[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101636953B1 - Method for analyzing data and apparatus using the method - Google Patents

Method for analyzing data and apparatus using the method Download PDF

Info

Publication number
KR101636953B1
KR101636953B1 KR1020140066236A KR20140066236A KR101636953B1 KR 101636953 B1 KR101636953 B1 KR 101636953B1 KR 1020140066236 A KR1020140066236 A KR 1020140066236A KR 20140066236 A KR20140066236 A KR 20140066236A KR 101636953 B1 KR101636953 B1 KR 101636953B1
Authority
KR
South Korea
Prior art keywords
real estate
data
analysis
information
theme
Prior art date
Application number
KR1020140066236A
Other languages
Korean (ko)
Other versions
KR20150137771A (en
Inventor
조성환
Original Assignee
조성환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조성환 filed Critical 조성환
Priority to KR1020140066236A priority Critical patent/KR101636953B1/en
Publication of KR20150137771A publication Critical patent/KR20150137771A/en
Application granted granted Critical
Publication of KR101636953B1 publication Critical patent/KR101636953B1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/16Real estate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

데이터 분석 방법 및 이를 이용하는 장치가 개시된다. 본 발명의 일 측면에 따른 데이터 분석 장치는, 부동산정보검색 데이터를 저장하는 부동산 정보조회 데이터베이스, 상기 부동산정보검색 데이터를 테마별 분석 및 시계열적 분석에 따라 유기적으로 검토하고, 부동산 검색 정보와 부동산 실거래 정보 간의 연관관계를 도출하는 데이터 분석부, 및 상기 데이터 분석부에 의해 분석된 데이터를 선택된 테마에 따라 가시화하여 제공하는 가시화 관리부를 포함한다. A data analysis method and apparatus using the same are disclosed. A data analyzing apparatus according to an aspect of the present invention includes: a real estate information inquiry database that stores real estate information search data; an organically examines the real estate information search data according to a theme analysis and a time series analysis; And a visualization management unit for visualizing data analyzed by the data analysis unit according to the selected theme.

Figure R1020140066236
Figure R1020140066236

Description

데이터 분석 방법 및 이를 이용하는 장치{METHOD FOR ANALYZING DATA AND APPARATUS USING THE METHOD}METHOD FOR ANALYZING DATA AND APPARATUS USING THE METHOD BACKGROUND OF THE INVENTION [0001]

본 발명은 데이터 분석에 관한 것으로, 더욱 상세하게는 부동산 관련 빅데이터를 분석하는 방법 및 이를 이용하는 장치에 관한 것이다.The present invention relates to data analysis, and more particularly, to a method for analyzing real estate-related big data and an apparatus using the same.

최근 인터넷의 보급과 트래픽 증가에 따른 부산물로서 빅데이터는 수많은 행위 패턴을 생성하고 있다. 빅데이터는 데이터의 생성 양ㆍ주기ㆍ형식 등이 기존 데이터에 비해 너무 크기 때문에, 종래의 방법으로는 수집ㆍ저장ㆍ검색ㆍ분석이 어려운 방대한 데이터를 말한다. 빅데이터는 각종 센서와 인터넷의 발달로 데이터가 늘어나면서 나타났다. 컴퓨터 및 처리기술이 발달함에 따라 디지털 환경에서 생성되는 빅데이터와 이 데이터를 기반으로 분석할 경우 질병이나 사회현상의 변화에 관한 새로운 시각이나 법칙을 발견할 가능성이 커졌다. Recently, big data as a byproduct of the spread of the Internet and the increase of traffic are generating a lot of behavior patterns. Big data refers to a vast amount of data that is difficult to collect, store, search, and analyze by conventional methods because the amount, period, and format of data are too large compared to existing data. Big data showed up with the increase of data due to the development of various sensors and internet . With the development of computer and processing technologies, big data generated in the digital environment and analysis based on this data have increased the possibility of discovering new perspectives and laws about changes in disease or social phenomena.

빅데이터는 초대용량의 데이터 양(volume), 다양한 형태(variety), 빠른 생성 속도(velocity)라는 뜻에서 3V라고도 불리며, 여기에 네 번째 특징으로 가치(value)를 더해 4V라고 정의하기도 한다. 빅데이터에서 가치(value)가 중요 특징으로 등장한 것은 엄청난 규모뿐만 아니라 빅데이터의 대부분은 비정형적인 텍스트와 이미지 등으로 이루어져 있고, 이러한 데이터들은 시간이 지나면서 매우 빠르게 전파하며 변함에 따라 그 전체를 파악하고 일정한 패턴을 발견하기가 어렵게 되면서 가치(value) 창출의 중요성이 강조되었기 때문이다.Big data is also referred to as 3V in terms of data volume, variety, and velocity of an extra capacity, and a value of 4V is added as a fourth characteristic. In Big Data, value has emerged as an important feature, not only because of its enormous size, but also because most of the big data consists of atypical texts and images, and these data propagate very quickly over time, And it is difficult to find a certain pattern, and the importance of value creation is emphasized.

실제로, 데이터의 패턴 분석을 통하여 미래를 예측하고자 하는 노력들이 하나씩 결실을 맺고 있는데, 구글의 독감예측 시스템이 가장 대표적인 경우이다. Indeed, efforts to predict the future through pattern analysis of data have been fruitful, and Google's flu pandemic is one of the most representative cases.

구글의 독감예측 시스템은 검색어 트렌드를 심도 있게 분석해 실생활에서 일어나는 현상을 정확히 파악할 수 있는 모델을 개발하고자 시작된 프로젝트로서, 구글은 시스템의 정확도를 높이기 위해 개별 검색어 수천억 개를 분석해 '감기'와 관련된 45개의 단어들을 찾아내어 이를 분석함으로써 독감의 유행 수준을 예측하는 시스템을 개발하였다. 구글은 실제 분석 결과, 구글의 검색어를 통한 예측은 미 질병관리본부(CDC)의 통계보다 2주 정도 먼저 발생 징후를 포착할 수 있다는 결과를 발표하였다. Google's influenza forecasting system was developed to deeply analyze the trends of the search queries and identify real-world phenomena. In order to increase the accuracy of the system, Google analyzed hundreds of billions of individual queries, We have developed a system to predict the level of influenza by detecting and analyzing the words. In fact, Google has reported that predictions from Google's search terms could catch signs two weeks earlier than the statistics from the CDC.

이렇듯 빅데이터의 패턴 분석을 통하여 미래를 예측하는 것은 그 분석 분야에 제한이 없으며 다양한 개발 가능성을 가지고 있어 이에 대한 보다 적극적인 관심이 필요하다 할 것이다. The prediction of the future through the pattern analysis of big data is not limited to the analysis field and it has various development possibilities, so it needs more active interest.

상술한 문제점을 극복하기 위한 본 발명의 목적은 부동산 관련 데이터를 분석하는 방법을 제공하는 데 있다. An object of the present invention is to provide a method for analyzing real estate related data.

본 발명의 다른 목적은 상기 방법을 이용하는 데이터 분석 장치를 제공하는 데 있다.Another object of the present invention is to provide a data analysis apparatus using the above method.

상술한 본 발명의 목적을 달성하기 위한 본 발명의 일 측면에 따른 데이터 분석 장치는, 부동산정보검색 데이터를 저장하는 부동산 정보조회 데이터베이스, 상기 부동산정보검색 데이터에 대한 테마별 분석 및 시계열적 분석에 기반하여 부동산 시장의 파동을 파악하고, 부동산 검색 정보와 부동산 실거래 정보 간의 연관관계를 도출하는 데이터 분석부, 및 상기 데이터 분석부에 의해 분석된 데이터를 선택된 테마에 따라 가시화하여 제공하는 가시화 관리부를 포함한다. According to an aspect of the present invention, there is provided a data analysis apparatus comprising: a real estate information inquiry database that stores real estate information search data; a theme analysis and a time series analysis of the real estate information search data; A data analyzing unit for analyzing the fluctuation of the real estate market and deriving an association between the real estate search information and the real estate real estate information and a visualization management unit for visualizing the data analyzed by the data analyzing unit according to the selected theme.

상기 부동산 정보조회 데이터베이스는, 부동산 매매 계약 및 부동산 임대 계약을 포함하는 부동산 실거래 정보를 추가로 저장한다.The real estate information inquiry database further stores real estate real estate information including a real estate sale contract and a real estate rental agreement.

상기 테마별 분석은, 지역별 동향 분석, 사용자별 동향 분석, 및 부동산간 네트워크 분석 중 적어도 하나를 포함한다.The theme analysis includes at least one of regional trend analysis, user specific trend analysis, and inter-real estate network analysis.

상기 데이터 분석부는, 생존 기간 예측 알고리즘을 사용해 상기 부동산 검색 정보와 부동산 실거래 정보 간의 시간적 연관관계를 도출하는 것을 특징으로 한다.The data analysis unit derives a temporal relationship between the real estate search information and real estate real estate information using a survival period prediction algorithm.

상기 데이터 분석부는, 부동산간 네트워크 분석을 통해 복수의 사용자가 조회한 부동산 노드들 간의 연관관계를 분석하여, 사용자 조회의 시작이 되는 부동산 허브를 도출하는 것을 특징으로 한다.The data analyzing unit analyzes the association between the real estate nodes viewed by the plurality of users through the inter-real estate network analysis, and derives the real estate hub that is the start of the user inquiry.

상기 데이터 분석부는, 지역별 동향 분석을 통해 부동산 데이터 검색이 집중되는 핫-스팟 지역을 도출하여 제공할 수 있다.The data analyzing unit may derive a hot-spot area in which real-estate data search is concentrated through regional trend analysis.

상기 부동산 시장의 파동은, 사용자의 부동산 정보 조회에 따른 펄스 주기 및 해당 지역에 집중되는 조회량에 따른 펄스 세기를 포함한다.The fluctuation of the real estate market includes the pulse period according to the inquiry of the user's real estate information and the pulse intensity according to the inquiry amount concentrated in the area.

또한, 상기 부동산정보검색 데이터는 주기적으로 업데이트되어 저장되는 것을 특징으로 한다.
The real estate information search data is periodically updated and stored.

상기 가시화 관리부는, 지역별 시계열 동향을 나타내는 스타 플롯, 사용자 열람, 매매, 계약, 임대 계약 간의 관계를 나타내는 평행좌표계 플롯, 사용자별 접속조회 패턴을 반영하는 이분 그래프 중 적어도 하나를 활용해 분석된 데이터를 가시화한다.
Wherein the visualization management unit displays data analyzed using at least one of a star plot representing a time series trend for each region, a parallel coordinate system plot showing a relationship between a user's browsing, a sale, a contract, a lease contract, Visualize it.

본 발명의 다른 목적을 달성하기 위한 본 발명의 일 측면에 따른 데이터 분석 방법은, 적어도 하나의 부동산 조회 사이트로부터 부동산정보검색 데이터를 수집하는 단계, 수집된 부동산정보검색 데이터를 테마별 및 시계열적으로 분석하는 단계, 분석된 데이터를 선택된 테마에 따라 가시화하여 제공하는 단계, 및 테마별 및 시계열적으로 분석된 데이터를 통해 부동산 시장의 파동을 파악하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method for analyzing data, comprising: collecting real estate information search data from at least one real estate inquiry site; analyzing the collected real estate information search data by theme and time series; Visualizing the analyzed data in accordance with the selected theme, and determining the wave of the real estate market through the theme and the data analyzed in a time series manner.

상기 테마별 및 시계열적으로 분석된 데이터를 통해 부동산 시장의 파동을 파악하는 단계는, 부동산 검색 정보와 부동산 실거래 정보 간의 연관관계를 도출하는 단계를 포함한다.The step of grasping the fluctuation of the real estate market through the theme and the temporally analyzed data includes deriving a relation between real estate search information and real estate real estate information.

상기 테마별 및 시계열적으로 분석된 데이터를 통해 부동산 시장의 파동을 파악하는 단계는, 부동산간 네트워크 분석을 통해 복수의 사용자가 조회한 부동산 노드들 간의 연관관계를 분석하여, 사용자 조회의 시작이 되는 부동산 허브를 도출하는 단계를 포함한다.The step of analyzing the fluctuation of the real estate market through the theme and the time-series analyzed data may include analyzing the association between the real estate nodes viewed by the plurality of users through the inter-real estate network analysis, And deriving the hub.

상기 테마별 및 시계열적으로 분석된 데이터를 통해 부동산 시장의 파동을 파악하는 단계는, 부동산간 네트워크 분석을 통해 복수의 사용자가 조회한 부동산 노드들 간의 연관관계를 분석하여, 사용자 조회의 시작이 되는 부동산 허브를 도출하는 단계를 포함한다.The step of analyzing the fluctuation of the real estate market through the theme and the time-series analyzed data may include analyzing the association between the real estate nodes viewed by the plurality of users through the inter-real estate network analysis, And deriving the hub.

상기 테마별 및 시계열적으로 분석된 데이터를 통해 부동산 시장의 파동을 파악하는 단계는, 지역별 동향 분석을 통해 부동산 데이터 검색이 집중되는 핫-스팟 지역을 도출하여 제공하는 단계를 포함한다.The step of grasping the fluctuation of the real estate market through the theme and the time-series analyzed data includes deriving and providing a hot-spot region in which the real-estate data search is concentrated through regional trend analysis.

상기 데이터 분석 방법은, 상기 부동산정보검색 데이터는 주기적으로 업데이트하여 저장하는 단계를 더 포함할 수 있다.The data analysis method may further include periodically updating and storing the real estate information search data.

상기 분석된 데이터를 선택된 테마에 따라 가시화하여 제공하는 단계는, 사용자 열람, 매매 계약, 임대 계약 간의 관계를 나타내는 평행좌표계 플롯, 지역별 시계열 동향을 나타내는 스타 플롯, 및 사용자별 접속조회 패턴을 반영하는 이분 그래프 중 적어도 하나를 활용해 분석 결과를 가시화하는 단계를 포함한다.
The step of visualizing and providing the analyzed data according to a selected theme may include displaying a user's view, a sales contract, a parallel coordinate system plot showing a relationship between rental contracts, a star plot showing a time series trend according to a region, And visualizing the analysis results using at least one of the graphs.

본 발명에 따른 데이터 분석 장치 및 방법에 따르면, 정부의 부동산 이슈에 대처할 수 있는 시간 확보 및 부동산 정책 마련에 필요한 분석 결과를 제공할 수 있다. According to the apparatus and method for analyzing data according to the present invention, it is possible to provide time necessary for coping with real estate issues of the government and analysis results necessary for real estate policy preparation.

또한, 비정상적인 패턴을 보이는 이상 거래 상황이 예상되는 지역을 탐색하여, 기획 부동산 등 비정상적인 거래로 인한 피해를 방지할 수 있다. In addition, it is possible to prevent damage due to abnormal trading such as planning real estate by searching for an area where an abnormal trading pattern is expected, which shows an abnormal pattern.

뿐만 아니라, 지역별 클러스터링을 통하여 국민에게 비정상적인 부동산 거래 관련 위험 지수를 제공할 수 있다.
In addition, through clustering by region, it is possible to provide unusual real estate transaction related risk index to the people.

도 1은 본 발명에 따른 데이터 분석 장치의 블록도이다.
도 2는 본 발명에 따른 데이터 분석 방법을 활용한 빈도 분석의 일 실시예를 나타낸 도면이다.
도 3a 및 도 3b는 본 발명에 따른 데이터 분석 방법을 활용한 생존 분석의 일 실시예를 나타낸 도면이다.
도 4는 본 발명에 따른 생존 기간 예측 알고리즘을 사용한 생존 확률 그래프를 나타낸 도면이다.
도 5는 본 발명에 따른 데이터 분석을 통해 표현되는 지역별 동향의 일 실시예를 나타낸 도면이다.
도 6는 본 발명에 따른 데이터 분석을 통해 표현되는 사용자별 동향의 일 실시예를 나타낸 도면이다.
도 7은 본 발명에 따른 데이터 분석을 통해 표현되는 부동산간 네트워크 생성의 일 실시예를 나타낸 도면이다.
도 8는 본 발명에 따른 데이터 분석을 통해 표현되는 핫-스팟의 일 실시예를 나타낸 도면이다.
도 9은 본 발명에 따른 데이터 분석을 통해 표현되는 거리 대비 부동산의 공간자기상관 그래프를 나타낸 도면이다.
도 10은 본 발명에 따른 데이터 분석 방법의 동작 순서도이다.
1 is a block diagram of a data analysis apparatus according to the present invention.
2 is a diagram illustrating an embodiment of frequency analysis using a data analysis method according to the present invention.
FIGS. 3A and 3B are diagrams illustrating one embodiment of survival analysis using the data analysis method according to the present invention.
4 is a graph showing a survival probability graph using the survival period prediction algorithm according to the present invention.
FIG. 5 is a view showing one embodiment of trends according to regions expressed through data analysis according to the present invention.
FIG. 6 is a diagram illustrating an embodiment of a trend for each user expressed through data analysis according to the present invention.
7 is a diagram illustrating an embodiment of inter-real-estate network generation represented by data analysis according to the present invention.
FIG. 8 is a diagram illustrating one embodiment of a hot-spot represented through data analysis according to the present invention.
FIG. 9 is a graph showing a spatial autocorrelation graph of a real estate versus distance expressed through data analysis according to the present invention.
10 is an operational flowchart of a data analysis method according to the present invention.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail.

그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. It should be understood, however, that the invention is not intended to be limited to the particular embodiments, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.

제1, 제2 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.The terms first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component. And / or < / RTI > includes any combination of a plurality of related listed items or any of a plurality of related listed items.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. It is to be understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, . On the other hand, when an element is referred to as being "directly connected" or "directly connected" to another element, it should be understood that there are no other elements in between.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used in this application is used only to describe a specific embodiment and is not intended to limit the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present application, the terms "comprises" or "having" and the like are used to specify that there is a feature, a number, a step, an operation, an element, a component or a combination thereof described in the specification, But do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, or combinations thereof.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the relevant art and are to be interpreted in an ideal or overly formal sense unless explicitly defined in the present application Do not.

이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In order to facilitate the understanding of the present invention, the same reference numerals are used for the same constituent elements in the drawings and redundant explanations for the same constituent elements are omitted.

본 발명은, 부동산 정보제공 사이트로부터 부동산 열람데이터를 수집하여 사용자 조회의 간격(시간)과 세기(공간) 변화, 즉, 펄스(파동 및 맥박)을 분석한다. 이를 통해, 부동산 관련 위기 시점에 대비한 대책 마련을 위한 시간을 확보하고 앞서가는 부동산 정책을 마련할 수 있다. The present invention collects real estate browse data from a real estate information providing site and analyzes changes in the interval (time) and intensity (space) of user inquiry, that is, a pulse (pulse and pulse). Through this, it is possible to secure time for countermeasures against real estate crisis and prepare for real estate policy.

부동산 시장의 펄스 주기는 사용자의 부동산 정보 클릭 주기로 나타나며, 부동산 시장의 펄스 세기는 단기간 동안 특정 지역에 집중된 조회량과 매칭되는 특성을 보인다. 부동산 정보제공 사이트 상의 조회 패턴은 부동산 시장의 상태를 반영하는 징후이며, 부동산 조회 빅데이터는 부동산 시장을 예측할 수 있는 확실한 지표가 될 수 있다. The pulse period of the real estate market appears as the period of the user's real estate information click, and the pulse strength of the real estate market is characterized by matching with the reference amount concentrated in a specific area for a short period of time. The pattern of inquiry on the real estate information site is a sign that reflects the condition of the real estate market, and real estate inquiry big data can be a definite indicator for predicting the real estate market.

본 발명에서는 비모수 분석 방법을 사용해 트렌드와 트렌드가 아닌 데이터를 구분한다. 비모수 분석이란 자료의 분포가 정규분포와 많이 다르게 나타나면서 자료의 수가 적은 경우에 사용되는 기법으로, 통계 분석에 많이 사용되는 기법들 중 하나이다.
In the present invention, a non-parametric analysis method is used to distinguish trends from non-trend data. Nonparametric analysis is a technique used when the distribution of data is very different from the normal distribution and the number of data is small. It is one of the techniques widely used for statistical analysis.

도 1은 본 발명에 따른 데이터 분석 장치의 블록도이다. 1 is a block diagram of a data analysis apparatus according to the present invention.

이하 설명하는 본 발명에 따른 구성요소들은 물리적인 구분이 아니라 기능적인 구분에 의해서 정의되는 구성요소들로서 각각이 수행하는 기능들에 의해서 정의될 수 있다. 각각의 구성요소들은 하드웨어 및/또는 각각의 기능을 수행하는 프로그램 코드 및 프로세싱 유닛으로 구현될 수 있을 것이며, 두 개 이상의 구성요소의 기능이 하나의 구성요소에 포함되어 구현될 수도 있을 것이다. 따라서, 이하의 실시예에서 구성요소에 부여되는 명칭은 각각의 구성요소를 물리적으로 구분하기 위한 것이 아니라 각각의 구성요소가 수행하는 대표적인 기능을 암시하기 위해서 부여된 것이며, 구성요소의 명칭에 의해서 본 발명의 기술적 사상이 한정되지 않는 것임에 유의하여야 한다.The constituent elements according to the present invention to be described below may be defined by the functions that each of the constituent elements defined by the functional distinction, rather than the physical distinction, performs. Each component may be implemented as hardware and / or program code and a processing unit that perform the respective functions, and the functions of two or more components may be embodied in one component. Therefore, in the following embodiments, names given to constituent elements are given not to physically distinguish each constituent element but to imply a representative function performed by each constituent element. It is to be noted that the technical idea of the invention is not limited.

본 발명에 따른 데이터 분석 장치는 부동산 정보조회 데이터베이스(100), 데이터 분석부(200), 가시화 관리부(300), 사용자 인터페이스부(400)를 포함하여 구성될 수 있다. The data analysis apparatus according to the present invention may include a real estate information inquiry database 100, a data analysis unit 200, a visualization management unit 300, and a user interface unit 400.

부동산 정보조회 데이터베이스(100)는 다양한 경로를 통해 수집한 방대한 양의 부동산 정보검색 데이터를 저장한다. 부동산 정보조회 데이터베이스(100)는 추가로 부동산 실거래 정보를 저장할 수 있다. 하지만, 부동산 실거래 정보는 별도의 데이터베이스로 구축되어 부동산 정보조회 데이터베이스(100)와는 별개의 데이터베이스로 구축될 수도 있다. The real estate information inquiry database 100 stores a vast amount of real estate information search data collected through various routes. The real estate information inquiry database 100 may further store real estate real estate information. However, the real estate real-estate information may be constructed as a separate database and a database separate from the real estate information inquiry database 100.

본 발명에 따른 부동산 정보검색 데이터는 부동산 정보제공 사이트를 통해 수집 가능한데, 여기서 부동산 정보제공 사이트는 공공 부동산 정보제공 사이트 및 민간 부동산 정보제공 사이트를 포함할 수 있다.The real estate information search data according to the present invention can be collected through the real estate information providing site, wherein the real estate information providing site may include a public real estate information providing site and a private real estate information providing site.

또한, 본 발명에 따른 부동산 실거래 정보는 국토교통부가 제공하는 실거래 조회 사이트, 각 지방자치단체 등에서 제공하는 부동산 포털 사이트 등을 통해 수집할 수 있다.In addition, the real estate real-estate information according to the present invention can be collected through real-trade inquiry sites provided by the Ministry of Land, Transport and Maritime Affairs, real estate portal sites provided by local governments, and the like.

부동산 정보는 부동산 고유번호, 해당 부동산의 위도 및 경도, 용도지구, 용도지역, 토지이용, 지목, 지가 등을 포함한다. Real estate information includes the number of the property, the latitude and longitude of the property, the use area, the use area, the land use, the land price, land price, and so on.

부동산 실거래 정보는 매매계약 정보 및 임대계약 정보를 포함하는데, 매매계약 정보는 매매의 고유번호, 거래일자, 면적, 매매가격을 포함하고, 임대계약 정보는 임대계약의 고유번호, 계약일자, 면적, 보증금, 월세 등의 정보를 포함할 수 있다.The real estate real-estate information includes the sales contract information and the lease contract information. The information includes the unique number of the sale, the transaction date, the area, and the sale price. The lease information includes the unique number of the lease contract, Deposit, rent, and so on.

본 발명에 따른 부동산정보 데이터베이스(100)에 저장되는 부동산 조회 정보 및 부동산 실거래 정보는 일정한 주기로 업데이트된다. 본 발명에서는 이를 위해 설정된 시간에 주기적으로 네트워크를 통해 각 사이트에 접속하여 데이터를 수집하는 데이터 수집부(미도시)를 추가로 포함할 수 있다.The real estate inquiry information and the real estate real estate information stored in the real estate information database 100 according to the present invention are updated at regular intervals. The present invention may further include a data collecting unit (not shown) for collecting data by accessing each site through a network periodically at a predetermined time.

본 발명에 따른 데이터 분석부(200)는, 부동산정보검색 데이터에 대한 테마별 분석 및 시계열적 분석에 기반하여 부동산 시장의 파동을 파악하고, 부동산 검색 정보와 부동산 실거래 정보 간의 연관관계를 도출한다. 본 발명에 따른 테마별 분석은, 지역별 동향 분석, 사용자별 동향 분석, 및 부동산간 네트워크 분석 중 적어도 하나를 포함할 수 있다. The data analysis unit 200 according to the present invention grasps the fluctuation of the real estate market based on the theme analysis and the time series analysis of the real estate information search data, and derives the relationship between the real estate search information and real estate real estate information. The theme-specific analysis according to the present invention may include at least one of regional trend analysis, user-specific trend analysis, and inter-real estate network analysis.

여기서, 부동산 시장의 파동은, 사용자의 부동산 정보 조회에 따른 펄스 주기 및 해당 지역에 집중되는 조회량에 따른 펄스 세기를 포함한다.Here, the fluctuation of the real estate market includes the pulse period according to the inquiry of the user's real estate information and the pulse intensity according to the inquiry amount concentrated in the area.

본 발명에 따른 데이터 분석부(200)는 또한, 생존 기간 예측 알고리즘을 사용해 상기 부동산 검색 정보와 부동산 실거래 정보 간의 시간적 연관관계를 도출하고, 부동산간 네트워크 분석을 통해 복수의 사용자가 조회한 부동산 노드들 간의 연관관계를 분석하여, 사용자 조회의 시작이 되는 부동산 허브를 도출한다. The data analysis unit 200 according to the present invention further derives a temporal relationship between the real estate search information and the real estate real estate information using the survival period prediction algorithm, And derives a real estate hub that is the starting point of user inquiry.

또한 데이터 분석부(200)는, 지역별 동향 분석을 통해 부동산 데이터 검색이 집중되는 핫-스팟 지역을 도출하여 제공한다.In addition, the data analysis unit 200 derives a hot-spot area in which real-estate data search is concentrated through regional trend analysis.

본 발명에 따른 가시화 관리부(300)는 데이터 분석부(200)에 의해 분석된 데이터를 선택된 테마에 따라 가시화하여 제공하는 역할을 담당한다. The visualization management unit 300 according to the present invention plays a role of visualizing and providing data analyzed by the data analysis unit 200 according to a selected theme.

구체적으로 가시화 관리부(300)는, 지역별 시계열 동향을 나타내는 스타 플롯, 사용자 열람, 매매, 계약, 임대 계약 간의 관계를 나타내는 평행좌표계 플롯, 사용자별 접속조회 패턴을 반영하는 이분 그래프 중 적어도 하나를 활용해 분석된 데이터를 가시화한다. Specifically, the visualization management unit 300 utilizes at least one of a star plot representing a time series trend for each region, a parallel coordinate system plot showing a relationship between a user's browsing, a sale, a contract, a lease contract, Visualize the analyzed data.

사용자 인터페이스부(400)는 본 발명에 따른 데이터 분석 장치가 제공하는 다양한 데이터를 보고 사용자가 선택하는 명령 또는 입력을 수신하여 데이터 분석부(200)로 제공한다. The user interface unit 400 receives various data provided by the data analysis apparatus according to the present invention and receives a command or input selected by the user and provides the command or input to the data analysis unit 200.

도 2는 본 발명에 따른 데이터 분석 방법을 활용한 빈도 분석의 일 실시예이다. 2 is an example of frequency analysis using the data analysis method according to the present invention.

본 발명에 따른 데이터 분석 방법은 테마별 다양한 분석 방법을 제안하는데, 지역별 동향 분석, 사용자별 동향 분석, 부동산간 네트워크 분석 등이 그것이며, 본 발명에 따른 각 테마별 분석은 시계열적인 분석을 포함하거나 상호 연계된다. 도 2에 나타낸 빈도 분석은 지역별 동향 분석의 일 실시예로 볼 수 있다. The data analysis method according to the present invention proposes various analysis methods by theme, such as regional trend analysis, user-specific trend analysis, and inter-real estate network analysis. The analysis according to the present invention includes time series analysis, do. The frequency analysis shown in FIG. 2 can be considered as an embodiment of regional trend analysis.

다시 말해, 본 실시예에서의 빈도 분석은 부동산 정보 조회 빈도, 매매 계약 빈도, 임대 계약 빈도를 분석하여 다양한 형태의 가시화 방법을 통해 사용자에게 유용한 데이터를 제공한다. In other words, the frequency analysis in this embodiment analyzes real estate information inquiry frequency, sales contract frequency, and rental contract frequency to provide useful data to users through various types of visualization methods.

도 2에 도시된 가시화 방법의 경우, X 축은 부동산의 필지 고유번호를, Y 축은 주 단위의 시간을 나타내며, 이러한 기준 축을 중심으로 각 섹터는 해당 부동산의 조회 빈도, 매매 계약이 발생한 빈도, 임대 계약이 발생한 빈도를 각기 다른 색생의 원으로 나타내고 있다. 도 2의 실시예에서는 해당 이벤트의 빈도가 높을수록 원의 지름이 커지도록 표현한다. In the case of the visualization method shown in FIG. 2, the X axis represents the parcel number of the real estate and the Y axis represents the weekly unit time. Each sector of the reference axis has a frequency of inquiry of the real estate, frequency of the sales contract, And the frequency of occurrence is represented by a circle of different colors. In the embodiment of FIG. 2, the higher the frequency of the event, the larger the diameter of the circle is expressed.

이러한 빈도 분석에 따른 표현의 다른 예로서, 달력 형태에 각 날짜 혹은 각 주차에 각 이벤트의 빈도 수를 색상의 농도 등을 활용하여 표시하는 방법이 사용될 수도 있다.
As another example of the expression according to the frequency analysis, a method of displaying the number of frequencies of each event on each date or each parking on the calendar form using the density of color or the like may be used.

도 3a 및 도 3b는 본 발명에 따른 데이터 분석 방법을 활용한 생존 분석의 일 실시예로서, 도 3a는 매매 계약의 생존 그래프이고 도 3b는 임대 계약의 생존 그래프이다. FIGS. 3A and 3B show an example of survival analysis using the data analysis method according to the present invention. FIG. 3A is a graph of a survival of a contract, and FIG. 3B is a graph of a survival of a lease.

도 3a 및 도 3b에 나타낸 본 발명에 따른 생존 그래프는, 특정 부동산에 대한 정보 조회 빈도가 최고에 달한 시점을 기점으로 하여 매매 혹은 임대(전월세) 계약이 이루어지기까지 생존한 그래프를 나타낸다. The survival graph according to the present invention shown in FIG. 3A and FIG. 3B shows a graph that survives until a sale or lease (previous month) contract is made based on a point in time when the information inquiry frequency of a specific real estate reaches a maximum.

생존 분석 기법에서, 어떤 시점부터 정의된 특정 사건의 발생시점까지 관측된 시간을 생존시간이라 칭하는데, 본 명세서에서는 공공 및 민간 사이트에서의 부동산 정보 검색이 피크에 도달한 시점으로부터 이벤트(실질적 매매 계약 또는, 전월세 임대 계약) 발생까지의 기간이 생존 기간으로 정의될 수 있다.In the survival analysis technique, the time observed from a certain point of time until the occurrence of a specific event defined as the time of occurrence is referred to as a survival time. In this specification, the term " actual sales contract Or a previous month's lease) can be defined as the survival period.

도 3a 및 도 3b의 그래프에서 가로 축은 주 단위로 시간을 나타내며, 세로 축의 각 선은 다수의 부동산에 번호를 부과하여 열거식으로 나타내고 있다.In the graphs of Figs. 3A and 3B, the horizontal axis represents time in units of weeks, and each line in the vertical axis represents numbers in a plurality of real properties and is represented by an enumeration formula.

도 3a 및 도 3b에 도시된 생존 그래프는 대상 부동산 그룹별로 최고점 이후 대부분 10째주 이내에 이벤트가 발생함을 보여준다.
The survival graphs shown in FIGS. 3A and 3B show that an event occurs within the tenth week after the peak of the target real estate group.

도 4는 본 발명에 따른 생존 기간 예측 알고리즘을 사용한 생존 확률 그래프를 나타낸다. FIG. 4 shows a survival probability graph using the survival period prediction algorithm according to the present invention.

본 발명에서는 생존 기간 예측을 위해 카플란 마이어(Kaplan-Meier) 예측 알고리즘을 사용하며, Kaplan-Meier 예측 알고리즘은 아래 수학식 1과 같이 표현될 수 있다. In the present invention, a Kaplan-Meier prediction algorithm is used to predict the survival time, and a Kaplan-Meier prediction algorithm can be expressed as Equation 1 below.

Figure 112014051639834-pat00001
Figure 112014051639834-pat00001

여기서,

Figure 112014051639834-pat00002
는 생존 확률의 예측치이고,
Figure 112014051639834-pat00003
는 시간
Figure 112014051639834-pat00004
바로 이전까지의 거래 건수를 나타내고,
Figure 112014051639834-pat00005
는 손실 개수를 나타낸다. here,
Figure 112014051639834-pat00002
Is the predicted value of the survival probability,
Figure 112014051639834-pat00003
Time
Figure 112014051639834-pat00004
Represents the number of trades up to immediately before,
Figure 112014051639834-pat00005
Represents the number of losses.

도 4에서 KM-예측치로 표시된 생존 확률 예측치는 실선으로 나타나 있으며, 실선의 아래, 위로 존재하는 두 개의 점선은 각각 상위 0.95 및 하위 0.95에 대한 예측치를 나타낸다. In Fig. 4, the predicted survival probability indicated by the KM-predicted value is shown by a solid line, and the two dotted lines below and below the solid line represent predicted values for the upper 0.95 and lower 0.95, respectively.

도 4의 그래프와 같은 부동산 정보조회 빅데이터를 분석을 통해, 부동산 파동의 최고점은 지역 별로 차이는 있으나 실제 시장에 반영되기 3 ~ 4개월 이전에 해당 지역에 대한 조회 피크가 발생하는 것으로 나타났다. 즉, 본 발명에 다르면 3개월 내지 4개월 이후 발생할 부동산 시장의 징후를 포착할 수 있다.
As shown in the graph of FIG. 4, through the analysis of the big data of the real estate information, the peaks of the real estate fluctuations were observed in the relevant region 3 to 4 months before the real estate market was reflected in the peak. That is, according to the present invention, it is possible to catch the signs of the real estate market to occur after 3 to 4 months.

도 5는 본 발명에 따른 데이터 분석을 통해 표현되는 지역별 동향의 일 실시예를 나타낸다. FIG. 5 shows an embodiment of trends according to regions expressed through data analysis according to the present invention.

도 5를 통해 설명하는 지역별 동향의 일 실시예는 지도 및 스타 플롯(star plot)을 활용해 이벤트 발생을 표현하는 방식을 보여준다. One embodiment of the regional trends illustrated in FIG. 5 illustrates a method of expressing an event occurrence using a map and a star plot.

도 5의 좌측 화면(5a)에서는 부동산 정보 조회를 지역 별로 구분하여 각 주차의 조회 수 크기 변화에 대한 스타 플롯을 생성하여 제공한다. 5a에 도시된 표의 각 칸은 700 여 개의 동을 나타내며, 각 칸에는 각 동에 대한 스타 플롯이 도시되어 있다. 사용자가 특정 동을 선택하는 경우, 도 5a의 하단에 표시된 것과 같이 해당 동에 대한 스타 플롯을 확대하여 디스플레이한다. In the left screen 5a of FIG. 5, the real estate information inquiry is divided into regions and a star plot is generated for the change in the number of inquiries of each parking lot. Each column in the table shown in 5a represents 700 copper, and each column shows a star plot for each copper. When the user selects a specific motion, the star plot for the motion is enlarged and displayed as shown at the bottom of FIG. 5A.

도 5의 스타 플롯에서 0 도에서 시작하여 360 도까지 증가하는 각도의 변화는 시간의 흐름, 즉 증가하는 주차를 나타내고 각 주차에서 발생하는 이벤트의 크기가 큰 경우는 스타의 형태가 원주를 향해 더 뻗어나간 형태를 띠도록 표현함으로써 주차별 이벤트의 흐름을 한 눈에 파악할 수 있도록 한다.In the star plot of FIG. 5, the change of the angle from 0 degrees to 360 degrees shows the flow of time, i.e., increasing parking, and when the size of the event occurring in each parking is large, By expressing it in a stretched form, we can grasp the flow of the main discrimination event at a glance.

도 5의 우측 화면(5b)에서는 기 생성한 스타 플롯을 지도와 매칭하여 표현하고, 사용자의 선택에 따라 해당 동의 스타 플롯을 확대한 모습을 도시한다. In the right screen 5b of FIG. 5, the generated star plot is expressed by matching with the map, and the corresponding star plot is enlarged according to the user's selection.

관련하여, 도 5에서 도시하지는 않았으나, 지역별 분석에서는 사용자 열람, 매매 계약, 임대 계약의 상관 관계를 그래프 형태로 나타낼 수 있는데, 예를 들어, 두 관찰 값(정보 조회, 매매 계약)의 클러스터를 생성하여 지도에 표현할 수 있다.In relation to this, although not shown in FIG. 5, in the regional analysis, the correlation between the user browse, the sale contract, and the lease contract can be expressed in a graph form. For example, a cluster of two observation values (information inquiry, It can be expressed on the map.

구체적으로, 사용자 선택한 두 관찰 값(정보 조회, 실제 매매 계약)에 의한 클러스터링 및 추세선을 두 관찰 값을 축으로 하는 그래프 상에 나타낼 수 있다. 또한, 이렇게 생성된 생성된 클러스터를 지도와 매핑하여 표현할 수도 있고, 이를 각 주차의 이벤트로 표현할 수도 있다. Specifically, clustering by two user-selected observations (information inquiry, actual sales contract) and trend line can be shown on the graph with two observation values as axis. In addition, the generated cluster thus generated may be represented by mapping with a map, or may be expressed as an event of each parking.

뿐만 아니라 본 발명에서는, 사용자 열람, 매매 계약, 임대 계약 간의 관계를 평행좌표계 플롯(PCP)을 활용해 나타낼 수도 있다. 실제 사용자 열람, 매매 계약, 임대 계약 간의 관계를 평행좌표계 플롯(PCP)을 구성해 살펴보면, 사용자 열람 및 매매 계약, 그리고 사용자 열람 및 전월세 계약 간에는 비례 관계가 나타남을 알 수 있다.
In addition, in the present invention, the relationship between the user browsing, the sales contract, and the lease contract may be represented using a parallel coordinate system plot (PCP). If we look at the relationship between actual user browse, sales contract, and lease contract by the parallel coordinate plot (PCP), it can be seen that there is a proportional relationship between user browse and purchase contract, user browse and previous month contract.

도 6는 본 발명에 따른 데이터 분석을 통해 표현되는 사용자별 동향의 일 실시예를 보여준다. FIG. 6 shows an embodiment of trends according to users expressed through data analysis according to the present invention.

도 6의 실시예에서는 지도와 시간 축에 사용자들의 부동산 조회 경로를 표현하고 있다. In the embodiment of FIG. 6, a real estate inquiry path of users is represented on a map and a time axis.

도 6의 지도 상에는 사용자들이 접속하는 IP 주소 분석을 통해 파악한 지역에 위치하는 사용자들을 각기 다른 색깔로 표현하여 나타내고 있으며, 지도와 평형인 면에 대해 수직인 축은 시간 축을 나타낸다. On the map of FIG. 6, the users located in the area identified through IP address analysis connected to the users are represented in different colors, and the axis perpendicular to the map and the plane of equilibrium represents the time axis.

즉, 도 6에서는 지도와 시간 축에 대해 사용자들의 부동산 조회 경로를 표현하고 있으며, 이를 통해 통해 지역별 펄스의 주기 변화를 감지할 수 있고, 특정 지역에 관심있는 사용자 층과 전역에 걸쳐 관심을 두고 있는 사용자 층을 구분할 수 있다. 또한, 시간 경과에 따른 각 지역의 관심도 흐름을 관찰함으로써 지역별 펄스의 세기 변화를 감지할 수 있다.
That is, in FIG. 6, the real estate inquiry path of the users is expressed with respect to the map and the time axis. Through this, it is possible to detect the periodic pulse change of the regional pulse, The user layer can be distinguished. In addition, by observing the flow of interest in each region over time, it is possible to detect a change in intensity of pulses in each region.

도 7은 본 발명에 따른 데이터 분석을 통해 표현되는 부동산간 네트워크 생성의 일 실시예를 보여준다. 7 shows an embodiment of an inter-real estate network generation represented by data analysis according to the present invention.

도 7은 사용자의 접속조회 패턴을 분석하여 부동산 간의 네트워크를 파악하고, 파악된 부동산 네트워크 분석 결과 허브가 되는 부동산을 강조하여 표시해 주고 있다.FIG. 7 analyzes the connection inquiry pattern of the user to grasp the network between real estate, and emphasizes and displays real estate as a hub of the analyzed real estate network.

사용자의 정보조회 패턴을 분석하여 이분(BiPartite) 그래프를 생성하고 조회 패턴에 의한 가중치를 각 노드(부동산)에 투영하여 부동산 간의 가중치를 가지는 네트워크를 생성한다. 여기서, 이분 그래프는 그래프의 구성 정점들을 두 부분으로 나누었을 때 각 부분에 속하는 정점들이 모두 인접하지 않는 그래프를 의미한다. 예를 들어, 본 실시예에서는 사용자 A가 조회한 적어도 하나의 부동산 노드, 사용자 B가 조회한 적어도 하나의 부동산 노드를 확정하고, 두 사용자가 조회한 노드들간의 상관관계를 부동산 노드 간의 링크로 표현한다.A BiPartite graph is generated by analyzing the information query pattern of the user, and a weight by the query pattern is projected to each node (real estate) to generate a network having a weight between real estate. Here, the bipartite graph refers to a graph in which vertices belonging to each part are not adjacent to each other when the constituent vertices of the graph are divided into two parts. For example, in the present embodiment, at least one real estate node looked up by the user A and at least one real estate node looked up by the user B are determined, and the correlation between the nodes looked up by the two users is expressed as a link between the real estate nodes do.

도 7에서 링크의 가중치는 링크의 두께로 표현되어 있으며, 노드의 가중치는 노드를 표현하는 점의 크기 및 고유번호의 글자 크기로 표현되어 있다. 본 발명에서는 이에 그치지 않고, 정도(Degree) 분석을 통하여 부동산 허브(Hub)를 도출한다. 본 발명에서 부동산 허브는 사용자 조회의 시작이 되는 부동산으로 다양한 목적의 다수의 사용자들로부터 조회의 중심을 차지하고 있는 부동산을 의미한다.
In FIG. 7, the weight of the link is expressed by the thickness of the link, and the weight of the node is represented by the size of the point representing the node and the character size of the unique number. In the present invention, a real estate hub is derived through a degree analysis. In the present invention, a real estate hub is a real estate that is a starting point of user inquiry, and means a real estate occupying the center of inquiry from a large number of users of various purposes.

도 8는 본 발명에 따른 데이터 분석을 통해 표현되는 핫-스팟의 일 실시예를 보여준다. FIG. 8 shows an embodiment of a hot-spot that is expressed through data analysis according to the present invention.

도 8에 도시된 실시예는 지도 상에 지역별 조회 정도를 색깔로 구분하여 지도 상에 나타내고 있다. 도 8에 도시된 패턴 일견 등고선과도 유사해 보이는데 짙은 색깔로 표시된 지역이 관심이 집중되는 지역을 나타낸다. In the embodiment shown in FIG. 8, the degree of inquiry by region on the map is color-coded and displayed on a map. The pattern shown in Fig. 8 seems to be similar to the contour lines, and regions denoted by dark colors indicate areas where attention is focused.

도 8에 도시된 바와 같은 핫-스팟 분석을 통해 사용자들은 주기별로 급격하게 관심이 집중되는 지역을 탐색 가능하다.
Through the hot-spot analysis as shown in FIG. 8, users can search an area where attention is rapidly concentrated by the period.

도 9은 본 발명에 따른 데이터 분석을 통해 표현되는 거리 대비 부동산의 공간자기상관 그래프를 나타낸다. FIG. 9 shows a spatial autocorrelation graph of real estate versus distance expressed through data analysis according to the present invention.

도 9에 도시된 바와 같은 부동산의 공간 자기상관(AutoCorrelation) 분석을 통해 3km 범위에서 자기상관이 가장 높게 나타남을 알 수 있다. 실제로, 실거래 발생 지역에 해당 거리를 적용하여 Hot-Spot을 분석한 결과 부동산 정보 조회 패턴과 매우 유사하게 나타남을 확인할 수 있었다.
AutoCorrelation analysis of the real estate as shown in FIG. 9 shows that the autocorrelation is highest in the range of 3 km. In fact, the analysis of the hot-spot by applying the distance to the real transaction area shows that it is very similar to the real estate information query pattern.

도 10은 본 발명에 따른 데이터 분석 방법의 동작 순서도이다. 10 is an operational flowchart of a data analysis method according to the present invention.

도 10에서 설명하는 데이터 분석 방법의 각 단계들이 도 1을 통하여 설명된 본 발명의 데이터 분석 장치의 대응되는 구성요소에서 수행되는 동작으로 이해될 수 있으나, 방법을 구성하는 각 단계들은 각 단계를 정의하는 기능 자체로서 한정되어야 한다. 즉, 각 단계를 수행하는 것으로 예시된 구성요소의 명칭에 의해서 각 단계의 수행주체가 한정되지 않음에 유의하여야 한다.Each step of the data analysis method described in FIG. 10 can be understood as an operation performed in a corresponding component of the data analysis apparatus of the present invention described with reference to FIG. 1, As a function itself. That is, it should be noted that the subject of each step is not limited by the name of the constituent element exemplified by performing each step.

본 발명에 따른 데이터 분석을 위해서는 우선, 부동산 조회 사이트로부터 부동산 정보 검색 데이터를 수집한다(S1010). 수집된 부동산 정보 검색 데이터는 테마별 분석, 예를 들어, 지역별 동향 분석, 사용자별 동향 분석, 부동산간 네트워크 분석에 제공되는데, 도 10에 도시된 분석 테마는 예시에 지나지 않으며 본 발명에 따른 테마가 본 실시예에서 열거하는 테마로만 한정되지는 않는다.In order to analyze data according to the present invention, first, real estate information search data is collected from the real estate inquiry site (S1010). The collected real estate information search data is provided for theme analysis, for example, regional trend analysis, user trend analysis, and inter-real estate network analysis. The analysis theme shown in FIG. 10 is merely an example, But the present invention is not limited to the themes listed in the embodiments.

본 발명에 따른 데이터 분석에서는, 테마별 분석을 통해 1차로 분석된 데이터를 시계열적으로 분석한다(S1030). 도 10의 실시예에서는 테마별 분석과 시계열적 분석이 도시의 편의상 순차적으로 이루어지는 것으로 도시되어 있으나, 두 가지 분석의 순서가 바뀌어도 무방하며 경우에 따라서는 두 가지 분석이 유기적으로 결합되어 사용될 수도 있다. In the data analysis according to the present invention, the data analyzed first through the theme analysis is analyzed in a time-series manner (S1030). In the embodiment of FIG. 10, the theme analysis and the time-series analysis are sequentially performed for the convenience of the city, but the order of the two analyzes may be changed, and in some cases, the two analyzes may be used in combination.

분석된 데이터는 선택된 테마에 따라 가시화하여 제공되는데, 이때 사용자 열람, 매매 계약, 임대 계약 간의 관계를 나타내는 평행좌표계 플롯, 지역별 시계열 동향을 나타내는 스타 플롯, 및 사용자별 접속조회 패턴을 반영하는 이분 그래프 등이 활용될 수 있다.The analyzed data is provided by visualizing according to the selected theme. At this time, a parallel coordinate system plot showing the relationship between user browsing, sales contract and lease contract, a star plot showing the time series trend according to the region, and a half graph reflecting the user access query pattern Can be utilized.

이처럼, 테마별 분석과 시계열적 분석을 통해 부동산 시장의 파동을 분석할 수 있으며, 이를 통해 핫-스팟 지역 및 특정 지역 또는 전반적인 부동산 시장의 이상 징후를 도출할 수 있으며(S1050), 부동산 시장의 예측 데이터를 이끌어낼 수 있다(S1060).
Thus, it is possible to analyze the fluctuation of the real estate market through the theme analysis and the time-series analysis, and it is possible to derive an abnormal symptom of the hot-spot region, the specific region, or the overall real estate market (S1050) (S1060).

상술한 실시예들을 통해 설명한 본 발명에 따르면, 정부의 부동산 이슈에 대처할 수 있는 시간 확보 및 부동산 정책 마련에 필요한 분석 결과를 제공할 수 있다. According to the present invention described above, it is possible to provide time necessary to cope with real estate issues of the government and analysis results necessary for real estate policy preparation.

또한, 비정상적인 패턴을 보이는 이상 거래 상황이 예상되는 지역을 탐색하여, 기획 부동산 등 비정상적인 거래로 인한 피해를 방지할 수 있다. In addition, it is possible to prevent damage due to abnormal trading such as planning real estate by searching for an area where an abnormal trading pattern is expected, which shows an abnormal pattern.

뿐만 아니라, 지역별 클러스터링을 통하여 국민에게 비정상적인 부동산 거래 관련 위험 지수를 제공할 수 있다.
In addition, through clustering by region, it is possible to provide unusual real estate transaction related risk index to the people.

이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims. It will be possible.

100: 부동산 정보조회 데이터베이스 200: 데이터 분석부
300: 가시화 관리부 400: 사용자 인터페이스부
100: Property information inquiry database 200: Data analysis unit
300: visualization management unit 400: user interface unit

Claims (15)

부동산정보검색 데이터를 저장하는 부동산 정보조회 데이터베이스;
상기 부동산정보검색 데이터에 대한 테마별 분석 및 시계열적 분석에 기반하여 부동산 시장의 파동을 파악하고, 부동산 검색 정보와 부동산 실거래 정보 간의 연관관계를 도출하는 데이터 분석부; 및
상기 데이터 분석부에 의해 분석된 데이터를 선택된 테마에 따라 가시화하여 제공하는 가시화 관리부를 포함하고;
상기 데이터 분석부는, 생존 기간 예측 알고리즘을 사용해 상기 부동산 검색 정보와 부동산 실거래 정보 간의 시간적 연관관계를 도출하며;
상기 가시화 관리부는, 지역별 시계열 동향을 나타내는 스타 플롯, 사용자 열람, 매매, 계약, 임대 계약 간의 관계를 나타내는 평행좌표계 플롯, 및 사용자별 접속조회 패턴을 반영하는 이분 그래프를 활용해 분석된 데이터를 가시화하는, 데이터 분석 장치.
A real estate information inquiry database for storing real estate information search data;
A data analyzer for grasping the fluctuation of the real estate market based on the theme analysis and the time series analysis of the real estate information search data and deriving a relationship between the real estate search information and real estate real estate information; And
And a visualization management unit for visualizing and providing the data analyzed by the data analysis unit according to the selected theme;
Wherein the data analysis unit derives a temporal relationship between the real estate search information and real estate real estate information using a survival period prediction algorithm;
The visualization management unit visualizes the analyzed data by using a binary graph reflecting a star plot representing a time series trend in each region, a user view, a sale, a contract, a parallel coordinate system plot showing a relationship between a lease contract, , Data analysis device.
청구항 1에 있어서,
상기 부동산 정보조회 데이터베이스는,
부동산 매매 계약 및 부동산 임대 계약을 포함하는 부동산 실거래 정보를 추가로 저장하는, 데이터 분석 장치.
The method according to claim 1,
The real estate information inquiry database includes:
A data analysis device for storing real estate real estate information, including real estate sales contracts and real estate rental contracts.
청구항 2에 있어서,
상기 테마별 분석은,
지역별 동향 분석, 사용자별 동향 분석, 및 부동산간 네트워크 분석 중 적어도 하나를 포함하는, 데이터 분석 장치.
The method of claim 2,
The theme-
A regional trend analysis, a user specific trend analysis, and an inter-real estate network analysis.
삭제delete 청구항 3에 있어서,
상기 데이터 분석부는,
부동산간 네트워크 분석을 통해 복수의 사용자가 조회한 부동산 노드들 간의 연관관계를 분석하여, 사용자 조회의 시작이 되는 부동산 허브를 도출하는 것을 특징으로 하는, 데이터 분석 장치.
The method of claim 3,
The data analysis unit may include:
Analyzing the association between the real estate nodes viewed by the plurality of users through the real estate network analysis to derive the real estate hub that is the start of the user inquiry.
청구항 3에 있어서,
상기 데이터 분석부는,
지역별 동향 분석을 통해 부동산 데이터 검색이 집중되는 핫-스팟 지역을 도출하여 제공하는, 데이터 분석 장치.
The method of claim 3,
The data analysis unit may include:
A data analysis device that derives and provides a hot-spot area where real-estate data search is concentrated through regional trend analysis.
청구항 1에 있어서,
상기 부동산 시장의 파동은, 사용자의 부동산 정보 조회에 따른 펄스 주기 및 해당 지역에 집중되는 조회량에 따른 펄스 세기를 포함하는, 데이터 분석 장치.
The method according to claim 1,
Wherein the wave of the real estate market includes a pulse period according to a user's inquiry about real estate information and a pulse intensity according to a reference amount concentrated in the area.
삭제delete 데이터 수집부를 통해, 적어도 하나의 부동산 조회 사이트로부터 부동산정보검색 데이터를 수집하는 단계;
데이터 분석부를 통해, 수집된 상기 부동산정보검색 데이터를 테마별 및 시계열적으로 분석하는 단계;
가시화 관리부를 통해, 상기 분석된 데이터를 선택된 테마에 따라 가시화하여 제공하는 단계; 및
상기 데이터 분석부를 통해, 테마별 및 시계열적으로 분석된 데이터를 통해 부동산 시장의 파동을 파악하는 단계를 포함하고;
상기 부동산 시장의 파동을 파악하는 단계는, 상기 데이터 분석부가 생존 기간 예측 알고리즘을 사용해 부동산 검색 정보와 부동산 실거래 정보 간의 연관관계를 도출하는 단계를 포함하고;
상기 분석된 데이터를 선택된 테마에 따라 가시화하여 제공하는 단계는, 상기 데이터 분석부가 사용자 열람, 매매 계약, 임대 계약 간의 관계를 나타내는 평행좌표계 플롯, 지역별 시계열 동향을 나타내는 스타 플롯, 및 사용자별 접속조회 패턴을 반영하는 이분 그래프를 활용해 분석 결과를 가시화하는 단계를 포함하는, 데이터 분석 방법.
Collecting real estate information search data from at least one real estate inquiry site through a data collector;
Analyzing the collected real estate information search data by a theme and time series through a data analysis unit;
Visualizing and providing the analyzed data according to a selected theme through a visualization management unit; And
And analyzing the wave of the real estate market through the data analyzed by the theme and the time series through the data analysis unit;
The step of detecting the fluctuation of the real estate market includes the step of deriving an association between real estate search information and real estate real estate information using the data analysis unit survival prediction algorithm;
The step of visualizing and providing the analyzed data in accordance with the selected theme may include a step of displaying the data analyzed by the data analysis unit in a parallel coordinate system plot showing a relationship between a user's browsing, a sales contract, a lease contract, a star plot showing a time- And visualizing the analysis results using a dichotomous graph that reflects the data.
삭제delete 청구항 9에 있어서,
상기 테마별 및 시계열적으로 분석된 데이터를 통해 부동산 시장의 파동을 파악하는 단계는,
상기 데이터 분석부가 부동산간 네트워크 분석을 통해 복수의 사용자가 조회한 부동산 노드들 간의 연관관계를 분석하여, 사용자 조회의 시작이 되는 부동산 허브를 도출하는 단계를 포함하는, 데이터 분석 방법.
The method of claim 9,
The step of grasping the fluctuation of the real estate market through the theme and the time-
Analyzing the association between the real estate nodes viewed by the plurality of users through the inter-real-estate network analysis of the data analysis unit, and deriving a real estate hub that is the start of the user query.
삭제delete 청구항 9에 있어서,
상기 테마별 및 시계열적으로 분석된 데이터를 통해 부동산 시장의 파동을 파악하는 단계는,
상기 데이터 분석부가 지역별 동향 분석을 통해 부동산 데이터 검색이 집중되는 핫-스팟 지역을 도출하여 제공하는 단계를 포함하는, 데이터 분석 방법.
The method of claim 9,
The step of grasping the fluctuation of the real estate market through the theme and the time-
And deriving and providing a hot-spot region in which the data analysis unit is concentrated through the regional trend analysis.
청구항 9에 있어서,
상기 데이터 수집부가 상기 부동산정보검색 데이터는 주기적으로 업데이트하여 저장하는 단계를 더 포함하는, 데이터 분석 방법.
The method of claim 9,
Further comprising the step of periodically updating and storing the real estate information search data.
삭제delete
KR1020140066236A 2014-05-30 2014-05-30 Method for analyzing data and apparatus using the method KR101636953B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140066236A KR101636953B1 (en) 2014-05-30 2014-05-30 Method for analyzing data and apparatus using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140066236A KR101636953B1 (en) 2014-05-30 2014-05-30 Method for analyzing data and apparatus using the method

Publications (2)

Publication Number Publication Date
KR20150137771A KR20150137771A (en) 2015-12-09
KR101636953B1 true KR101636953B1 (en) 2016-07-07

Family

ID=54873663

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140066236A KR101636953B1 (en) 2014-05-30 2014-05-30 Method for analyzing data and apparatus using the method

Country Status (1)

Country Link
KR (1) KR101636953B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220085595A (en) 2020-12-15 2022-06-22 (주)아이소프트 System for multidimensional visualization of large-scale analysis data and method for multidimensional visualization of large-scale analysis thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101888010B1 (en) * 2017-05-26 2018-09-06 (주)씨에이씨컴퍼니 System and method for providing of statistical trends service of real-estate
KR102183860B1 (en) * 2018-07-27 2020-11-27 주식회사 호갱노노 Method for displaying information on price fluctuation and Apparatus thereof
KR102245888B1 (en) * 2019-05-10 2021-04-30 주식회사 공감랩 System and method of building big data for estimating house price using space information
KR102402491B1 (en) * 2019-06-27 2022-05-31 주식회사 호갱노노 Method for displaying information on data fluctuation and apparatus thereof
KR102375668B1 (en) * 2021-06-11 2022-03-18 주식회사 사이람 Method for generating graph representation learning model
CN117539920B (en) * 2024-01-04 2024-04-05 上海途里信息科技有限公司 Data query method and system based on real estate transaction multidimensional data

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101083510B1 (en) * 2009-04-16 2011-11-16 엔에이치엔(주) System and method for time series clustering using frequency transform scheme
KR20140053444A (en) * 2012-10-25 2014-05-08 한국과학기술정보연구원 Apparatus for forecasting market volume, method of forecasting market volume, and storage medium for storing a program forecasting market volume

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220085595A (en) 2020-12-15 2022-06-22 (주)아이소프트 System for multidimensional visualization of large-scale analysis data and method for multidimensional visualization of large-scale analysis thereof

Also Published As

Publication number Publication date
KR20150137771A (en) 2015-12-09

Similar Documents

Publication Publication Date Title
KR101636953B1 (en) Method for analyzing data and apparatus using the method
Hu et al. Understanding the topic evolution of scientific literatures like an evolving city: Using Google Word2Vec model and spatial autocorrelation analysis
Huang et al. TrajGraph: A graph-based visual analytics approach to studying urban network centralities using taxi trajectory data
Maciejewski et al. A visual analytics approach to understanding spatiotemporal hotspots
US8065257B2 (en) System and method for correlating past activities, determining hidden relationships and predicting future activities
Sivaranjani et al. Crime prediction and forecasting in Tamilnadu using clustering approaches
US8924377B2 (en) Preference stack
Wang et al. Modeling spatially non-stationary land use/cover change in the lower Connecticut River Basin by combining geographically weighted logistic regression and the CA-Markov model
Guo et al. An ensemble forecast model of dengue in Guangzhou, China using climate and social media surveillance data
Griethe et al. Visualizing uncertainty for improved decision making
Matkan et al. Detecting the spatial–temporal autocorrelation among crash frequencies in urban areas
KR20170025454A (en) System and method for space-time analysis of social media data
CN111866727A (en) Display method and device for driver gathering point, electronic equipment and storage medium
WO2014124279A1 (en) Customer experience management for an organization
Chen et al. User behavior map: Visual exploration for cyber security session data
Lim et al. A systematic review of the data, methods and environmental covariates used to map Aedes-borne arbovirus transmission risk
Liu et al. Enhancing fine-grained intra-urban dengue forecasting by integrating spatial interactions of human movements between urban regions
Mahmud et al. A human mobility data driven hybrid GNN+ RNN based model for epidemic prediction
CN117633249B (en) Method and device for constructing basic variable for SDGs space type monitoring index
Mergenthaler et al. The study of spatial autocorrelation for infectious disease epidemiology decision-making: a systematized literature review
McArdle et al. Interpreting map usage patterns using geovisual analytics and spatio-temporal clustering
CN107801418B (en) Floating population estimation device and method using map search record
Gómez-Sanz et al. Landscape assessment and monitoring
Hu et al. Framework for prioritizing geospatial data processing tasks during extreme weather events
US20170345085A1 (en) Item location management using distributed sensors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right