KR101634253B1 - Method and apparatus for encoding and decoding image using large transform unit - Google Patents
Method and apparatus for encoding and decoding image using large transform unit Download PDFInfo
- Publication number
- KR101634253B1 KR101634253B1 KR1020150051966A KR20150051966A KR101634253B1 KR 101634253 B1 KR101634253 B1 KR 101634253B1 KR 1020150051966 A KR1020150051966 A KR 1020150051966A KR 20150051966 A KR20150051966 A KR 20150051966A KR 101634253 B1 KR101634253 B1 KR 101634253B1
- Authority
- KR
- South Korea
- Prior art keywords
- unit
- encoding
- prediction
- encoding unit
- image
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/625—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using discrete cosine transform [DCT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/12—Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
- H04N19/122—Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/13—Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
복수의 예측 단위를 하나의 변환 단위로 하여 주파수 영역으로 변환함으로써 영상을 부호화하는 방법, 장치 및 이러한 부호화 방법에 의해 부호화된 영상 데이터를 복호화하는 방법, 장치가 개시된다.Disclosed is a method and apparatus for encoding an image by converting a plurality of prediction units into a frequency domain as one conversion unit, and a method and apparatus for decoding image data encoded by such a coding method.
Description
본 발명은 영상 부호화, 복호화 방법 및 장치에 관한 것으로, 보다 상세히는 픽셀 도메인의 영상을 주파수 도메인의 계수들로 변환하여 영상을 부호화, 복호화하는 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for image encoding and decoding, and more particularly, to a method and apparatus for encoding and decoding an image by converting an image in a pixel domain into coefficients in a frequency domain.
대부분의 영상 부호화, 복호화 방법 및 장치는 영상 압축을 위해 픽셀 도메인의 영상을 주파수 도메인으로 변환하여 부호화한다. 주파수 변환 중 하나의 기법인 이산 코사인 변환은 영상 또는 음성 압축에 사용되는 널리 알려진 기술이다. 이산 코사인 변환을 이용한 영상 부호화 방법에서는 픽셀 도메인의 영상을 이산 코사인 변환하여 이산 코사인 계수들을 생성하고, 생성된 계수들을 양자화, 엔트로피 부호화한다.Most video encoding and decoding methods and devices convert an image of a pixel domain into a frequency domain for image compression. Discrete cosine transform, which is one of the frequency transforms, is a well known technique used for image or speech compression. In the image coding method using the discrete cosine transform, the discrete cosine coefficients are generated by discrete cosine transform of the image in the pixel domain, and the generated coefficients are quantized and entropy encoded.
본 발명이 해결하고자 하는 기술적 과제는 보다 효율적인 이산 코사인 변환을 이용한 영상을 부호화, 복호화하는 방법 및 장치를 제공하는데 있고, 상기 방법을 실행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록 매체를 제공하는데 있다.SUMMARY OF THE INVENTION The present invention provides a method and apparatus for encoding and decoding an image using a more efficient discrete cosine transform, and a computer-readable recording medium having recorded thereon a program for executing the method .
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 영상 부호화 방법은 영상 부호화 방법은 인접한 복수의 예측 단위를 선택하여 하나의 변환 단위를 설정하는 단계; 상기 변환 단위에 따라 상기 복수의 예측 단위를 주파수 도메인으로 변환하여 주파수 성분 계수들을 생성하는 단계; 상기 생성된 주파수 성분 계수들을 양자화하는 단계; 및 상기 양자화된 주파수 성분 계수들을 엔트로피 부호화하는 단계를 포함한다.According to an aspect of the present invention, there is provided an image encoding method comprising: selecting a plurality of prediction units adjacent to each other and setting one conversion unit; Converting the plurality of prediction units into a frequency domain according to the conversion unit to generate frequency component coefficients; Quantizing the generated frequency component coefficients; And entropy encoding the quantized frequency component coefficients.
본 발명의 또 다른 실시예에 따르면, 상기 설정하는 단계는 현재 슬라이스 또는 현재 픽처의 최대 부호화 단위에서 상기 인접한 복수의 예측 단위를 포함하는 서브 부호화 단위로 단계적으로 축소된 정도를 나타내는 심도에 기초해 하나의 변환 단위를 설정하는 단계를 포함한다.According to still another embodiment of the present invention, the setting step may include a step of setting, based on a depth indicating a degree of stepwise reduction in a current slice or a sub-coding unit including the adjacent plurality of prediction units in a maximum coding unit of the current picture And setting a conversion unit of the conversion unit.
본 발명의 또 다른 실시예에 따르면, 상기 설정하는 단계는 동일한 종류의 예측 모드에 따라 예측이 수행된 인접한 복수의 예측 단위를 선택하여 하나의 변환 단위를 설정하는 단계를 포함한다.
According to another embodiment of the present invention, the setting step includes a step of selecting a plurality of prediction units adjacent to each other and performing a prediction according to a prediction mode of the same type, and setting one conversion unit.
*본 발명의 또 다른 실시예에 따르면, 상기 동일한 종류의 예측 모드는 인터 예측 모드 또는 인트라 예측 모드인 것을 특징으로 한다.According to another embodiment of the present invention, the prediction mode of the same kind is an inter prediction mode or an intra prediction mode.
본 발명의 또 다른 실시예에 따르면, 상기 영상 부호화 방법은 상이한 변환 단위에 대해, 상기 인접한 복수의 예측 단위를 선택하여 하나의 변환 단위를 설정하는 단계, 상기 선택된 복수의 예측 단위를 하나의 변환 단위로 주파수 도메인으로 변환하여 주파수 성분 계수들을 생성하는 단계, 상기 생성된 주파수 성분 계수들을 양자화하는 단계 및 상기 양자화된 주파수 성분 계수들을 엔트로피 부호화하는 단계를 반복하여 최적의 변환 단위를 설정하는 단계를 더 포함한다.According to another embodiment of the present invention, the image encoding method may further include the steps of: selecting one of the adjacent prediction units for different conversion units to set one conversion unit; converting the selected plurality of prediction units into one conversion unit Converting the frequency component coefficients into frequency domain to generate frequency component coefficients, quantizing the generated frequency component coefficients, and entropy-coding the quantized frequency component coefficients to set an optimal conversion unit do.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 영상 부호화 장치는 인접한 복수의 예측 단위를 선택하여 하나의 변환 단위를 설정하고, 상기 변환 단위에 따라 상기 복수의 예측 단위를 주파수 도메인으로 변환하여 주파수 성분 계수들을 생성하는 주파수변환부; 상기 생성된 주파수 성분 계수들을 양자화하는 양자화부; 및 상기 양자화된 주파수 성분 계수들을 엔트로피 부호화하는 엔트로피부호화부를 포함한다.According to an aspect of the present invention, there is provided an apparatus and method for encoding an image, the apparatus comprising: a plurality of prediction units adjacent to each other to select one of the prediction units and to convert the plurality of prediction units into a frequency domain A frequency converter for generating frequency component coefficients; A quantizer for quantizing the generated frequency component coefficients; And an entropy encoding unit for entropy encoding the quantized frequency component coefficients.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 영상 복호화 방법은 소정의 변환 단위에 따라 주파수 도메인으로 변환하여 생성된 주파수 성분 계수들을 엔트로피 복호화하는 단계; 상기 엔트로피 복호화된 주파수 성분 계수들을 역양자화하는 단계; 및 상기 주파수 성분 계수들을 픽셀 도메인으로 역변환하여 상기 변환 단위에 포함된 인접한 복수의 예측 단위를 복원하는 단계를 포함한다.According to an aspect of the present invention, there is provided an image decoding method comprising: entropy decoding a frequency component coefficient generated by transforming a frequency domain according to a predetermined transform unit; Dequantizing the entropy-decoded frequency component coefficients; And inversely transforming the frequency component coefficients into a pixel domain to reconstruct adjacent prediction units included in the conversion unit.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 영상 복호화 장치는 소정의 변환 단위에 따라 주파수 도메인으로 변환하여 생성된 주파수 성분 계수들을 엔트로피 복호화하는 엔트로피복호화부; 상기 엔트로피 복호화된 주파수 성분 계수들을 역양자화하는 역양자화부; 및 상기 주파수 성분 계수들을 픽셀 도메인으로 역변환하여 상기 변환 단위에 포함된 인접한 복수의 예측 단위를 복원하는 역주파수변환부를 포함한다.According to an aspect of the present invention, there is provided an apparatus for decoding an image, comprising: an entropy decoding unit for entropy decoding frequency component coefficients generated by transforming into a frequency domain according to a predetermined conversion unit; A dequantizer for dequantizing the entropy-decoded frequency component coefficients; And an inverse frequency transform unit for inversely transforming the frequency component coefficients into a pixel domain to recover an adjacent plurality of prediction units included in the transform unit.
상기 기술적 과제를 해결하기 위해 본 발명의 일 실시예는 상기된 영상 부호화, 복호화 방법을 실행하기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록 매체를 제공한다. According to an aspect of the present invention, there is provided a computer-readable recording medium having recorded thereon a program for executing the image encoding and decoding method.
도 1은 본 발명의 일 실시예에 따른 영상 부호화 장치를 도시한다.
도 2는 본 발명의 일 실시예에 따른 영상 복호화 장치를 도시한다.
도 3은 본 발명의 일 실시예에 따른 계층적 부호화 단위를 도시한다.
도 4는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부를 도시한다.
도 5는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부를 도시한다.
도 6은 본 발명의 일 실시예에 따른 최대 부호화 단위, 서브 부호화 단위 및 예측 단위를 도시한다.
도 7은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위를 도시한다.
도 8a 및 8b는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 분할 형태를 도시한다.
도 9는 본 발명의 또 다른 실시예에 따른 영상 부호화 장치를 도시한다.
도 10은 본 발명의 일 실시예에 따른 주파수변환부를 도시한다.
도 11a 내지 11c는 본 발명의 일 실시예에 따른 변환 단위의 유형을 도시한다.
도 12는 본 발명의 일 실시예에 따른 상이한 변환 단위들을 도시한다.
도 13은 본 발명의 또 다른 실시예에 따른 영상 복호화 장치를 도시한다.
도 14는 본 발명의 일 실시예에 따른 영상 부호화 방법을 설명하기 위한 흐름도이다.
도 15는 본 발명의 일 실시예에 따른 영상 복호화 방법을 설명하기 위한 흐름도이다. 1 illustrates an image encoding apparatus according to an embodiment of the present invention.
FIG. 2 illustrates an image decoding apparatus according to an embodiment of the present invention.
FIG. 3 illustrates a hierarchical encoding unit according to an embodiment of the present invention.
FIG. 4 illustrates an image encoding unit based on an encoding unit according to an embodiment of the present invention.
FIG. 5 illustrates an image decoding unit based on an encoding unit according to an embodiment of the present invention.
FIG. 6 illustrates a maximum encoding unit, a sub-encoding unit, and a prediction unit according to an embodiment of the present invention.
7 shows an encoding unit and a conversion unit according to an embodiment of the present invention.
FIGS. 8A and 8B show a division form of an encoding unit, a prediction unit, and a conversion unit according to an embodiment of the present invention.
9 illustrates an image encoding apparatus according to another embodiment of the present invention.
FIG. 10 illustrates a frequency conversion unit according to an embodiment of the present invention.
Figures 11A-11C illustrate types of conversion units in accordance with one embodiment of the present invention.
Figure 12 shows different conversion units according to an embodiment of the present invention.
FIG. 13 illustrates an image decoding apparatus according to another embodiment of the present invention.
14 is a flowchart illustrating an image encoding method according to an embodiment of the present invention.
15 is a flowchart illustrating an image decoding method according to an embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
도 1 은 본 발명의 일 실시예에 따른 영상 부호화 장치를 도시한다.1 illustrates an image encoding apparatus according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 영상 부호화 장치(100)는 최대 부호화 단위 분할부(110), 부호화 심도 결정부(120), 영상 데이터 부호화부(130) 및 부호화 정보 부호화부(140)를 포함한다.1, an
최대 부호화 단위 분할부(110)는 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 픽처 또는 현재 슬라이스를 분할할 수 있다. 현재 픽처 또는 현재 슬라이스를 적어도 하나의 최대 부호화 단위로 분할할 수 있다. The maximum coding
본 발명의 일 실시예에 따르면, 최대 부호화 단위 및 심도를 이용해 부호화 단위가 표현될 수 있다. 전술한 바와 같이 최대 부호화 단위는 현재 픽처의 부호화 단위 중 크기가 가장 큰 부호화 단위를 나타내며, 심도는 부호화 단위가 계층적으로 축소된 서브 부호화 단위의 크기를 나타낸다. 심도가 커지면서, 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 축소될 수 있으며, 최대 부호화 단위의 심도는 최소 심도로 정의되고, 최소 부호화 단위의 심도는 최대 심도로 정의될 수 있다. 최대 부호화 단위는 심도가 커짐에 따라 심도별 부호화 단위의 크기는 감소하므로, k 심도의 서브 부호화 단위는 복수 개의 k보다 큰 심도의 서브 부호화 단위를 포함할 수 있다.According to an embodiment of the present invention, an encoding unit can be expressed using a maximum encoding unit and a depth. As described above, the maximum coding unit indicates the largest coding unit among the coding units of the current picture, and the depth indicates the size of the sub-coding unit in which the coding units are hierarchically reduced. As the depth increases, the encoding unit can be reduced from the maximum encoding unit to the minimum encoding unit, the depth of the maximum encoding unit can be defined as the minimum depth, and the depth of the minimum encoding unit can be defined as the maximum depth. As the depth of the maximum encoding unit increases, the size of the depth-dependent encoding unit decreases. Thus, the sub-encoding unit of k depth may include a sub-encoding unit of depth greater than a plurality of k.
부호화되는 픽처의 크기가 커짐에 따라, 더 큰 단위로 영상을 부호화하면 더 높은 영상 압축률로 영상을 부호화할 수 있다. 그러나, 부호화 단위를 크게 하고, 그 크기를 고정시켜버리면, 계속해서 변하는 영상의 특성을 반영하여 효율적으로 영상을 부호화할 수 없다. As the size of a picture to be encoded increases, if an image is coded in a larger unit, the image can be encoded with a higher image compression rate. However, if the coding unit is enlarged and its size is fixed, the image can not be efficiently encoded reflecting the characteristics of the continuously changing image.
예를 들어, 바다 또는 하늘에 대한 평탄한 영역을 부호화할 때에는 부호화 단위를 크게 할수록 압축률이 향상될 수 있으나, 사람들 또는 빌딩에 대한 복잡한 영역을 부호화할 때에는 부호화 단위를 작게 할수록 압축률이 향상된다.For example, when coding a flat area with respect to the sea or sky, the compression rate can be improved by increasing the coding unit. However, when coding a complex area for people or buildings, the compression ratio is improved as the coding unit is decreased.
이를 위해 본 발명의 일 실시예는 픽처 또는 슬라이스마다 상이한 크기의 최대 영상 부호화 단위를 설정하고, 최대 심도를 설정한다. 최대 심도는 부호화 단위가 축소될 수 있는 최대 횟수를 의미하므로, 최대 심도에 따라 최대 영상 부호화 단위에 포함된 최소 부호화 단위 크기를 가변적으로 설정할 수 있게 된다.To this end, one embodiment of the present invention sets a maximum image encoding unit of a different size for each picture or slice, and sets a maximum depth. Since the maximum depth means the maximum number of times the encoding unit can be reduced, the minimum encoding unit size included in the maximum image encoding unit can be variably set according to the maximum depth.
부호화 심도 결정부(120)는 최대 심도를 결정한다. 최대 심도는 R-D 코스트(Rate-Distortion Cost) 계산에 기초해 결정될 수 있다. 최대 심도는 픽처 또는 슬라이스마 상이하게 결정되거나, 각각의 최대 부호화 단위마다 상이하게 결정될 수도 있다. 결정된 최대 심도는 부호화 정보 부호화부(140)로 출력되고, 최대 부호화 단위별 영상 데이터는 영상 데이터 부호화부(130)로 출력된다. The encoding
최대 심도는 최대 부호화 단위에 포함될 수 있는 가장 작은 크기의 부호화 단위 즉, 최소 부호화 단위를 의미한다. 다시 말해, 최대 부호화 단위는 상이한 심도에 따라 상이한 크기의 서브 부호화 단위로 분할될 수 있다. 도 8a 및 8b를 참조하여 상세히 후술한다. 또한, 최대 부호화 단위에 포함된 상이한 크기의 서브 부호화 단위들은 상이한 크기의 처리 단위에 기초해 예측 또는 주파수 변환될 수 있다. 다시 말해, 영상 부호화 장치(100)는 영상 부호화를 위한 복수의 처리 단계들을 다양한 크기 및 다양한 형태의 처리 단위에 기초해 수행할 수 있다. 영상 데이터의 부호화를 위해서는 예측, 주파수 변환, 엔트로피 부호화 등의 처리 단계를 거치는데, 모든 단계에 걸쳐서 동일한 크기의 처리 단위가 이용될 수도 있으며, 단계별로 상이한 크기의 처리 단위를 이용할 수 있다.The maximum depth means the smallest encoding unit, that is, the minimum encoding unit, which can be included in the maximum encoding unit. In other words, the maximum encoding unit may be divided into sub-encoding units of different sizes according to different depths. Will be described later in detail with reference to Figs. 8A and 8B. Further, the sub-encoding units of different sizes included in the maximum encoding unit can be predicted or frequency-converted based on the processing units of different sizes. In other words, the
예를 들어 영상 부호화 장치(100)는 부호화 단위를 예측하기 위해, 부호화 단위와 다른 처리 단위를 선택할 수 있다. For example, in order to predict a coding unit, the
부호화 단위의 크기가 2Nx2N(단, N은 양의 정수)인 경우, 예측을 위한 처리 단위는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 다시 말해, 부호화 단위의 높이 또는 너비 중 적어도 하나를 반분하는 형태의 처리 단위를 기반으로 움직임 예측이 수행될 수도 있다. 이하, 예측의 기초가 되는 데이터 단위는 '예측 단위'라 한다.If the size of the encoding unit is 2Nx2N (where N is a positive integer), the processing unit for prediction may be 2Nx2N, 2NxN, Nx2N, NxN, and the like. In other words, motion prediction may be performed based on a processing unit of a type that halves at least one of a height or a width of an encoding unit. Hereinafter, a data unit serving as a basis of prediction is referred to as a 'prediction unit'.
예측 모드는 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있으며, 특정 예측 모드는 특정 크기 또는 형태의 예측 단위에 대해서만 수행될 수 있다. 예를 들어, 인트라 모드는 정방형인 2Nx2N, NxN 크기의 예측 단위에 대해서만 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 예측 단위에 대해서만 수행될 수 있다. 부호화 단위 내부에 복수의 예측 단위가 있다면, 각각의 예측 단위에 대해 예측을 수행하여 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.The prediction mode may be at least one of an intra mode, an inter mode, and a skip mode, and the specific prediction mode may be performed only for a prediction unit of a specific size or type. For example, the intra mode can be performed only for a 2Nx2N, NxN sized prediction unit, which is a square. In addition, the skip mode can be performed only for a prediction unit of 2Nx2N size. If there are a plurality of prediction units in an encoding unit, a prediction mode having the smallest coding error can be selected by performing prediction for each prediction unit.
또한, 영상 부호화 장치(100)는 부호화 단위와 다른 크기의 처리 단위에 기초해 영상 데이터를 주파수 변환할 수 있다. 부호화 단위의 주파수 변환을 위해서 부호화 단위보다 작거나 같은 크기의 데이터 단위를 기반으로 주파수 변환이 수행될 수 있다. 이하, 주파수 변환의 기초가 되는 처리 단위를 '변환 단위'라 한다.Also, the
부호화 심도 결정부(120)는 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용해 최대 부호화 단위에 포함된 서브 부호화 단위들을 결정할 수 있다. 다시 말해, 최대 부호화 단위가 어떠한 형태의 복수의 서브 부호화 단위로 분할되는지 결정할 수 있는데, 여기서 복수의 서브 부호화 단위는 심도에 따라 크기가 상이하다. 그런 다음, 영상 데이터 부호화부(130)는 부호화 심도 결정부(120)에서 결정된 분할 형태에 기초해 최대 부호화 단위를 부호화하여 비트스트림을 출력한다. The
부호화 정보 부호화부(140)는 부호화 심도 결정부(120)에서 최대 부호화 단위의 부호화 모드에 대한 정보를 부호화한다. 최대 부호화 단위의 분할 형태에 대한 정보, 최대 심도에 대한 정보 및 심도별 서브 부호화 단위의 부호화 모드에 관한 정보를 부호화하여 비트스트림을 출력한다. 서브 부호화 단위의 부호화 모드에 관한 정보는 서브 부호화 단위의 예측 단위에 대한 정보, 예측 단위별 예측 모드 정보, 서브 부호화 단위의 변환 단위에 대한 정보 등을 포함할 수 있다.The encoding
최대 부호화 단위마다 상이한 크기의 서브 부호화 단위가 존재하고, 각각의 서브 부호화 단위마다 부호화 모드에 관한 정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 부호화 모드에 관한 정보가 결정될 수 있다. There is a sub-encoding unit of a different size for each maximum encoding unit, and information on the encoding mode is determined for each sub-encoding unit, so that information on at least one encoding mode can be determined for one maximum encoding unit.
영상 부호화 장치(100)는 심도가 커짐에 따라 최대 부호화 단위를 높이 및 너비를 반분하여 서브 부호화 단위를 생성할 수 있다. 즉, k 심도의 부호화 단위의 크기가 2Nx2N이라면, k+1 심도의 부호화 단위의 크기는 NxN 이다. As the depth increases, the
따라서, 일 실시예에 따른 영상 복호화 장치(100)는 영상의 특성을 고려한 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 분할 형태를 결정할 수 있다. 영상 특성을 고려하여 가변적으로 최대 부호화 단위의 크기를 조절하고, 상이한 심도의 서브 부호화 단위로 최대 부호화 단위를 분할하여 영상을 부호화함으로써, 다양한 해상도의 영상을 보다 효율적으로 부호화할 수 있다. Accordingly, the
도 2 는 본 발명의 일 실시예에 따른 영상 복호화 장치를 도시한다.FIG. 2 illustrates an image decoding apparatus according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 실시예에 따른 영상 복호화 장치(200)는 영상 데이터 획득부(210), 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다. 2, an
영상 관련 데이터 획득부(210)는 영상 복호화 장치(200)가 수신한 비트스트림을 파싱하여, 최대 부호화 단위별로 영상 데이터를 획득하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 획득부(210)는 현재 픽처 또는 슬라이스에 대한 헤더로부터 현재 픽처 또는 슬라이스의 최대 부호화 단위에 대한 정보를 추출할 수 있다. 다시 말해, 비트스트림을 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하게 한다.The image-related
부호화 정보 추출부(220)는 영상 복호화 장치(200)가 수신한 비트열을 파싱하여, 현재 픽처에 대한 헤더로부터 최대 부호화 단위, 최대 심도, 최대 부호화 단위의 분할 형태, 서브 부호화 단위의 부호화 모드에 관한 정보를 추출한다. 분할 형태 및 부호화 모드에 관한 정보는 영상 데이터 복호화부(230)로 출력된다.The encoding information extracting unit 220 parses the bit stream received by the
최대 부호화 단위의 분할 형태에 대한 정보는 최대 부호화 단위에 포함된 심도에 따라 상이한 크기의 서브 부호화 단위에 대한 정보를 포함할 수 있으며, 부호화 모드에 관한 정보는 서브 부호화 단위별 예측 단위에 대한 정보, 예측 모드에 대한 정보 및 변환 단위에 대한 정보 등을 포함할 수 있다. The information on the division type of the maximum encoding unit may include information on sub-encoding units of different sizes according to the depth included in the maximum encoding unit, the information on the encoding mode may include information on a prediction unit for each sub- Information on the prediction mode, information on the conversion unit, and the like.
영상 데이터 복호화부(230)는 부호화 정보 추출부에서 추출된 정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽처를 복원한다. 최대 부호화 단위의 분할 형태에 대한 정보에 기초하여, 영상 데이터 복호화부(230)는 최대 부호화 단위에 포함된 서브 부호화 단위를 복호화할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 움직임 예측 과정, 및 주파수 역변환 과정을 포함할 수 있다.The image
영상 데이터 복호화부(230)는, 서브 부호화 단위의 예측을 위해, 서브 부호화 단위별 예측 단위에 대한 정보 및 예측 모드에 대한 정보에 기초해 인트라 예측 또는 인터 예측을 수행할 수 있다. 또한, 영상 데이터 복호화부(230)는, 서브 부호화 단위의 변환 단위에 대한 정보에 기초해 서브 부호화 단위마다 주파수 역변환을 수행할 수 있다.The image
도 3 은 본 발명의 일 실시예에 따른 계층적 부호화 단위를 도시한다.FIG. 3 illustrates a hierarchical encoding unit according to an embodiment of the present invention.
도 3을 참조하면, 본 발명에 따른 계층적 부호화 단위는 너비x높이가 64x64인 부호화 단위부터, 32x32, 16x16, 8x8, 및 4x4를 포함할 수 있다. 정사각형 형태의 부호화 단위 이외에도, 너비x높이가 64x32, 32x64, 32x16, 16x32, 16x8, 8x16, 8x4, 4x8인 부호화 단위들이 존재할 수 있다.Referring to FIG. 3, the hierarchical coding unit according to the present invention may include 32x32, 16x16, 8x8, and 4x4 from a coding unit having a width x height of 64x64. In addition to the square-shaped encoding units, there may be encoding units whose width x height is 64x32, 32x64, 32x16, 16x32, 16x8, 8x16, 8x4, 4x8.
도 3을 참조하면, 해상도가 1920x1080인 영상 데이터(310)에 대해서, 최대 부호화 단위의 크기는 64x64, 최대 심도가 2로 설정되어 있다. Referring to FIG. 3, the maximum encoding unit size is set to 64x64 and the maximum depth is set to 2 for the
또 다른 해상도가 1920x1080인 영상 데이터(320)에 대해서 최대 부호화 단위의 크기는 64x64, 최대 심도가 4로 설정되어 있다. 해상도가 352x288인 비디오 데이터(330)에 대해서 최대 부호화 단위의 크기는 16x16, 최대 심도가 2로 설정되어 있다.The size of the maximum encoding unit is set to 64x64 and the maximum depth is set to 4 for the
해상도가 높거나 데이터량이 많은 경우 압축률 향상뿐만 아니라 영상 특성을 정확히 반영하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 영상 데이터(330)에 비해, 해상도가 높은 영상 데이터(310 및 320)는 최대 부호화 단위의 크기가 64x64로 선택될 수 있다.It is desirable that the maximum size of the encoding size is relatively large in order to accurately reflect not only the compression ratio but also the image characteristic when the resolution is high or the data amount is large. Therefore, the size of the maximum encoding unit of the
최대 심도는 계층적 부호화 단위에서 총 계층수를 나타낸다. 영상 데이터(310)의 최대 심도는 2이므로, 영상 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 심도가 증가함에 따라 장축 크기가 32, 16인 서브 부호화 단위들까지 포함할 수 있다. The maximum depth indicates the total number of layers in the hierarchical encoding unit. Since the maximum depth of the
반면, 영상 데이터(330)의 최대 심도는 2이므로, 영상 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 최대 부호화 단위들로부터, 심도가 증가함에 따라 장축 크기가 8, 4인 부호화 단위들까지 포함할 수 있다. On the other hand, since the maximum depth of the
영상 데이터(320)의 최대 심도는 4이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 심도가 증가함에 따라 장축 크기가 32, 16, 8, 4인 서브 부호화 단위들까지 포함할 수 있다. 심도가 증가할수록 더 작은 서브 부호화 단위에 기초해 영상을 부호화하므로 보다 세밀한 장면을 포함하고 있는 영상을 부호화하는데 적합해진다.Since the maximum depth of the
도 4 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부를 도시한다.FIG. 4 illustrates an image encoding unit based on an encoding unit according to an embodiment of the present invention.
인트라 예측부(410)는 현재 프레임(405) 중 인트라 모드의 예측 단위에 대해 인트라 예측을 수행하고, 움직임 추정부(420) 및 움직임 보상부(425)는 인터 모드의 예측 단위에 대해 현재 프레임(405) 및 참조 프레임(495)을 이용해 인터 예측 및 움직임 보상을 수행한다.The
인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)로부터 출력된 예측 단위에 기초해 레지듀얼 값들이 생성되고, 생성된 레지듀얼 값들은 주파수 변환부(430) 및 양자화부(440)를 거쳐 양자화된 변환 계수로 출력된다. The residual values are generated based on the prediction unit output from the
양자화된 변환 계수는 역양자화부(460), 주파수 역변환부(470)를 통해 다시 레지듀얼 값으로 복원되고, 복원된 레지듀얼 값들은 디블로킹부(480) 및 루프 필터링부(490)를 거쳐 후처리되어 참조 프레임(495)으로 출력된다. 양자화된 변환 계수는 엔트로피 부호화부(450)를 거쳐 비트스트림(455)으로 출력될 수 있다.The quantized transform coefficients are restored to a residual value through the
본 발명의 일 실시예에 따른 영상 부호화 방법에 따라 부호화하기 위해, 영상 부호화부(400)의 구성 요소들인 인트라 예측부(410), 움직임 추정부(420), 움직임 보상부(425), 주파수 변환부(430), 양자화부(440), 엔트로피 부호화부(450), 역양자화부(460), 주파수 역변환부(470), 디블로킹부(480) 및 루프 필터링부(490)는 모두 최대 부호화 단위, 심도에 따른 서브 부호화 단위, 예측 단위 및 변환 단위에 기초해 영상 부호화 과정들을 처리한다. In order to perform encoding according to the image encoding method according to an embodiment of the present invention, an
도 5는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부를 도시한다.FIG. 5 illustrates an image decoding unit based on an encoding unit according to an embodiment of the present invention.
비트스트림(505)이 파싱부(510)를 거쳐 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화 정보가 파싱된다. 부호화된 영상 데이터는 엔트로피 복호화부(520) 및 역양자화부(530)를 거쳐 역양자화된 데이터로 출력되고, 주파수 역변환부(540)를 거쳐 레지듀얼 값들로 복원된다. 레지듀얼 값들은 인트라 예측부(550)의 인트라 예측의 결과 또는 움직임 보상부(560)의 움직임 보상 결과와 가산되어 부호화 단위 별로 복원된다. 복원된 부호화 단위는 디블로킹부(570) 및 루프 필터링부(580)를 거쳐 다음 부호화 단위 또는 다음 픽처의 예측에 이용된다. The
본 발명의 일 실시예에 따른 영상 복호화 방법에 따라 복호화하기 위해 영상 복호화부(400)의 구성 요소들인 파싱부(510), 엔트로피 복호화부(520), 역양자화부(530), 주파수 역변환부(540), 인트라 예측부(550), 움직임 보상부(560), 디블로킹부(570) 및 루프 필터링부(580)가 모두 최대 부호화 단위, 심도에 따른 서브 부호화 단위, 예측 단위 및 변환 단위에 기초해 영상 복호화 과정들을 처리한다. A
특히, 인트라 예측부(550), 움직임 보상부(560)는 최대 부호화 단위 및 심도를 고려하여 서브 부호화 단위 내의 예측 단위 및 예측 모드를 결정하며, 주파수 역변환부(540)는 변환 단위의 크기를 고려하여 주파수 역변환을 수행한다.In particular, the
도 6는 본 발명의 일 실시예에 따른 최대 부호화 단위, 서브 부호화 단위 및 예측 단위를 도시한다.FIG. 6 illustrates a maximum encoding unit, a sub-encoding unit, and a prediction unit according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 영상 부호화 장치(100) 및 영상 복호화 장치(200)는 영상 특성을 고려하여 부호화, 복호화를 수행하기 위해 계층적인 부호화 단위를 이용한다. 최대 부호화 단위 및 최대 심도는 영상의 특성에 따라 적응적으로 설정되거나, 사용자의 요구에 따라 다양하게 설정될 수 있다. The
본 발명의 일 실시예에 따른 부호화 단위의 계층 구조(600)는 최대 부호화 단위(610)의 높이 및 너비가 64이며, 최대 심도가 4인 경우를 도시한다. 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 증가하고, 심도의 증가에 따라 서브 부호화 단위(620 내지 650)의 높이 및 너비가 축소된다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 최대 부호화 단위(610) 및 서브 부호화 단위(620 내지 650)의 예측 단위가 도시되어 있다.The
최대 부호화 단위(610)는 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 증가하며, 크기 32x32인 심도 1의 서브 부호화 단위(620), 크기 16x16인 심도 2의 서브 부호화 단위(630), 크기 8x8인 심도 3의 서브 부호화 단위(640), 크기 4x4인 심도 4의 서브 부호화 단위(650)가 존재한다. 크기 4x4인 심도 4의 서브 부호화 단위(650)는 최소 부호화 단위이다.The
도 6을 참조하면, 각각의 심도별로 가로축을 따라 예측 단위의 예시들이 도시되어 있다. 즉, 심도 0의 최대 부호화 단위(610)의 예측 단위는, 크기 64x64의 부호화 단위(610)와 동일하거나 작은 크기인 크기 64x64의 예측 단위(610), 크기 64x32의 예측 단위(612), 크기 32x64의 예측 단위(614), 크기 32x32의 예측 단위(616)일 수 있다. Referring to FIG. 6, examples of prediction units along the horizontal axis are shown for each depth. That is, the prediction unit of the
심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)와 동일하거나 작은 크기인 크기 32x32의 예측 단위(620), 크기 32x16의 예측 단위(622), 크기 16x32의 예측 단위(624), 크기 16x16의 예측 단위(626)일 수 있다. The prediction unit of the
심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)와 동일하거나 작은 크기인 크기 16x16의 예측 단위(630), 크기 16x8의 예측 단위(632), 크기 8x16의 예측 단위(634), 크기 8x8의 예측 단위(636)일 수 있다. The prediction unit of the
심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)와 동일하거나 작은 크기인 크기 8x8의 예측 단위(640), 크기 8x4의 예측 단위(642), 크기 4x8의 예측 단위(644), 크기 4x4의 예측 단위(646)일 수 있다. The prediction unit of the
마지막으로, 심도 4의 크기 4x4의 부호화 단위(650)는 최소 부호화 단위이며 최대 심도의 부호화 단위이고, 예측 단위는 크기 4x4의 예측 단위(650)이다.Finally, the
도 7은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위를 도시한다.7 shows an encoding unit and a conversion unit according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 영상 부호화 장치(100) 및 영상 복호화 장치(200)는, 최대 부호화 단위 그대로 부호화하거나, 최대 부호화 단위 보다 작거나 같은 서브 부호화 단위로 최대 부호화 단위를 분할하여 부호화한다. 부호화 과정 중 주파수 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 변환 단위로 선택된다. 예를 들어, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 주파수 변환이 수행될 수 있다. The
도 8a 및 8b는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 주파수 변환 단위의 분할 형태를 도시한다.FIGS. 8A and 8B show a division form of an encoding unit, a prediction unit, and a frequency conversion unit according to an embodiment of the present invention.
도 8a는 본 발명의 일 실시예에 따른 부호화 단위 및 예측 단위를 도시한다. 8A shows an encoding unit and a prediction unit according to an embodiment of the present invention.
도 8a의 좌측은 최대 부호화 단위(810)를 부호화하기 위해 본 발명의 일 실시예에 따른 영상 부호화 장치(100)가 선택한 분할 형태를 도시한다. 영상 부호화 장치(100)는 다양한 형태로 최대 부호화 단위(810)를 분할하고, 부호화한 다음 다양한 분할 형태의 부호화 결과를 R-D 코스트에 기초해 비교하여 최적의 분할 형태를 선택한다. 최대 부호화 단위(810)를 그대로 부호화하는 것이 최적일 경우에는 도 8a 및 8b와 같이 최대 부호화 단위(810)를 분할하지 않고 최대 부호화 단위(800)를 부호화할 수도 있다. The left side of FIG. 8A shows a division type selected by the
도 8a의 좌측을 참조하면, 심도 0인 최대 부호화 단위(810)를 심도 1 이상의 서브 부호화 단위로 분할하여 부호화한다. 최대 부호화 단위(810)를 네 개의 심도 1의 서브 부호화 단위로 분할한 다음, 전부 또는 일부의 심도 1의 서브 부호화 단위를 다시 심도 2의 서브 부호화 단위로 분할한다.Referring to the left side of FIG. 8A, a maximum encoding unit 810 having a depth of 0 is divided into sub-encoding units having a depth of 1 or more and encoded. The maximum encoding unit 810 is divided into sub-encoding units of four depths 1, and then all or a part of the sub-encoding units of depth 1 are divided into sub-encoding units of depth 2 again.
심도 1의 서브 부호화 단위 중 우측 상부에 외치한 서브 부호화 단위 및 좌측 하부에 위치한 서브 부호화 단위가 심도 2 이상의 서브 부호화 단위로 분할되었다. 심도 2 이상의 서브 부호화 단위 중 일부는 다시 심도 3 이상의 서브 부호화 단위로 분할될 수 있다.Among the sub-coding units of depth 1, sub-coding units coded at the upper right and sub-coding units located at the lower left are divided into sub-coding units of depth 2 or more. Some of the sub-encoding units having depths of 2 or more may be further divided into sub-encoding units having depths of 3 or more.
도 8b의 우측은 최대 부호화 단위(810)에 대한 예측 단위의 분할 형태를 도시한다. The right side of FIG. 8B shows the division type of the prediction unit for the maximum coding unit 810.
도 8a의 우측을 참조하면, 최대 부호화 단위에 대한 예측 단위(860)는 최대 부호화 단위(810)와 상이하게 분할될 수 있다. 다시 말해, 서브 부호화 단위들 각각에 대한 예측 단위는 서브 부호화 단위보다 작을 수 있다. Referring to the right side of FIG. 8A, the prediction unit 860 for the maximum coding unit can be divided into the maximum coding unit 810 and the prediction unit 860 for the maximum coding unit. In other words, the prediction unit for each of the sub-encoding units may be smaller than the sub-encoding unit.
예를 들어, 심도 1의 서브 부호화 단위 중 우측 하부에 외치한 서브 부호화 단위(854)에 대한 예측 단위는 서브 부호화 단위(854)보다 작을 수 있다. 심도 2의 서브 부호화 단위들(814, 816, 818, 828, 850, 852) 중 일부 서브 부호화 단위(815, 816, 850, 852)에 대한 예측 단위는 서브 부호화 단위보다 작을 수 있다. 또한, 심도 3의 서브 부호화 단위(822, 832, 848)에 대한 예측 단위는 서브 부호화 단위보다 작을 수 있다. 예측 단위는 각각의 서브 부호화 단위를 높이 또는 너비 방향으로 반분한 형태일 수도 있고, 높이 및 너비 방향으로 4분한 형태일 수도 있다.For example, a prediction unit for a
도 8b는 본 발명의 일 실시예에 따른 예측 단위 및 변환 단위를 도시한다. FIG. 8B shows a prediction unit and a conversion unit according to an embodiment of the present invention.
도 8b의 좌측은 도 8a의 우측에 도시된 최대 부호화 단위(810)에 대한 예측 단위의 분할 형태를 도시하고, 도 8b의 우측은 최대 부호화 단위(810)의 변환 단위의 분할 형태를 도시한다. The left side of FIG. 8B shows the division form of the prediction unit for the maximum coding unit 810 shown on the right side of FIG. 8A, and the right side of FIG. 8B shows the division form of the conversion unit of the maximum coding unit 810.
도 8b의 우측을 참조하면, 변환 단위(870)의 분할 형태는 예측 단위(860)와 상이하게 설정될 수 있다. Referring to the right side of FIG. 8B, the division type of the conversion unit 870 may be set differently from the prediction unit 860. [
예를 들어, 심도 1의 부호화 단위(854)에 대한 예측 단위가 높이를 반분한 형태로 선택되더라도, 변환 단위는 심도 1의 부호화 단위(854)의 크기와 동일한 크기로 선택될 수 있다. 마찬가지로, 심도 2의 부호화 단위(814, 850)에 대한 예측 단위가 심도 2의 부호화 단위(814, 850)의 높이를 반분한 형태로 선택되더라도 변환 단위는 심도 2의 부호화 단위(814, 850)의 원래 크기와 동일한 크기로 선택될 수 있다. For example, even if the prediction unit for the depth 1
예측 단위보다 더 작은 크기로 변환 단위가 선택될 수도 있다. 예를 들어, 심도 2의 부호화 단위(852)에 대한 예측 단위가 너비를 반분한 형태로 선택된 경우에 변환 단위는 예측 단위보다 더 작은 크기인 높이 및 너비를 반분한 형태로 선택될 수 있다.The conversion unit may be selected to be smaller than the prediction unit. For example, if the prediction unit for depth 2
도 9는 본 발명의 또 다른 실시예에 따른 영상 부호화 장치를 도시한다. 9 illustrates an image encoding apparatus according to another embodiment of the present invention.
도 9를 참조하면, 본 발명의 일 실시예에 다른 영상 부호화 장치(900)는 주파수변환부(910), 양자화부(920) 및 엔트로피부호화부(930)를 포함한다. 9, an
주파수변환부(910)는 픽셀 도메인의 영상 처리 단위를 입력받아 주파수 도메인으로 변환한다. 인트라 예측 또는 인터 예측을 통해 생성된 레지듀얼 값들을 포함하는 복수의 예측 단위를 입력받아 주파수 도메인으로 변환한다. 주파수 도메인으로 변환한 결과 주파수 성분들의 계수가 생성된다. 본 발명의 일 실시예에 따르면, 주파수 도메인으로의 변환은 이산 코사인 변환일 수 있고, 이산 코사인 변환 결과 이산 코사인 계수들이 생성된다. 이하에서는 이산 코사인 변환을 예로 들어 설명하나, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 모든 픽셀 도메인의 영상을 주파수 도메인으로 변환하는 모든 변환에 본 발명이 적용될 수 있음을 쉽게 알 수 있다.The
또한, 본 발명의 일 실시예에 따르면, 주파수변환부(910)는 복수의 예측 단위를 그룹핑하여 하나의 변환 단위를 설정하고, 설정된 변환 단위에 따라 이산 코사인 변환한다. 도 10, 11a, 11b 및 12를 참조하여 상세히 설명한다. Also, according to an embodiment of the present invention, the
도 10은 본 발명의 일 실시예에 따른 주파수변환부(910)를 도시한다. FIG. 10 shows a
도 10을 참조하면, 본 발명의 일 실시예에 따른 주파수변환부(910)는 선택부(1010) 및 변환수행부(1020)를 포함한다. 10, a
선택부(1010)는 인접한 복수의 예측 단위를 선택하여 하나의 변환 단위를 설정한다. 종래의 영상 부호화 장치들에 따르면, 소정 크기의 블록 즉, 예측 단위에 따라 인트라 예측 또는 인터 예측을 수행하고, 예측 보다 작거나 같은 크기로 이산 코사인 변환을 수행한다. 다시 말해, 종래의 영상 부호화 장치들은 예측 단위보다 작거나 같은 변환 단위에 기초해 이산 코사인 변환을 수행하였다.The
그러나, 각각의 변환 단위마다 부가되는 헤더 정보들 때문에 변환 단위가 작을수록 부가되는 오버헤드가 커져 영상 부호화의 압축률을 저하시켰다. 이러한 문제점 해결하기 위해 본 발명의 일 실시예에 따른 영상 부호화 장치(900)는 인접한 복수의 예측 단위를 하나의 변환 단위로 그룹핑하고, 그룹핑 결과 생성된 변환 단위에 따라 이산 코사인 변환을 수행한다. 인접한 복수의 예측 단위들은 유사한 레지듀얼 값들을 포함하고 있을 확률이 높으므로, 인접한 복수의 예측 단위를 묶어 하나의 변환 단위로 이산 코사인 변환한다면, 부호화의 압축률을 크게 향상시킬 수 있다.However, due to the header information added for each conversion unit, the overhead to be added increases as the conversion unit becomes smaller, thereby lowering the compression rate of the image encoding. In order to solve such a problem, the
이를 위해, 선택부(1010)는 하나의 변환 단위로 그룹핑하여 이산 코사인 변환을 수행할 인접한 복수의 예측 단위를 선택한다. 도 11a-11c 및 12를 참조하여 상세히 설명한다. For this, the
도 11a 내지 11c는 본 발명의 일 실시예에 따른 변환 단위의 유형을 도시한다. Figures 11A-11C illustrate types of conversion units in accordance with one embodiment of the present invention.
도 11a 내지 11c를 참조하면, 소정의 부호화 단위(1110)에 대해 예측 단위(1120)는 부호화 단위(1110)의 너비를 반분한 형태일 수 있다. 부호화 단위(1110)는 전술한 최대 부호화 단위일 수도 있고, 최대 부호화 단위보다 작은 크기의 서브 부호화 단위일 수 있다. 11A to 11C, the
부호화 단위(1110) 및 예측 단위(1120)가 동일한 경우에도 변환 단위(1130 내지 1150)는 상이할 수 있다. 도 11a에 도시된 바와 같이 변환 단위(1130)의 크기가 예측 단위(1120)보다 작거나, 도 11b에 도시된 바와 같이 변환 단위(1140)의 크기가 예측 단위(1120)와 동일할 수 있다. 또한, 본 발명의 일 실시예에 따른 변환 단위(1150)는 도 11c에 도시된 바와 같이 예측 단위(1120)의 크기보다 클 수 있다. The
다시 도 10을 참조하면, 선택부(1010)가 인접한 복수의 예측 단위를 선택하는 기준에는 제한이 없다. 그러나, 본 발명의 일 실시예에 따르면, 선택부(1010)는 심도에 기초해 변환 단위를 선택할 수 있다. 심도란 전술한 바와 같이 현재 슬라이스 또는 현재 픽처의 최대 부호화 단위에서 서브 부호화 단위의 크기로 단계적으로 축소된 정도를 나타낸다. 도 3 및 6과 관련하여 전술한 바와 같이 심도가 클수록 서브 부호화 단위의 크기가 작은 것을 의미하고 이에 따라 포함된 예측 단위도 작아진다. 이 경우 예측 단위보다 작거나 같은 크기의 변환 단위에 따라 이산 코사인 변환을 수행하면, 전술한 바와 같이 변환 단위마다 헤더 정보가 부가되어 영상 부호화의 압축률이 떨어진다. Referring again to FIG. 10, there is no limitation on the criterion that the
따라서, 소정 심도 이상의 서브 부호화 단위는 서브 부호화 단위에 포함된 예측 단위들을 그룹핑하여 하나의 변환 단위로 설정하고, 이산 코사인 변환하는 것이 바람직하다. 이를 위해 선택부(1010)는 서브 부호화 단위의 심도에 기초해 변환 단위를 설정한다. 예를 들어, 선택부(1010)는 도 11c에 도시된 부호화 단위(1110)의 심도가 k 보다 큰 경우에는 예측 단위들(1120)을 그룹핑하여 하나의 변환 단위(1150)로 설정한다. Therefore, it is preferable that the sub-encoding units having a predetermined depth or more are grouped into prediction units included in the sub-encoding unit, set as one conversion unit, and subjected to discrete cosine transformation. For this, the
또한, 본 발명이 또 다른 실시예에 따르면, 선택부(1010)는 동일한 종류의 예측 모드에 따라 예측이 수행된 인접한 복수의 예측 단위를 하나의 변환 단위로 설정할 수 있다. 인트라 예측 또는 인터 예측을 이용해 예측된 인접한 복수의 예측 단위를 하나의 변환 단위로 설정한다. 동일한 종류의 예측 모드에 따라 예측이 수행된 인접한 복수의 예측 단위는 유사한 레지듀얼 값들을 포함할 확률이 높으므로, 하나의 변환 단위로 그룹핑하여 이산 코사인 변환할 수 있다. In addition, according to another embodiment of the present invention, the
선택부(1010)가 변환 단위를 설정하면, 변환 수행부(1020)는 설정된 변환 단위에 따라 복수의 예측 단위를 주파수 도메인으로 변환한다. 선택된 복수의 예측 단위를 하나의 변환 단위로 이산 코사인 변환하여 이산 코사인 계수들을 생성한다. When the selecting
다시 도 9를 참조하면, 양자화부(920)는 주파수변환부(910)에서 생성된 주파수 성분 계수들, 예를 들어 이산 코사인 계수들을 양자화한다. 소정의 양자화 스텝에 따라 입력된 이산 코사인 계수들을 양자화할 수 있다.Referring again to FIG. 9, the
엔트로피부호화부(930)는 양자화부(920)에서 양자화된 이산 코사인 계수들을 엔트로피 부호화한다. CABAC(Context-Adaptive Binary Arithmetic Coding) 또는 CAVLC(Context-Adaptive Variable Length Coding)을 이용해 이산 코사인 계수들을 엔트로피 부호화한다. The
본 발명의 또 다른 실시예에 다른 영상 부호화 장치(900)는 상이한 변환 단위들에 대해 전술한 이산 코사인 변환, 양자화 및 엔트로피 부호화를 반복하여 최적의 변환 단위를 결정할 수 있다. 인접한 복수의 예측 단위를 선택하는 과정을 기계적으로 반복 수행하여 최적의 변환 단위를 결정한다. 최적의 변환 단위는 R-D 코스트(Rate-Distortion Cost)를 고려하여 결정될 수 있는데, 도 12와 관련하여 상세히 설명한다. The
도 12는 본 발명의 일 실시예에 따른 상이한 변환 단위들을 도시한다. Figure 12 shows different conversion units according to an embodiment of the present invention.
도 12를 참조하면, 본 발명에 따른 영상 부호화 장치(900)는 상이한 변환 단위들에 대해 부호화를 반복한다. Referring to FIG. 12, the
도 12에 도시된 바와 같이 소정의 부호화 단위(1210)는 부호화 단위보다 작은 크기의 예측 단위(1220)에 기초해 예측 부호화될 수 있다. 예측 결과 생성된 레지듀얼 값들은 이산 코사인 변환되는데, 이 때 도 12에 도시된 바와 같이 서로 다른변환 단위에 기초해 이산 코사인 변환될 수 있다. As shown in FIG. 12, a
첫 번째로 도시된 변환 단위(1230)는 부호화 단위(1210)와 동일한 크기의 변환 단위이며, 부호화 단위(1210)에 포함된 모든 예측 단위를 그룹핑한 크기의 변환 단위이다. The
두 번째로 도시된 변환 단위(1240)는 부호화 단위(1210)의 너비를 반분한 크기의 변환 단위이며, 세로 방향으로 인접한 두 개의 예측 단위를 각각 그룹핑한 크기의 변환 단위이다. The
세 번째로 도시된 변환 단위(1250)는 부호화 단위(1210)의 높이를 반분한 크기의 변환 단위이며, 가로 방향으로 인접한 두 개의 예측 단위를 각각 그룹핑한 크기의 변환 단위이다. The
네 번째로 도시된 변환 단위(1250)는 예측 단위(1220)와 동일한 크기로 변환을 수행하는 경우 이용하는 변환 단위이다. The
도 13은 본 발명의 또 다른 실시예에 따른 영상 복호화 장치를 도시한다. FIG. 13 illustrates an image decoding apparatus according to another embodiment of the present invention.
도 13을 참조하면, 본 발명의 일 실시예에 따른 영상 복호화 장치(1300)는 엔트로피복호화부(1310), 역양자화부(1320) 및 역주파수변환부(1330)를 포함한다. 13, an
엔트로피복호화부(1310)는 소정의 변환 단위에 대한 주파수 성분 계수들을 엔트로피 복호화한다. 도 11a 내지 11c, 12와 관련하여 전술한 바와 같이 변환 단위는 인접한 복수의 예측 단위를 그룹핑하여 생성된 변환 단위일 수 있다. The
영상 부호화 장치(900)와 관련하여 전술한 바와 같이 변환 단위는 심도에 기초해 인접한 복수의 예측 단위를 그룹핑한 변환 단위 또는, 동일한 종류의 예측 모드 즉, 인트라 예측 모드 또는 인터 예측 모드에 따라 예측이 수행된 인접한 복수의 예측 단위를 그룹핑한 변한 단위일 수 있다. 또한, 도 12와 관련하여 전술한 바와 같이 인접한 복수의 예측 단위를 그룹핑하는 과정을 기계적으로 반복하여 상이한 변환 단위에 대해 이상 코사인 변환, 양자화 및 엔트로피 복호화를 반복 수행함으로써 선택된 최적의 변환 단위일 수 있다. As described above in connection with the
역양자화부(1320)는 엔트로피복호화부(1310)에서 엔트로피 복호화된 주파수 성분 계수들을 역양자화한다. 변환 단위의 부호화 시에 이용된 양자화 스텝에 따라 엔트로피 복호화된 주파수 성분 계수들을 역양자화를 수행한다.The
역주파수변환부(1330)는 역양자화된 주파수 성분 계수들을 픽셀 도메인으로 역변환한다. 역양자화된 이산 코사인 계수들을 역이산 코사인 변환하여 픽셀 도메인의 변환 단위를 복원한다. 복원된 변환 단위는 인접한 복수의 예측 단위를 포함할 수 있다.The inverse
도 14는 본 발명의 일 실시예에 따른 영상 부호화 방법을 설명하기 위한 흐름도이다. 14 is a flowchart illustrating an image encoding method according to an embodiment of the present invention.
도 14를 참조하면, 단계 1410에서 본 발명의 일 실시예에 따른 영상 부호화 장치는 인접한 복수의 예측 단위를 선택하여 하나의 변환 단위를 설정한다. 심도에 기초해 인접한 복수의 예측 단위를 선택하거나, 동일한 종류의 예측 모드로 예측이 수행된 인접한 복수의 예측 단위를 선택할 수 있다. Referring to FIG. 14, in
단계 1420에서 영상 부호화 장치는 단계 1420에서 설정된 변환 단위에 따라 복수의 예측 단위를 주파수 도메인으로 변환한다. 복수의 예측 단위를 그룹핑하여 이산 코사인 변환함으로써 이산 코사인 계수를 생성한다. In
단계 1430에서 영상 부호화 장치는 단계 1420에서 생성된 주파수 성분 계수들 즉, 이산 코사인 계수들을 소정의 양자화 스텝에 따라 양자화한다. In
단계 1440에서 영상 부호화 장치는 단계 1430에서 양자화된 주파수 성분 계수들을 엔트로피 부호화한다. CABAC 또는 CAVLC을 이용해 이산 코사인 계수들을 엔트로피 부호화한다. In
본 발명의 또 다른 실시예에 따른 영상 부호화 방법은 상이한 변환 단위에 대해 상기된 단계 1410 내지 1440을 반복하여 최적의 변환 단위를 설정하는 단계를 더 포함할 수 있다. 도 12에 도시된 바와 같은 상이한 변환 단위에 대해 이산 코사인 변환, 양자화 및 엔트로피 부호화를 반복하여 최적의 변환 단위를 설정할 수 있다. The image encoding method according to another embodiment of the present invention may further include setting an optimal conversion unit by repeating the
도 15는 본 발명의 일 실시예에 따른 영상 복호화 방법을 설명하기 위한 흐름도이다. 15 is a flowchart illustrating an image decoding method according to an embodiment of the present invention.
도 15를 참조하면, 단계 1510에서 본 발명의 일 실시예에 따른 영상 복호화 장치는 소정의 변환 단위에 대한 주파수 성분 계수들을 엔트로피 복호화한다. 주파수 성분 계수들은 이산 코사인 계수들일 수 있다.Referring to FIG. 15, in
단계 1520에서 영상 복호화 장치는 단계 1510에서 엔트로피 복호화된 주파수 성분 계수들을 역양자화한다. 부호화 시에 이용된 양자화 스텝을 이용해 이산 코사인 계수들을 역양자화한다. In
단계 1530에서 영상 복호화 장치는 단계 1530에서 역양자화된 주파수 성분 계수들을 픽셀 도메인으로 역변환하여 변환 단위를 복원한다. 복원된 변환 단위는 인접한 복수의 예측 단위를 그룹핑하여 설정된 변환 단위이다. 전술한 바와 같이 변환 단위는 심도에 기초해 인접한 복수의 예측 단위를 그룹핑하여 설정된 변환 단위 또는, 동일한 예측 모드에 따라 예측이 수행된 인접한 복수의 예측 단위를 그룹핑하여 설정된 변환 단위일 수 있다. In
본 발명에 따르면, 예측 단위보다 큰 크기로 변환 단위를 설정하고, 이산 코사인 변환을 수행할 수 있어 영상을 보다 효율적으로 압축 부호화할 수 있다. According to the present invention, a conversion unit can be set to a size larger than a prediction unit, discrete cosine transformation can be performed, and the image can be compression-encoded more efficiently.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명이 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이와 균등하거나 또는 등가적인 변형 모두는 본 발명 사상의 범주에 속한다 할 것이다. 또한, 본 발명에 따른 시스템은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, Modification is possible. Accordingly, the spirit of the present invention should be understood only in accordance with the following claims, and all of the equivalent or equivalent variations will fall within the scope of the present invention. In addition, the system according to the present invention can be embodied as computer-readable codes on a computer-readable recording medium.
예를 들어, 본 발명의 예시적인 실시예에 따른 영상 부호화 장치, 영상 복호화 장치, 영상 부호화부 및 영상 복호화부는 도 1, 2, 4, 5, 9, 10 및 14에 도시된 바와 같은 장치의 각각의 유닛들에 커플링된 버스, 상기 버스에 결합된 적어도 하나의 프로세서를 포함할 수 있다. 또한, 명령, 수신된 메시지 또는 생성된 메시지를 저장하기 위해 상기 버스에 결합되어, 전술한 바와 같은 명령들을 수행하기 위한 적어도 하나의 프로세서에 커플링된 메모리를 포함할 수 있다. For example, the image encoding apparatus, the image decoding apparatus, the image encoding unit, and the image decoding unit according to the exemplary embodiments of the present invention may be implemented by the apparatuses shown in FIGS. 1, 2, 4, 5, 9, 10 and 14 A bus coupled to the units of the processor, and at least one processor coupled to the bus. It may also include a memory coupled to the bus for storing instructions, received messages or generated messages and coupled to the at least one processor for performing the instructions as described above.
또한, 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광데이터 저장장치 등이 있다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.In addition, the computer-readable recording medium includes all kinds of recording apparatuses in which data that can be read by a computer system is stored. Examples of the recording medium include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, and the like. The computer-readable recording medium may also be distributed over a networked computer system so that computer readable code can be stored and executed in a distributed manner.
Claims (3)
수신된 비트스트림으로부터 최대 부호화 단위를 결정하고, 상기 비트스트림으로부터 파싱된 부호화 단위의 분할정보를 이용하여 최대 부호화 단위로부터 계층적으로 분할된 상기 부호화 단위를 결정하는 단계;
상기 비트스트림에 대해 엔트로피 복호화를 수행하여 상기 부호화 단위에 포함된 변환 단위의 양자화된 변환 계수들을 획득하는 단계;
상기 양자화된 변환 계수들에 대해 역양자화 및 역변환을 수행하여 상기 변환 단위의 레지듀얼 값들을 획득하는 단계; 및
상기 부호화 단위에 포함된 적어도 하나의 예측 단위를 이용하여 예측을 수행하여 예측 영상을 결정하고, 상기 레지듀얼 값들과 상기 예측 영상을 이용하여 상기 부호화 단위를 복원하는 단계를 포함하고,
상기 부호화 단위에 포함된 변환단위의 크기와 상기 부호화 단위에 포함된 예측단위의 크기는 개별적으로 결정되고,
상기 분할정보가 분할되지 않음을 나타낼 때, 하나 이상의 예측 단위는 상기 부호화 단위로부터 획득되고, 하나 이상의 변환 단위가 부호화 단위로부터 획득되는 것을 특징으로 하는 영상 복호화 방법.
In the image decoding method,
Determining a maximum encoding unit from the received bit stream and determining the encoding unit hierarchically divided from the maximum encoding unit using the division information of the encoding unit parsed from the bit stream;
Performing entropy decoding on the bitstream to obtain quantized transform coefficients of a transform unit included in the encoded unit;
Performing inverse quantization and inverse transform on the quantized transform coefficients to obtain residual values of the transform unit; And
Determining a prediction image by performing prediction using at least one prediction unit included in the coding unit and restoring the coding unit using the residual values and the prediction image,
Wherein the size of the conversion unit included in the encoding unit and the size of the prediction unit included in the encoding unit are individually determined,
Wherein when the segmentation information indicates that the segmentation information is not segmented, at least one prediction unit is obtained from the encoding unit, and at least one conversion unit is obtained from the encoding unit.
상기 최대 부호화 단위는 분할정보에 따라 현재 심도와 하위 심도 중 적어도 하나를 포함하는 심도의 부호화 단위로 계층적으로 분할되고,
상기 분할정보가 현재 심도에서 분할됨을 나타낼 때, 상기 현재 심도의 부호화 단위는 이웃 부호화 단위들과 독립적으로 정사각형인 상기 하위 심도의 부호화 단위들로 4분할되는 것을 특징으로 하는 것을 특징으로 하는 영상 복호화 방법.
The method according to claim 1,
Wherein the maximum coding unit is hierarchically divided into a coding unit of depth including at least one of a current depth and a low depth according to the division information,
Wherein when the division information indicates that the division information is divided at the current depth, the coding unit of the current depth is divided into four coding units of the lower depth, which are square independently of neighboring coding units. .
수신된 비트스트림으로부터 최대 부호화 단위를 결정하고, 상기 비트스트림으로부터 파싱된 부호화 단위의 분할정보를 이용하여 최대 부호화 단위로부터 계층적으로 분할된 상기 부호화 단위를 결정하고, 상기 비트스트림에 대해 엔트로피 복호화를 수행하여 상기 부호화 단위에 포함된 변환 단위의 양자화된 변환 계수들을 획득하는 프로세서; 및
상기 양자화된 변환 계수들에 대해 역양자화 및 역변환을 수행하여 상기 변환 단위의 레지듀얼 값들을 획득하고, 상기 부호화 단위에 포함된 적어도 하나의 예측 단위를 이용하여 예측을 수행하여 예측 영상을 결정하고, 상기 레지듀얼 값들과 상기 예측 영상을 이용하여 상기 부호화 단위를 복원하는 복호화부를 포함하고,
상기 부호화 단위에 포함된 변환단위의 크기와 상기 부호화 단위에 포함된 예측단위의 크기는 개별적으로 결정되고,
상기 분할정보가 분할되지 않음을 나타낼 때, 적어도 하나 이상의 예측 단위는 부호화 단위로부터 획득되고, 하나 이상의 변환 단위가 부호화 단위로부터 획득되는 것을 특징으로 하는 영상 복호화 장치.In the image decoding apparatus,
Determining a maximum encoding unit from the received bitstream, determining the encoding unit hierarchically divided from the maximum encoding unit using the division information of the encoding unit parsed from the bitstream, and performing entropy decoding on the bitstream To obtain quantized transform coefficients of a transform unit included in the encoding unit; And
Determining a prediction image by performing prediction using at least one prediction unit included in the coding unit by performing inverse quantization and inverse transformation on the quantized transform coefficients to obtain residual values of the conversion unit, And a decoding unit for decoding the encoding unit using the residual values and the prediction image,
Wherein the size of the conversion unit included in the encoding unit and the size of the prediction unit included in the encoding unit are individually determined,
Wherein at least one prediction unit is obtained from an encoding unit and at least one conversion unit is obtained from an encoding unit when the segmentation information indicates that the segmentation information is not segmented.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150051966A KR101634253B1 (en) | 2015-04-13 | 2015-04-13 | Method and apparatus for encoding and decoding image using large transform unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150051966A KR101634253B1 (en) | 2015-04-13 | 2015-04-13 | Method and apparatus for encoding and decoding image using large transform unit |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140054296A Division KR101564563B1 (en) | 2014-05-07 | 2014-05-07 | Method and apparatus for encoding and decoding image using large transform unit |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160078117A Division KR101720195B1 (en) | 2016-06-22 | 2016-06-22 | Method and apparatus for encoding and decoding image using large transform unit |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150045979A KR20150045979A (en) | 2015-04-29 |
KR101634253B1 true KR101634253B1 (en) | 2016-06-28 |
Family
ID=53037730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150051966A KR101634253B1 (en) | 2015-04-13 | 2015-04-13 | Method and apparatus for encoding and decoding image using large transform unit |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101634253B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003250161A (en) | 2001-12-19 | 2003-09-05 | Matsushita Electric Ind Co Ltd | Encoder and decoder |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUP0301368A3 (en) * | 2003-05-20 | 2005-09-28 | Amt Advanced Multimedia Techno | Method and equipment for compressing motion picture data |
EP2055108B1 (en) * | 2006-08-25 | 2011-04-20 | Thomson Licensing | Methods and apparatus for reduced resolution partitioning |
-
2015
- 2015-04-13 KR KR1020150051966A patent/KR101634253B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003250161A (en) | 2001-12-19 | 2003-09-05 | Matsushita Electric Ind Co Ltd | Encoder and decoder |
Non-Patent Citations (1)
Title |
---|
Mathias Wien. 'Variable Block-size Transforms for Hybrid Video Coding'. 2004.2. |
Also Published As
Publication number | Publication date |
---|---|
KR20150045979A (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101474756B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101487687B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101564563B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101720195B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101603271B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101625632B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101598144B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101913734B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101823533B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101971626B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101634253B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101857798B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101564944B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101720194B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101464979B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101464980B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101603272B1 (en) | Method and apparatus for encoding and decoding image using large transform unit | |
KR101603269B1 (en) | Method and apparatus for encoding and decoding image using large transform unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
A107 | Divisional application of patent | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190530 Year of fee payment: 4 |