium consisting of 1 g / l of peptone, 30 g / l of yeast extract, 0.14 g / l of diphosphate, and 1 g / l of sodium monophosphate was used. The frozen BL (DE21) strain was inoculated into a 250 ml flask containing 50 ml of LB medium and cultured in a shaking incubator at 37 ° C until the absorbance at 600 was 2.0. The culture broth was added to 5 l of the fermentation medium (Biotron, Korea) and incubated until the absorbance at 600 nm became 2.0. Then, 1 mM ITPG was added to induce the overexpression of the enzyme, 500 rpm, aeration rate of 1.0 vvm, and a culture temperature of 37 캜 is preferable for mass production of 1,6-diphosphate aldolase enzyme.
그리고, 과발현되어 생산된 과당 과당 1,6-이인산 알돌레이즈 효소를 정제하기 위하여, 본 발명의 정제된 효소는, 상기 형질전환된 균주의 배양액을 6,000 g 로 4℃에서 30분 동안 원심분리 후, 0.85% NaCl에 두 번 세척한 후 라이소자임이 1 mg/ml이 함유된 세포파쇄 완충용액 (50 mM NaH2PO4,300mMNaCl,pH8.0)에 세포를 넣어 얼음 안에서 30분간 방치하고, 상기 세포 용액을 프렌치 프레스로 15,000 lb/in2에서 파쇄한 다음, 상기 세포 파쇄물은 13,000xg 로 4℃에서 20분 동안 원심분리하여 제거하고 상등액은 0.45μm여과지로 여과하여 정제하는 것이 바람직한 데, 이때 모든 정제과정은 저온실에서 단백질크로마토그라피(FPLC)로 수행하고, 상기 여과액을 pH 8.0인 300 mM 염화나트륨(NaCl)과 10 mM 이미다졸(imidazole)이 함유된 50 mM 인산 완충용액에 평형시킨 히스트랩 에이치피(HisTrap HP) 컬럼에 적용하는 데, 이때 컬럼을 같은 완충용액으로 세척시킨 후 부착된 효소는 같은 완충용액에 10 mM과 200 mM 사이의 일정 기울기 농도의 이미다졸이 포함된 용액을 1 ml/min 속도로 하여 용출(elution)되게 하는 것이 바람직하고, 상기 용출된 활성이 있는 효소의 부분(fraction)은 pH 7.5인 50 mM 피페스(PIPES) 완충용액에 평형시킨 하이프렙(HiPrep 16/60) 탈염 수지 컬럼에 첨가한 후, 첨가된 단백질을 6 ml/min 속도로 하여 씻어 내리게 하고, 모아진 효소용액을 pH 7.5인 0.15 M 염화나트륨이 포함된 50 mM 피페스 완충용액에 평형시킨 세파크릴 에스-100 에치알 (Sephacryl S-100 HR) 컬럼에 넣고 6.6 ml/min 속도로 하여 모아진 효소를 용출하고, 상기 용출된 용액은 최종적으로 50 mM 피페스 완충용액에서 투석하여 수득한 것을 사용하는 것이 바람직하다.In order to purify the 1,6-diphosphate phosphate fructose produced by overexpression, the purified enzyme of the present invention was prepared by centrifuging the culture of the transformed strain at 6,000 g for 30 minutes at 4 ° C , Cells were washed twice with 0.85% NaCl and then placed in a cell disruption buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, pH 8.0) containing lysozyme at 1 mg / ml for 30 minutes in ice. The solution is disrupted at 15,000 lb / in 2 with a French press and the cell lysate is then centrifuged at 13,000 x g for 20 minutes at 4 < 0 > C and the supernatant is purified by filtration through 0.45 [mu] m filter paper, Purification was performed by protein chromatography (FPLC) in a cold room and the filtrate was equilibrated with 50 mM phosphate buffer containing 300 mM sodium chloride (NaCl) at pH 8.0 and 10 mM imidazole (HisTrap HP) After washing the column with the same buffer solution, the attached enzyme was eluted at a rate of 1 ml / min with a solution containing imidazole at a constant gradient between 10 mM and 200 mM in the same buffer solution. and a fraction of the eluted active enzyme is added to a HiPrep 16/60 desalinized resin column equilibrated in a 50 mM PIPES buffer solution at pH 7.5, After the addition, the added protein was washed away at a rate of 6 ml / min, and the collected enzyme solution was added to a Sephacryl S-100 emulsion, which was equilibrated with a 50 mM Pipes buffer solution containing 0.15 M sodium chloride at pH 7.5 -100 HR) column, eluting the collected enzyme at a rate of 6.6 ml / min, and finally eluting the eluted solution by dialysis in a 50 mM Pepper buffer solution.
그리고, 상기와 같이 본 발명에 따라 수득한 과당 1,6-이 인산 알돌레이즈 효소는 금속 이온에 의해 활성화가 조절되는 금속효소(metalloenzyme)로 분류되어있다.As described above, the 1,6-diphosphate aldolase enzyme obtained according to the present invention is classified as a metalloenzyme which is activated by metal ions.
이때 상기 과당 1,6- 이 인산 알돌레이즈 효소와 과당 6-인산과의 반응 조건으로 기질농도는 0.15-1.5%(w/w)의 범위로 pH 8.5에서 50℃로 반응시키는 것이 과당 생산수율에 있어 바람직하다. 이는 과당 6-인산의 기질 농도가 0.15-1.5%(w/w)범위에서 타가토스 6-인산 생산 수율이 우수하였으며, 과당 1,6-이인산 알돌레이즈화 효소의 최적 pH와 온도 범위이기 때문이다. 그러나 이는 시험과정에서의 환경으로 인해 한정된 것이며 전환 속도나 시간 등으로 미루어 볼 때 보다 더 높은 과당 6-인산의 기질 농도에서의 전환도 무방하다.The reaction was carried out at a pH of 8.5 to 50 ° C in the range of 0.15-1.5% (w / w) at a substrate concentration under the reaction conditions of the 1,6-diphosphate aldolase enzyme with fructose-6-phosphate, . This is because the yield of tagatose 6-phosphate production was superior in the range of substrate concentration of fructose 6-phosphate to 0.15-1.5% (w / w), and the optimal pH and temperature range of 1,6-dodecyl phosphate aldolase to be. However, this is limited by the environment during the test, and conversion to fructose-6-phosphate at higher substrate concentrations than at higher conversion rates and times is acceptable.
한편, 본 발명은 기존에 규명되지 않은 과당 1,6-이인산 알돌레이즈화 효소의 에피머화 반응 및 특성에 대해 규명하는데 목적을 가지며 이를 앞서 청구한 칵테일 반응에 적용하므로서 헥소카이네이즈, 과당 1,6-이인산 알돌레이즈화 효소, 파이테이즈를 과당을 세포 내에서 반응시켜 타가토스를 대량으로 생산하기 위한 방법으로 적용이 가능하다는 점에서 장점을 갖는다. 과당 1,6-이인산 알돌레이즈 효소를 과발현 시켜 세포 내에서 사용하는 것이 바람직하다. 이는 세포 내에 과발현 된 효소는 활성이 장기간 유지될 수 있는 환경을 조성해 주고, 반응 시 필요한 cofactor 재생 가능성 때문인데, 본 발명에서 사용 가능한 대장균은 효소들을 과발현할 수 있는 대장균이라면 그 어느 것을 사용해도 무방하다. Meanwhile, the present invention aims to identify the epimerization reaction and characteristics of the 1,6-diphosphate aldolase, which has not been previously clarified, and has been applied to the cocktail reaction as described above, whereby hexokinase,
본 발명에 따른 타가토스 6-인산 전환가능 효소의 새로운 규명은 다양한 미생물로부터 얻은 효소를 이용하므로 환경 친화적이며, 간단한 효소 고정화 과정만을 필요로 하고, 과당으로부터 타가토스 생산을 이전에 없던 방법으로 전환 시키는 과정에 중요한 역할을 수행할 수 있고, 생산경비를 크게 줄이는 한편 생산 효과를 극대화할 수 있다.The novel identification of the tagatose 6-phosphate convertible enzyme according to the present invention uses an enzyme obtained from various microorganisms, so it is environmentally friendly, requires only a simple enzyme immobilization process, and converts tagatose production from fructose Can play an important role in the process, can greatly reduce the production cost, and can maximize the production effect.
이하, 본 발명을 구체적인 실시예에 의해 보다 더 상세히 설명하고자 한다. 하지만, 본 발명은 하기 실시예에 의해 한정되는 것은 아니며, 본 발명의 사상과 범위 내에서 여러 가지 변형 또는 수정이 가능함은 이 분야에서 당업자에게 명백한 것이다. 따라서, 첨부된 청구항들은 넓게 본 발명의 사상과 범위에 부합되게 해석되어야 한다.Hereinafter, the present invention will be described in more detail by way of specific examples. However, it should be understood that the present invention is not limited by the following examples, and that various changes and modifications can be made within the spirit and scope of the present invention. Accordingly, the appended claims should be construed broadly to conform to the spirit and scope of the present invention.
상술한 바와 같이, 본 발명에 따른 새로운 효소들의 규명은 효소간 특성의 유사성과 각 효소가 갖는 독자성과 전환률 차이를 바탕으로 다양한 생산 환경에 적합하게 선정하여 사용할 수 있는 장점을 제공한다. 타가토스 생산 방법은 미생물로부터 얻은 효소를 이용하므로 환경 친화적이며, 간단한 효소 고정화 과정만을 필요로 하고, 종래 타가토스 생산과 비교하여 기질에 있어서는 단가가 낮은 기질을 사용하고, 수율에 있어서는 현저하게 높기 때문에 생산경비를 크게 줄이는 한편 생산 효과를 극대화할 수 있는 효과가 있다.As described above, the identification of novel enzymes according to the present invention provides advantages in that they can be appropriately selected and used in various production environments based on the similarity of the characteristics between enzymes and the difference in identity and conversion rate of each enzyme. Since the tagatose production method uses an enzyme obtained from a microorganism, it is environmentally friendly, requires only a simple enzyme immobilization process, uses a substrate having a low unit cost in terms of substrate compared with conventional production of tagatose, and is remarkably high in yield It is possible to greatly reduce the production cost and to maximize the production effect.
도 1은 과당 6-인산이 4번 탄소의 에피머화 반응을 통하여 타가토스 6-인산으로 전환되는 과정을 나타낸 모식도이다.
도 2a 및 b는 본 발명에서 소개한 Streptococcus thermophilus, Caldicellulosiruptor saccharolyticus, Kluyveromyceslactis의 과당 1,6-이인산 알돌레이즈 효소 선정에 대한 Escherichia coli K-12 유래의 과당 1,6-이인산 알돌레이즈화 효소와의 계통수 및 아미노산 서열 비교결과이다.
도 3은 Escherichia coli K-12 유래의 과당 1,6-이인산 알돌레이즈화 효소와 Streptococcus thermophilus, Caldicellulosiruptor saccharolyticus, Kluyveromyceslactis의 과당 1,6-이 인산 알돌레이즈 효소를 5 mM의 과당 6-인산과 범위로 pH 8.5에서 50℃로 1시간 동안 반응하여 본 비교 활성 그래프이다.
도 4는 본 발명의 과당 1,6-이인산 알돌레이즈들의 금속 특이성(A)을 비교한 그래프이다.
도 5는 Streptococcus thermophilus 의 과당 1,6-이인산 알돌레이즈 효소최적 pH(A)와 최적 온도(B)에 따른 과당 6-인산에서 타가토스 6-인산의 상대활성과 전환율(C)을 각각 그래프로 나타낸 것이다.
도 6은 Caldicellulosiruptor saccharolyticus 의 과당 1,6-이인산 알돌레이즈 효소최적 pH(A)와 최적 온도(B)에 따른 과당 6-인산에서 타가토스 6-인산의 상대활성과 전환율(C)을 각각 그래프로 나타낸 것이다.
도 7은 Kluyveromyces lactis 의 과당 1,6-이인산 알돌레이즈 효소최적 pH(A)와 최적 온도(B)에 따른 과당 6-인산에서 타가토스 6-인산의 상대활성과 전환율(C)을 각각 그래프로 나타낸 것이다.
도 8은 본 발명에서 사용한 각각의 과당 1,6-이인산 알돌레이즈를 이용하여 과당 6-인산에서 타가토스 6-인산으로 전환한 결과를 하나의 그래프로 비교하여 나타낸 것이다. Kluyveromyces lactis 의 과당 1,6-이인산 알돌레이즈는 Escherichia coli K-12 유래의 효소와 비슷한 활성을 보였고 Streptococcus thermophilus 유래의 효소는 빠른 초기 전환률을 보이는 반면 71%의 보다 낮은 전환률을 나타냈다. Caldicellulosiruptor saccharolyticus 유래의 효소는 Escherichia coli K-12 유래의 효소와 비슷한 80%대의 전환률을 나타내면서 빠른 초기 전환률을 나타냈다.
도 9는 본 발명에서 사용한 각각의 과당 1,6-이인산 알돌레이즈 유전자의 프라이머 정보 및 사용된 RSF Duet-1 vector 시스템을 도식화한 것이고 이는 과당 1,6-이 인산 알돌레이즈와 다른 효소를 함께 클로닝이 가능하도록 할 수 있게 함을 목적으로 하고 있다.FIG. 1 is a schematic diagram showing a process in which fructose 6-phosphate is converted to tagatose 6-phosphate through epimerization of carbon 4.
Figures 2a and 2b are graphs showing the effects of Streptococcus thermophilus , Caldicellulosiruptor saccharolyticus, Kluyveromyceslactis Escherichia for the selection of 1,6-phosphate aldolase enzyme coli And the results of phylogenetic and amino acid sequence comparison with the 1,6-diphosphate aldolase enzyme derived from K-12.
Figure 3 is a cross- coli The
4 is a graph comparing the metal specificity (A) of 1,6-diphosphate aldolases of the present invention.
Figure 5 is a graph The relative activity and conversion rate (C) of tagatose 6-phosphate in fructose-6-phosphate according to the optimum pH (A) and optimum temperature (B) of
Fig. 6 is a cross- The relative activity and conversion (C) of tagatose 6-phosphate in fructose-6-phosphate according to optimum pH (A) and optimum temperature (B) of
Figure 7 is a graph lactic acid and the relative activity and conversion (C) of tagatose 6-phosphate in fructose-6-phosphate by optimum pH (A) and optimum temperature (B) of 1,6-phosphate aldolase enzyme of lactis .
FIG. 8 is a graph showing the results of conversion of fructose-6-phosphate into tagatose-6-phosphate using the respective 1,6-dodecyl phosphate aldolase used in the present invention. Kluyveromyces The
FIG. 9 is a schematic representation of the primer information and the RSF Duet-1 vector system of the respective 1,6-diphosphate phosphate aldolase genes used in the present invention. This indicates that the 1,6-diphosphate aldolase and other enzymes So that cloning can be performed.
이하, 비한정적인 실시예에 의하여 본 발명을 더욱 상세히 설명하고자 한다. 단, 하기 실시 예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시 예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail by way of non-limiting examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.
실시 예 1. 과당 1,6-Example 1.
과당 1,6-이 인산 알돌레이즈 효소 유전자는 대장균 K12 (Escherichia coli str. K-12) 와 Streptococcus thermophilus,Caldicellulosiruptor saccharolyticus,Kluyveromyceslactis 의 디앤에이(DNA)를 각 균주 내에서 과당 1,6-이 인산 알돌레이즈효소 유전자로 제안되었지만 특성이 규명된 적 없는 유전자의 디앤에이(DNA) 염기서열을 기본으로 프라이머(primer)를 도안하여 PCR 증폭하여 대량으로 얻은 다음, 제한효소 Sal I와 Not I을 사용하여 RSF Duet-1[Novagen]에 삽입하고, 재조합 벡터 RSF Duet-1/과당 1,6-이인산 알돌레이즈를 제조하여, 이를 통상적인 형질전환 방법에 의해 대장균 BL21(DE3)에 형질 전환하였다. 그리고, 대량생산을 위한 배양을 하기 전에 액화질소에서 냉동보관 하였다.The
다음, 과당 1,6-이인산 알돌레이즈 효소를 대량생산하기 위하여, 먼저, 냉동 보관된 BL(DE21) 균주를 LB 배지 50ml가 들어있는 250ml의 플라스크에 접종하여, 600에서의 흡광도가 2.0이 될 때까지 37℃의 진탕배양기에서 종균배양을 하고, 상기 종균배양된 배양액을 발효 배지(글리세롤 10 g/l, 펩톤 1 g/l, 효모 추출물 30 g/l, 이인산칼륨 0.14 g/l, 일인산나트륨 1 g/l) 5 l가 들어있는 7 l의 발효조(바이오트론, 한국)에 첨가하여 본 배양하였다. 이때, 600 nm에서의 흡광도가 2.0이 될 때, 1 mM ITPG를 첨가하여 과당 1,6-이인산 알돌레이즈 효소의 대량생산을 유도하였다. 이때, 상기 과정 중의 교반 속도는 500 rpm, 통기량은 1.0 vvm, 배양 온도는 37℃가 유지되도록 하였다.Next, in order to mass-produce the 1,6-phosphate aldolase enzyme of fructose, the frozen BL (DE21) strain was first inoculated into a 250 ml flask containing 50 ml of LB medium to obtain an absorbance at 600 of 2.0 The culture medium was cultured in a fermentation medium (glycerol 10 g / l, (Biotron, Korea) containing 5 l of a yeast extract, 1 g / l of peptone, 30 g / l of yeast extract, 0.14 g / l of potassium phosphate and 1 g / l of sodium phosphate) . At this time, when the absorbance at 600 nm was 2.0, 1 mM ITPG was added to induce the mass production of 1,6-diphosphate-aldolase enzyme. At this time, the agitation speed was 500 rpm, the aeration amount was 1.0 vvm, and the incubation temperature was maintained at 37 캜.
실시 예 2. 과당 1,6-Example 2 Preparation of
과당 1,6-이인산 알돌레이즈 효소의 특성을 정확히 파악하기 위해서 친화 히스트랩 에이치피(affinity HisTrap HP) 컬럼, 탈염 하이프렙( HiPrep 16/60), 겔여과 세파크릴 에스-100 에치알 (gel filtration Sephacryl S-100 HR) 컬럼을 사용하여 정제하였다. To accurately characterize the 1,6-phosphate dodecyl phosphate enzyme, fibrinolytic affinity HisTrap HP column, desalting buffer (HiPrep 16/60), gel filtration, and gel filtration Sephacryl S-100 HR) column.
실시 예 3. 과당 1,6-Example 3.
기존 보고에서는 과당 1,6-이인산 알돌레이즈 효소는 금속 아연에 의해서 과당 1,6-이 인산 기질이 다이하이드록시 아세트포스페이트와 그라이세르 알데하이드 3-포스페이트로 전환 시 관여되며 역가를 향상시킨다고 보고되어 있으나, 본 발명에서는 기질을 과당 6-인산으로 적용하였을 때 금속염 효과가 역가 향상에 영향을 미치지 않음을 보였다. 금속염 효과를 조사하기 위해서 효소활성은 하기 도 4에 나타낸 바와 같이, 이디티에이(EDTA)를 처리하거나 또는 1 mM 금속이온 첨가 후 측정하였으며, 이때 반응은 0.15%의 과당과 0.05 단위/ml의 효소가 함유된 50 mM 피페스 완충용액에서 pH 8.5와 50℃에서 30분간 수행하였고 HCl 0.2M을 첨가하여 반응을 멈추어 측정하였다.In previous reports, the 1,6-diphosphate aldolase enzyme was reported to be involved in the conversion of
이의 결과, 본 발명의 과당 1,6-이인산 알돌레이즈 효소는 금속이온에 의한 효소활성의 변화가 없었고, 이전 논문과 달리 아연 이온은 활성을 크게 저해하는, 금속효소임을 알 수 있었다. As a result, it was found that the 1,6-diphosphate aldolase enzyme of the present invention had no change in the enzyme activity due to the metal ion, and the zinc ion was a metal enzyme which greatly inhibits the activity of the enzyme.
실시 예 4. 과당 1,6-Example 4.
본 실시예는 pH 및 온도 변화에 따른 과당 1,6-이인산 알돌레이즈 효소의 활성을 확인하기 위해, 다양한 pH 및 온도에서 효소와 기질을 반응시키고, 효소 활성을 비교하고자 하였다. 이때, pH 효과를 조사하기 위해서 반응은 0.15%의 과당 6-인산과 0.05 단위/ml의 효소가 함유된 50 mM 트리즈마 베이스(Trizma base) 완충용액 pH 7.0에서부터 9.0까지의 범위에서 반응시켰다. 이때, 반응 온도는 50℃에서 1시간 동안 반응을 시켰다. 그런 다음, 0.2 M HCl을 첨가하여 반응을 종료하고, 효소의 활성을 측정하여 그 결과를 각각 도 5, 도 6, 도 7의 a에 나타내었다. In order to confirm the activity of the 1,6-diphosphate-aldolase enzyme according to pH and temperature changes, this example was designed to compare enzyme activity with enzyme-substrate reaction at various pH and temperature. At this time, in order to examine the pH effect, the reaction was carried out in a range of pH 7.0 to 9.0 in a 50 mM Trizma base buffer containing 0.15% fructose 6-phosphate and 0.05 units / ml of enzyme. At this time, the reaction temperature was 50 ° C for 1 hour. Then, the reaction was terminated by adding 0.2 M HCl, and the activity of the enzyme was measured. The results are shown in Figs. 5, 6, and 7A, respectively.
그리고, 온도 효과를 조사하기 위해서 반응은 온도 30℃에서 70℃까지 0.15%의 과당 6-인산과 0.05 단위/ml의 효소가 함유된 50 mM 트리즈마 베이스 완충용액을 pH 8.5에서 1시간 동안 반응을 시켰으며, 이때 0.2 M HCl을 첨가 하여 반응을 종료하고 효소의 활성을 측정하여 그 결과를 각각 도 5, 도 6, 도 7의 b에 나타내었다. 이의 결과, 최적 pH는 Escherichia coli K-12 와 Streptococcus thermophilus,Kluyveromyceslactis에서는 8.5로 유사하게 나타났고 Caldicellulosiruptor saccharolyticus 에서는 pH에 의한 활성 영향이 없는 독자성을 보였다. 각 효소들의 최적온도는 50℃이었으며 Streptococcus thermophilus 의 경우 30℃에서도 91%의 상대활성을 나타냈다. In order to investigate the temperature effect, the reaction was carried out at a temperature of 30 ° C. to 70 ° C. for 1 hour at a pH of 8.5 in a 50 mM triazmase buffer solution containing 0.15% fructose-6-phosphate and 0.05 units / The reaction was terminated by addition of 0.2 M HCl, and the activity of the enzyme was measured. The results are shown in FIGS. 5, 6, and 7, respectively. As a result, the optimum pH was found to be Escherichia coli In K-12, Streptococcus thermophilus and Kluyveromyceslactis , it was similar to 8.5, and Caldicellulosiruptor saccharolyticus had no effect on the activity by pH. The optimum temperature of each enzyme was 50 ° C. Streptococcus Thermophilus showed 91% relative activity even at 30 ℃.
위 결과를 토대로 최적의 온도와 pH에서 과당 6-인산에서 타가토스 6-인산으로의 전환을 시간별로 나타내어 전환율이 70-80 %까지 도달하는 것을 확인하였고 도 8에 나타내었다. 그러나 상기 반응에 있어 특정 pH와 온도를 규정하지 아니하고 원하는 수율이나 반응환경에 따라 어떠한 범주에서의 반응도 적용한다.Based on the above results, it was confirmed that the conversion rate from 70% to 80% was reached at the optimum temperature and pH, showing the conversion from fructose-6-phosphate to tagatose-6-phosphate over time. However, the reaction does not specify a specific pH and temperature in the reaction but applies the reaction in any category depending on the desired yield or reaction environment.
<110> Konkuk University Industrial Cooperation Corp. <120> Fructose 1,6-bisphosphate aldolases from various microorganisms and enzymatic conversion method of tagatose 6-phosphate from fructose 6-phosphate by the same <130> HY131424 <160> 8 <170> KopatentIn 2.0 <210> 1 <211> 359 <212> PRT <213> Escherichia coli <400> 1 Met Ser Lys Ile Phe Asp Phe Val Lys Pro Gly Val Ile Thr Gly Asp 1 5 10 15 Asp Val Gln Lys Val Phe Gln Val Ala Lys Glu Asn Asn Phe Ala Leu 20 25 30 Pro Ala Val Asn Cys Val Gly Thr Asp Ser Ile Asn Ala Val Leu Glu 35 40 45 Thr Ala Ala Lys Val Lys Ala Pro Val Ile Val Gln Phe Ser Asn Gly 50 55 60 Gly Ala Ser Phe Ile Ala Gly Lys Gly Val Lys Ser Asp Val Pro Gln 65 70 75 80 Gly Ala Ala Ile Leu Gly Ala Ile Ser Gly Ala His His Val His Gln 85 90 95 Met Ala Glu His Tyr Gly Val Pro Val Ile Leu His Thr Asp His Cys 100 105 110 Ala Lys Lys Leu Leu Pro Trp Ile Asp Gly Leu Leu Asp Ala Gly Glu 115 120 125 Lys His Phe Ala Ala Thr Gly Lys Pro Leu Phe Ser Ser His Met Ile 130 135 140 Asp Leu Ser Glu Glu Ser Leu Gln Glu Asn Ile Glu Ile Cys Ser Lys 145 150 155 160 Tyr Leu Glu Arg Met Ser Lys Ile Gly Met Thr Leu Glu Ile Glu Leu 165 170 175 Gly Cys Thr Gly Gly Glu Glu Asp Gly Val Asp Asn Ser His Met Asp 180 185 190 Ala Ser Ala Leu Tyr Thr Gln Pro Glu Asp Val Asp Tyr Ala Tyr Thr 195 200 205 Glu Leu Ser Lys Ile Ser Pro Arg Phe Thr Ile Ala Ala Ser Phe Gly 210 215 220 Asn Val His Gly Val Tyr Lys Pro Gly Asn Val Val Leu Thr Pro Thr 225 230 235 240 Ile Leu Arg Asp Ser Gln Glu Tyr Val Ser Lys Lys His Asn Leu Pro 245 250 255 His Asn Ser Leu Asn Phe Val Phe His Gly Gly Ser Gly Ser Thr Ala 260 265 270 Gln Glu Ile Lys Asp Ser Val Ser Tyr Gly Val Val Lys Met Asn Ile 275 280 285 Asp Thr Asp Thr Gln Trp Ala Thr Trp Glu Gly Val Leu Asn Tyr Tyr 290 295 300 Lys Ala Asn Glu Ala Tyr Leu Gln Gly Gln Leu Gly Asn Pro Lys Gly 305 310 315 320 Glu Asp Gln Pro Asn Lys Lys Tyr Tyr Asp Pro Arg Val Trp Leu Arg 325 330 335 Ala Gly Gln Thr Ser Met Ile Ala Arg Leu Glu Lys Ala Phe Gln Glu 340 345 350 Leu Asn Ala Ile Asp Val Leu 355 <210> 2 <211> 293 <212> PRT <213> Streptococcus thermophilus <400> 2 Met Ala Ile Val Ser Ala Glu Lys Phe Val Gln Ser Ala Arg Asp Asn 1 5 10 15 Gly Tyr Ala Leu Gly Gly Phe Asn Thr Asn Asn Leu Glu Trp Thr Gln 20 25 30 Ala Ile Leu Arg Ala Ala Glu Ala Lys Lys Ala Pro Val Leu Ile Gln 35 40 45 Thr Ser Met Gly Ala Ala Lys Tyr Met Gly Gly Tyr Lys Leu Cys Lys 50 55 60 Ala Leu Ile Glu Glu Leu Val Glu Ser Met Gly Ile Thr Val Pro Val 65 70 75 80 Ala Ile His Leu Asp His Gly His Tyr Asp Asp Ala Leu Glu Cys Ile 85 90 95 Glu Val Gly Tyr Thr Ser Ile Met Phe Asp Gly Ser His Leu Pro Ile 100 105 110 Glu Glu Asn Leu Lys Leu Ala Lys Glu Val Val Glu Lys Ala His Ala 115 120 125 Lys Gly Ile Ser Val Glu Ala Glu Val Gly Thr Ile Gly Gly Glu Glu 130 135 140 Asp Gly Ile Val Gly Arg Gly Glu Leu Ala Pro Ile Glu Asp Ala Lys 145 150 155 160 Ala Met Val Ala Thr Gly Val Asp Phe Leu Ala Ala Gly Ile Gly Asn 165 170 175 Ile His Gly Pro Tyr Pro Glu Asn Trp Glu Gly Leu Asp Leu Asp His 180 185 190 Leu Gln Lys Leu Thr Glu Ala Ile Pro Gly Phe Pro Ile Val Leu His 195 200 205 Gly Gly Ser Gly Ile Pro Asp Asp Gln Ile Gln Glu Ala Ile Lys Leu 210 215 220 Gly Val Ala Lys Val Asn Val Asn Thr Glu Cys Gln Ile Ala Phe Ala 225 230 235 240 Asn Ala Thr Arg Lys Phe Val Ala Glu Tyr Glu Ala Asn Glu Ala Glu 245 250 255 Tyr Asp Lys Lys Lys Leu Phe Asp Pro Arg Lys Phe Leu Lys Pro Gly 260 265 270 Phe Glu Ala Ile Thr Glu Ala Val Glu Glu Arg Ile Asp Val Phe Gly 275 280 285 Ser Ala Asn Lys Ala 290 <210> 3 <211> 323 <212> PRT <213> Caldicellulosiruptor saccharolyticus <400> 3 Met Pro Leu Val Thr Thr Lys Glu Met Phe Lys Lys Ala Ala Glu Gly 1 5 10 15 Lys Tyr Ala Ile Gly Ala Phe Asn Val Asn Asn Met Glu Ile Ile Gln 20 25 30 Gly Ile Val Glu Ala Ala Lys Glu Glu Gln Ala Pro Leu Ile Leu Gln 35 40 45 Val Ser Ala Gly Ala Arg Lys Tyr Ala Lys His Val Tyr Leu Val Lys 50 55 60 Leu Val Glu Ala Ala Leu Glu Asp Ser Gly Asp Leu Pro Ile Ala Leu 65 70 75 80 His Leu Asp His Gly Glu Asp Phe Glu Ile Cys Lys Ala Cys Ile Asp 85 90 95 Gly Gly Phe Thr Ser Val Met Ile Asp Gly Ser Arg Leu Pro Phe Glu 100 105 110 Glu Asn Ile Ala Leu Thr Lys Lys Val Val Glu Tyr Ala His Glu Arg 115 120 125 Gly Val Val Val Glu Ala Glu Leu Gly Lys Leu Ala Gly Ile Glu Asp 130 135 140 Asn Val Lys Val Ala Glu His Glu Ala Ala Phe Thr Asp Pro Asp Gln 145 150 155 160 Ala Ala Glu Phe Val Glu Arg Thr Gly Val Asp Ser Leu Ala Val Ala 165 170 175 Ile Gly Thr Ser His Gly Ala Tyr Lys Phe Lys Gly Glu Pro Arg Leu 180 185 190 Asp Phe Glu Arg Leu Gln Arg Ile Val Glu Lys Leu Pro Lys Gly Phe 195 200 205 Pro Ile Val Leu His Gly Ala Ser Ser Val Leu Pro Glu Phe Val Glu 210 215 220 Met Cys Asn Lys Tyr Gly Gly Asn Ile Pro Gly Ala Lys Gly Val Pro 225 230 235 240 Glu Asp Met Leu Arg Lys Ala Ala Glu Leu Gly Val Arg Lys Ile Asn 245 250 255 Ile Asp Thr Asp Leu Arg Leu Ala Met Thr Ala Ala Ile Arg Lys His 260 265 270 Leu Ala Glu His Pro Asp His Phe Asp Pro Arg Gln Tyr Leu Lys Asp 275 280 285 Gly Arg Glu Ala Ile Lys Glu Met Val Lys His Lys Leu Arg Asn Val 290 295 300 Leu Gly Cys Ser Gly Lys Ala Pro Glu Ile Leu Glu Glu Ile Lys Lys 305 310 315 320 Asn Arg Gly <210> 4 <211> 361 <212> PRT <213> Kluyveromyces lactis <400> 4 Met Pro Ala Gln Asp Val Leu Thr Arg Lys Thr Gly Val Ile Val Gly 1 5 10 15 Asp Asp Val Lys Ala Leu Phe Asp Tyr Ala Lys Glu His Lys Phe Ala 20 25 30 Ile Pro Ala Ile Asn Val Thr Ser Ser Ser Thr Val Val Ala Ala Leu 35 40 45 Glu Ala Ala Arg Asp Asn Lys Ser Pro Ile Ile Leu Gln Thr Ser Asn 50 55 60 Gly Gly Ala Ala Tyr Phe Ala Gly Lys Gly Val Ser Asn Glu Gly Gln 65 70 75 80 Asn Ala Ser Ile Arg Gly Ser Ile Ala Ala Ala His Tyr Ile Arg Ser 85 90 95 Ile Ala Pro Ala Tyr Gly Ile Pro Val Val Leu His Thr Asp His Cys 100 105 110 Ala Lys Lys Leu Leu Pro Trp Phe Asp Gly Met Leu Lys Ala Asp Glu 115 120 125 Glu Tyr Phe Ala Lys His Gly Glu Pro Leu Phe Ser Ser His Met Leu 130 135 140 Asp Leu Ser Glu Glu Thr Asp Glu Glu Asn Ile Gly Leu Cys Val Lys 145 150 155 160 Tyr Phe Thr Arg Met Ala Lys Ile His Gln Trp Leu Glu Met Glu Ile 165 170 175 Gly Ile Thr Gly Gly Glu Glu Asp Gly Val Asn Asn Glu Gly Thr Ser 180 185 190 Asn Asp Lys Leu Tyr Thr Thr Pro Glu Thr Val Phe Ser Val His Glu 195 200 205 Ala Leu Ser Lys Ile Ser Pro Asn Phe Ser Ile Ala Ser Ala Phe Gly 210 215 220 Asn Val His Gly Val Tyr Lys Ile Ala Ala Ala Leu Lys Pro Glu Leu 225 230 235 240 Leu Gly Thr Phe Gln Asp Tyr Ala Ala Lys Gln Leu Asn Lys Lys Ala 245 250 255 Glu Asp Lys Pro Leu Tyr Leu Val Phe His Gly Gly Ser Gly Ser Ser 260 265 270 Thr Lys Asp Phe His Thr Ala Ile Asp Phe Gly Val Val Lys Val Asn 275 280 285 Leu Asp Thr Asp Cys Gln Phe Ala Tyr Leu Ser Gly Ile Arg Asp Tyr 290 295 300 Val Leu Asn Lys Lys Asp Tyr Leu Met Thr Pro Val Gly Asn Pro Thr 305 310 315 320 Gly Glu Asp Ser Pro Asn Lys Lys Tyr Tyr Asp Pro Arg Val Trp Val 325 330 335 Arg Glu Gly Glu Lys Thr Met Ser Lys Arg Ile Thr Gln Ala Leu Glu 340 345 350 Ile Phe Arg Thr Lys Gly Ala Leu Glu 355 360 <210> 5 <211> 1080 <212> DNA <213> Escherichia coli <400> 5 atgtctaaga tttttgattt cgtaaaacct ggcgtaatca ctggtgatga cgtacagaaa 60 gttttccagg tagcaaaaga aaacaacttc gcactgccag cagtaaactg cgtcggtact 120 gactccatca acgccgtact ggaaaccgct gctaaagtta aagcgccggt tatcgttcag 180 ttctccaacg gtggtgcttc ctttatcgct ggtaaaggcg tgaaatctga cgttccgcag 240 ggtgctgcta tcctgggcgc gatctctggt gcgcatcacg ttcaccagat ggctgaacat 300 tatggtgttc cggttatcct gcacactgac cactgcgcga agaaactgct gccgtggatc 360 gacggtctgt tggacgcggg tgaaaaacac ttcgcagcta ccggtaagcc gctgttctct 420 tctcacatga tcgacctgtc tgaagaatct ctgcaagaga acatcgaaat ctgctctaaa 480 tacctggagc gcatgtccaa aatcggcatg actctggaaa tcgaactggg ttgcaccggt 540 ggtgaagaag acggcgtgga caacagccac atggacgctt ctgcactgta cacccagccg 600 gaagacgttg attacgcata caccgaactg agcaaaatca gcccgcgttt caccatcgca 660 gcgtccttcg gtaacgtaca cggtgtttac aagccgggta acgtggttct gactccgacc 720 atcctgcgtg attctcagga atatgtttcc aagaaacaca acctgccgca caacagcctg 780 aacttcgtat tccacggtgg ttccggttct actgctcagg aaatcaaaga ctccgtaagc 840 tacggcgtag taaaaatgaa catcgatacc gatacccaat gggcaacctg ggaaggcgtt 900 ctgaactact acaaagcgaa cgaagcttat ctgcagggtc agctgggtaa cccgaaaggc 960 gaagatcagc cgaacaagaa atactacgat ccgcgcgtat ggctgcgtgc cggtcagact 1020 tcgatgatcg ctcgtctgga gaaagcattc caggaactga acgcgatcga cgttctgtaa 1080 1080 <210> 6 <211> 882 <212> DNA <213> Streptococcus thermophilus <400> 6 atggcaatcg tttcagcaga aaaatttgtt caatcagctc gtgacaatgg ttatgcactt 60 ggtggattta acacaaataa ccttgagtgg actcaagcta tcttgcgtgc agcagaagct 120 aaaaaagctc cagtacttat ccaaacttct atgggtgcag ctaagtacat gggtggttac 180 aaattgtgta aagctcttat cgaagaattg gttgaatcaa tgggtatcac tgtaccagtt 240 gctattcacc ttgatcacgg tcactacgat gatgctcttg agtgtattga agttggttac 300 acttcaatca tgtttgatgg ttcacacctt ccaattgaag aaaaccttaa attggcgaaa 360 gaagttgtag aaaaagcaca cgctaaaggt atctcagttg aagctgaagt tggtactatc 420 ggtggagaag aagacggtat cgtcggtaga ggtgaattgg caccaattga agatgctaaa 480 gctatggttg caactggtgt tgacttcttg gctgcaggta tcggtaacat ccacggtcct 540 tacccagaaa actgggaagg tcttgacctt gaccacttgc aaaaattgac agaagctata 600 ccaggtttcc caatcgtatt gcacggtgga tcaggtattc ctgatgatca aatccaagaa 660 gctatcaaac ttggtgttgc taaagttaac gttaacacag aatgtcaaat cgcatttgct 720 aacgcaacac gtaaatttgt tgctgaatac gaagcaaatg aagcagaata cgacaagaag 780 aaactcttcg acccacgtaa attcttgaaa ccaggtttcg aagctattac agaagctgtt 840 gaagaacgta tcgatgtatt tggttcagca aacaaagctt aa 882 <210> 7 <211> 972 <212> DNA <213> Caldicellulosiruptor saccharolyticus <400> 7 atgccacttg taacaaccaa agagatgttt aaaaaggccg ctgaggggaa gtatgctatt 60 ggtgccttca atgtcaacaa catggagatt atccagggga ttgttgaggc agcaaaggag 120 gaacaagcac ctttaatttt gcaggtctca gcaggagcaa gaaaatacgc aaaacacgtc 180 tatcttgtaa aacttgttga ggcagcttta gaggactctg gtgatttacc aattgcactt 240 caccttgacc atggcgagga cttcgagatt tgcaaggcgt gcatcgatgg cggatttaca 300 tctgttatga ttgatggttc acgtctccca tttgaagaga acattgcgct taccaagaaa 360 gttgttgaat atgcgcatga gaggggagtt gttgttgagg cagagcttgg aaagcttgcc 420 ggcattgagg acaatgtaaa ggttgcagag catgaggcag catttactga ccctgaccaa 480 gcagcagagt ttgttgaaag aacaggtgtt gactcattgg cagttgcaat tggaacaagc 540 catggggcgt ataagttcaa gggcgagcca agacttgatt ttgagagact tcagagaata 600 gtagaaaagc ttccaaaggg ctttccaatt gttcttcacg gtgcgtcgtc agttttgcca 660 gagtttgttg agatgtgcaa caagtacggt ggtaatatcc ctggtgcaaa aggtgtgcca 720 gaagatatgc taagaaaggc tgctgagctt ggtgtgagaa agattaacat tgacacagat 780 ttaagacttg caatgacagc agcaataaga aagcatttgg cagaacatcc tgaccacttt 840 gacccaagac agtacctcaa agatggcaga gaggcaatta aagagatggt taagcacaag 900 ctgagaaatg ttttgggctg tagtggcaag gctccagaga tacttgaaga gattaagaag 960 aacagaggct aa 972 <210> 8 <211> 1086 <212> DNA <213> Kluyveromyces lactis <400> 8 atgccagctc aagacgtatt gaccagaaag accggtgtca ttgtcggtga cgatgtcaag 60 gctttgttcg actacgctaa ggaacacaag tttgccattc cagctatcaa cgtgacctct 120 tcttccactg ttgttgctgc tttggaagct gctagagaca acaaatctcc aatcattttg 180 caaacttcca acggtggtgc tgcttacttt gctggtaagg gtgtttccaa cgaaggccaa 240 aatgcttcta tcagaggttc tatcgctgct gctcactaca tcagatccat tgctccagct 300 tacggtatcc cagttgttct acacaccgat cattgtgcta agaagttgct accatggttc 360 gatggtatgc taaaggctga cgaagaatac ttcgctaagc acggtgaacc attgttctcc 420 tcccacatgt tggatttgtc cgaagaaact gatgaggaaa acattggtct atgtgtcaaa 480 tacttcacca gaatggccaa gatccaccaa tggttggaaa tggaaatcgg tatcaccggt 540 ggtgaagaag atggtgtcaa caacgaaggt acttctaacg acaaacttta caccactcca 600 gaaactgttt tctctgtcca cgaagctttg tccaagatct ctccaaactt ctccattgcc 660 agtgccttcg gtaacgtcca cggtgtttac aagatcgccg ctgccctaaa accagaattg 720 ttgggtactt tccaagacta cgctgctaag caattaaaca agaaggcaga agacaagcca 780 ttgtacttgg tcttccacgg tggttccggt tcctccacca aggacttcca tactgccatc 840 gatttcggtg tcgtaaaggt caacttggat actgactgtc aattcgctta cttgtccggt 900 atcagagact acgtcttgaa caagaaggac tacttgatga ccccagtcgg taacccaacc 960 ggtgaagact ctccaaacaa gaagtactac gacccaagag tctgggttag agaaggtgaa 1020 aagaccatga gcaagagaat cactcaagct ttggaaatct tccgtactaa gggtgctttg 1080 gaataa 1086 <110> Konkuk University Industrial Cooperation Corp. <120> Fructose 1,6-bisphosphate aldolases from various microorganisms and enzymatic conversion method of tagatose 6-phosphate from fructose 6-phosphate by the same <130> HY131424 <160> 8 <170> Kopatentin 2.0 <210> 1 <211> 359 <212> PRT <213> Escherichia coli <400> 1 Met Ser Lys Ile Phe Asp Phe Val Lys Pro Gly Val Ile Thr Gly Asp 1 5 10 15 Asp Val Gln Lys Val Phe Gln Val Ala Lys Glu Asn Asn Phe Ala Leu 20 25 30 Pro Ala Val Asn Cys Val Gly Thr Asp Ser Ile Asn Ala Val Leu Glu 35 40 45 Thr Ala Lys Val Lys Ala Pro Val Ile Val Gln Phe Ser Asn Gly 50 55 60 Gly Ala Ser Phe Ile Ala Gly Lys Gly Val Lys Ser Asp Val Pro Gln 65 70 75 80 Gly Ala Ala Ile Leu Gly Ala Ile Ser Gly Ala His His Val His Gln 85 90 95 Met Ala Glu His Tyr Gly Val Pro Val Ile Leu His Thr Asp His Cys 100 105 110 Ala Lys Lys Leu Leu Pro Trp Ile Asp Gly Leu Leu Asp Ala Gly Glu 115 120 125 Lys His Phe Ala Ala Thr Gly Lys Pro Leu Phe Ser Ser His Met Ile 130 135 140 Asp Leu Ser Glu Glu Ser Leu Gln Glu Asn Ile Glu Ile Cys Ser Lys 145 150 155 160 Tyr Leu Glu Arg Met Ser Lys Ile Gly Met Thr Leu Glu Ile Glu Leu 165 170 175 Gly Cys Thr Gly Gly Glu Glu Asp Gly Val Asp Asn Ser His Met Asp 180 185 190 Ala Ser Ala Leu Tyr Thr Gln Pro Glu Asp Val Asp Tyr Ala Tyr Thr 195 200 205 Glu Leu Ser Lys Ile Ser Pro Arg Phe Thr Ile Ala Ala Ser Phe Gly 210 215 220 Asn Val His Gly Val Tyr Lys Pro Gly Asn Val Val Leu Thr Pro Thr 225 230 235 240 Ile Leu Arg Asp Ser Gln Glu Tyr Val Ser Lys Lys His Asn Leu Pro 245 250 255 His Asn Ser Leu Asn Phe Val Phe His Gly Gly Ser Gly Ser Thr Ala 260 265 270 Gln Glu Ile Lys Asp Ser Val Ser Tyr Gly Val Val Lys Met Asn Ile 275 280 285 Asp Thr Asp Thr Gln Trp Ala Thr Trp Glu Gly Val Leu Asn Tyr Tyr 290 295 300 Lys Ala Asn Glu Ala Tyr Leu Gln Gly Gln Leu Gly Asn Pro Lys Gly 305 310 315 320 Glu Asp Gln Pro Asn Lys Lys Tyr Tyr Asp Pro Arg Val Trp Leu Arg 325 330 335 Ala Gly Gln Thr Ser Met Ile Ala Arg Leu Glu Lys Ala Phe Gln Glu 340 345 350 Leu Asn Ale Ile Asp Val Leu 355 <210> 2 <211> 293 <212> PRT <213> Streptococcus thermophilus <400> 2 Met Ala Ile Val Ser Ala Glu Lys Phe Val Gln Ser Ala Arg Asp Asn 1 5 10 15 Gly Tyr Ala Leu Gly Gly Phe Asn Thr Asn Asn Leu Glu Trp Thr Gln 20 25 30 Ala Ile Leu Arg Ala Ala Gla Ala Lys Ala Pro Val Leu Ile Gln 35 40 45 Thr Ser Met Gly Ala Ala Lys Tyr Met Gly Gly Tyr Lys Leu Cys Lys 50 55 60 Ala Leu Ile Glu Glu Leu Val Glu Ser Met Gly Ile Thr Val Val 65 70 75 80 Ala Ile His Leu Asp His Gly His Tyr Asp Asp Ala Leu Glu Cys Ile 85 90 95 Glu Val Gly Tyr Thr Ser Ile Met Phe Asp Gly Ser His Leu Pro Ile 100 105 110 Glu Glu Asn Leu Lys Leu Ala Lys Glu Val Val Glu Lys Ala His Ala 115 120 125 Lys Gly Ile Ser Val Glu Ala Glu Val Gly Thr Ile Gly Gly Glu Glu 130 135 140 Asp Gly Ile Val Gly Arg Gly Glu Leu Ala Pro Ile Glu Asp Ala Lys 145 150 155 160 Ala Met Val Ala Thr Gly Val Asp Phe Leu Ala Ala Gly Ile Gly Asn 165 170 175 Ile His Gly Pro Tyr Pro Glu Asn Trp Glu Gly Leu Asp Leu Asp His 180 185 190 Leu Gln Lys Leu Thr Glu Ala Ile Pro Gly Phe Pro Ile Val Leu His 195 200 205 Gly Gly Ser Gly Ile Pro Asp Asp Gln Ile Gln Glu Ala Ile Lys Leu 210 215 220 Gly Val Ala Lys Val Asn Val Asn Thr Glu Cys Gln Ile Ala Phe Ala 225 230 235 240 Asn Ala Thr Arg Lys Phe Val Ala Glu Tyr Glu Ala Asn Glu Ala Glu 245 250 255 Tyr Asp Lys Lys Lys Leu Phe Asp Pro Arg Lys Phe Leu Lys Pro Gly 260 265 270 Phe Glu Ala Ile Thr Glu Ala Val Glu Glu Arg Ile Asp Val Phe Gly 275 280 285 Ser Ala Asn Lys Ala 290 <210> 3 <211> 323 <212> PRT <213> Caldicellulosiruptor saccharolyticus <400> 3 Met Pro Leu Val Thr Thr Lys Glu Met Phe Lys Lys Ala Ala Glu Gly 1 5 10 15 Lys Tyr Ala Ile Gly Ala Phe Asn Val Asn Asn Met Glu Ile Ile Gln 20 25 30 Gly Ile Val Glu Ala Ala Lys Glu Glu Glu Ala Pro Leu Ile Leu Gln 35 40 45 Val Ser Ala Gly Ala Arg Lys Tyr Ala Lys His Val Tyr Leu Val Lys 50 55 60 Leu Val Glu Ala Leu Glu Asp Ser Gly Asp Leu Pro Ile Ala Leu 65 70 75 80 His Leu Asp His Gly Glu Asp Phe Glu Ile Cys Lys Ala Cys Ile Asp 85 90 95 Gly Gly Phe Thr Ser Val Met Ile Asp Gly Ser Arg Leu Pro Phe Glu 100 105 110 Glu Asn Ile Ala Leu Thr Lys Lys Val Val Glu Tyr Ala His Glu Arg 115 120 125 Gly Val Val Glu Ala Glu Leu Gly Lys Leu Ala Gly Ile Glu Asp 130 135 140 Asn Val Lys Val Ala Glu His Glu Ala Ala Phe Thr Asp Pro Asp Gln 145 150 155 160 Ala Ala Glu Phe Val Glu Arg Thr Gly Val Asp Ser Leu Ala Val Ala 165 170 175 Ile Gly Thr Ser His Gly Ala Tyr Lys Phe Lys Gly Glu Pro Arg Leu 180 185 190 Asp Phe Glu Arg Leu Gln Arg Ile Val Glu Lys Leu Pro Lys Gly Phe 195 200 205 Pro Ile Val Leu His Gly Ala Ser Ser Val Leu Pro Glu Phe Val Glu 210 215 220 Met Cys Asn Lys Tyr Gly Gly Asn Ile Pro Gly Ala Lys Gly Val Pro 225 230 235 240 Glu Asp Met Leu Arg Lys Ala Ala Glu Leu Gly Val Arg Lys Ile Asn 245 250 255 Ile Asp Thr Asp Leu Arg Leu Ala Met Thr Ala Ala Ile Arg Lys His 260 265 270 Leu Ala Glu His Pro Asp His Phe Asp Pro Arg Gln Tyr Leu Lys Asp 275 280 285 Gly Arg Glu Ala Ile Lys Glu Met Val Lys His Lys Leu Arg Asn Val 290 295 300 Leu Gly Cys Ser Gly Lys Ala Pro Glu Ile Leu Glu Glu Ile Lys Lys 305 310 315 320 Asn Arg Gly <210> 4 <211> 361 <212> PRT <213> Kluyveromyces lactis <400> 4 Met Pro Ala Gln Asp Val Leu Thr Arg Lys Thr Gly Val Ile Val Gly 1 5 10 15 Asp Asp Val Lys Ala Leu Phe Asp Tyr Ala Lys Glu His Lys Phe Ala 20 25 30 Ile Pro Ala Ile Asn Val Thr Ser Ser Ser Val Val Ala Leu 35 40 45 Glu Ala Ala Arg Asp Asn Lys Ser Pro Ile Ile Leu Gln Thr Ser Asn 50 55 60 Gly Gly Ala Ala Tyr Phe Ala Gly Lys Gly Val Ser Asn Glu Gly Gln 65 70 75 80 Asn Ala Ala Ala His Tyr Ile Arg Ser 85 90 95 Ile Ala Pro Ala Tyr Gly Ile Pro Val Val Leu His Thr Asp His Cys 100 105 110 Ala Lys Lys Leu Leu Pro Trp Phe Asp Gly Met Leu Lys Ala Asp Glu 115 120 125 Glu Tyr Phe Ala Lys His Gly Glu Pro Leu Phe Ser Ser His Met Leu 130 135 140 Asp Leu Ser Glu Glu Thr Asp Glu Glu Asn Ile Gly Leu Cys Val Lys 145 150 155 160 Tyr Phe Thr Arg Met Ala Lys Ile His Gln Trp Leu Glu Met Glu Ile 165 170 175 Gly Ile Thr Gly Gly Glu Glu Asp Gly Val Asn Asn Glu Gly Thr Ser 180 185 190 Asn Asp Lys Leu Tyr Thr Thr Pro Glu Thr Val Phe Ser Val His Glu 195 200 205 Ala Leu Ser Lys Ile Ser Pro Asn Phe Ser Ile Ala Ser Ala Phe Gly 210 215 220 Asn Val His Gly Val Tyr Lys Ile Ala Ala Ala Leu Lys Pro Glu Leu 225 230 235 240 Leu Gly Thr Phe Gln Asp Tyr Ala Ala Lys Gln Leu Asn Lys Lys Ala 245 250 255 Glu Asp Lys Pro Leu Tyr Leu Val Phe His Gly Gly Ser Gly Ser Ser 260 265 270 Thr Lys Asp Phe His Thr Ala Ile Asp Phe Gly Val Val Lys Val Asn 275 280 285 Leu Asp Thr Asp Cys Gln Phe Ala Tyr Leu Ser Gly Ile Arg Asp Tyr 290 295 300 Val Leu Asn Lys Lys Asp Tyr Leu Met Thr Pro Val Gly Asn Pro Thr 305 310 315 320 Gly Glu Asp Ser Pro Asn Lys Lys Tyr Tyr Asp Pro Arg Val Trp Val 325 330 335 Arg Glu Gly Glu Lys Thr Met Ser Lys Arg Ile Thr Gln Ala Leu Glu 340 345 350 Ile Phe Arg Thr Lys Gly Ala Leu Glu 355 360 <210> 5 <211> 1080 <212> DNA <213> Escherichia coli <400> 5 atgtctaaga tttttgattt cgtaaaacct ggcgtaatca ctggtgatga cgtacagaaa 60 gttttccagg tagcaaaaga aaacaacttc gcactgccag cagtaaactg cgtcggtact 120 gactccatca acgccgtact ggaaaccgct gctaaagtta aagcgccggt tatcgttcag 180 ctttccgcg ggtgctgcta tcctgggcgc gatctctggt gcgcatcacg ttcaccagat ggctgaacat 300 tatggtgttc cggttatcct gcacactgac cactgcgcga agaaactgct gccgtggatc 360 gacggtctgt tggacgcggg tgaaaaacac ttcgcagcta ccggtaagcc gctgttctct 420 tctcacatga tcgacctgtc tgaagaatct ctgcaagaga acatcgaaat ctgctctaaa 480 tacctggagc gcatgtccaa aatcggcatg actctggaaa tcgaactggg ttgcaccggt 540 ggtgaagaag acggcgtgga caacagccac atggacgctt ctgcactgta cacccagccg 600 gaagacgttg attacgcata caccgaactg agcaaaatca gcccgcgttt caccatcgca 660 gcgtccttcg gtaacgtaca cggtgtttac aagccgggta acgtggttct gactccgacc 720 atcctgcgtg attctcagga atatgtttcc aagaaacaca acctgccgca caacagcctg 780 aacttcgtat tccacggtgg ttccggttct actgctcagg aaatcaaaga ctccgtaagc 840 tacggcgtag taaaaatgaa catcgatacc gatacccaat gggcaacctg ggaaggcgtt 900 ctgaactact acaaagcgaa cgaagcttat ctgcagggtc agctgggtaa cccgaaaggc 960 gaagatcagc cgaacaagaa atactacgat ccgcgcgtat ggctgcgtgc cggtcagact 1020 tcgatgatcg ctcgtctgga gaaagcattc caggaactga acgcgatcga cgttctgtaa 1080 1080 <210> 6 <211> 882 <212> DNA <213> Streptococcus thermophilus <400> 6 atggcaatcg tttcagcaga aaaatttgtt caatcagctc gtgacaatgg ttatgcactt 60 ggtggattta acacaaataa ccttgagtgg actcaagcta tcttgcgtgc agcagaagct 120 aaaaaagctc cagtacttat ccaaacttct atgggtgcag ctaagtacat gggtggttac 180 aaattgtgta aagctcttat cgaagaattg gttgaatcaa tgggtatcac tgtaccagtt 240 gctattcacc ttgatcacgg tcactacgat gatgctcttg agtgtattga agttggttac 300 acttcaatca tgtttgatgg ttcacacctt ccaattgaag aaaaccttaa attggcgaaa 360 gaagttgtag aaaaagcaca cgctaaaggt atctcagttg aagctgaagt tggtactatc 420 ggtggagaag aagacggtat cgtcggtaga ggtgaattgg caccaattga agatgctaaa 480 gctatggttg caactggtgt tgacttcttg gctgcaggta tcggtaacat ccacggtcct 540 tacccagaaa actgggaagg tcttgacctt gaccacttgc aaaaattgac agaagctata 600 ccaggtttcc caatcgtatt gcacggtgga tcaggtattc ctgatgatca aatccaagaa 660 gctatcaaac ttggtgttgc taaagttaac gttaacacag aatgtcaaat cgcatttgct 720 aacgcaacac gtaaatttgt tgctgaatac gaagcaaatg aagcagaata cgacaagaag 780 aaactcttcg acccacgtaa attcttgaaa ccaggtttcg aagctattac agaagctgtt 840 gaagaacgta tcgatgtatt tggttcagca aacaaagctt aa 882 <210> 7 <211> 972 <212> DNA <213> Caldicellulosiruptor saccharolyticus <400> 7 atgccacttg taacaaccaa agagatgttt aaaaaggccg ctgaggggaa gtatgctatt 60 ggtgccttca atgtcaacaa catggagatt atccagggga ttgttgaggc agcaaaggag 120 gaacaagcac ctttaatttt gcaggtctca gcaggagcaa gaaaatacgc aaaacacgtc 180 tatcttgtaa aacttgttga ggcagcttta gaggactctg gtgatttacc aattgcactt 240 caccttgacc atggcgagga cttcgagatt tgcaaggcgt gcatcgatgg cggatttaca 300 tctgttatga ttgatggttc acgtctccca tttgaagaga acattgcgct taccaagaaa 360 gttgttgaat atgcgcatga gaggggagtt gttgttgagg cagagcttgg aaagcttgcc 420 ggcattgagg acaatgtaaa ggttgcagag catgaggcag catttactga ccctgaccaa 480 gcagcagagt ttgttgaaag aacaggtgtt gactcattgg cagttgcaat tggaacaagc 540 catggggcgt ataagttcaa gggcgagcca agacttgatt ttgagagact tcagagaata 600 gtagaaaagc ttccaaaggg ctttccaatt gttcttcacg gtgcgtcgtc agttttgcca 660 gagtttgttg agatgtgcaa caagtacggt ggtaatatcc ctggtgcaaa aggtgtgcca 720 gaagatatgc taagaaaggc tgctgagctt ggtgtgagaa agattaacat tgacacagat 780 ttaagacttg caatgacagc agcaataaga aagcatttgg cagaacatcc tgaccacttt 840 gacccaagac agtacctcaa agatggcaga gaggcaatta aagagatggt taagcacaag 900 ctgagaaatg ttttgggctg tagtggcaag gctccagaga tacttgaaga gattaagaag 960 aacagaggct aa 972 <210> 8 <211> 1086 <212> DNA <213> Kluyveromyces lactis <400> 8 atgccagctc aagacgtatt gaccagaaag accggtgtca ttgtcggtga cgatgtcaag 60 gctttgttcg actacgctaa ggaacacaag tttgccattc cagctatcaa cgtgacctct 120 tcttccactg ttgttgctgc tttggaagct gctagagaca acaaatctcc aatcattttg 180 caaacttcca acggtggtgc tgcttacttt gctggtaagg gtgtttccaa cgaaggccaa 240 aatgcttcta tcagaggttc tatcgctgct gctcactaca tcagatccat tgctccagct 300 tacggtatcc cagttgttct acacaccgat cattgtgcta agaagttgct accatggttc 360 gatggtatgc taaaggctga cgaagaatac ttcgctaagc acggtgaacc attgttctcc 420 tcccacatgt tggatttgtc cgaagaaact gatgaggaaa acattggtct atgtgtcaaa 480 tacttcacca gaatggccaa gatccaccaa tggttggaaa tggaaatcgg tatcaccggt 540 ggtgaagaag atggtgtcaa caacgaaggt acttctaacg acaaacttta caccactcca 600 gaaactgttt tctctgtcca cgaagctttg tccaagatct ctccaaactt ctccattgcc 660 agtgccttcg gtaacgtcca cggtgtttac aagatcgccg ctgccctaaa accagaattg 720 ttgggtactt tccaagacta cgctgctaag caattaaaca agaaggcaga agacaagcca 780 ttgtacttgg tcttccacgg tggttccggt tcctccacca aggacttcca tactgccatc 840 gatttcggtg tcgtaaaggt caacttggat actgactgtc aattcgctta cttgtccggt 900 atcagagact acgtcttgaa caagaaggac tacttgatga ccccagtcgg taacccaacc 960 ggtgaagact ctccaaacaa gaagtactac gacccaagag tctgggttag agaaggtgaa 1020 aagaccatga gcaagagaat cactcaagct ttggaaatct tccgtactaa gggtgctttg 1080 gaataa 1086
Claims (9)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140001709A KR101663358B1 (en) | 2014-01-07 | 2014-01-07 | Fructose 1,6-bisphosphate aldolases from various microorganisms and enzymatic conversion method of tagatose 6-phosphate from fructose 6-phosphate by the same |
PCT/KR2014/006850 WO2015016544A1 (en) | 2013-07-29 | 2014-07-25 | Aldolase, aldolase mutant, and method and composition for producing tagatose by using same |
US14/908,469 US9914919B2 (en) | 2013-07-29 | 2014-07-25 | Aldolase, aldolase mutant, and method and composition for producing tagatose by using same |
US15/718,400 US20180023073A1 (en) | 2013-07-29 | 2017-09-28 | Aldolase, aldolase mutant, and method and composition for producing tagatose by using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140001709A KR101663358B1 (en) | 2014-01-07 | 2014-01-07 | Fructose 1,6-bisphosphate aldolases from various microorganisms and enzymatic conversion method of tagatose 6-phosphate from fructose 6-phosphate by the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150081823A KR20150081823A (en) | 2015-07-15 |
KR101663358B1 true KR101663358B1 (en) | 2016-10-07 |
Family
ID=53793550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140001709A KR101663358B1 (en) | 2013-07-29 | 2014-01-07 | Fructose 1,6-bisphosphate aldolases from various microorganisms and enzymatic conversion method of tagatose 6-phosphate from fructose 6-phosphate by the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101663358B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180111667A (en) | 2017-03-31 | 2018-10-11 | 씨제이제일제당 (주) | A composition for preparing tagatose and Methods for producing tagatose using The Same |
KR102328650B1 (en) | 2018-09-27 | 2021-11-19 | 씨제이제일제당 주식회사 | A Novel Fructose C4 epimerases and Preparation Method for producing Tagatose using the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100779160B1 (en) * | 2005-12-29 | 2007-11-28 | 주식회사 삼양제넥스 | Low glycemic index composition containing tagatose |
-
2014
- 2014-01-07 KR KR1020140001709A patent/KR101663358B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100779160B1 (en) * | 2005-12-29 | 2007-11-28 | 주식회사 삼양제넥스 | Low glycemic index composition containing tagatose |
Non-Patent Citations (3)
Title |
---|
J Biol Chem., Vol. 277, No. 24, pages 22018-22024 (2002.06.14.)* |
NCBI GenBank Accession No. WP_000034372: fructose-bisphosphate aldolase [Escherichia coli] (2013.05.24.)* |
NCBI GenBank Accession No. WP_011226657: fructose-bisphosphate aldolase [Streptococcus thermophilus] (2013.05.15.)* |
Also Published As
Publication number | Publication date |
---|---|
KR20150081823A (en) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101480422B1 (en) | A production method of tagatose from fructose by combinatorial enzyme reactions and composition for production of tagatose | |
US9914919B2 (en) | Aldolase, aldolase mutant, and method and composition for producing tagatose by using same | |
CA2595873C (en) | Dna fragment encoding an enzyme having polyphosphate-driven adp phosphorylation activity | |
KR102448351B1 (en) | Variant of D-allulose 3-epimerase, manufacturing method thereof and manufacturing method of D-alluose using the same | |
JP7094449B2 (en) | Allulose epimerizing enzyme mutant, its production method and method for producing allulose using it | |
KR20220128581A (en) | Enzymatic hexosaminidization of lactose | |
Wahl et al. | Characterization of a new UDP-sugar pyrophosphorylase from Hordeum vulgare (barley) | |
Dabrowski et al. | Cloning, expression, and purification of the His6-tagged thermostable b-galactosidase from Pyrococcus woesei in Escherichia coli and some properties of the isolated enzyme | |
KR101663358B1 (en) | Fructose 1,6-bisphosphate aldolases from various microorganisms and enzymatic conversion method of tagatose 6-phosphate from fructose 6-phosphate by the same | |
TWI719140B (en) | New polyphosphate-dependent glucokinase and method for preparing glucose 6-phosphate using the same | |
KR20190068470A (en) | Novel psicose-6-phosphate phosphatase, composition for producing psicose including the phosphatase, and method for producing psicose using the phosphatase | |
US20170204381A1 (en) | Pmst1 mutants for chemoenzymatic synthesis of sialyl lewis x compounds | |
KR20170116979A (en) | Fructose 1,6-bisphosphate aldolase from Lactobacillus plantarum with conversion activity from fructose 6-phosphate to tagatose 6-phosphate and method for producing tagatose using the same | |
KR101765684B1 (en) | Composition for producing phosphorylated tagatose from phosphorylated fructose derivative comprising Fructose 1,6-bisphosphate aldolase from Caldicellulosiruptor sp. as effective component | |
JP7025941B2 (en) | New enzyme preparation, its manufacturing method and its use | |
JP6033632B2 (en) | Method for producing acidic β-glucosyl disaccharide using cellobionate phosphorylase | |
KR101826835B1 (en) | Composition for producing phosphorylated tagatose from phosphorylated fructose derivative comprising Fructose 1,6-bisphosphate aldolase from Caldicellulosiruptor sp. as effective component | |
WO2019035482A1 (en) | Protein exhibiting epimerization activity | |
Seo et al. | Bifunctional recombinant fusion enzyme between maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase of thermophilic microorganism Metallosphaera hakonensis | |
KR20170116978A (en) | Composition for producing phosphorylated tagatose from fructose 6-phosphate comprising Fructose 1,6-bisphosphate aldolase from Bifidobacterium longum as effective component | |
JP2023554112A (en) | Allulose epimerase mutant with excellent thermostability, method for producing the same, and method for producing allulose using the same | |
TWI634211B (en) | New polyphosphate-dependent glucokinase and method for preparing glucose 6-phosphate using the same | |
KR20050051055A (en) | α-Glucan phospholyase originated Thermus caldophilus GK24, preparative method thereof using recombinant host, and synthetic method of α-D-glucose-1-phosphate using the same | |
Dąabrowski et al. | Cloning, Expression, and Purification of the His6-Tagged Thermostable β-Galactosidase from Pyrococcus woesei in Escherichia coli and Some Properties of the Isolated Enzyme | |
WO2015183099A1 (en) | Use of a n-acetylneuraminate lyase derived from the bacterium aliivibrio salmonicida in the production of neuraminic acid and derivatives thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |