KR101649376B1 - Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 - Google Patents
Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 Download PDFInfo
- Publication number
- KR101649376B1 KR101649376B1 KR1020090096888A KR20090096888A KR101649376B1 KR 101649376 B1 KR101649376 B1 KR 101649376B1 KR 1020090096888 A KR1020090096888 A KR 1020090096888A KR 20090096888 A KR20090096888 A KR 20090096888A KR 101649376 B1 KR101649376 B1 KR 101649376B1
- Authority
- KR
- South Korea
- Prior art keywords
- signal
- encoding
- mdct
- filter bank
- residual signal
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 36
- 230000005236 sound signal Effects 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/16—Vocoder architecture
- G10L19/173—Transcoding, i.e. converting between two coded representations avoiding cascaded coding-decoding
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/08—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
- G10L19/087—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters using mixed excitation models, e.g. MELP, MBE, split band LPC or HVXC
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/08—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
- G10L19/12—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/08—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
- G10L19/12—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
- G10L19/125—Pitch excitation, e.g. pitch synchronous innovation CELP [PSI-CELP]
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/16—Vocoder architecture
- G10L19/18—Vocoders using multiple modes
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/16—Vocoder architecture
- G10L19/18—Vocoders using multiple modes
- G10L19/22—Mode decision, i.e. based on audio signal content versus external parameters
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/26—Pre-filtering or post-filtering
Landscapes
- Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
MDCT 기반 음성/오디오 통합 부호화기의 LPC 잔차신호 부호화/복호화 장치가 개시된다. LPC 잔차신호 부호화 장치는, 입력 신호의 특성을 분석하여 LPC 필터링된 신호의 부호화 방법을 선택하고, 실수 필터뱅크(real filterbank), 복소 필터뱅크(complex filterbank), 및 ACELP(Algebraic code excited linear prediction) 중 하나에 기초하여 상기 LPC 잔차신호를 부호화한다.
음성, 오디오, 잔차신호, 복소 도메인, 윈도우
Description
MDCT 기반 음성오디오 통합 부호화기의 LPC 잔차신호 부호화/복호화 장치에 관한 것으로, MDCT 기반의 오디오 코더와, LPC기반의 오디오 코더를 통합하는 통합구조 내에서 LPC 잔차신호를 처리 하기 위한 구조에 관한 것이다
본 발명은 지식경제부 및 정보통신연구진흥원의 IT원천기술개발사업의 일환으로 수행한 연구로부터 도출된 것이다[과제관리번호: 2008-F-011-01, 과제명: 차세대 DTV 핵심기술개발].
오디오 신호는 입력신호의 특성에 따라 부호화 방법을 달리하면 그 성능 및 음질을 극대화 할 수 있다. 예를 들어 음성과 같은 신호는 CELP구조의 음성 오디오 부호화기를 적용하는 것이 부호화 효율이 높고, 음악과 같은 오디오 신호는 트랜스폼(transform)기반의 오디오 코더를 적용함으로써, 음질 및 압축효율을 보다 높일 수 있다.
따라서, 음성과 유사한 신호는 음성 부호화기를 통하여 부호화 하며, 음악적 특성이 강한 신호는 오디오 부호화기를 통하여 부호화 할 수 있다. 이러한 통합 부호화기에는 특성분석을 위한 입력신호 특성분석기를 두고 신호의 특성에 따라 부호화기를 선택 및 스위칭(switching)하도록 할 수 있다.
여기서, 음성/오디오 통합 부호화기의 부호화 성능 향상을 위해, 실수 도메인(real domain)뿐만 아니라, 복소 도메인(complex domain)에서도 부호화 동작을 수행할 수 있는 기술이 요구된다.
본 발명은 LPC 잔차신호를 부호화/복호화하기 위해, 잔차신호를 복소 신호로 표현하여 부호화/복호화하는 블록을 구현함으로써, 부호화 성능을 향상시키는 LPC 잔차신호 부호화/복호화 장치를 제공한다.
본 발명은 잔차신호를 복소 신호로 표현하여 부호화/복호화하는 블록을 구현함으로써, 시간 축 상에 앨리어싱(aliasing)을 발생시키지 않는 LPC 잔차신호 부호화/복호화 장치를 제공한다.
본 발명의 일실시예에 따른 LPC 잔차신호 부호화 장치는, MDCT(Modified Discrete Cosine Transform) 기반 음성오디오 통합 부호화기의 LPC(Liner predictive Coder) 잔차(residual) 신호 부호화 장치에 있어서, 입력 신호의 특성을 분석하여 LPC 필터링된 신호의 부호화 방법을 선택하는 신호 분석부, 상기 신호 분석부의 선택에 따라, 실 필터뱅크(real filterbank)에 기초하여 상기 LPC 잔차신호를 부호화하는 제1 부호화부, 상기 신호 분석부의 선택에 따라, 복소 필터뱅크(complex filterbank)에 기초하여 상기 LPC 잔차신호를 부호화하는 제2 부호화부 및 상기 신호 분석부의 선택에 따라, ACELP(Algebraic code excited linear prediction)에 기초하여 상기 LPC 잔차신호를 부호화하는 제3 부호화부를 포함할 수 있다.
본 발명의 일측면에 따르면, 상기 제1 부호화부는, 상기 LPC 잔차신호에 대 하여, MDCT(Modified Discrete Cosine Transform) 기반의 필터뱅크를 수행하여, LPC 잔차신호를 부호화할 수 있다.
본 발명의 일측면에 따르면, 상기 제2 부호화부는 상기 LPC 잔차신호에 대하여, DTF(Discrete Fourier transform) 기반의 필터뱅크를 수행하여, LPC 잔차신호를 부호화할 수 있다.
본 발명의 일측면에 따르면, 상기 제2 부호화부는 상기 LPC 잔차신호에 대하여, MDST(Modified Discrete Sine Transform) 기반의 필터뱅크를 수행하여, LPC 잔차신호를 부호화할 수 있다.
본 발명의 일실시예에 따른 LPC 잔차신호 부호화 장치는, MDCT 기반 음성오디오 통합 부호화기의 LPC 잔차신호 부호화 장치에 있어서, 입력 신호의 특성을 분석하여 LPC 필터링된 신호의 부호화 방법을 선택하는 신호 분석부, 상기 입력신호가 오디오 신호인 경우, 실 필터뱅크(real filterbank) 기반 부호화 및 복소 필터뱅크(complex filterbank) 기반 부호화 중 적어도 하나를 수행하는 제1 부호화부, 및 상기 입력신호가 음성 신호인 경우, ACELP(Algebraic code excited linear prediction)에 기초하여 상기 LPC 잔차신호를 부호화하는 제2 부호화부를 포함할 수 있다.
본 발명의 일측면에 따르면, 상기 제1 부호화부는, MDCT 기반 부호화를 수행하는 MDCT 부호화부, MDST 기반 부호화를 수행하는 MDST 부호화부 및 상기 입력 신호의 특성에 따라, MDCT 계수 및 MDST 계수 중 적어도 하나를 출력하는 출력부를 포함할 수 있다.
본 발명의 일실시예에 따른 LPC 잔차신호 복호화 장치는, MDCT 기반 음성오디오 통합 복호화기의 LPC 잔차신호 복호화 장치에 있어서, 주파수 도메인에서 부호화된 LPC 잔차신호를 복호화하는 오디오 복호화부, 시간 도메인에서 부호화된 LPC 잔차신호를 복호화하는 음성 복호화부 및 상기 오디오 복호화부의 출력 신호 및 상기 음성 복호화부의 출력 신호 사이의 왜곡을 상쇄시키는 왜곡 제어부를 포함할 수 있다.
본 발명의 일측면에 따르면, 상기 오디오 복호화부는, 실 필터뱅크에 기초하여 부호화된 LPC 잔차신호를 복호화하는 제1 복호화부, 및 복소 필터뱅크에 기초하여 부호화된 LPC 잔차신호를 복호화하는 제2 복호화부를 포함할 수 있다.
본 발명의 일실시예에 따르면, LPC 잔차신호를 부호화/복호화하기 위해, 잔차신호를 복소 신호로 표현하여 부호화/복호화하는 블록을 구현함으로써, 부호화 성능을 향상시키는 LPC 잔차신호 부호화/복호화 장치가 제공된다.
본 발명의 일실시예에 따르면, 잔차신호를 복소 신호로 표현하여 부호화/복호화하는 블록을 구현함으로써, 시간 축 상에 앨리어싱(aliasing)을 발생시키지 않는 LPC 잔차신호 부호화/복호화 장치가 제공된다.
이하, 첨부된 도면들에 기재된 내용들을 참조하여 본 발명에 따른 실시예를 상세하게 설명한다. 다만, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.
도 1은 본 발명의 일실시예에 따른, LPC 잔차신호 부호화 장치를 도시한 도면이다.
도 1을 참고하면, LPC 잔차신호 부호화 장치(100)는 신호 분석부(110), 제1 부호화부(120), 제2 부호화부(130), 및 제3 부호화부(140)를 포함할 수 있다.
신호 분석부(110)는 입력 신호의 특성을 분석하여 LPC 필터링된 신호의 부호화 방법을 선택할 수 있다. 예를 들어, 입력 신호가 오디오 신호인 경우에는, 제1 부호화부(120) 또는 제2 부호화부(130)에 의해 부호화가 수행되도록 하고, 입력 신호가 음성 신호인 경우에는 제3 부호화부(120)에 의해 부호화가 수행되도록 할 수 있다. 이때, 신호 분석부(110)는 부호화 방법을 선택하기 위한 제어 명령을 스위치에 전달하여 제1 부호화부(120), 제2 부호화부(130), 및 제3 부호화부(140) 중 하나에서 부호화가 수행되도록 제어할 수 있다. 따라서, 상기 제어 신호에 따라 실 필터뱅크 기반 잔차신호 부호화, 복수 필터뱅크 기반 잔차신호 부호화, 및 ACELP를 통한 잔차신호 부호화 중 하나가 수행될 수 있다.
제1 부호화부(120)는 상기 신호 분석부의 선택에 따라, 실 필터뱅크(real filterbank)에 기초하여 상기 LPC 잔차신호를 부호화할 수 있다. 일예로, 제1 부호화부(120)는 상기 LPC 잔차신호에 대하여, MDCT(Modified Discrete Cosine Transform) 기반의 필터뱅크를 수행하여, LPC 잔차신호를 부호화할 수 있다.
제2 부호화부(130)는 상기 신호 분석부의 선택에 따라, 복소 필터뱅크(complex filterbank)에 기초하여 상기 LPC 잔차신호를 부호화할 수 있다. 일예로, 제2 부호화부(130)는 상기 LPC 잔차신호에 대하여, DTF(Discrete Fourier transform) 기반의 필터뱅크를 수행하여, LPC 잔차신호를 부호화할 수 있다. 또한, 제2 부호화부(130)는 상기 LPC 잔차신호에 대하여, MDST(Modified Discrete Sine Transform) 기반의 필터뱅크를 수행하여, LPC 잔차신호를 부호화할 수 있다.
제3 부호화부(140)는 상기 신호 분석부의 선택에 따라, ACELP(Algebraic code excited linear prediction)에 기초하여 상기 LPC 잔차신호를 부호화할 수 있다. 즉, 상기 입력 신호가 음성 신호인 경우, ACELP에 기초하여 상기 LPC 잔차신호를 부호화할 수 있다.
도 2는 본 발명의 일실시예에 따른 MDCT기반의 음성오디오 통합 부호화기에 있어서, LPC 잔차신호 부호화 장치를 설명하기 위한 도면이다.
도 2를 참고하면, 우선, 입력신호는 신호 분석부(210)와 MPEGS로 입력된다. 이때, 신호 분석부(210)는 입력신호의 특성을 파악하고 제어 변수를 출력하여 각 블록의 동작을 제어할 수 있다. 또한, MPEGS는 파라메트릭 스테레오 코딩(Parametric stereo coding)을 수행하기 위한 툴(tool)로써, MPEG 서라운드의 OTT-1(One To Two)에서 수행하는 동작을 수행할 수 있다. 즉, MPEGS는 입력신호가 스테레오 일 때 동작하며, 모노신호를 출력한다. 또한, SBR은 주파수 대역을 복호화 과정에서 확장하기 위한 것으로, 고주파 대역을 파라미터화(parameterize)할 수 있다. 따라서 SBR은 고주파 대역이 잘려나간 코어밴드 모노 신호(일반적으로 6kHz 미만의 모노신호)를 출력한다. 출력된 신호는 입력신호의 상태에 따라, LPC 기반으로 부호화를 수행할 것인지, 심리 음향 모델(Psychoacoustic model)기반으로 부호화를 수행할 것인지 결정할 수 있다. 이때, 심리 음향 모델 방식의 코딩은, AAC 코딩방식과 유사하다. 또한, LPC 기반의 코딩방식은 LPC 필터 링을 거친 잔차(residual) 신호에 대하여 세 가지 방법 중 하나로 코딩할 수 있다. 즉, LPC 필터링이 된 잔차신호는 ACELP에 기초하여 부호화하거나 필터뱅크를 거쳐 주파수 도메인(Frequency domain)의 잔차신호로 표현되어 부호화될 수 있다. 이때, 필터뱅크를 거쳐 주파수 도메인의 잔차신호로 표현되어 부호화하기 위한 방법으로, 실 필터뱅크(Real Filterbank)에 기초하여 부호화를 수행하거나, 복소 기반의 필터뱅크를 수행하여 부호화를 수행할 수 있다.
즉, 신호 분석부(210)가 입력신호를 분석하여 제어명령을 생성하여 스위치를 제어하면, 상기 스위치의 제어에 따라 제1 부호화부(220), 제2 부호화부(230), 제3 부호화부(240) 중 하나에서 부호화를 수행할 수 있다. 여기서, 제1 부호화부(220)는 실 필터뱅크에 기초하여 상기 LPC 잔차신호를 부호화하고, 제2 부호화부(230)는 복소 필터뱅크(complex filterbank)에 기초하여 상기 LPC 잔차신호를 부호화하며, 제3 부호화부(240)는 ACELP(Algebraic code excited linear prediction)에 기초하여 상기 LPC 잔차신호를 부호화할 수 있다.
여기서, 동일한 크기의 블록(frame)에 대하여 복소 필터뱅크를 수행할 경우, 허수 부분(imaginary part)에 의해, real 기반(ex. MDCT 기반)의 필터뱅크보다 2배의 데이터가 출력된다. 즉, 동일한 입력에 대해 복소 필터뱅크를 적용하면 2배의 데이터를 부호화하여야 한다. 그러나, MDCT기반의 잔차신호는 시간축 상에 앨리어싱(aliasing)이 발생하는 반면에, DTF등과 같은 복소 트랜스폼은 시간축 상의 앨리어싱이 발생하지 않는다.
도 3은 본 발명의 다른 일실시예에 따른 MDCT기반의 음성오디오 통합 부호화기에 있어서, LPC 잔차신호 부호화 장치를 설명하기 위한 도면이다.
도 3을 참고하면, 도 2의 LPC 잔차신호 부호화 장치와 동일한 기능을 수행하는 것으로, 입력신호의 특성에 따라 제1 부호화부(320) 또는 제2 부호화부(330)에서 부호화를 수행할 수 있다.
즉, 신호 분석부(310)가 입력신호의 특성에 따라 제어신호를 발생하여 부호화 방법을 선택하기 위한 명령을 전달하면, 제1 부호화부(320) 및 제2 부호화부(330) 중 하나에서 부호화를 수행할 수 있다. 이때, 입력신호가 오디오 신호인 경우, 제1 부호화부(320)에서 부호화를 수행하고, 입력신호가 음성 신호인 경우, 제2 부호화부(330)에서 부호화를 수행할 수 있다.
여기서, 제1 부호화부(320)는 실 필터뱅크(real filterbank) 기반 부호화 및 복소 필터뱅크(complex filterbank) 기반 부호화 중 하나를 수행할 수 있으며, MDCT 기반 부호화를 수행하는 MDCT 부호화부(미도시), MDST 기반 부호화를 수행하는 MDST 부호화부(미도시) 및 상기 입력 신호의 특성에 따라, MDCT 계수 및 MDST 계수 중 적어도 하나를 출력하는 출력부(미도시)를 포함할 수 있다.
따라서, 제1 부호화부(320)에서는 MDCT와 MDST의 수행을 복소 트랜스폼(complex transform)으로 수행하고, 신호 분석부(310)의 제어신호 상태에 따라, MDCT계수만을 출력할지, MDCT와 MDST 계수를 모두 출력할지 결정할 수 있다.
도 4는 본 발명의 일실시예에 따른, LPC 잔차신호 복호화 장치를 도시한 도면이다.
도 4를 참고하면, LPC 잔차신호 복호화 장치(400)는, 오디오 복호화부(410), 음성 복호화부(420), 및 왜곡 제어부(430)를 포함할 수 있다.
오디오 복호화부(410)는 주파수 도메인에서 부호화된 LPC 잔차신호를 복호화할 수 있다. 즉, 입력신호가 오디오 신호인 경우, 주파수 도메인에서 부호화되었으므로, 오디오 복호화부(410)는 부호화 과정을 역으로 수행하여 오디오 신호를 복호화할 수 있다. 이때, 오디오 복호화부(410)는 실 필터뱅크에 기초하여 부호화된 LPC 잔차신호를 복호화하는 제1 복호화부(미도시) 및 복소 필터뱅크에 기초하여 부호화된 LPC 잔차신호를 복호화하는 제2 복호화부(미도시)를 포함할 수 있다.
음성 복호화부(420)는 시간 도메인에서 부호화된 LPC 잔차신호를 복호화할 수 있다. 즉, 입력신호가 음성 신호인 경우, 시간 도메인에서 부호화되었으므로, 음성 복호화부(420)는 부호화 과정을 역으로 수행하여 음성 신호를 복호화할 수 있다.
왜곡 제어부(430)는 상기 오디오 복호화부(410)의 출력 신호 및 음성 복호화부(420)의 출력 신호 사이의 왜곡을 상쇄시킬 수 있다. 즉, 왜곡 제어부(430)는 오디오 복호화부(410)의 출력 신호 및 음성 복호화부(420)의 출력 신호의 연결시 발생하는 불연속 또는 왜곡 현상을 상쇄시킬 수 있다.
도 5는 본 발명의 일실시예에 따른 MDCT기반의 음성오디오 통합 복호화기에 있어서, LPC 잔차신호 복호화 장치를 설명하기 위한 도면이다.
도 5를 참고하면, 복호화 과정은 부호화 과정의 역으로 수행되며, 서로 다른 부호화 방식에 의해 부호화된 스트림은 각각 다른 복호화 방식에 의해 복호화될 수 있다. 예를 들어, 오디오 복호화부(510)는 부호화된 오디오 신호를 복호화 할 수 있으며, 일예로, 실 필터뱅크에 기초하여 부호화된 스트림 및 복소 필터뱅크에 기초하여 부호화된 스트림을 복호화할 수 있다. 또한, 음성 복호화부(520)는 부호화된 음성 신호를 복호화할 수 있으며, 일예로, ACELP에 기초하여 시간 도메인에서 부호화된 음성신호를 복호화할 수 있다. 이때, 왜곡 제어부(530)는 복호화 수행시 두 블록 사이에서 발생하는 불연속성 또는 블록 왜곡 현상을 상쇄시킬 수 있다.
한편, 부호화 과정에 있어서, 실 기반(ex. MDCT 기반)의 필터뱅크와 복소 기반 필터뱅크의 전처리 과정으로 적용되는 윈도우는 다르게 정의될 수 있으며, MDCT기반의 필터뱅크를 수행할 경우, 이전 프레임의 모드에 따라, 윈도우는 하기 [표 1]과 같이 정의될 수 있다.
[표 1]
이전 프레임의MDCT 기반 잔차 필터뱅크 모드 | 현재 프레임의MDCT 기반 잔차 필터뱅크 모드 | 주파수 영역으로 변환된 계수의 수 | ZL | L | M | R | ZR |
1,2,3 | 1 | 256 | 64 | 128 | 128 | 128 | 64 |
1,2,3 | 2 | 512 | 192 | 128 | 384 | 128 | 192 |
1,2,3 | 3 | 1024 | 448 | 128 | 896 | 128 | 448 |
일예로서, MDCT residual filterbank mode 1의 윈도우 형태를 도 6에서 설명한다.
도 6을 참고하면, ZL은 윈도우 왼쪽편 제로 블록 구간, L은 이전 블록과 중첩되는 구간, M은 1의 값이 적용되는 구간, R은 다음 블록과 중첩되는 구간, ZR은 윈도우 왼쪽편 제로 블록 구간을 의미한다. 여기서, MDCT는 변환시 그 데이터 량이 반으로 줄고, 변환계수의 수는 (ZL+L+M+R+ZR)/2 가 될 수 있다. 또한, L, R의 구간은, 사인 윈도우(Sine window), KBL 윈도우(KBL window)등으로 다양하게 적용 될 수 있으며, M 구간에서 윈도우는 1값을 가질 수 있다. 또한, 사인 윈도우, KBL 윈도우 등과 같은 윈도우는 Time에서 Frequency로 변환하기 전, Frequency에서 Time으로 변환한 후, 각각 한번씩 적용될 수 있다.
또한, 현재 프레임과 이전 프레임이 모두 복소 필터뱅크 모드일 때, 현재 프레임의 윈도우 형태는 하기 [표 2]와 같이 정의될 수 있다.
[표 2]
이전 프레임의MDCT 기반 잔차 필터뱅크 모드 | 현재 프레임의MDCT 기반 잔차 필터뱅크 모드 | 주파수 영역으로 변환된 계수의 수 | ZL | L | M | R | ZR |
1 | 1 | 288 | 0 | 32 | 224 | 32 | 0 |
1 | 2 | 576 | 0 | 32 | 480 | 64 | 0 |
2 | 2 | 576 | 0 | 64 | 448 | 64 | 0 |
1 | 3 | 1152 | 0 | 32 | 992 | 128 | 0 |
2 | 3 | 1152 | 0 | 64 | 960 | 128 | 0 |
3 | 3 | 1152 | 0 | 128 | 896 | 128 | 0 |
[표 2]는 상기 [표 1]과 달리 ZL, ZR이 없으며, 프레임 사이즈와 주파수 영역으로 변환된 계수는 같다. 즉, 변환된 계수의 수는 ZL+L+M+R+ZR 이다.
또한, 이전 프레임에서 MDCT기반의 필터뱅크가 적용되고, 현재 프레임이 복소 기반의 필터뱅크가 적용될 때의, 윈도우 타입은 하기 [표 3]과 같이 정의될 수 있다.
[표 3]
이전 프레임의MDCT 기반 잔차 필터뱅크 모드 | 현재 프레임의MDCT 기반 잔차 필터뱅크 모드 | 주파수 영역으로 변환된 계수의 수 | ZL | L | M | R | ZR |
1,2,3 | 1 | 288 | 0 | 128 | 128 | 32 | 0 |
1,2,3 | 2 | 576 | 0 | 128 | 384 | 64 | 0 |
1,2,3 | 3 | 1152 | 0 | 128 | 896 | 128 | 0 |
여기서, 윈도우 왼쪽편의 오버랩 사이즈(overlap size), 즉, 이전 프레임과 오버랩 되는 사이즈를 128으로 설정할 수 있다.
또한, 이전 프레임이 복소 필터뱅크 모드이며, 현재 프레임이 MDCT기반의 필터뱅크 모드인 경우의 윈도우는 하기 [표 4]와 같이 정의될 수 있다.
[표 4]
이전 프레임의MDCT 기반 잔차 필터뱅크 모드 | 현재 프레임의MDCT 기반 잔차 필터뱅크 모드 | 주파수 영역으로 변환된 계수의 수 | ZL | L | M | R | ZR |
1,2,3 | 1 | 256 | 64 | 128 | 128 | 128 | 64 |
1,2,3 | 2 | 512 | 192 | 128 | 384 | 128 | 192 |
1,2,3 | 3 | 1024 | 448 | 128 | 896 | 128 | 448 |
여기서, [표 4]에서는 상기 [표 1]과 동일한 윈도우가 적용될 수 있다. 그러나, 이전 프레임의 복소 필터뱅크 모드 1 과 2에 대해서, 윈도우의 R영역이 128로 변환될 수 있다. 상기 변환의 일실시예를 하기 도 7에서 보다 상세하게 설명한다.
도 7을 참고하면, 이전 프레임의 복소 필터뱅크 모드가 1이었을 경우, 우선 WR32로 적용된 R 부분의 윈도우(710)를 제거한다. 일예로, WR32로 적용된 R 부분의 윈도우(710)를 제거하기 위해 WR32로 적용된 R 부분의 윈도우(710)를 WR32로 나눌 수 있다. WR32로 적용된 R 부분의 윈도우(710)를 제거한 이후에는 WR128의 윈도우(720)를 적용할 수 있다. 이때, 복소 기반 잔차 필터뱅크 프레임이므로, ZR영역은 없다.
한편, 이전 프레임이 ACELP를 이용하여 부호화를 수행한 경우이고, 현재 프레임이 MDCT 필터뱅크 모드인 경우, 윈도우는 하기 [표 5]와 같이 정의될 수 있다.
[표 5]
이전 프레임의 MDCT 기반 잔차 필터뱅 크 모드 | 현재 프레임의MDCT 기반 잔차 필터뱅크 모드 | 주파수 영역으로 변환된 계수의 수 | ZL | L | M | R | ZR |
0 | 1 | 320 | 160 | 0 | 256 | 128 | 96 |
0 | 2 | 576 | 288 | 0 | 512 | 128 | 224 |
0 | 3 | 1152 | 512 | 128 | 1024 | 128 | 512 |
즉, [표 5]는 이전 프레임의 부호화 끝 모드가 제로인 경우, 현재 프레임의 각 모드에 대한 윈도우를 정의한 것이다. 여기서, 이전 프레임의 마지막 모드가 제로이고, 현재 프레임의 모드가 3일 경우, 아래 [표 6] 이 적용될 수 있다.
[표 6]
이전 프레임의MDCT 기반 잔차 필터뱅크 모드 | 현재 프레임의MDCT 기반 잔차 필터뱅크 모드 | 주파수 영역으로 변환된 계수의 수 | ZL | L | M | R | ZR |
0 | 3 | 1152 | 512+ | 1024 | 128 | 512 |
따라서, 인 경우와, 인 경우의 프레임 연결방법은 다르며 도 8 및 도 9를 참고하여 보다 상세하게 설명한다. 여기서, 도 8은 앨리어싱을 고려하지 않은 방식으로써, Mode 3에서 는 앨리어싱을 발생하지 않는 구간이며, Mode 0 신호와 오버랩 애드(overlap add)를 수행할 수 있다. 그러나, 값이 커져서 앨리어싱을 발생시키는 경우, Mode 0 신호는 인위적인 앨리어싱 신호를 발생시킨 후, Mode 3와 오버랩 애드를 수행할 수 있다. 도 9는 Mode 0에 앨리어싱을 인위적으로 만들어 주는 과정 및 앨리어싱을 만든 Mode 0를 Mode 3와 TDAC(Time Domain Aliasing Cancelation)방법으로 오버랩 애드하여 연결하는 과정을 나타내고 있다.
도 8과 9의 보다 상세한 설명은 다음과 같다. 먼저, 인 경우의 이전 프레임과의 연결방법은 일반적인 오버랩 애드 방법으로 도 8에 도시되어 있다. 여기서, 은 경사(slope) 구간의 윈도우이고, 는 Time 과 Frequency간의 변환 전/후에 적용되는 것을 고려하여 ACELP 모드에 적용한 것이다.
인 경우는 도 9와 같이 처리할 수 있다. 도 9를 참고하면, 먼저 ACELP 블록에 윈도우를 적용할 수 있다. 여기서 는 ACELP 블록의 서브 블록(sub-block)에 대한 표기(notation)이다. 다음으로, 인위적인 TDA 신호를 추가하기 위해서, 를 에 적용한 후 및 과 더할 수 있다. 여기서 은 역 시퀀스(reverse sequence)를 의미한다. 즉 일 때, 와 같다.
이후, 를 최종적으로 적용하여 최종 오버랩 애드될 블록을 생성할 수 있다. 를 최종적으로 한번 더 적용하는 것은 Frequency에서 Time으로 변환후의 윈도우잉(windowing)을 고려하기 때문이다. 상기 생성된 블록 는, 모드 3의 MDCT블록과 오버랩 애드되어 연결될 수 있다.
상기와 같이, LPC 잔차신호를 부호화/복호화하기 위해, 잔차신호를 복소 신 호로 표현하여 부호화/복호화하는 블록을 구현함으로써, 부호화 성능을 향상시키는 LPC 잔차신호 부호화/복호화 장치를 제공할 수 있고, 시간 축 상에 앨리어싱(aliasing)을 발생시키지 않는 LPC 잔차신호 부호화/복호화 장치를 제공할 수 있다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
도 1은 본 발명의 일실시예에 따른, LPC 잔차신호 부호화 장치를 도시한 도면이다.
도 2는 본 발명의 일실시예에 따른 MDCT기반의 음성오디오 통합 부호화기에 있어서, LPC 잔차신호 부호화 장치를 설명하기 위한 도면이다.
도 3은 본 발명의 다른 일실시예에 따른 MDCT기반의 음성오디오 통합 부호화기에 있어서, LPC 잔차신호 부호화 장치를 설명하기 위한 도면이다.
도 4는 본 발명의 일실시예에 따른, LPC 잔차신호 복호화 장치를 도시한 도면이다.
도 5는 본 발명의 일실시예에 따른 MDCT기반의 음성오디오 통합 복호화기에 있어서, LPC 잔차신호 복호화 장치를 설명하기 위한 도면이다.
도 6은 본 발명의 일실시예에 따른 윈도우 형태를 도시한 도면이다.
도 7은 본 발명의 일실시예에 따라, 윈도우의 R 구간이 변환되는 과정을 설명하기 위한 도면이다.
도 8은 본 발명의 일실시예에 따라, 이전 프레임의 마지막 모드가 제로(zero)이고, 현재 프레임의 모드가 3인 경우의 윈도우를 설명하기 위한 도면이다.
도 9는 본 발명의 다른 일실시예에 따라, 이전 프레임의 마지막 모드가 제로(zero)이고, 현재 프레임의 모드가 3인 경우의 윈도우를 설명하기 위한 도면이다.
Claims (16)
- MDCT(Modified Discrete Cosine Transform) 기반 음성오디오 통합 부호화기의 LPC(Liner predictive Coder) 잔차(residual) 신호 부호화 장치에 있어서,입력 신호의 특성을 분석하여 LPC 필터링된 신호의 부호화 방법을 선택하는 신호 분석부;상기 신호 분석부의 선택에 따라, 실 필터뱅크(real filterbank)에 기초하여 상기 LPC 잔차신호를 부호화하는 제1 부호화부;상기 신호 분석부의 선택에 따라, 복소 필터뱅크(complex filterbank)에 기초하여 상기 LPC 잔차신호를 부호화하는 제2 부호화부; 및상기 신호 분석부의 선택에 따라, ACELP(Algebraic code excited linear prediction)에 기초하여 상기 LPC 잔차신호를 부호화하는 제3 부호화부를 포함하고,상기 제1 부호화부는상기 LPC 잔차신호에 대하여, MDCT(Modified Discrete Cosine Transform) 기반의 필터뱅크를 수행하여, LPC 잔차신호를 부호화하고,상기 제2 부호화부는상기 LPC 잔차신호에 대하여, MDST(Modified Discrete Sine Transform) 기반의 필터뱅크를 수행하여, LPC 잔차신호를 부호화하며,상기 제1 부호화부를 통해 도출된 MDCT 계수 및 상기 제2 부호화부를 통해MDST 도출된 계수는 상기 입력 신호의 특성에 따라 출력되고,상기 입력 신호는,상기 입력 신호의 이전 프레임이 ACELP로 부호화되고 현재 프레임이 MDCT에 따라 부호화되는 경우, 상기 ACELP로 부호화된 이전 프레임으로부터 도출된 인위적인 시간 도메인의 앨리어싱 신호를 이용하여 오버랩 애드됨으로써 처리되는 LPC 잔차신호 부호화 장치.
- 삭제
- 제1항에 있어서,상기 제2 부호화부는상기 LPC 잔차신호에 대하여, DTF(Discrete Fourier transform) 기반의 필터뱅크를 수행하여, LPC 잔차신호를 부호화하는 것을 특징으로 하는 LPC 잔차신호 부호화 장치.
- 삭제
- 제1항에 있어서,상기 제1 부호화부는,이전 프레임과 현재 프레임이 모두 MDCT 필터뱅크 모드인 경우, 하기 [표 1]에 정의되는 윈도우를 사용하는 것을 특징으로 하는 LPC 잔차신호 부호화 장치.[표 1]
이전 프레임의MDCT 기반 잔차 필터뱅크 모드 현재 프레임의MDCT 기반 잔차 필터뱅크 모드 주파수 영역으로 변환된 계수의 수 ZL L M R ZR 1,2,3 1 256 64 128 128 128 64 1,2,3 2 512 192 128 384 128 192 1,2,3 3 1024 448 128 896 128 448 여기서, ZL은 윈도우 왼쪽편 제로 블록 구간,L은 이전 블록과 중첩되는 구간,M은 1의 값이 적용되는 구간,R은 다음 블록과 중첩되는 구간,ZR은 윈도우 왼쪽편 제로 블록 구간을 각각 의미함. - 제1항에 있어서,상기 제2 부호화부는,이전 프레임과 현재 프레임이 모두 복소 필터뱅크 모드인 경우, 하기 [표 2]에 정의되는 윈도우를 사용하는 것을 특징으로 하는 LPC 잔차신호 부호화 장치.[표 2]
이전 프레임의MDCT 기반 잔차 필터뱅크 모드 현재 프레임의MDCT 기반 잔차 필터뱅크 모드 주파수 영역으로 변환된 계수의 수 ZL L M R ZR 1 1 288 0 32 224 32 0 1 2 576 0 32 480 64 0 2 2 576 0 64 448 64 0 1 3 1152 0 32 992 128 0 2 3 1152 0 64 960 128 0 3 3 1152 0 128 896 128 0 - 제1항에 있어서,상기 제2 부호화부는,이전 프레임이 MDCT 필터뱅크 모드이고, 현재 프레임이 복소 필터뱅크 모드 인 경우, 하기 [표 3]에 정의되는 윈도우를 사용하는 것을 특징으로 하는 LPC 잔차신호 부호화 장치.[표 3]
이전 프레임의MDCT 기반 잔차 필터뱅크 모드 현재 프레임의MDCT 기반 잔차 필터뱅 크 모드 주파수 영역으로 변환된 계수의 수 ZL L M R ZR 1,2,3 1 288 0 128 128 32 0 1,2,3 2 576 0 128 384 64 0 1,2,3 3 1152 0 128 896 128 0 - 제1항에 있어서,상기 제1 부호화부는,이전 프레임이 복소 필터뱅크 모드 이고, 현재 프레임이 MDCT 필터뱅크 모드인 경우, 하기 [표 4]에 정의되는 윈도우를 사용하는 것을 특징으로 하는 LPC 잔차신호 부호화 장치.[표 4]
이전 프레임의MDCT 기반 잔차 필터뱅크 모드 현재 프레임의MDCT 기반 잔차 필터뱅크 모드 주파수 영역으로 변환된 계수의 수 ZL L M R ZR 1,2,3 1 256 64 128 128 128 64 1,2,3 2 512 192 128 384 128 192 1,2,3 3 1024 448 128 896 128 448 - 제1항에 있어서,상기 제1 부호화부는,이전 프레임이 ACELP를 이용하여 부호화를 수행한 경우이고, 현재 프레임이 MDCT 필터뱅크 모드인 경우, 하기 [표 5]에 정의되는 윈도우를 사용하는 것을 특징으로 하는 LPC 잔차신호 부호화 장치.[표 5]
이전 프레임의MDCT 기반 잔차 필터뱅크 모드 현재 프레임의MDCT 기반 잔차 필터뱅크 모드 주파수 영역으로 변환된 계수의 수 ZL L M R ZR 0 1 320 160 0 256 128 96 0 2 576 288 0 512 128 224 0 3 1152 512 128 1024 128 512 - 제1항에 있어서,상기 신호 분석부는,상기 입력신호가 오디오 신호인 경우, 상기 제1 부호화부 또는 상기 제2 부호화부에서 부호화를 수행하도록 제어하고,상기 입력신호가 음성 신호인 경우, 상기 제3 부호화부에서 부호화를 수행하도록 제어하는 것을 특징으로 하는 LPC 잔차신호 부호화 장치.
- MDCT 기반 음성오디오 통합 부호화기의 LPC 잔차신호 부호화 장치에 있어서,입력 신호의 특성을 분석하여 LPC 필터링된 신호의 부호화 방법을 선택하는 신호 분석부;상기 입력신호가 오디오 신호인 경우, 실 필터뱅크(real filterbank) 기반 부호화 및 복소 필터뱅크(complex filterbank) 기반 부호화 중 적어도 하나를 수행하는 제1 부호화부; 및상기 입력신호가 음성 신호인 경우, ACELP(Algebraic code excited linear prediction)에 기초하여 상기 LPC 잔차신호를 부호화하는 제2 부호화부를 포함하고,상기 제1 부호화부는,MDCT 기반 부호화를 수행하는 MDCT 부호화부;MDST 기반 부호화를 수행하는 MDST 부호화부; 및상기 입력 신호의 특성에 따라, MDCT 계수 및 MDST 계수 중 적어도 하나를 출력하는 출력부를 포함하고,상기 입력 신호는,상기 입력 신호의 이전 프레임이 ACELP로 부호화되고 현재 프레임이 MDCT에 따라 부호화되는 경우, 상기 ACELP로 부호화된 이전 프레임으로부터 도출된 인위적인 시간 도메인의 앨리어싱 신호를 이용하여 오버랩 애드됨으로써 처리되는 LPC 잔차신호 부호화 장치.
- 제11항에 있어서,상기 신호 분석부는,실 필터뱅크 기반 부호화, 복소 필터뱅크 기반 부호화, 및 ACELP 기반 부호화 중 하나를 선택적으로 수행하기 위한 제어 명령을 생성하는 것을 특징으로 하는 LPC 잔차신호 부호화 장치.
- 삭제
- MDCT 기반 음성오디오 통합 복호화기의 LPC 잔차신호 복호화 장치에 있어서,주파수 도메인에서 부호화된 LPC 잔차신호를 복호화하는 오디오 복호화부;시간 도메인에서 부호화된 LPC 잔차신호를 복호화하는 음성 복호화부; 및상기 오디오 복호화부의 출력 신호 및 상기 음성 복호화부의 출력 신호 사이의 왜곡을 상쇄시키는 왜곡 제어부를 포함하고,상기 오디오 복호화부는,실 필터뱅크에 기초하여 부호화된 LPC 잔차신호를 복호화하는 제1 복호화부; 및복소 필터뱅크에 기초하여 부호화된 LPC 잔차신호를 복호화하는 제2 복호화부를 포함하고,입력 신호는,입력 신호의 이전 프레임이 ACELP로 부호화되고 현재 프레임이 MDCT에 따라 부호화되는 경우, 상기 ACELP로 부호화된 이전 프레임으로부터 도출된 인위적인 시간 도메인의 앨리어싱 신호를 이용하여 오버랩 애드됨으로써 처리되는 LPC 잔차신호 복호화 장치.
- 삭제
- 복호화 방법에 있어서,이전 프레임의 부호화 방식과 현재 프레임의 부호화 방식을 판단하는 단계;상기 이전 프레임이 ACELP에 따라 부호화되고, 상기 현재 프레임이 MDCT에 따라 부호화된 경우, 상기 ACELP로 부호화된 이전 프레임으로부터 도출된 인위적인 시간 도메인의 앨리어싱 신호를 식별하는 단계; 및상기 식별된 인위적인 시간 도메인의 앨리어싱 신호를 이용하여 상기 이전 프레임과 현재 프레임 간에 오버랩 애드를 수행하는 단계를 포함하고,상기 현재 프레임에 대응하는 신호는, 상기 인위적인 시간 도메인의 앨리어싱 신호를 고려한 윈도우를 이용하여 현재 프레임과 이전 프레임이 오버랩 애드됨으로써 추출되는 복호화 방법.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/124,043 US8898059B2 (en) | 2008-10-13 | 2009-10-13 | LPC residual signal encoding/decoding apparatus of modified discrete cosine transform (MDCT)-based unified voice/audio encoding device |
PCT/KR2009/005881 WO2010044593A2 (ko) | 2008-10-13 | 2009-10-13 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
US14/541,904 US9378749B2 (en) | 2008-10-13 | 2014-11-14 | LPC residual signal encoding/decoding apparatus of modified discrete cosine transform (MDCT)-based unified voice/audio encoding device |
US15/194,174 US9728198B2 (en) | 2008-10-13 | 2016-06-27 | LPC residual signal encoding/decoding apparatus of modified discrete cosine transform (MDCT)-based unified voice/audio encoding device |
US15/669,262 US10621998B2 (en) | 2008-10-13 | 2017-08-04 | LPC residual signal encoding/decoding apparatus of modified discrete cosine transform (MDCT)-based unified voice/audio encoding device |
US16/846,272 US11430457B2 (en) | 2008-10-13 | 2020-04-10 | LPC residual signal encoding/decoding apparatus of modified discrete cosine transform (MDCT)-based unified voice/audio encoding device |
US17/895,233 US11887612B2 (en) | 2008-10-13 | 2022-08-25 | LPC residual signal encoding/decoding apparatus of modified discrete cosine transform (MDCT)-based unified voice/audio encoding device |
US18/529,830 US20240105194A1 (en) | 2008-10-13 | 2023-12-05 | Lpc residual signal encoding/decoding apparatus of modified discrete cosine transform (mdct)-based unified voice/audio encoding device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080100170 | 2008-10-13 | ||
KR20080100170 | 2008-10-13 | ||
KR20080126994 | 2008-12-15 | ||
KR1020080126994 | 2008-12-15 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150143021A Division KR101666323B1 (ko) | 2008-10-13 | 2015-10-13 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020160102399A Division KR102002156B1 (ko) | 2008-10-13 | 2016-08-11 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100041678A KR20100041678A (ko) | 2010-04-22 |
KR101649376B1 true KR101649376B1 (ko) | 2016-08-31 |
Family
ID=42217359
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090096888A KR101649376B1 (ko) | 2008-10-13 | 2009-10-12 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020150143021A KR101666323B1 (ko) | 2008-10-13 | 2015-10-13 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020160102399A KR102002156B1 (ko) | 2008-10-13 | 2016-08-11 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020170068465A KR101848866B1 (ko) | 2008-10-13 | 2017-06-01 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020180041105A KR101956289B1 (ko) | 2008-10-13 | 2018-04-09 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020190024760A KR102002162B1 (ko) | 2008-10-13 | 2019-03-04 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020190085257A KR102148492B1 (ko) | 2008-10-13 | 2019-07-15 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020200104864A KR20200101901A (ko) | 2008-10-13 | 2020-08-20 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020230132898A KR20230148130A (ko) | 2008-10-13 | 2023-10-05 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150143021A KR101666323B1 (ko) | 2008-10-13 | 2015-10-13 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020160102399A KR102002156B1 (ko) | 2008-10-13 | 2016-08-11 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020170068465A KR101848866B1 (ko) | 2008-10-13 | 2017-06-01 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020180041105A KR101956289B1 (ko) | 2008-10-13 | 2018-04-09 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020190024760A KR102002162B1 (ko) | 2008-10-13 | 2019-03-04 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020190085257A KR102148492B1 (ko) | 2008-10-13 | 2019-07-15 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020200104864A KR20200101901A (ko) | 2008-10-13 | 2020-08-20 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR1020230132898A KR20230148130A (ko) | 2008-10-13 | 2023-10-05 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
Country Status (2)
Country | Link |
---|---|
US (5) | US8898059B2 (ko) |
KR (9) | KR101649376B1 (ko) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3373297B1 (en) * | 2008-09-18 | 2023-12-06 | Electronics and Telecommunications Research Institute | Decoding apparatus for transforming between modified discrete cosine transform-based coder and hetero coder |
WO2010044593A2 (ko) | 2008-10-13 | 2010-04-22 | 한국전자통신연구원 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
KR101649376B1 (ko) | 2008-10-13 | 2016-08-31 | 한국전자통신연구원 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
RU2557455C2 (ru) * | 2009-06-23 | 2015-07-20 | Войсэйдж Корпорейшн | Прямая компенсация наложения спектров во временной области с применением в области взвешенного или исходного сигнала |
US9093066B2 (en) * | 2010-01-13 | 2015-07-28 | Voiceage Corporation | Forward time-domain aliasing cancellation using linear-predictive filtering to cancel time reversed and zero input responses of adjacent frames |
JP5813094B2 (ja) | 2010-04-09 | 2015-11-17 | ドルビー・インターナショナル・アーベー | Mdctベース複素予測ステレオ符号化 |
ES2911893T3 (es) * | 2010-04-13 | 2022-05-23 | Fraunhofer Ges Forschung | Codificador de audio, decodificador de audio y métodos relacionados para procesar señales de audio estéreo usando una dirección de predicción variable |
EP4398244A3 (en) * | 2010-07-08 | 2024-07-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Decoder using forward aliasing cancellation |
KR20120038358A (ko) * | 2010-10-06 | 2012-04-23 | 한국전자통신연구원 | 통합 음성/오디오 부호화/복호화 장치 및 방법 |
WO2014030938A1 (ko) * | 2012-08-22 | 2014-02-27 | 한국전자통신연구원 | 오디오 부호화 장치 및 방법, 오디오 복호화 장치 및 방법 |
KR102204136B1 (ko) | 2012-08-22 | 2021-01-18 | 한국전자통신연구원 | 오디오 부호화 장치 및 방법, 오디오 복호화 장치 및 방법 |
CN103915100B (zh) * | 2013-01-07 | 2019-02-15 | 中兴通讯股份有限公司 | 一种编码模式切换方法和装置、解码模式切换方法和装置 |
CN105229736B (zh) | 2013-01-29 | 2019-07-19 | 弗劳恩霍夫应用研究促进协会 | 用于选择第一编码算法与第二编码算法中的一个的装置及方法 |
PL3000110T3 (pl) | 2014-07-28 | 2017-05-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Wybór jednego spośród pierwszego algorytmu kodowania i drugiego algorytmu kodowania z zastosowaniem redukcji harmonicznych |
TWI812658B (zh) * | 2017-12-19 | 2023-08-21 | 瑞典商都比國際公司 | 用於統一語音及音訊之解碼及編碼去關聯濾波器之改良之方法、裝置及系統 |
KR20210003507A (ko) | 2019-07-02 | 2021-01-12 | 한국전자통신연구원 | 오디오 코딩을 위한 잔차 신호 처리 방법 및 오디오 처리 장치 |
KR20210158108A (ko) * | 2020-06-23 | 2021-12-30 | 한국전자통신연구원 | 양자화 잡음을 줄이는 오디오 신호의 부호화 및 복호화 방법과 이를 수행하는 부호화기 및 복호화기 |
KR20220066749A (ko) | 2020-11-16 | 2022-05-24 | 한국전자통신연구원 | 잔차 신호의 생성 방법과 그 방법을 수행하는 부호화기 및 복호화기 |
CN115035354B (zh) * | 2022-08-12 | 2022-11-08 | 江西省水利科学院 | 基于改进yolox的水库水面漂浮物目标检测方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0154387B1 (ko) * | 1995-04-01 | 1998-11-16 | 김주용 | 음성다중 시스템을 적용한 디지탈 오디오 부호화기 |
TW321810B (ko) | 1995-10-26 | 1997-12-01 | Sony Co Ltd | |
US6134518A (en) * | 1997-03-04 | 2000-10-17 | International Business Machines Corporation | Digital audio signal coding using a CELP coder and a transform coder |
DE69926821T2 (de) * | 1998-01-22 | 2007-12-06 | Deutsche Telekom Ag | Verfahren zur signalgesteuerten Schaltung zwischen verschiedenen Audiokodierungssystemen |
US6658383B2 (en) * | 2001-06-26 | 2003-12-02 | Microsoft Corporation | Method for coding speech and music signals |
WO2004082288A1 (en) * | 2003-03-11 | 2004-09-23 | Nokia Corporation | Switching between coding schemes |
FI118834B (fi) * | 2004-02-23 | 2008-03-31 | Nokia Corp | Audiosignaalien luokittelu |
KR20070017379A (ko) * | 2004-05-17 | 2007-02-09 | 노키아 코포레이션 | 오디오 신호를 부호화하기 위한 부호화 모델들의 선택 |
GB0613949D0 (en) * | 2006-07-13 | 2006-08-23 | Airbus Uk Ltd | A wing cover panel assembly and wing cover panel for an aircraft wing and a method of forming thereof |
WO2008071353A2 (en) * | 2006-12-12 | 2008-06-19 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V: | Encoder, decoder and methods for encoding and decoding data segments representing a time-domain data stream |
CN101231850B (zh) * | 2007-01-23 | 2012-02-29 | 华为技术有限公司 | 编解码方法及装置 |
US8527265B2 (en) * | 2007-10-22 | 2013-09-03 | Qualcomm Incorporated | Low-complexity encoding/decoding of quantized MDCT spectrum in scalable speech and audio codecs |
US8515767B2 (en) * | 2007-11-04 | 2013-08-20 | Qualcomm Incorporated | Technique for encoding/decoding of codebook indices for quantized MDCT spectrum in scalable speech and audio codecs |
JP2011518345A (ja) * | 2008-03-14 | 2011-06-23 | ドルビー・ラボラトリーズ・ライセンシング・コーポレーション | スピーチライク信号及びノンスピーチライク信号のマルチモードコーディング |
BR122021009256B1 (pt) * | 2008-07-11 | 2022-03-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Codificador e decodificador de áudio para estruturas de codificação de sinais de áudio amostrados |
MY152252A (en) * | 2008-07-11 | 2014-09-15 | Fraunhofer Ges Forschung | Apparatus and method for encoding/decoding an audio signal using an aliasing switch scheme |
MY181247A (en) * | 2008-07-11 | 2020-12-21 | Frauenhofer Ges Zur Forderung Der Angenwandten Forschung E V | Audio encoder and decoder for encoding and decoding audio samples |
EP2144230A1 (en) * | 2008-07-11 | 2010-01-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Low bitrate audio encoding/decoding scheme having cascaded switches |
ES2592416T3 (es) * | 2008-07-17 | 2016-11-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Esquema de codificación/decodificación de audio que tiene una derivación conmutable |
EP3373297B1 (en) | 2008-09-18 | 2023-12-06 | Electronics and Telecommunications Research Institute | Decoding apparatus for transforming between modified discrete cosine transform-based coder and hetero coder |
KR101649376B1 (ko) | 2008-10-13 | 2016-08-31 | 한국전자통신연구원 | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 |
RU2557455C2 (ru) * | 2009-06-23 | 2015-07-20 | Войсэйдж Корпорейшн | Прямая компенсация наложения спектров во временной области с применением в области взвешенного или исходного сигнала |
-
2009
- 2009-10-12 KR KR1020090096888A patent/KR101649376B1/ko active IP Right Grant
- 2009-10-13 US US13/124,043 patent/US8898059B2/en active Active
-
2014
- 2014-11-14 US US14/541,904 patent/US9378749B2/en active Active
-
2015
- 2015-10-13 KR KR1020150143021A patent/KR101666323B1/ko active IP Right Grant
-
2016
- 2016-06-27 US US15/194,174 patent/US9728198B2/en active Active
- 2016-08-11 KR KR1020160102399A patent/KR102002156B1/ko active IP Right Grant
-
2017
- 2017-06-01 KR KR1020170068465A patent/KR101848866B1/ko active IP Right Grant
- 2017-08-04 US US15/669,262 patent/US10621998B2/en active Active
-
2018
- 2018-04-09 KR KR1020180041105A patent/KR101956289B1/ko active IP Right Grant
-
2019
- 2019-03-04 KR KR1020190024760A patent/KR102002162B1/ko active IP Right Grant
- 2019-07-15 KR KR1020190085257A patent/KR102148492B1/ko active IP Right Grant
-
2020
- 2020-04-10 US US16/846,272 patent/US11430457B2/en active Active
- 2020-08-20 KR KR1020200104864A patent/KR20200101901A/ko not_active IP Right Cessation
-
2023
- 2023-10-05 KR KR1020230132898A patent/KR20230148130A/ko active Search and Examination
Non-Patent Citations (1)
Title |
---|
ISO/IEC SC29/WG11 N10215 WD on USAC 86차 MPEG 회의(2008.10)* |
Also Published As
Publication number | Publication date |
---|---|
KR102002162B1 (ko) | 2019-07-23 |
KR101666323B1 (ko) | 2016-10-24 |
US20200243099A1 (en) | 2020-07-30 |
US20160307579A1 (en) | 2016-10-20 |
US10621998B2 (en) | 2020-04-14 |
US9378749B2 (en) | 2016-06-28 |
KR102148492B1 (ko) | 2020-08-26 |
KR101956289B1 (ko) | 2019-03-08 |
KR20180040543A (ko) | 2018-04-20 |
US9728198B2 (en) | 2017-08-08 |
KR20100041678A (ko) | 2010-04-22 |
KR20190087368A (ko) | 2019-07-24 |
US8898059B2 (en) | 2014-11-25 |
KR20230148130A (ko) | 2023-10-24 |
US11430457B2 (en) | 2022-08-30 |
KR20170065479A (ko) | 2017-06-13 |
KR20150120920A (ko) | 2015-10-28 |
KR102002156B1 (ko) | 2019-07-23 |
US20110257981A1 (en) | 2011-10-20 |
KR20200101901A (ko) | 2020-08-28 |
US20150081286A1 (en) | 2015-03-19 |
KR20190026710A (ko) | 2019-03-13 |
KR20160100288A (ko) | 2016-08-23 |
KR101848866B1 (ko) | 2018-04-13 |
US20170337929A1 (en) | 2017-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102002162B1 (ko) | Mdct 기반 음성/오디오 통합 부호화기의 lpc 잔차신호 부호화/복호화 장치 | |
US20200227054A1 (en) | Low bitrate audio encoding/decoding scheme having cascaded switches | |
CA2730237C (en) | Low bitrate audio encoding/decoding scheme with common pre-processing | |
CA2730355C (en) | Apparatus and method for encoding/decoding an audio signal using an aliasing switch scheme | |
EP3493204B1 (en) | Method for encoding of integrated speech and audio | |
KR101224884B1 (ko) | 스위치 가능한 바이패스를 가진 오디오 인코딩/디코딩 기법 | |
US11887612B2 (en) | LPC residual signal encoding/decoding apparatus of modified discrete cosine transform (MDCT)-based unified voice/audio encoding device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
A107 | Divisional application of patent | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
A107 | Divisional application of patent | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190725 Year of fee payment: 4 |