[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101653502B1 - 미병 분류를 보조하는 컴퓨팅 장치 및 방법 - Google Patents

미병 분류를 보조하는 컴퓨팅 장치 및 방법 Download PDF

Info

Publication number
KR101653502B1
KR101653502B1 KR1020150125510A KR20150125510A KR101653502B1 KR 101653502 B1 KR101653502 B1 KR 101653502B1 KR 1020150125510 A KR1020150125510 A KR 1020150125510A KR 20150125510 A KR20150125510 A KR 20150125510A KR 101653502 B1 KR101653502 B1 KR 101653502B1
Authority
KR
South Korea
Prior art keywords
subject
cardiac output
corrected
information
infectious disease
Prior art date
Application number
KR1020150125510A
Other languages
English (en)
Inventor
이시우
이영섭
진희정
박만영
박기현
Original Assignee
한국 한의학 연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국 한의학 연구원 filed Critical 한국 한의학 연구원
Priority to PCT/KR2016/006275 priority Critical patent/WO2016200243A1/ko
Application granted granted Critical
Publication of KR101653502B1 publication Critical patent/KR101653502B1/ko

Links

Images

Classifications

    • G06F19/363
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • G06F19/3431
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

본 발명은 미병 분류 과정 보조 컴퓨팅 장치 및 그 동작 방법에 관한 것으로서, 일실시예에 따른 미병 분류 장치는 대상자로부터 수집된 심혈관 순환기능 파라미터를 상기 대상자의 신체 정보에 기초하여 보정하는 연산부, 및 심혈관 순환기능 파라미터 별 건강군과 미병군의 대조 정보를 포함하는 기준 데이터를 저장하는 데이터베이스로부터 상기 보정된 순환기능 파라미터를 이용하여 미병을 분류하는 처리부를 포함한다.

Description

미병 분류를 보조하는 컴퓨팅 장치 및 방법{COMPUTING APPARATUS AND METHOD FOR PROVIDING CLASSIFYING OF MIBYOUG}
1회 심박출량, 1분당 심박출량 등과 같은 심혈관 순환기능 모니터링 결과 데이터를 처리하여, 한의학적 미병 분류 과정을 보조하는 컴퓨팅 장치 및 그 동작 방법이 제공된다.
고령 인구의 증가와 산업 발달에 따른 생활수준의 향상으로 인해, 질병이 걸린 후에 치료하는 의학에서 질병에 걸리기 전에 건강을 지키고자 하는 예방의학의 관심이 커져가고 있다.
세계보건기구(WHO)에 의하면 '건강'이란 신체적, 정신적, 사회적으로 안녕한 상태이며 단순히 질병이나 허약증상이 없는 상태를 의미하지 않음이라고 정의하고 있다. 한편, '미병' 상태는 건강과 질병의 중간단계로서, 방치할 경우 질병으로 이환될 수 있는 일종의 건강저하 상태로 해석될 수 있다.
한의학에서 '미병'의 정의는 각 나라 또는 연구자들마다 조금씩 다르긴 하지만, 공통적으로 질병에 대한 치료보다는 예방의학 사상을 강조하고 있다.
한편, 맥파는 심장에서 혈관을 통해 혈류가 흐를 때 나타나는 파장을 분석하는 값으로, 동맥 및 정맥의 맥박운동을 묘사한 곡선이라 볼 수 있다. 맥파를 통해서는 심장과 혈액관계를 파악할 수 있다.
대한민국 특허등록공보 제10-1462318호
심혈관 순환기능 모니터링 결과를 이용하여, 한의학의 미병을 분류하는 시스템이 제시된다.
대상자의 키, 체중, 성별, 체질 등을 이용해서 1회 심박출량 및 1분간 심박출량을 보정함으로써, 대상자의 미병 평가의 정확도를 향상시키는 시스템이 제시된다.
미병 분류에 사용되는 기준 데이터를 새로 추가된 임상자료를 이용하여 트래이닝 함으로써 정확도를 높일 수 있는 시스템이 제시된다.
일측에 따르면, 컴퓨터에 의해 적어도 일시적으로 구현되는 미병 분류 보조 장치가 제공된다. 일실시예에 따르면 상기 미병 분류 보조 장치는: 대상자로부터 수집된 심혈관 순환기능 파라미터를 상기 대상자의 신체 정보에 기초하여 보정하는 연산부, 및 심혈관 순환기능 파라미터 별 건강군과 미병군의 대조 정보를 포함하는 기준 데이터를 저장하는 데이터베이스로부터 상기 보정된 순환기능 파라미터를 이용하여 미병을 분류하는 처리부를 포함한다.
일실시예에 따른 상기 처리부는, 상기 보정된 순환기능 파라미터와 상기 대상자의 사상 체질 정보를 이용해서 상기 데이터베이스로부터 상기 미병을 분류한다.
일실시예에 따른 상기 처리부는, 사용자 단말기로부터 입력되는 사상 체질별 식별 정보에 기초하여 상기 대상자의 사상 체질 정보를 결정하고, 상기 결정된 사상 체질 정보를 이용해서 상기 미병을 분류한다.
일실시예에 따른 상기 처리부는, 진단 툴을 활용하여, 상기 대상자의 사상 체질을 진단하여 상기 사상 체질 정보를 결정하고, 상기 결정된 사상 체질 정보를 이용해서 상기 미병을 분류한다.
일실시예에 따른 상기 처리부는, 상기 분류된 미병 중에서, 상기 대상자의 사상 체질에 기초하여 미병을 최종 분류한다.
일실시예에 따른 상기 심혈관 순환기능 파라미터는 대상자의 1회 심박출량(Stroke Volume) 및 1분 심박출량(Cardiac Output) 중에서 적어도 하나를 포함한다.
일실시예에 따른 상기 대상자의 신체 정보는 상기 대상자의 키 및 몸무게 중에서 적어도 하나를 포함하고, 상기 연산부는, 상기 1회 심박출량에 상기 대상자의 키를 반영하여 보정하고, 상기 1분 심박출량에 상기 대상자의 키와 몸무게를 반영하여 보정한다.
일실시예에 따른 상기 처리부는, 상기 분류된 상기 대상자의 미병을 이용하여 상기 기준 데이터를 트래이닝한다.
일실시예에 따른 상기 처리부는, CART(Classification and regression trees), randomForest, MNL, SVM(support vector machine), NN(Neural Network) 중에서 적어도 하나의 데이터 마이닝 기술을 적용하여 상기 보정된 순환기능 파라미터로부터 미병을 분류한다.
다른 일측에 따르면, 컴퓨터에 의해 수행되는 한의학적 미병 분류 보조 방법이 제공된다. 일실시예에 따른 방법은: 대상자로부터 수집된 심혈관 순환기능 파라미터를 상기 대상자의 신체 정보에 기초하여 보정하는 단계, 및 심혈관 순환기능 파라미터 별 건강군과 미병군의 대조 정보를 포함하는 기준 데이터를 저장하는 데이터베이스로부터 상기 보정된 순환기능 파라미터를 이용하여 미병을 분류하는 단계를 포함한다.
일실시예에 따른 상기 미병을 분류하는 단계는, 상기 보정된 순환기능 파라미터와 상기 대상자의 사상 체질 정보를 이용해서 상기 데이터베이스로부터 상기 미병을 분류하는 단계를 포함한다.
일실시예에 따른 상기 미병을 분류하는 단계는, 사용자 단말기로부터 입력되는 사상 체질별 식별 정보에 기초하여 상기 대상자의 사상 체질 정보를 결정하는 단계, 및 상기 결정된 사상 체질 정보를 이용해서 상기 미병을 분류하는 단계를 포함한다.
일실시예에 따른 상기 미병을 분류하는 단계는, 진단 툴을 활용하여, 상기 대상자의 사상 체질을 진단하여 상기 사상 체질 정보를 결정하는 단계, 및 상기 결정된 사상 체질 정보를 이용해서 상기 미병을 분류하는 단계를 포함한다.
일실시예에 따른 상기 미병을 분류하는 단계는, 상기 분류된 미병 중에서, 상기 대상자의 사상 체질에 기초하여 미병을 최종 분류하는 단계를 포함한다.
일실시예에 따른 미병 분류 프로그램은 대상자로부터 수집된 심혈관 순환기능 파라미터를 상기 대상자의 신체 정보에 기초하여 보정하는 명령어 세트, 및 심혈관 순환기능 파라미터 별 건강군과 미병군의 대조 정보를 포함하는 기준 데이터를 저장하는 데이터베이스로부터 상기 보정된 순환기능 파라미터를 이용하여 미병을 분류하는 명령어 세트를 포함한다.
실시예들에 따르면, 심혈관 순환기능 모니터링 결과를 이용하여 한의학의 미병을 분류할 수 있다.
실시예들에 따르면, 대상자의 키, 체중, 성별, 체질 등을 이용해서 1회 심박출량 및 1분간 심박출량을 보정함으로써, 대상자의 미병 평가의 정확도를 향상시킬 수 있다.
미병 분류에 사용되는 기준 데이터를 새로 추가된 임상자료를 이용하여 트래이닝 함으로써 정확도를 높일 수 있다.
도 1은 일실시예에 따른 미병 분류 장치를 활용하는 전체 시스템을 설명하는 도면이다.
도 2는 일실시예에 따른 미병 분류 장치를 설명하는 도면이다.
도 3은 비질환인을 대상으로 수집한 미병 평가 및 심혈관 순환기능 데이터를 설명하는 도면이다.
도 4는 일실시예에 따른 미병 분류 방법을 설명하는 도면이다.
이하에서, 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 그러나, 이러한 실시예들에 의해 권리범위가 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
아래 설명에서 사용되는 용어는, 연관되는 기술 분야에서 일반적이고 보편적인 것으로 선택되었으나, 기술의 발달 및/또는 변화, 관례, 기술자의 선호 등에 따라 다른 용어가 있을 수 있다. 따라서, 아래 설명에서 사용되는 용어는 기술적 사상을 한정하는 것으로 이해되어서는 안 되며, 실시예들을 설명하기 위한 예시적 용어로 이해되어야 한다.
또한 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 설명 부분에서 상세한 그 의미를 기재할 것이다. 따라서 아래 설명에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가지는 의미와 명세서 전반에 걸친 내용을 토대로 이해되어야 한다.
도 1은 일실시예에 따른 미병 분류 장치(150)를 활용하는 전체 시스템(100)을 설명하는 도면이다.
전체 시스템(100)은 일실시예에 따른 미병 분류 장치(150)를 활용함으로써, 심혈관 순환기능 모니터링 결과를 이용하여 한의학의 미병을 분류할 수 있다. 뿐만 아니라, 미병 분류 장치(150)를 활용함으로써, 대상자의 키, 체중, 성별, 체질 등을 이용해서 1회 심박출량 및 1분간 심박출량을 보정함으로써, 대상자의 미병 평가의 정확도를 향상시킬 수 있고, 미병 분류에 사용되는 기준 데이터를 새로 추가된 임상자료를 이용하여 트래이닝 함으로써 정확도를 높일 수 있다.
이를 위해, 일실시예에 따른 미병 분류 장치(150)는 대상자에 대한 1회 심박출량, 1분간 심박출량, 키, 몸무게 등의 정보를 수집할 수 있다.
예를 들어, 일실시예에 따른 미병 분류 장치(150)는 심혈관 순환기기(110)를 이용해서 측정한 대상자의 맥파, 산소포화도, 호흡가스, 지시물질 희석, 초음파, 생체 저항 등을 스마트 단말기(140)를 통해서 전달 받을 수 있다.
일례로, 스마트 단말기(140)는 사물인터넷 단말기로 해석될 수 있고, 대상자의 주변에서 대상자로부터 측정되는 다양한 정보들을 수신하여 미병 분류 장치(150)로 전달할 수 있다.
한편, 일실시예에 따른 미병 분류 장치(150)는 웨어러블밴드로부터 측정된 대상자의 1회 심박출량 및 1분간 심박출량 등의 정보를 스마트 단말기(140)를 통해서 전달 받을 수 있다. 일례로, 미병 분류 장치(150)는 웨어러블밴드가 유무선 네트워크에 접속할 수 있는 경우 웨어러블밴드로부터 심박출량 및 심박출량 등의 정보를 직접 수신할 수 있다.
일실시예에 따른 미병 분류 장치(150)는 대상자의 키와 몸무게 등의 체형 정보를 사용자 단말기(130)로부터 수집할 수 있다. 일례로, 사용자 단말기(130)는 대상자로부터 수집한 키와 몸무게 등의 체형 정보에 대해 유무선 통신망을 통해 미병 분류 장치(150)로 전송할 수 있다. 뿐만 아니라, 사용자 단말기(130)는 근거리 통신 방식을 이용해서 대상자로부터 수집한 키와 몸무게 등의 체형 정보를 스마트 단말기(140)로 전송할 수도 있다.
한편, 사용자 단말기(130)는 스마트 폰과 같은 단말기가 아닌 대상자의 체형을 측정할 수 있는 측정 기기의 형태일 수도 있다. 이때, 측정 기기는 유무선 통신 네트워크에 접속이 가능하거나, 근거리 무선 통신을 위한 통신 모듈을 포함할 수 있다.
또한, 일실시예에 따른 미병 분류 장치(150)는 미병 분류에 있어, 보정된 1회 심박출량, 1분간 심박출량과 함께 대상자의 사상 체질을 더 고려할 수 있다.
구체적으로, 일실시예에 따른 미병 분류 장치(150)는 수집된 정보들을 이용해서 미병 평가를 위한 변수를 생성하고, 이를 이용해서 임상자료로 기록되어 있는 데이터베이스로부터 대상자에 대한 미병을 분류할 수 있다. 이때, 일실시예에 따른 미병 분류 장치(150)가 생성하는 변수는 수집된 정보들 중에서 1회 심박출량과 1분간 심박출량을 키와 몸무게를 이용해서 보정한 값으로 해석될 수 있다. 이는 이하 도 2를 통해 보다 구체적으로 설명한다.
도 2는 일실시예에 따른 미병 분류 장치(200)를 설명하는 도면이다.
일실시예에 따른 미병 분류 장치(200)는 연산부(210) 및 처리부(220)를 포함한다.
일실시예에 연산부(210)는 대상자로부터 수집된 심혈관 순환기능 파라미터를 대상자의 신체 정보에 기초하여 보정한다.
수집된 심혈관 순환기능 파라미터는 대상자의 1회 심박출량(Stroke Volume) 및 1분 심박출량(Cardiac Output) 중에서 적어도 하나를 포함할 수 있다.
1회 심박출량(Stroke Volume) 또는 1분 심박출량(Cardiac Output)은 혈액순환 건강을 예측할 수 있는 지표로서, 혈관의 순환방해 요소의 증가나 심장 기능 약화 등을 확인할 수 있는 지표이다.
심박출량은 심부전 환자 또는 관련 임상 증후를 가진 대상자가 심장기능의 저하로 인해 체내대사에 필요한 양의 혈액을 공급하지 못하는 상태일 때, 이로 인해 폐울혈, 체울혈 및 심박출량 감소가 발생하고, 이에 따른 호흡곤란, 부종과 피로감 등의 임상증상이 동반될 수 있으며, 이러한 변화가 심박출량과 연관성이 있다. 이러한 연관성은 발표된 많은 연구들(Yoo B-S. Pharmacological treatment of heart failure. The Korean Journal of Medicine. 81(6), 2011, Kim I-J, So H-Y, Kim S-Y. Concept analysis: Deconditioning. The Korean Journal of Rehabilitation Nursing. 12(1), 2009)을 통해 확인할 수 있다.
한의학적 미병은 대상자의 전반적인 몸 상태를 모두 반영하는 것이지만, 전문가의 진료를 받기 전에 매일매일 개인이 자신의 몸 상태를 확인하는 관점에서 심혈관 순환기능의 심박출량 연관 지표를 활용하여 미병을 분류함으로써 의미가 있다.
연산부(210)는 1회 심박출량(Stroke Volume) 및 1분 심박출량(Cardiac Output)에 대한 미병 분류의 정확도를 높이기 위해서 대상자의 신체 정보를 활용하여 보정할 수 있다.
예를 들어, 연산부(210)는 1회 심박출량에 대상자의 키를 반영하여 보정하고, 1분 심박출량에 대상자의 키와 몸무게를 반영하여 보정할 수 있다.
보다 구체적으로, 연산부(210)는 [수학식 1]에 기반하여 1회 심박출량(Stroke Volume)을 보정할 수 있다.
[수학식 1]
Figure 112015086241539-pat00001
이때, V5는 보정된 1회 심박출량(Stroke Volume)이고, V1은 대상자의 1회 심박출량(Stroke Volume)이며, V3는 대상자의 키로 해석될 수 있다.
연산부(210)는 [수학식 2]에 기반하여 1분 심박출량(Stroke Volume)을 보정할 수 있다.
[수학식 2]
Figure 112015086241539-pat00002
이때, V6는 보정된 1분 심박출량(Cardiac Output)(mL)이고, V2은 대상자의 1분 심박출량(Cardiac Output)(L/min)이며, V3는 대상자의 키(m)로 해석될 수 있고, V4는 대상자의 몸무게(kg)로 해석될 수 있다.
일실시예에 처리부(220)는 보정된 순환기능 파라미터를 이용하여 미병을 분류한다. 구체적으로, 처리부(220)는 심혈관 순환기능 파라미터 별 건강군과 미병군의 대조 정보를 포함하는 기준 데이터를 저장하는 데이터베이스로부터 미병을 분류하되, 보정된 순환기능 파라미터를 활용할 수 있다.
미병을 분류하기 위해, 처리부(220)는 CART(Classification and regression trees), randomForest, MNL, SVM(support vector machine), NN(Neural Network) 등의 미병 분류 알고리즘을 통한 데이터 마이닝 방법을 적용할 수 있다.
일실시예에 따른 처리부(220)는 보정된 순환기능 파라미터와 대상자의 사상 체질 정보를 이용해서 데이터베이스로부터 미병을 분류할 수 있다. 이를 위해, 처리부(220)는 사용자 단말기로부터 입력되는 사상 체질별 식별 정보에 기초하여 대상자의 사상 체질 정보를 결정하고, 결정된 사상 체질 정보를 이용해서 미병을 분류할 수 있다. 즉, 처리부(220)는 사용자로부터 사상 체질을 입력 받아서 미병 분류에 사용할 수 있다.
다음으로, 일실시예에 따른 처리부(220)는 진단 툴을 활용하여, 대상자의 사상 체질을 진단하여 사상 체질 정보를 결정하고, 결정된 사상 체질 정보를 이용해서 미병을 분류할 수 있다.
또 다른 예로, 처리부(220)는 미병 분류 이후에 사상 체질로 정확도를 높이기 위해, 분류된 미병들에 대해 대상자의 사상체질을 적용하여 최종 분류할 수 있다. 즉, 처리부(220)는 이미 분류된 미병 중에서 대상자의 사상 체질에 기초하여 미병을 최종 분류할 수 있다.
한편, 처리부(220)는 분류된 대상자의 미병을 이용하여 기준 데이터를 트래이닝 할 수 있다.
구체적인 예로써, 미병 분류 장치(200)와 관련된 웹페이지에 대상자 A가 회원가입을 하고, 회원가입 시 키, 체중, 성별 정보를 등록할 수 있다. 체질을 알고 있으면, 체질값을 입력하고, 모르는 경우 체질 진단툴을 수행할 수 있다. 즉, 대상자는 체질값 입력을 하지 않아도 된다. 즉, 대상자는 미병 분류 장치와 관련된 웹 페이지를 사용하는 도중 특정 시점에 체질 정보를 입력 할 수 있다.
대상자 A가 웨어러블 밴드를 통해 1회 심박출량과 1분간 심박출량을 측정하고, 이를 스마트폰의 어플을 통해 미병 분류 장치에 전송하거나, 미병 분류 장치 상에서 대상자가 직접 입력할 수 있다.
미병 분류 장치(200)에 입력되어 있는 키, 몸무게를 사용하거나, 사용자의 판단에 따라 새로운 키, 체중을 입력할 수 있다.
미병 분류 장치(200)는 1회 심박출량과 1분간 심박출량, 키, 몸무게가 입력되면 미병분류 알고리즘을 시행할 수 있다.
이때, 미병 분류 장치(200)가 미병 분류시 1회 심박출량(V1), 1분간 심박출량(V2), 대상자의 키를 보정한 1회 심박출량(V5), 대상자의 신체크기를 고려한 1분간 심박출량(V6)를 활용할 수 있다. 또한, 미병 분류 장치(200)는 결과창 또는 결과지에 대상자의 미병분류 결과를 표시하고, 해당하는 관리방법을 표시할 수 있다.
도 3은 비질환인을 대상으로 수집한 미병 평가 및 심혈관 순환기능과 관련된 데이터(300)를 설명하는 도면이다.
데이터(300)는 비질환인을 대상으로 하는 미병 평가 및 심혈관 순환기능에 기반하며, 건강군 232명, 미병군 99명을 대상으로 심혈관 순환기능을 측정하여 1회 심박출량(320)과 1분간 심박출량(330)을 도출하고, 건강군과 미병군 간 차이를 검정함. 건강군과 미병군의 분류는 한국한의학연구원의 미병 분류 설문지를 이용하여 수집되었다.
1분간 심박출량은 건강군과 미병군 간에 유의한 차이가 나타남을 알 수 있으며, 특히 태음인(310)에서 현저한 차이가 나타난다. 1회 심박출량의 경우는 통계적 유의성은 나타나지 않았지만 건강군에 비해 미병군에서 저하되는 경향성을 나타낸다.
상기 데이터에서 미병 진단결과와 심혈관 순환기능 변수를 활용하여 미병 분류 알고리즘을 생성하고 정확도를 검정함. 미병 분류 알고리즘은 CART(Classification and regression trees), randomForest, MNL, SVM(support vector machine), NN(Neural Network) 등의 데이터 마이닝 방법으로 생성할 수 있다.
일례로, 전체 데이터에 대해 CART(Classification and regression trees), randomForest, MNL, SVM(support vector machine), NN(Neural Network)의 미병 분류 알고리즘을 통해 분류한 결과는 다음 표 1과 같다.
[표 1]
Figure 112015086241539-pat00003
분석 시 전체 데이터에서 성별 또는 체질에 따라 분류한 후, 각각 랜덤으로 트래이닝 세트(training set)에 70%, 테스트 세트(test set)에 30%를 할당하여 트래이닝 세트(training set)에서 생성한 알고리즘의 정확도를 테스트 세트(test set)에서 검증하는 과정을 100회 반복 수행할 수 있다.
[표 1]의 데이터는 각각의 미병 분류 알고리즘들(CART, randomForest, MNL, SVM, NN) 테스트 세트에서 검정한 정확도의 분포를 사분위수 및 평균값으로 정리한 결과를 의미한다.
한편, 아래 [표 2]는 도 4의 전체 데이터 중 남자에 대해 미병 분류 알고리즘을 통해 분류한 결과를 도시한다.
[표 2]
Figure 112015086241539-pat00004
[표 3]은 전체 데이터 중 여자에 대해 미병 분류 알고리즘을 통해 분류한 결과를 도시한다.
[표 3]
Figure 112015086241539-pat00005
[표 4]는 전체 데이터 중 태음인에 대해 미병 분류 알고리즘을 통해 분류한 결과를 도시한다.
[표 4]
Figure 112015086241539-pat00006
[표 5]는 전체 데이터 중 소음인에 대해 미병 분류 알고리즘을 통해 분류한 결과를 도시한다.
[표 5]
Figure 112015086241539-pat00007
[표 6]은 전체 데이터 중 소양인에 대해 미병 분류 알고리즘을 통해 분류한 결과를 도시한다.
[표 6]
Figure 112015086241539-pat00008
도 4는 일실시예에 따른 미병 분류 방법을 설명하는 도면이다.
일실시예에 따른 미병 분류 방법은 심혈관 순환기능 파라미터를 수집한다(단계 401).
심혈관 순환기능 파라미터는 대상자의 1회 심박출량(Stroke Volume) 및 1분 심박출량(Cardiac Output) 중에서 적어도 하나를 포함할 수 있다. 1회 심박출량(Stroke Volume) 또는 1분 심박출량(Cardiac Output)은 혈액순환 건강을 예측할 수 있는 지표로서, 혈관의 순환방해 요소의 증가나 심장 기능 약화 등을 확인할 수 있는 지표이다.
일실시예에 따른 미병 분류 방법은 대상자의 신체 정보에 기초하여 심혈관 순환기능 파라미터를 보정한다(단계 402).
이를 위해, 미병 분류 방법은 대상자의 키, 몸무게, 성별 등을 활용하여 심혈관 순환기능 파라미터를 보정할 수 있다.
일실시예에 따른 미병 분류 방법은 보정된 순환기능 파라미터를 이용하여 미병을 분류한다(단계 403).
구체적으로, 미병 분류 방법은 심혈관 순환기능 파라미터 별 건강군과 미병군의 대조 정보를 포함하는 기준 데이터를 저장하는 데이터베이스로부터 보정된 순환기능 파라미터를 이용하여 미병을 분류한다. 예를 들어, 미병 분류 방법은 미병을 분류하기 위해 보정된 순환기능 파라미터와 대상자의 사상 체질 정보를 이용해서 데이터베이스로부터 미병을 분류할 수 있다.
일실시예에 따른 미병 분류 방법은 사상 체질을 입력 받아 미병 분류에 활용할 수 있다. 즉, 일실시예에 따른 미병 분류 방법은 미병을 분류하기 위해, 사용자 단말기로부터 입력되는 사상 체질별 식별 정보에 기초하여 상기 대상자의 사상 체질 정보를 결정할 수 있다. 또한, 결정된 사상 체질 정보를 이용해서 상기 미병을 분류할 수 있다.
일실시예에 따른 미병 분류 방법은 사상 체질을 입력 받아 미병 분류에 활용할 수 있다. 사상 체질을 직접적으로 입력 받지 않고, 미병을 분류할 수 있다.
이를 위해, 일실시예에 따른 미병 분류 방법은 진단 툴을 활용하여, 대상자의 사상 체질을 진단하여 사상 체질 정보를 결정하고, 결정된 사상 체질 정보를 이용해서 미병을 분류할 수 있다.
일실시예에 따른 미병 분류 방법은 미병이 일단 가분류된 후에 가분류된 미병 중에서, 대상자의 사상 체질에 기초하여 미병을 최종 분류할 수도 있다.
즉, 사상 체질에 대한 정보가 어느 시점에 입력되는지에 따라서 미병의 분류 방법이 달라질 수 있다.
한편, 일실시예에 따른 미병 분류 방법은 미병에 대한 분류 결과를 활용하여 데이터베이스에 기록된 기준 데이터를 트래이닝할 수 있다. 즉, 미병에 대한 분류 결과가 누적될수록 데이터베이스에 기록된 기준 데이터의 정확도가 향상될 수 있다.
결국, 본 발명을 이용하면, 심혈관 순환기능 모니터링 결과를 이용하여 한의학의 미병을 분류할 수 있다. 뿐만 아니라, 대상자의 키, 체중, 성별, 체질 등을 이용해서 1회 심박출량 및 1분간 심박출량을 보정함으로써, 대상자의 미병 평가의 정확도를 향상시킬 수 있고, 또한, 미병 분류에 사용되는 기준 데이터를 새로 추가된 임상자료를 이용하여 트래이닝 함으로써 정확도를 높일 수 있다.
본 발명의 일실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (15)

  1. 컴퓨터에 의해 적어도 일시적으로 구현되는:
    대상자로부터 수집된 심혈관 순환기능 파라미터를 상기 대상자의 신체 정보에 기초하여 보정하는 연산부; 및
    심혈관 순환기능 파라미터 별 건강군과 미병군의 대조 정보를 포함하는 기준 데이터를 저장하는 데이터베이스로부터 상기 보정된 순환기능 파라미터를 이용하여 미병을 분류하는 처리부
    를 포함하고,
    상기 연산부는,
    Figure 112016057404551-pat00013
    - V5는 보정된 1회 심박출량, V1은 대상자의 1회 심박출량, V3은 대상자의 키 -
    를 이용하여 상기 심혈관 순환기능 파라미터 중 대상자의 1회 심박출량(Stroke Volume)을 보정하거나,
    Figure 112016057404551-pat00014
    - V6은 보정된 1분 심박출량, V2는 대상자의 1분 심박출량, V3는 대상자의 키, V4는 대상자의 몸무게 -
    를 이용하여 상기 심혈관 순환기능 파라미터 중 대상자의 1분 심박출량을 보정하는 미병을 분류하는 보조 컴퓨팅 장치.
  2. 제1항에 있어서,
    상기 처리부는,
    상기 보정된 순환기능 파라미터와 상기 대상자의 사상 체질 정보를 이용해서 상기 데이터베이스로부터 상기 미병을 분류하는 보조 컴퓨팅 장치.
  3. 제2항에 있어서,
    상기 처리부는,
    사용자 단말기로부터 입력되는 사상 체질별 식별 정보에 기초하여 상기 대상자의 사상 체질 정보를 결정하고, 상기 결정된 사상 체질 정보를 이용해서 상기 미병을 분류하는 보조 컴퓨팅 장치.
  4. 제2항에 있어서,
    상기 처리부는,
    진단 툴을 활용하여, 상기 대상자의 사상 체질을 진단하여 상기 사상 체질 정보를 결정하고, 상기 결정된 사상 체질 정보를 이용해서 상기 미병을 분류하는 보조 컴퓨팅 장치.
  5. 제1항에 있어서,
    상기 처리부는,
    상기 분류된 미병 중에서, 상기 대상자의 사상 체질에 기초하여 미병을 최종 분류하는 보조 컴퓨팅 장치.
  6. 제1항에 있어서,
    상기 심혈관 순환기능 파라미터는 대상자의 1회 심박출량(Stroke Volume) 및 1분 심박출량(Cardiac Output) 중에서 적어도 하나를 포함하는 보조 컴퓨팅 장치.
  7. 제6항에 있어서,
    상기 대상자의 신체 정보는 상기 대상자의 키 및 몸무게 중에서 적어도 하나를 포함하고,
    상기 연산부는,
    상기 1회 심박출량에 상기 대상자의 키를 반영하여 보정하고, 상기 1분 심박출량에 상기 대상자의 키와 몸무게를 반영하여 보정하는 보조 컴퓨팅 장치.
  8. 제1항에 있어서,
    상기 처리부는,
    상기 분류된 상기 대상자의 미병을 이용하여 상기 기준 데이터를 트래이닝하는 보조 컴퓨팅 장치.
  9. 제1항에 있어서,
    상기 처리부는,
    CART(Classification and regression trees), randomForest, MNL, SVM(support vector machine), NN(Neural Network) 중에서 적어도 하나의 데이터 마이닝 기술을 적용하여 상기 보정된 순환기능 파라미터로부터 미병을 분류하는 보조 컴퓨팅 장치.
  10. 컴퓨터에 의해 비일실시적으로 수행되는 미병 분류 절차 수행 방법에 있어서, 상기 방법은:
    상기 컴퓨터가 대상자로부터 수집된 심혈관 순환기능 파라미터를 상기 대상자의 신체 정보에 기초하여 보정하는 단계; 및
    상기 컴퓨터가 심혈관 순환기능 파라미터 별 건강군과 미병군의 대조 정보를 포함하는 기준 데이터를 저장하는 데이터베이스로부터 상기 보정된 순환기능 파라미터를 이용하여 미병을 분류하는 단계
    를 포함하고,
    상기 보정하는 단계는,
    Figure 112016057404551-pat00015
    - V5는 보정된 1회 심박출량, V1은 대상자의 1회 심박출량, V3은 대상자의 키 -
    를 이용하여 상기 심혈관 순환기능 파라미터 중 대상자의 1회 심박출량(Stroke Volume)을 보정하거나,
    Figure 112016057404551-pat00016
    - V6은 보정된 1분 심박출량, V2는 대상자의 1분 심박출량, V3는 대상자의 키, V4는 대상자의 몸무게 -
    를 이용하여 상기 심혈관 순환기능 파라미터 중 대상자의 1분 심박출량을 보정하는 방법.
  11. 제10항에 있어서,
    상기 미병을 분류하는 단계는,
    상기 컴퓨터가 상기 보정된 순환기능 파라미터와 상기 대상자의 사상 체질 정보를 이용해서 상기 데이터베이스로부터 상기 미병을 분류하는 단계
    를 포함하는 방법.
  12. 제11항에 있어서,
    상기 미병을 분류하는 단계는,
    상기 컴퓨터가 사용자 단말기로부터 입력되는 사상 체질별 식별 정보에 기초하여 상기 대상자의 사상 체질 정보를 결정하는 단계; 및
    상기 컴퓨터가 상기 결정된 사상 체질 정보를 이용해서 상기 미병을 분류하는 단계
    를 포함하는 방법.
  13. 제11항에 있어서,
    상기 미병을 분류하는 단계는,
    상기 컴퓨터가 진단 툴을 활용하여, 상기 대상자의 사상 체질을 진단하여 상기 사상 체질 정보를 결정하는 단계; 및
    상기 컴퓨터가 상기 결정된 사상 체질 정보를 이용해서 상기 미병을 분류하는 단계
    를 포함하는 방법.
  14. 제10항에 있어서,
    상기 미병을 분류하는 단계는,
    상기 컴퓨터가 상기 분류된 미병 중에서, 상기 대상자의 사상 체질에 기초하여 미병을 최종 분류하는 단계
    를 포함하는 방법.
  15. 기록매체에 저장되는 미병 분류 프로그램으로서, 상기 프로그램은 컴퓨팅 시스템에서 실행되는:
    대상자로부터 수집된 심혈관 순환기능 파라미터를 상기 대상자의 신체 정보에 기초하여 보정하는 명령어 세트; 및
    심혈관 순환기능 파라미터 별 건강군과 미병군의 대조 정보를 포함하는 기준 데이터를 저장하는 데이터베이스로부터 상기 보정된 순환기능 파라미터를 이용하여 미병을 분류하는 명령어 세트
    를 포함하고,
    상기 보정하는 명령어 세트는,
    Figure 112016057404551-pat00017
    - V5는 보정된 1회 심박출량, V1은 대상자의 1회 심박출량, V3은 대상자의 키 -
    를 이용하여 상기 심혈관 순환기능 파라미터 중 대상자의 1회 심박출량(Stroke Volume)을 보정하거나,
    Figure 112016057404551-pat00018
    - V6은 보정된 1분 심박출량, V2는 대상자의 1분 심박출량, V3는 대상자의 키, V4는 대상자의 몸무게 -
    를 이용하여 상기 심혈관 순환기능 파라미터 중 대상자의 1분 심박출량을 보정하는 기록매체에 저장되는 프로그램.
KR1020150125510A 2015-06-12 2015-09-04 미병 분류를 보조하는 컴퓨팅 장치 및 방법 KR101653502B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/006275 WO2016200243A1 (ko) 2015-06-12 2016-06-13 미병 분류를 보조하는 컴퓨팅 장치 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150083728 2015-06-12
KR20150083728 2015-06-12

Publications (1)

Publication Number Publication Date
KR101653502B1 true KR101653502B1 (ko) 2016-09-09

Family

ID=56939234

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020150125510A KR101653502B1 (ko) 2015-06-12 2015-09-04 미병 분류를 보조하는 컴퓨팅 장치 및 방법
KR1020150125544A KR101785788B1 (ko) 2015-06-12 2015-09-04 호흡가스 분석에 기반하여 미병 분류를 보조하는 컴퓨팅 시스템 및 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020150125544A KR101785788B1 (ko) 2015-06-12 2015-09-04 호흡가스 분석에 기반하여 미병 분류를 보조하는 컴퓨팅 시스템 및 방법

Country Status (2)

Country Link
KR (2) KR101653502B1 (ko)
WO (1) WO2016200243A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210003606A (ko) 2019-07-02 2021-01-12 울산대학교 산학협력단 심박출량 추정 방법 및 장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110755727B (zh) * 2018-07-26 2023-11-28 林信涌 可电耦接云端监控系统的氢气产生器及其云端监控系统
KR102546779B1 (ko) * 2020-12-28 2023-06-22 이광춘 건강 진단 방법
CN118471541B (zh) * 2024-07-12 2024-08-30 四川师范大学 一种基于数据升维与深度学习的未病阶段检测方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519704A (ja) * 2008-05-12 2011-07-14 カーディオ・アート・テクノロジーズ・リミテッド 健康状態を監視する方法およびシステム
KR20130024535A (ko) * 2011-08-31 2013-03-08 한국 한의학 연구원 맥파를 이용한 건강 상태 판단 장치 및 방법
KR101462318B1 (ko) 2012-11-15 2014-11-20 한국 한의학 연구원 체질 분석 장치 및 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848118B1 (ko) * 2007-05-03 2008-07-24 삼성전자주식회사 광 센서 생체 신호 측정 장치 및 상기 장치의 광 센서 제어방법
US8414488B2 (en) * 2007-11-13 2013-04-09 Oridion Medical 1987 Ltd. Medical system, apparatus and method
KR100868808B1 (ko) 2008-03-04 2008-11-17 한국과학기술원 호흡가스 및 혈액가스의 측정을 통한 비침습적 호흡특성치 예측 방법 및 표시장치
KR20130097332A (ko) * 2012-02-24 2013-09-03 전자부품연구원 모바일 기기들에 건강 관련 정보를 전달하기 위한 헬스 케어 모듈 및 이를 적용한 헬스 케어 시스템
KR20140037326A (ko) * 2012-09-17 2014-03-27 가천대학교 산학협력단 개인건강기록을 위한 실시간 심전도 모니터링 시스템 및 방법
US9955898B2 (en) 2012-12-26 2018-05-01 Jeong-Chan Ra Cancer diagnosis method using respiratory gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519704A (ja) * 2008-05-12 2011-07-14 カーディオ・アート・テクノロジーズ・リミテッド 健康状態を監視する方法およびシステム
KR20130024535A (ko) * 2011-08-31 2013-03-08 한국 한의학 연구원 맥파를 이용한 건강 상태 판단 장치 및 방법
KR101462318B1 (ko) 2012-11-15 2014-11-20 한국 한의학 연구원 체질 분석 장치 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210003606A (ko) 2019-07-02 2021-01-12 울산대학교 산학협력단 심박출량 추정 방법 및 장치

Also Published As

Publication number Publication date
KR101785788B1 (ko) 2017-11-06
KR20160146465A (ko) 2016-12-21
WO2016200243A1 (ko) 2016-12-15

Similar Documents

Publication Publication Date Title
RU2728855C9 (ru) Количественный показатель предупреждения об ухудшении работы сердечно-сосудистой системы
JP7367099B2 (ja) せん妄患者の脳症の存在をスクリーニングするためのシステム
AU2017331813B2 (en) A method and apparatus for automatic disease state diagnosis
CA2988416A1 (en) Method and system for assessing mental state
Toba et al. Prediction of pulmonary to systemic flow ratio in patients with congenital heart disease using deep learning–based analysis of chest radiographs
KR101653502B1 (ko) 미병 분류를 보조하는 컴퓨팅 장치 및 방법
Ramachandran et al. Computerized approach for cardiovascular risk level detection using photoplethysmography signals
Mijwil Deep Convolutional Neural Network Architecture to Detect COVID-19 from Chest X-Ray Images
CN104361245B (zh) 检测数据处理系统和方法
KR20170006919A (ko) 환자의 신체 및 심리 상태를 융합 기반으로 한 맞춤형 의료 서비스 제공 시스템
KR101578270B1 (ko) 미병지수 측정을 위한 장치 및 방법
KR20220013582A (ko) 바이오 데이터 허브를 구축하는 방법 및 장치
US20210134405A1 (en) System for infection diagnosis
Abubakar et al. Pneumonia classification using hybrid CNN architecture
JP7563459B2 (ja) 分析装置
Maulana et al. Smart devices for self-diagnosing of lung condition based on body temperature and fingernail color
Mutha et al. HDFRMAH: design of a high-density feature representation model for multidomain analysis of human health issues
CN111466877B (zh) 一种基于lstm网络的氧减状态预测方法
EP4185937A1 (en) Systems and methods for rapidly screening for signs and symptoms of disorders
Rahmaniar et al. Classification of Hypertension Levels Based on Photoplethysmography Signals Using Convolutional Neural Network (CNN)
Akalanka et al. Smart Assistant to Ease the Process of COVID-19 and Pneumonia Detection
Yoo et al. Suicidal Tendency and Depression Diagnosing Medical Agent Using fNIRS and VFT
Padmavathi et al. Cardiovascular Diseases Detection Using Photo Plethysmography (PPG) Signal Data
Kaur et al. Machine Learning based Approaches for Accurately Diagnosis and Detection of Hypertension Disease
Akkuzu et al. Classification of Multi-Label Electrocardiograms Utilizing the EfficientNet CNN Model

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190708

Year of fee payment: 4