KR101635450B1 - PV (Photo-Voltaic) generation forecasting system for the city energy management system based on weather information - Google Patents
PV (Photo-Voltaic) generation forecasting system for the city energy management system based on weather information Download PDFInfo
- Publication number
- KR101635450B1 KR101635450B1 KR1020150000073A KR20150000073A KR101635450B1 KR 101635450 B1 KR101635450 B1 KR 101635450B1 KR 1020150000073 A KR1020150000073 A KR 1020150000073A KR 20150000073 A KR20150000073 A KR 20150000073A KR 101635450 B1 KR101635450 B1 KR 101635450B1
- Authority
- KR
- South Korea
- Prior art keywords
- time
- power generation
- generation amount
- weather
- cloudy
- Prior art date
Links
- 238000010248 power generation Methods 0.000 claims abstract description 114
- 238000004458 analytical method Methods 0.000 claims abstract description 22
- 238000004364 calculation method Methods 0.000 claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 238000010606 normalization Methods 0.000 claims abstract description 11
- 238000007726 management method Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 11
- 230000009466 transformation Effects 0.000 claims 2
- 230000005611 electricity Effects 0.000 description 2
- 238000013277 forecasting method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/10—Devices for predicting weather conditions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Environmental & Geological Engineering (AREA)
- General Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Marketing (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Ecology (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Quality & Reliability (AREA)
- Environmental Sciences (AREA)
- Development Economics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
본 발명은 도시에너지관리시스템(CEMS, City Energy Management System)에 효과적으로 대응하기 위하여 '시간대별 발전량', '일몰시간', '일출시간', '남중시간' 및 '기상예보 정보'를 포함한 각종 데이터를 효과적으로 취합하고 분석 및 정규화하여 시간대별 정확한 결과를 도출하기 위한 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템에 관한 것이다.
In order to effectively cope with the urban energy management system (CEMS), the present invention can be applied to various data including 'generation amount by time zone', 'sunset time', 'sunrise time', ' The present invention relates to a solar power generation prediction system for an urban energy management system that utilizes weather information for efficiently collecting, analyzing, and normalizing the time series and obtaining accurate results over time.
급속도로 증가하는 에너지수요의 추세에 따라 우리나라의 에너지기본계획은 수요관리(DR, Demand Response)와 분산형 발전(DG, Distributed Generation) 시스템을 중심으로 전환되었다. 따라서 구체적인 대안으로 도시에너지관리시스템(CEMS, City Energy Management System)이 도입되고 있다. Due to the rapidly increasing demand for energy, Korea's energy basic plan has been shifted to Demand Response (DR) and Distributed Generation (DG) systems. As a concrete alternative, the City Energy Management System (CEMS) is being introduced.
상기 도시에너지관리시스템(CEMS, City Energy Management System)은 소비자와 공급자 간의 실시간 에너지 정보를 교환함으로써 효율적으로 도시 내에서 소비되는 에너지를 관리하는 시스템을 말하며, 도시 에너지원별 수요 예측과 최적 운전스케줄링, 신재생에너지원의 발전량 예측 등을 통해 도시 내에서 소비되는 에너지를 효율적으로 관리해주는 시스템을 말한다.The city energy management system (CEMS) is a system that efficiently manages energy consumed in a city by exchanging real-time energy information between a consumer and a supplier. It is a system that efficiently manages the energy consumed in the city through forecasting the generation of renewable energy sources.
상기 도시에너지관리시스템(CEMS, City Energy Management System)을 효과적으로 운영하기 위해서는 실시간 도시 에너지의 수요 예측과 도시 내 신재생에너지원의 시간대별 발전량(공급) 예측이 기본적으로 이루어져야 한다. In order to effectively operate the City Energy Management System (CEMS), forecasts of demand for real-time urban energy and prediction of generation (supply) of new and renewable energy sources in the city should be made basically.
그러나 기존의 에너지 수급 예측은 연간 수급 변화율을 보이는 것으로 상기 도시에너지관리시스템(CEMS, City Energy Management System)에 적합하지 않기 때문에 도시의 특성을 고려한 실시간 도시 에너지의 전체 수요 및 도시 내 신재생에너지원의 시간대별 발전량(공급) 예측이 필요하다. However, since the existing energy supply and demand forecast shows annual change in demand and supply, it is not suitable for the above-mentioned CEMS (City Energy Management System), so the total demand of real-time urban energy considering the characteristics of cities, Prediction of generation (supply) by time zone is necessary.
그리고 신재생에너지원으로 기존의 태양광 발전량 예측방법들은 (1) 일사량을 활용한 방법과 (2) 가동율 또는 이용율을 활용한 방법, (3) 앞서 두 가지 방법의 평균값을 사용하는 복합적인 방법으로 수 년 이상의 과거 데이터를 통한 월간 발전량을 예측하는 방법이기 때문에 시간대별 발전량 예측이 필요한 CEMS용에는 적합하지 않은 문제점이 지적되어 왔다.
As a new and renewable energy source, existing PV generation prediction methods are classified into (1) a method using solar radiation, (2) a method using utilization rate or utilization rate, and (3) Since it is a method of predicting the monthly power generation through the past data for several years, it has been pointed out that it is not suitable for the CEMS which requires the estimation of the generation amount by time.
본 발명은 상기한 바와 같은 종래의 제반 문제점을 해소하기 위해서 제시되는 것이다. SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems of the related art.
그 목적은 종래의 부정확한 태양광 발전량 예측시스템을 탈피하여, 도시에너지관리시스템용 시간대별 태양광발전량 예측을 위하여 '시간대별 발전량', '일몰시간', '일출시간', '남중시간' 및 '기상예보 정보'를 포함한 각종 데이터를 효과적으로 취합하고 분석 및 정규화하여 시간대별 정확한 결과를 도출하기 위한 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템을 제공하고자 한다.
The purpose of the present invention is to eliminate the conventional inaccurate photovoltaic power generation forecasting system and to estimate the amount of photovoltaic power generation by time for the urban energy management system, The present invention provides a system for predicting the solar power generation amount for the urban energy management system using the weather information for efficiently collecting, analyzing and normalizing various data including the 'weather forecast information' to derive accurate results over time.
상기한 기술적 과제를 해결하기 위해 본 발명은 분석모듈, 변환모듈, 계산모듈 및 정규화모듈을 포함하여 구성된 시스템에서,According to an aspect of the present invention, there is provided a system including an analysis module, a conversion module, a calculation module, and a normalization module,
(1) 상기 분석모듈에서 도시 내의 모든 태양광발전기의 과거 발전량 데이터를 수집하여 시간당 평균 발전량의 합산을 통해 '시간대별 발전량'을 산출하는 시간대별발전량산출단계;(1) a power generation amount-by-time generation step of collecting past generation amount data of all photovoltaic generators in the city in the analysis module and calculating a 'generation amount by time period' through summing up the average generation amount per hour;
(2) 상기 분석모듈에서 천문우주지식정부 사이트에서 제공하는 지역별 일출시간, 일몰시간으로부터 상기 일출시간 이후의 정시 및 상기 일몰시간 이전의 정시를 각각 '확정일출시간' 및 '확정일몰시간'으로 정의하고 낮 12시 30분을 '남중시간'으로 정의하는 시간정의단계;(2) In the analysis module, the time from the sunrise time and sunset time provided by the astronomical universe knowledge government site to the time after the sunrise time and before the sunset time are defined as a 'definite sunrise time' and a 'definite sunset time', respectively A time defining step of defining 12:30 hour as a "southern time";
(3) 상기 변환모듈에서 기상청에서 제공하는 3시간 단위의 기상예보 정보(맑음, 구름조금, 구름많음, 흐림, 비)를 1시간 단위로 변환하는 기상예보변환단계;(3) a weather forecast conversion step of converting the weather forecast information (sunny, cloudy, cloudy, cloudy, rainy) in units of three hours provided by the weather station in the conversion module;
(4) 상기 분석모듈에서 과거 데이터를 분석하여 날씨별(맑음, 구름조금, 구름많음, 흐림, 비) 5단계 발전량을 구분하는 날씨별발전량구분단계;(4) a step of classifying the generation amount of each weather by analyzing past data in the analysis module and classifying the five-stage power generation amount by weather (fine, cloudy, cloudy, cloudy, rain);
(5) 상기 계산모듈에서 날씨별 정격발전량(P_rated) 대비 효율(%)인 ('맑음' 발전효율), ('구름조금' 발전효율), ('구름많음' 발전효율), ('흐림' 발전효율), ('비' 발전효율)를 상기 확정남중시간의 날씨별 발전량을 통해 결정하는 날시별효율계산단계;(5) In the calculation module, the efficiency (%) relative to the rated power generation amount (P_rated) ('Sunny' power generation efficiency), ('Cloudy' power generation efficiency), ('Cloudy' power generation efficiency), ('Blur' power generation efficiency), (&Apos; non-power generation efficiency '
: 도시 전체 태양광발전기의 정격발전량의 총합 : Sum of rated power generation of city-wide photovoltaic generators
: 도시 내에서 관리하는 발전기의 대수 : Number of generators managed in the city
: 개별 태양광발전기의 정격발전량 : Rated power generation of individual photovoltaic generators
(6) 상기 계산모듈에서 예측일 전일의 확정일출시간()과 확정일몰시간() 각각의 발전량(, )과 남중시간()의 발전량인 정격발전량()의 데이터로 아래 식인 정격발전량의 다항식을 생성하는 정격발전량다항식생성단계;(6) In the calculation module, the determined sunrise time ( ) And a fixed sunset time ( ) Each generation ( , ) And the peak time ), The rated power generation amount ( Generating a rated power generation polynomial equation for generating a polynomial equation of the rated power generation amount, which is expressed by the following equation;
(7) 상기 계산모듈에서 정격발전량다항식을 통해 시간대별 정격발전량을 계산하는 시간대별정격발전량계산단계;(7) a rated power generation amount calculation step for each time period in which the rated power generation amount for each time period is calculated through the rated power generation polynomial in the calculation module;
(8) 상기 정규화모듈에서 상기 일별 또는 계절별 변하는 상기 남중시간으로 인해 남중시간에 따른 시간대별 정격발전량을 정규화하기 위해 정의하는 정격발전량정규화단계;(8) a rated power generation amount normalization step that is defined in the normalization module in order to normalize the rated power generation amount by time period according to the power-on time due to the power-on time varying by day or season;
(9) 상기 계산모듈에서 상기 정규화정격발전량()과 아래식을 가지고 시간대별 날씨별 발전량()을 계산하는 시간대별날씨별발전량계산단계;(9) In the calculating module, the normalized rated power generation amount ) And the following equation to calculate the generation amount by weather ( Calculating a power generation amount by weather for each weather period;
를 포함하여 구성되는 것을 특징으로 하는 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템을 제공한다.
The present invention provides a solar power generation prediction system for an urban energy management system that utilizes weather information.
본 발명에 따르면 종래의 부정확한 태양광 발전량 예측시스템을 탈피하여, 태양광발전량 예측을 위하여 '시간대별 발전량', '일몰시간', '일출시간', '남중시간' 및 '기상예보 정보'를 포함한 각종 데이터를 효과적으로 취합하고 분석 및 정규화하여 시간대별 정확한 결과를 도출하기 위한 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템을 제공한다.According to the present invention, the conventional inaccurate solar power generation forecasting system can be omitted, and the 'generation time by hour', 'sunset time', 'sunrise time', ' This system provides solar power generation forecasting system for urban energy management system that utilizes weather information to effectively collect, analyze, and normalize various data including time,
또한 도시의 특성을 감안한 정확한 태양광 발전량 예측을 위해 해당 도시의 '일몰시간', '일출시간', '남중시간', '기상예보 정보'의 활용으로 도시에너지관리시스템(CEMS, City Energy Management System)의 효율적인 운영을 뒷받침하는 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템을 제공한다.
The city energy management system (CEMS), the City Energy Management System (CEMS), and the Urban Energy Management System ) Is provided to provide a solar PV generation forecasting system for an urban energy management system that utilizes weather information to support efficient operation of the PV system.
도 1은 본 발명의 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템의 각 단계를 도시한 순서도이다.
도 2는 본 발명의 (2) 시간정의단계를 예로써 설명한 표이다.
도 3은 본 발명의 (3) 기상예보변환단계에서 사용되는 기상청에서 제공하는 기상예보 정보의 예를 도시한 것이다.
도 4는 도 3을 분석하여 표로써 나타낸 것이다.
도 5는 도 4를 선형보간법(내삽법)으로 정수화하고 변환한 것을 표로써 나타낸 것이다.
도 6은 본 발명의 (4) 날씨별발전량구분단계에서 분석된 과거 데이터를 도시한 것이다.
도 7은 본 발명의 (6) 정격발전량다항식생성단계에서 생성된 정격발전량의 다항식을 도시한 것이다.
도 8은 본 발명의 (9) 시간대별날씨별발전량계산단계에서 계산된 결과를 도시한 것이다.
도 9는 본 발명의 다른 실시예에서 (5) 날씨별발전량다항식생성단계에서 계산된 날씨별 발전량 다항식의 결과를 도시한 것이다.
도 10은 본 발명의 다른 실시예에서 (6) 시간대별날씨별발전량계산단계에서 계산된 결과를 도시한 것이다.1 is a flowchart showing each step of a solar power generation prediction system for an urban energy management system using weather information of the present invention.
Fig. 2 is a table explaining an example of the time definition step (2) of the present invention.
FIG. 3 shows an example of weather forecast information provided by the weather station used in the (3) weather forecast conversion step of the present invention.
FIG. 4 is an analysis table of FIG.
Fig. 5 is a table showing that the Fig. 4 is integerized by linear interpolation (interpolation) and converted.
FIG. 6 is a graph showing past data analyzed in the step (4) for classifying the generation amount by weather of the present invention.
7 shows a polynomial expression of the rated power generation amount generated in the step (6) of generating the rated power generation amount polynomial of the present invention.
FIG. 8 shows the results calculated in the step (9) of calculating the generation amount of electricity for each hour of the present invention.
FIG. 9 shows the results of the generation-by-weather power generation polynomials calculated in (5) generation of a generation-specific polynomial by another embodiment of the present invention.
FIG. 10 shows the results calculated in the step of calculating the generation amount by weather for each time period according to another embodiment of the present invention.
이하 첨부한 도면과 함께 상기와 같은 본 발명의 개념이 바람직하게 구현된 실시예를 통하여 본 발명을 더욱 상세하게 설명한다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템의 각 단계를 도시한 순서도이다.
1 is a flowchart showing each step of a solar power generation prediction system for an urban energy management system using weather information of the present invention.
본 발명의 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템은 분석모듈, 변환모듈, 계산모듈 및 정규화모듈을 포함하여 구성된 시스템에서,The system for predicting solar power generation for an urban energy management system utilizing weather information of the present invention is a system configured by including an analysis module, a conversion module, a calculation module, and a normalization module,
(1) 상기 분석모듈에서 도시 내의 모든 태양광발전기의 과거 발전량 데이터를 수집하여 시간당 평균 발전량의 합산을 통해 '시간대별 발전량'을 산출하는 시간대별발전량산출단계;(1) a power generation amount-by-time generation step of collecting past generation amount data of all photovoltaic generators in the city in the analysis module and calculating a 'generation amount by time period' through summing up the average generation amount per hour;
(2) 상기 분석모듈에서 천문우주지식정부 사이트에서 제공하는 지역별 일출시간, 일몰시간으로부터 상기 일출시간 이후의 정시 및 상기 일몰시간 이전의 정시를 각각 '확정일출시간' 및 '확정일몰시간'으로 정의하고 낮 12시 30분을 '남중시간'으로 정의하는 시간정의단계;(2) In the analysis module, the time from the sunrise time and sunset time provided by the astronomical and cosmological government government site to the time after the sunrise time and before the sunset time are defined as a 'definite sunrise time' and a ' A time defining step of defining 12:30 hour as a "southern time";
(3) 상기 변환모듈에서 기상청에서 제공하는 3시간 단위의 기상예보 정보(맑음, 구름조금, 구름많음, 흐림, 비)를 1시간 단위로 변환하는 기상예보정보변환단계;(3) a weather forecast information conversion step of converting the weather forecast information (sunny, cloudy, cloudy, cloudy, rain) in units of three hours provided by the weather station in the conversion module;
(4) 상기 분석모듈에서 과거 데이터를 분석하여 날씨별(맑음, 구름조금, 구름많음, 흐림, 비) 5단계 발전량을 구분하는 날씨별발전량구분단계;(4) a step of classifying the generation amount of each weather by analyzing past data in the analysis module and classifying the five-stage power generation amount by weather (fine, cloudy, cloudy, cloudy, rain);
(5) 상기 계산모듈에서 날씨별 정격발전량(P_rated) 대비 효율(%)인 ('맑음' 발전효율), ('구름조금' 발전효율), ('구름많음' 발전효율), ('흐림' 발전효율), ('비' 발전효율)를 상기 남중시간의 날씨별 발전량을 통해 결정하는 날씨별효율계산단계;(5) In the calculation module, the efficiency (%) relative to the rated power generation amount (P_rated) ('Sunny' power generation efficiency), ('Cloudy' power generation efficiency), ('Cloudy' power generation efficiency), ('Blur' power generation efficiency), (&Apos; non-power generation efficiency '
: 도시 전체 태양광발전기의 정격발전량의 총합 : Sum of rated power generation of city-wide photovoltaic generators
: 도시 내에서 관리하는 발전기의 대수 : Number of generators managed in the city
: 개별 태양광발전기의 정격발전량 : Rated power generation of individual photovoltaic generators
(6) 상기 계산모듈에서 예측일 전일의 확정일출시간()과 확정일몰시간() 각각의 발전량(, )과 남중시간()의 발전량인 정격발전량()의 데이터로 아래의 정격발전량의 다항식을 생성하는 정격발전량다항식생성단계;(6) In the calculation module, the determined sunrise time ( ) And a fixed sunset time ( ) Each generation ( , ) And the peak time ), The rated power generation amount ( Generating a rated power generation polynomial equation for generating a polynomial equation of the rated power generation amount by using the data of the rated power generation amount as follows:
(7) 상기 계산모듈에서 정격발전량다항식을 통해 시간대별 정격발전량을 계산하는 시간대별정격발전량계산단계;(7) a rated power generation amount calculation step for each time period in which the rated power generation amount for each time period is calculated through the rated power generation polynomial in the calculation module;
(8) 상기 정규화모듈에서 상기 일별 또는 계절별 변하는 상기 남중시간으로 인해 남중시간에 따른 시간대별 정격발전량을 정규화하기 위해 정의하는 정격발전량정규화단계;(8) a rated power generation amount normalization step that is defined in the normalization module in order to normalize the rated power generation amount by time period according to the power-on time due to the power-on time varying by day or season;
(9) 상기 계산모듈에서 상기 정규화정격발전량()과 아래식을 가지고 시간대별 날씨별 발전량()을 계산하는 시간대별날씨별발전량계산단계;(9) In the calculating module, the normalized rated power generation amount ) And the following equation to calculate the generation amount by weather ( Calculating a power generation amount by weather for each weather period;
를 포함하여 구성되는 것을 특징으로 한다.
And a control unit.
그리고,And,
상기 (3) 기상예보정보변환단계;는,(3) the weather forecast information conversion step,
3시간 단위로 제공되는 맑음, 구름조금, 구름많음, 흐림, 비의 각각의 기상예보 정보를 5, 4, 3, 2, 1로 넘버링하고, 공백이 발생하는 시간대의 기상예보 정보를 선형보간법(내삽법)으로 계산한 후, 이를 반올림하여 정수화하고, 정수화된 5, 4, 3, 2, 1의 넘버링을 각각 맑음, 구름조금, 구름많음, 흐림, 비로 변환하는 것을 특징으로 한다.
The weather forecast information for each of 3 hours is given as 5, 4, 3, 2, 1, and the weather forecast information of the time zone where the whitespace occurs is converted by linear interpolation ( Interpolation), rounding it to an integer, and converting the numbered
도 2는 본 발명의 (2) 시간정의단계를 예로써 설명한 표이다.Fig. 2 is a table explaining an example of the time definition step (2) of the present invention.
상기 (2) 시간정의단계에서 상기 일출시간, 상기 일몰시간 및 상기 남중시간은 천문우주지식정보 사이트에서 제공하는 지역별 일출시간, 일몰시간 및 남중시간 정보를 활용한다. In the time definition step (2), the sunrise time, the sunset time and the southern time use the sunrise time, sunset time, and southern time information provided by the astronomical universe knowledge information site.
일반적으로 일출시간과 일몰시간은 하루에 1분의 변동을 갖지만 그 변화는 계절별로 조금씩 다르다. 도시에너지관리시스템(CEMS, City Energy Management System)에서는 일출시간과 일몰시간의 시간단위 정보만 필요하므로 일출시간과 일몰시간을 일출시간 이후 정시와 일몰시간 이전 정시로 정의하고 예측일 전일의 실제 데이터를 사용한다. In general, sunrise time and sunset time vary by one minute per day, but the change is slightly different from season to season. The city energy management system (CEMS) requires only the time unit information of the sunrise time and the sunset time. Therefore, the sunrise time and the sunset time are defined as the time before and after the sunrise time and the actual data of the day before the forecast use.
예) 일출시간: 07시 15분 → 확정일출시간: 08시Example) Sunrise time: 07:15 → Fixed sunrise time: 08:00
일몰시간: 17시 35분 → 확정일몰시간: 17시
Sunset time: 17:35 → Confirmed sunset time: 17:00
남중시간의 경우 12시 30분을 기준으로 일별로 변화하기 때문에 남중시간은 12시 30분으로 정의한다.
In the case of the southern time, the time of the southern time is defined as 12:30 because it changes every day based on 12:30.
도 3은 본 발명의 (3) 기상예보정보변환단계에서 사용되는 기상청에서 제공하는 기상예보 정보의 예를 도시한 것이다.FIG. 3 shows an example of weather forecast information provided by the weather station used in (3) weather forecast information conversion step of the present invention.
도 4는 도 3을 분석하여 표로써 나타낸 것이고, 도 5는 도 4를 선형보간법(내삽법)으로 정수화하고 변환한 것을 표로써 나타낸 것이다.
FIG. 4 is an analysis chart of FIG. 3, and FIG. 5 is a table showing that the FIG. 4 is integerized by linear interpolation (interpolation) and converted.
시간대별 기상정보는 기상청에서 제공하는 기상예보 정보(맑음(5), 구름조금(4), 구름많음(3), 흐림(2), 비(1))를 활용한다. Weather information by time of day utilizes the weather forecast information provided by the Korea Meteorological Administration (5), cloudy (4), cloudy (3), cloudy (2), rain (1).
도 3과 같이 기상청에서 제공하는 기상예보 정보는 금일(D-day)기준 +2일까지이며 3시간 단위로 1시간 단위의 1일 24시간에 대한 기상정보의 입력이 필요한 본 예측방법에는 적합하지 않기 때문에 선형보간법(내삽법)을 이용하여 1시간 단위로 변환하여 사용한다.
As shown in FIG. 3, the weather forecast information provided by the Korea Meteorological Administration is suitable for the present forecasting method which requires input of weather information for 24 hours a day in units of one hour on a day-by-day basis up to +2 days on the D-day Therefore, it is converted into the unit of 1 hour by using the linear interpolation method (interpolation method).
도 6은 본 발명의 (4) 날씨별발전량구분단계에서 분석된 과거 데이터를 도시한 것이다.FIG. 6 is a graph showing past data analyzed in the step (4) for classifying the generation amount by weather of the present invention.
상기 (4) 날씨별발전량구분단계;는 상기 분석모듈에서 과거 데이터를 분석하여 날씨별(맑음, 구름조금, 구름많음, 흐림, 비) 5단계 발전량을 구분한다.
The analysis step of the above (4) step of classifying the generation amount by weather analyzes the past data in the analysis module to classify the 5-step power generation by weather (fine, cloudy, cloudy, cloudy, rain).
도 7은 본 발명의 (6) 정격발전량다항식생성단계에서 생성된 정격발전량의 다항식을 도시한 것이다.7 shows a polynomial expression of the rated power generation amount generated in the step (6) of generating the rated power generation amount polynomial of the present invention.
상기 (6) 정격발전량다항식생성단계;는 상기 계산모듈에서 예측일 전일의 확정일출시간()과 확정일몰시간() 각각의 발전량(, )과 남중시간()의 발전량인 정격발전량()의 데이터로 아래의 다항식을 생성하는 단계를 말한다.(6) the step of generating the rated power generation amount polynomial formula includes: ) And a fixed sunset time ( ) Each generation ( , ) And the peak time ), The rated power generation amount ( ) To generate the following polynomial.
도 8은 본 발명의 (9) 시간대별날씨별발전량계산단계에서 계산된 결과를 도시한 것이다.
FIG. 8 shows the results calculated in the step (9) of calculating the generation amount of electricity for each hour of the present invention.
본 발명은 상기 (7) 시간대별정격발전량계산단계; 후에,The present invention is the above-mentioned (7) step of calculating the rated power generation amount per time period; after,
(8) 상기 정규화모듈에서 상기 일별 또는 계절별 변하는 상기 남중시간으로 인해 남중시간에 따른 시간대별 정격발전량을 정규화하기 위해,(8) In the normalization module, in order to normalize the rated generation amount by time period according to the southern time due to the daylight saving time varying by day or season,
아래식으로 확정일출시간()과 확정일몰시간()을 이용하여 확정남중시간()을 정의하고 확정일출시간()과 확정일몰시간() 각각의 발전량(, )과 확정남중시간()의 발전량인 정격발전량()의 데이터로 시간대별 정격발전량을 정규화하는 정격발전량정규화단계;Determined sunrise time ( ) And a fixed sunset time ( ) Is used to set the fixed time ) And define the defined sunrise time ( ) And a fixed sunset time ( ) Each generation ( , ) And a fixed commutation time ( ), The rated power generation amount ( A normalized power generation amount normalizing step for normalizing the rated power generation amount per time period with the data of the power generation amount data;
를 포함하는 것을 특징으로 한다.
And a control unit.
일반적으로 남중시간은 12시 30분이지만 계절이 변화하는 시점에서는 일출, 일몰시간의 변화와 함께 12시, 13시로 남중시간의 변화가 있기 때문에 본 예측 모델을 정규화를 시켜주어야 한다. 남중시간을 12시 30분으로 정의한 위의 모델을 그대로 사용할 시에는 실제 남중시간의 발전량이 정격발전량 이상으로 나타난다. 정규화 적용 여부는 일출시간과 일몰시간으로 남중시간을 계산한 t값으로 판단한다. t값은 12시(12), 12시 30분(12.5), 13시(13)로 나타나며 12시와 13시일 때에 정격발전량을 통해 정규화한 아래의 식을 활용한다.Generally, the time of the southern part is 12:30, but at the time of the season change, the forecasting model should be normalized because there is a change in the time of the sunrise and sunset and the time of the southern part at 12 o'clock and 13 o'clock. When the above model, which defines the southern time as 12:30, is used as it is, the power generation amount of the actual southern time is more than the rated power generation amount. The application of the normalization is judged to be a t-value obtained by calculating the summation time using the sunrise time and the sunset time. The t values are expressed as 12 (12), 12 (12.5), and 13 (13) at 12 o'clock and 13 o'clock.
도 9는 본 발명의 다른 실시예에서 (5) 날씨별발전량다항식생성단계에서 계산된 날씨별 발전량 다항식의 결과를 도시한 것이고, 도 10은 본 발명의 다른 실시예에서 (6) 시간대별날씨별발전량계산단계에서 계산된 결과를 도시한 것이다.FIG. 9 is a graph showing a result of a power generation amount polynomial according to weather calculated in (5) the generation of a generation amount polynomial by weather according to another embodiment of the present invention. FIG. And the results calculated in the generation amount calculation step are shown.
상기 (5) 날씨별발전량다항식생성단계;는,(5) generating a generation polynomial by weather;
상기 분석모듈에서 과거 데이터를 분석하여 날씨별(맑음, 구름조금, 구름많음, 흐림, 비) 5단계 발전량을 구분하고, 상기 계산모듈에서 예측일 전일의 확정일출시간()과 확정일몰시간() 각각의 발전량(, )과 남중시간()의 발전량인 정격발전량()을 가지고 아래의 날씨별 발전량 다항식을 생성하는 단계를 말한다.The analysis module analyzes the past data to classify the 5-stage power generation by weather (sunny, cloudy, cloudy, cloudy, rain), and calculates the set sunrise time ) And a fixed sunset time ( ) Each generation ( , ) And the peak time ), The rated power generation amount ( ) To generate the following power generation polynomial by weather.
결론적으로,In conclusion,
본 발명의 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템을 통해 예측된 시간대별 태양광 발전량 데이터는 도시 에너지원별 최적 운전스케줄링에 활용될 수 있으며 도시 내에서 소비되는 에너지의 감소에 영향을 줄 것이다.
The solar power generation data predicted by the solar power generation prediction system for the urban energy management system using the weather information of the present invention can be utilized for the optimal operation scheduling according to the energy source of the city, .
본 발명은 상기에서 언급한 바와 같이 바람직한 실시예와 관련하여 설명되었으나, 본 발명의 요지를 벗어남이 없는 범위 내에서 다양한 수정 및 변형이 가능하며, 다양한 분야에서 사용 가능하다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention.
따라서 본 발명의 청구범위는 이건 발명의 진정한 범위 내에 속하는 수정 및 변형을 포함한다.
It is therefore intended that the appended claims cover such modifications and variations as fall within the true scope of the invention.
Claims (5)
(1) 상기 분석모듈에서 도시 내의 모든 태양광발전기의 과거 발전량 데이터를 수집하여 시간당 평균 발전량의 합산을 통해 '시간대별 발전량'을 산출하는 시간대별발전량산출단계;
(2) 상기 분석모듈에서 천문우주지식정부 사이트에서 제공하는 지역별 일출시간, 일몰시간으로부터 상기 일출시간 이후의 정시 및 상기 일몰시간 이전의 정시를 각각 '확정일출시간' 및 '확정일몰시간'으로 정의하고 낮 12시 30분을 '남중시간'으로 정의하는 시간정의단계;
(3) 상기 변환모듈에서 기상청에서 제공하는 3시간 단위의 기상예보 정보(맑음, 구름조금, 구름많음, 흐림, 비)를 1시간 단위로 변환하는 기상예보정보변환단계;
(4) 상기 분석모듈에서 과거 데이터를 분석하여 날씨별(맑음, 구름조금, 구름많음, 흐림, 비) 5단계 발전량을 구분하는 날씨별발전량구분단계;
(5) 상기 계산모듈에서 날씨별 정격발전량(P_rated) 대비 효율(%)인 ('맑음' 발전효율), ('구름조금' 발전효율), ('구름많음' 발전효율), ('흐림' 발전효율), ('비' 발전효율)를 상기 남중시간의 날씨별 발전량을 통해 결정하는 날씨별효율계산단계;
: 도시 전체 태양광발전기의 정격발전량의 총합
: 도시 내에서 관리하는 발전기의 대수
: 개별 태양광발전기의 정격발전량
(6) 상기 계산모듈에서 예측일 전일의 확정일출시간()과 확정일몰시간() 각각의 발전량(, )과 남중시간()의 발전량인 정격발전량()의 데이터로 아래 식의 다항식을 생성하는 정격발전량다항식생성단계;
(7) 상기 계산모듈에서 정격발전량다항식을 통해 시간대별 정격발전량을 계산하는 시간대별정격발전량계산단계;
를 포함하여 구성되는 것을 특징으로 하는 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템.
In a system configured with an analysis module, a transformation module, a calculation module and a normalization module,
(1) a power generation amount-by-time generation step of collecting past generation amount data of all photovoltaic generators in the city in the analysis module and calculating a 'generation amount by time period' through summing up the average generation amount per hour;
(2) In the analysis module, the time from the sunrise time and sunset time provided by the astronomical universe knowledge government site to the time after the sunrise time and before the sunset time are defined as a 'definite sunrise time' and a 'definite sunset time', respectively A time defining step of defining 12:30 hour as a "southern time";
(3) a weather forecast information conversion step of converting the weather forecast information (sunny, cloudy, cloudy, cloudy, rain) in units of three hours provided by the weather station in the conversion module;
(4) a step of classifying the generation amount of each weather by analyzing past data in the analysis module and classifying the five-stage power generation amount by weather (fine, cloudy, cloudy, cloudy, rain);
(5) In the calculation module, the efficiency (%) relative to the rated power generation amount (P_rated) ('Sunny' power generation efficiency), ('Cloudy' power generation efficiency), ('Cloudy' power generation efficiency), ('Blur' power generation efficiency), (&Apos; non-power generation efficiency '
: Sum of rated power generation of city-wide photovoltaic generators
: Number of generators managed in the city
: Rated power generation of individual photovoltaic generators
(6) In the calculation module, the determined sunrise time ( ) And a fixed sunset time ( ) Each generation ( , ) And the peak time ), The rated power generation amount ( Generating a rated power generation polynomial equation for generating a polynomial equation of the following equation from the data of the power generation amount polynomial equation;
(7) a rated power generation amount calculation step for each time period in which the rated power generation amount for each time period is calculated through the rated power generation polynomial in the calculation module;
Wherein the solar power generation prediction system for the urban energy management system utilizing the weather information is configured to include the solar power generation prediction system.
상기 (3) 기상예보정보변환단계;는,
3시간 단위로 제공되는 맑음, 구름조금, 구름많음, 흐림, 비의 각각의 기상예보 정보를 5, 4, 3, 2, 1로 넘버링하고, 공백이 발생하는 시간대의 기상예보 정보를 선형보간법(내삽법)으로 계산한 후, 이를 반올림하여 정수화하고, 정수화된 5, 4, 3, 2, 1의 넘버링을 각각 맑음, 구름조금, 구름많음, 흐림, 비로 변환하는 것을 특징으로 하는 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템.
The method of claim 1,
(3) the weather forecast information conversion step,
The weather forecast information for each of 3 hours is given as 5, 4, 3, 2, 1, and the weather forecast information of the time zone where the whitespace occurs is converted by linear interpolation ( Interpolation), rounding it to an integer, and converting the numbered integers of 5, 4, 3, 2, and 1 into fine, cloudy, cloudy, cloudy, and rain, respectively. Solar power generation prediction system for a city energy management system.
상기 (7) 시간대별정격발전량계산단계; 후에,
(8) 상기 정규화모듈에서 일별 또는 계절별 변하는 상기 남중시간으로 인해 남중시간에 따른 시간대별 정격발전량을 정규화하기 위해,
아래식으로 확정일출시간()과 확정일몰시간()을 이용하여 확정남중시간()을 정의하고 확정일출시간()과 확정일몰시간() 각각의 발전량(, )과 확정남중시간()의 발전량인 정격발전량()의 데이터로 시간대별 정격발전량을 정규화하는 정격발전량정규화단계;
(9) 상기 계산모듈에서 상기 정규화정격발전량()과 아래식을 가지고 시간대별 날씨별 발전량()을 계산하는 시간대별날씨별발전량계산단계;
를 포함하는 것을 특징으로 하는 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템.
3. The method according to claim 1 or 2,
(7) calculating the rated power generation amount per time period; after,
(8) In order to normalize the rated power generation amount for each time period according to the southern time due to the power-on time varying by day or season in the normalization module,
Determined sunrise time ( ) And a fixed sunset time ( ) Is used to set the fixed time ) And define the defined sunrise time ( ) And a fixed sunset time ( ) Each generation ( , ) And a fixed commutation time ( ), The rated power generation amount ( A normalized power generation amount normalizing step for normalizing the rated power generation amount per time period with the data of the power generation amount data;
(9) In the calculating module, the normalized rated power generation amount ) And the following equation to calculate the generation amount by weather ( Calculating a power generation amount by weather for each weather period;
Wherein the predicted solar power generation amount for the urban energy management system is calculated using the weather information.
(1) 상기 분석모듈에서 도시 내의 모든 태양광발전기의 과거 발전량 데이터를 수집하여 시간당 평균 발전량의 합산을 통해 '시간대별 발전량'을 산출하는 시간대별발전량산출단계;
(2) 상기 분석모듈에서 천문우주지식정부 사이트에서 제공하는 지역별 일출시간, 일몰시간으로부터 상기 일출시간 이후의 정시 및 상기 일몰시간 이전의 정시를 각각 '확정일출시간' 및 '확정일몰시간'으로 정의하고 낮 12시 30분을 '남중시간'으로 정의하는 시간정의단계;
(3) 상기 변환모듈에서 기상청에서 제공하는 3시간 단위의 기상예보 정보(맑음, 구름조금, 구름많음, 흐림, 비)를 1시간 단위로 변환하는 기상예보정보변환단계;
(4) 상기 분석모듈에서 과거 데이터를 분석하여 날씨별(맑음, 구름조금, 구름많음, 흐림, 비) 5단계 발전량을 구분하는 날씨별발전량구분단계;
(5) 상기 계산모듈에서 예측일 전일의 확정일출시간()과 확정일몰시간() 각각의 발전량(, )과 남중시간()의 발전량인 정격발전량()을 가지고 아래의 날씨별 발전량 다항식을 생성하는 날씨별발전량다항식생성단계;
(6) 상기 계산모듈에서 상기 날씨별 발전량 다항식을 가지고 시간대별 날씨별 발전량을 계산하는 시간대별날씨별발전량계산단계;
를 포함하는 것을 특징으로 하는 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템.
In a system configured with an analysis module, a transformation module, and a calculation module,
(1) a power generation amount-by-time generation step of collecting past generation amount data of all photovoltaic generators in the city in the analysis module and calculating a 'generation amount by time period' through summing up the average generation amount per hour;
(2) In the analysis module, the time from the sunrise time and sunset time provided by the astronomical universe knowledge government site to the time after the sunrise time and before the sunset time are defined as a 'definite sunrise time' and a 'definite sunset time', respectively A time defining step of defining 12:30 hour as a "southern time";
(3) a weather forecast information conversion step of converting the weather forecast information (sunny, cloudy, cloudy, cloudy, rain) in units of three hours provided by the weather station in the conversion module;
(4) a step of classifying the generation amount of each weather by analyzing past data in the analysis module and classifying the five-stage power generation amount by weather (fine, cloudy, cloudy, cloudy, rain);
(5) In the calculation module, the determined sunrise time ( ) And a fixed sunset time ( ) Each generation ( , ) And the peak time ), The rated power generation amount ( Generating a power generation polynomial by weather for generating the following power generation amount polynomial by weather;
(6) a step of calculating a generation amount of each weather by the time of the hour, in which the calculation module calculates the generation amount of each weather by time with the generation-specific power polynomial;
Wherein the predicted solar power generation amount for the urban energy management system is calculated using the weather information.
상기 (3) 기상예보정보변환단계;는,
3시간 단위로 제공되는 맑음, 구름조금, 구름많음, 흐림, 비의 각각의 기상예보 정보를 5, 4, 3, 2, 1로 넘버링하고, 공백이 발생하는 시간대의 기상예보 정보를 선형보간법(내삽법)으로 계산한 후, 이를 반올림하여 정수화하고, 정수화된 5, 4, 3, 2, 1의 넘버링을 각각 맑음, 구름조금, 구름많음, 흐림, 비로 변환하는 것을 특징으로 하는 기상정보를 활용한 도시에너지관리시스템용 태양광발전량 예측시스템.5. The method of claim 4,
(3) the weather forecast information conversion step,
The weather forecast information for each of 3 hours is given as 5, 4, 3, 2, 1, and the weather forecast information of the time zone where the whitespace occurs is converted by linear interpolation ( Interpolation), rounding it to an integer, and converting the numbered integers of 5, 4, 3, 2, and 1 into fine, cloudy, cloudy, cloudy, and rain, respectively. Solar power generation prediction system for a city energy management system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150000073A KR101635450B1 (en) | 2015-01-02 | 2015-01-02 | PV (Photo-Voltaic) generation forecasting system for the city energy management system based on weather information |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150000073A KR101635450B1 (en) | 2015-01-02 | 2015-01-02 | PV (Photo-Voltaic) generation forecasting system for the city energy management system based on weather information |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101635450B1 true KR101635450B1 (en) | 2016-07-01 |
Family
ID=56500675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150000073A KR101635450B1 (en) | 2015-01-02 | 2015-01-02 | PV (Photo-Voltaic) generation forecasting system for the city energy management system based on weather information |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101635450B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102014339B1 (en) | 2019-02-26 | 2019-08-26 | 포스컨트롤 주식회사 | Method and apparatus for detecting solar power system abnormality using machine learning |
CN110443405A (en) * | 2019-06-28 | 2019-11-12 | 国网山东省电力公司济宁市任城区供电公司 | A kind of built photovoltaic power station power generation amount forecasting system and method |
KR20200057821A (en) | 2018-11-13 | 2020-05-27 | 주식회사 에코시안 | solar photovoltatic power generation forecasting apparatus and method based on big data analysis |
KR20210013565A (en) * | 2018-04-26 | 2021-02-04 | 난징 유니버시티 오브 포스츠 앤 텔레커뮤니케이션스 | Weather data-based wireless sensor network node solar energy collection power prediction algorithm |
CN112418502A (en) * | 2020-11-13 | 2021-02-26 | 国网冀北电力有限公司计量中心 | Photovoltaic power generation prediction method based on combined model |
CN112947595A (en) * | 2015-07-02 | 2021-06-11 | 耐克斯特拉克尔有限公司 | Method for controlling orientation of solar tracker based on charting model |
KR20210077474A (en) * | 2019-12-17 | 2021-06-25 | 세종대학교산학협력단 | Apparatus and method for predicting solar power generation |
KR20220167555A (en) | 2021-06-14 | 2022-12-21 | 한국전력공사 | Management System and Method for Controlling Output of Power Generation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006033908A (en) * | 2004-07-12 | 2006-02-02 | Nippon Telegr & Teleph Corp <Ntt> | Method, device and program for estimating amount of power generation of solar light generating system |
KR100827053B1 (en) | 2003-10-30 | 2008-05-02 | 가부시끼가이샤 도시바 | Weather forecast system, electric power demand forecast system, method of weather forecast and method of electric power demand forecast |
KR20120036567A (en) | 2010-10-08 | 2012-04-18 | 주식회사 케이디파워 | Prediction for power demand based on web, observation system for power and energy, and method for the same |
-
2015
- 2015-01-02 KR KR1020150000073A patent/KR101635450B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100827053B1 (en) | 2003-10-30 | 2008-05-02 | 가부시끼가이샤 도시바 | Weather forecast system, electric power demand forecast system, method of weather forecast and method of electric power demand forecast |
JP2006033908A (en) * | 2004-07-12 | 2006-02-02 | Nippon Telegr & Teleph Corp <Ntt> | Method, device and program for estimating amount of power generation of solar light generating system |
KR20120036567A (en) | 2010-10-08 | 2012-04-18 | 주식회사 케이디파워 | Prediction for power demand based on web, observation system for power and energy, and method for the same |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112947595A (en) * | 2015-07-02 | 2021-06-11 | 耐克斯特拉克尔有限公司 | Method for controlling orientation of solar tracker based on charting model |
KR20210013565A (en) * | 2018-04-26 | 2021-02-04 | 난징 유니버시티 오브 포스츠 앤 텔레커뮤니케이션스 | Weather data-based wireless sensor network node solar energy collection power prediction algorithm |
KR102439722B1 (en) * | 2018-04-26 | 2022-09-02 | 난징 유니버시티 오브 포스츠 앤 텔레커뮤니케이션스 | Weather data-based wireless sensor network node solar energy collection power prediction algorithm |
KR20200057821A (en) | 2018-11-13 | 2020-05-27 | 주식회사 에코시안 | solar photovoltatic power generation forecasting apparatus and method based on big data analysis |
KR102014339B1 (en) | 2019-02-26 | 2019-08-26 | 포스컨트롤 주식회사 | Method and apparatus for detecting solar power system abnormality using machine learning |
CN110443405A (en) * | 2019-06-28 | 2019-11-12 | 国网山东省电力公司济宁市任城区供电公司 | A kind of built photovoltaic power station power generation amount forecasting system and method |
KR20210077474A (en) * | 2019-12-17 | 2021-06-25 | 세종대학교산학협력단 | Apparatus and method for predicting solar power generation |
KR102296309B1 (en) * | 2019-12-17 | 2021-08-31 | 세종대학교산학협력단 | Apparatus and method for predicting solar power generation |
CN112418502A (en) * | 2020-11-13 | 2021-02-26 | 国网冀北电力有限公司计量中心 | Photovoltaic power generation prediction method based on combined model |
CN112418502B (en) * | 2020-11-13 | 2024-04-30 | 国网冀北电力有限公司计量中心 | Photovoltaic power generation prediction method based on combined model |
KR20220167555A (en) | 2021-06-14 | 2022-12-21 | 한국전력공사 | Management System and Method for Controlling Output of Power Generation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101635450B1 (en) | PV (Photo-Voltaic) generation forecasting system for the city energy management system based on weather information | |
Sreeraj et al. | Design of isolated renewable hybrid power systems | |
Wang et al. | Operational optimization and demand response of hybrid renewable energy systems | |
Shadmand et al. | Multi-objective optimization and design of photovoltaic-wind hybrid system for community smart DC microgrid | |
Kazem et al. | Techno-economical assessment of grid connected photovoltaic power systems productivity in Sohar, Oman | |
Potter et al. | Building a smarter smart grid through better renewable energy information | |
Delfanti et al. | Energy storage for PV power plant dispatching | |
JP6543145B2 (en) | Peak power prediction device, power management system and peak power prediction method | |
EP2610986A1 (en) | A method for determining a power outage probability of an electrical power grid, a method for an adaptation of a power generation capacity and a method for determining an energy storage unit size | |
Yang et al. | A novel ARX-based multi-scale spatio-temporal solar power forecast model | |
Victoria et al. | Hourly-resolution analysis of electricity decarbonization in Spain (2017–2030) | |
Stewart et al. | A realistic irradiance-based voltage flicker analysis of PV applied to Hawaii distribution feeders | |
Mohan et al. | Solar energy disaggregation using whole-house consumption signals | |
JP5466596B2 (en) | Method for estimating power generation output of photovoltaic power generation facilities | |
Härtel et al. | Cost assessment of storage options in a region with a high share of network congestions | |
Lannoye et al. | Assessing power system flexibility for variable renewable integration: A flexibility metric for long-term system planning | |
Pruckner et al. | A hybrid simulation model for large-scaled electricity generation systems | |
Celik | A simplified model for estimating yearly wind fraction in hybrid-wind energy systems | |
Shadmand et al. | Optimization of photovoltaic-wind hybrid system for apartment complexes and other community living environments by minimizing excess capacity | |
CN113689057A (en) | Photovoltaic power generation power prediction method and device | |
van Vuuren et al. | A proposed simulation-based theoretical preconstruction process: The case of solar photovoltaic technology in South African shopping centres | |
Poti et al. | Optimal hybrid power dispatch through smart solar power forecasting and battery storage integration | |
Markovic et al. | Efficiency analysis of grid-connected photovoltaic power plants | |
Pillai et al. | The techno-economic feasibility of providing solar photovoltaic backup power | |
Falkoni et al. | Linear correlation and regression between the meteorological data and the electricity demand of the Dubrovnik region in a short-term scale |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190627 Year of fee payment: 4 |