KR101534355B1 - Process for producing methacrylic acid - Google Patents
Process for producing methacrylic acid Download PDFInfo
- Publication number
- KR101534355B1 KR101534355B1 KR1020097025940A KR20097025940A KR101534355B1 KR 101534355 B1 KR101534355 B1 KR 101534355B1 KR 1020097025940 A KR1020097025940 A KR 1020097025940A KR 20097025940 A KR20097025940 A KR 20097025940A KR 101534355 B1 KR101534355 B1 KR 101534355B1
- Authority
- KR
- South Korea
- Prior art keywords
- reaction
- raw material
- catalyst
- molecular oxygen
- methacrylic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000006243 chemical reaction Methods 0.000 claims abstract description 123
- 239000003054 catalyst Substances 0.000 claims abstract description 56
- 239000002994 raw material Substances 0.000 claims abstract description 52
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 37
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 claims abstract description 29
- 230000003197 catalytic effect Effects 0.000 claims abstract description 15
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 14
- 230000003647 oxidation Effects 0.000 claims abstract description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 239000011733 molybdenum Substances 0.000 claims abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 239000011574 phosphorus Substances 0.000 claims abstract description 6
- 239000012495 reaction gas Substances 0.000 claims description 26
- 239000012808 vapor phase Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 239000007789 gas Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000007795 chemical reaction product Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- PDKHNCYLMVRIFV-UHFFFAOYSA-H molybdenum;hexachloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Mo] PDKHNCYLMVRIFV-UHFFFAOYSA-H 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- FXADMRZICBQPQY-UHFFFAOYSA-N orthotelluric acid Chemical compound O[Te](O)(O)(O)(O)O FXADMRZICBQPQY-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/195—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
- B01J27/198—Vanadium
- B01J27/199—Vanadium with chromium, molybdenum, tungsten or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/057—Selenium or tellurium; Compounds thereof
- B01J27/0576—Tellurium; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/16—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
- C07C51/21—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
- C07C51/25—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
- C07C51/252—Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
본 발명은, 메타크롤레인을 분자상 산소에 의해 기상 접촉 산화시켜 메타크릴산을 제조하는데 있어서, 촉매를 장기간 사용 가능한 방법을 제공하는 것을 목적으로 한다. 본 발명에서는, 몰리브덴 및 인을 함유하는 복합 산화물로 이루어지는 촉매의 존재 하에 원료인 메타크롤레인을 분자상 산소에 의해 기상 접촉 산화시켜, 메타크릴산을 제조하는데 있어서, 285℃ 이상 305℃ 이하의 반응 온도 범위에서 상기 원료의 반응률이 일정하게 되도록, 반응 압력을 단계적으로 또는 연속적으로 변경하는 압력 제어를 행함과 함께, 상기 압력 제어와 동시에 또는 독립적으로 반응 가스 중의 분자상 산소/원료의 몰비를 단계적으로 또는 연속적으로 변경하는 몰비 제어를 행한다. An object of the present invention is to provide a method which enables the catalyst to be used for a long time in the production of methacrylic acid by gas-phase catalytic oxidation of methacrolein with molecular oxygen. In the present invention, in the production of methacrylic acid by gas-phase catalytic oxidation of methacrolein, which is a raw material, with molecular oxygen in the presence of a catalyst comprising molybdenum and phosphorus-containing complex oxides, Pressure control for changing the reaction pressure stepwise or continuously so that the reaction rate of the raw material is constant in the temperature range and at the same time or independently controlling the molar ratio of the molecular oxygen / Or continuously changing the molar ratio.
Description
본 발명은, 메타크릴산의 제조방법, 상세하게는 메타크롤레인을 분자상 산소에 의해 촉매의 존재 하에 기상 접촉 산화시켜, 메타크릴산을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing methacrylic acid, more specifically, to a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen in the presence of a catalyst.
촉매를 사용하여 목적물을 연속적으로 제조하는 방법으로서, 촉매 활성의 저하에 따라, 프로세스에 허용되는 한계까지 반응 온도를 서서히 상승시켜 반응률을 유지하는 방법이 특허문헌 1에 개시되어 있다. 그 종래 기술에는, 몰리브덴 및 인을 함유하는 복합 산화물로 이루어지는 촉매 상에서 메타크롤레인을 기상 접촉 산화시켜 메타크릴산을 제조하는 방법은 널리 알려져 있고, 공업적으로도 사용되는 것이 기재되어 있다. 또한, 이 때, 촉매를 고정상으로서 이용하여, 250 내지 400℃의 반응 온도에서 메타크릴산을 제조하는 것이 많다는 것, 이러한 기상 접촉 산화 반응에 사용되는 촉매는 비교적 장시간 사용되지만, 통상적으로 촉매는 경시적(經時的)으로 열화한다는 것, 촉매의 열화의 원인으로서는, 촉매 성분의 환원, 촉매 성분의 승화·비산, 촉매 구조 중의 결정상의 변화 등을 들 수 있다는 것이 기 재되어 있다.
이러한 열화한 촉매를 재생하는 방법에 관하여는 여러 가지 제안이 이루어지고 있다. 예컨대, 특허문헌 2에는, 열화한 촉매를 수증기 분압 10용량% 이상의 기류 중에서 70 내지 240℃의 온도로 처리하는 방법이 개시되어 있다. 또한, 특허문헌 3에는, 분자상 산소를 0.1용량% 이상 함유하는 산화성 가스 유통 하에 300 내지 410℃의 온도로 0.5 내지 50시간 열처리하는 방법이 개시되어 있다. Various proposals have been made for a method of regenerating such deteriorated catalyst. For example, Patent Document 2 discloses a method of treating a deteriorated catalyst at a temperature of 70 to 240 캜 in an air stream having a steam partial pressure of 10% by volume or more. Patent Document 3 discloses a method of performing heat treatment at a temperature of 300 to 410 캜 for 0.5 to 50 hours under an oxidizing gas flow containing 0.1% by volume or more of molecular oxygen.
그러나 공업적 견지에서 생각하는 경우, 열화될 때마다 재생 처리를 행하는 것은 매우 번거롭고, 또한, 그 때마다 메타크릴산의 제조를 일단 중단해야 하기 때문에, 열화 촉매를 재생하는 빈도는 적을 수록 바람직하다고 할 수 있다. 즉, 공업적 견지로는, 열화 촉매를 재생하는 방법보다도 오히려 촉매의 열화를 가능한 한 억제하면서 메타크릴산을 제조하는 방법이 요망된다. However, when considering from the industrial standpoint, it is very cumbersome to carry out the regeneration treatment every time the catalyst is deteriorated. Further, since the production of methacrylic acid must be temporarily stopped every time the catalyst is used, . That is, as a technical point of view, a method of producing methacrylic acid while suppressing deterioration of the catalyst as much as possible is desired rather than a method of regenerating the deteriorated catalyst.
예컨대, 특허문헌 4에는, 원료 가스 조성 및 촉매에 대한 원료 가스의 공간 속도를 제어함으로써, 촉매 열화를 억제하는 제안이 이루어지고 있다. 또한, 특허문헌 5에는, 촉매의 실활(失活)에 대응할 목적으로, 가동 시간의 사이에 기상(氣相) 중의 작업 압력을 높게 하는 제안이 이루어지고 있다. For example, Patent Document 4 proposes to suppress catalyst deterioration by controlling the raw material gas composition and the space velocity of the raw material gas relative to the catalyst. Patent Document 5 proposes to increase the working pressure in the gas phase during the operation time for the purpose of dealing with inactivation of the catalyst.
특허문헌 1: 일본 특허공개 2000-191582호 공보Patent Document 1: Japanese Patent Application Laid-Open No. 2000-191582
특허문헌 2: 일본 특허공개 1983-156351호 공보Patent Document 2: JP-A-1983-156351
특허문헌 3: 일본 특허공개 1994-7685호 공보Patent Document 3: JP-A-1994-7685
특허문헌 4: 일본 특허공개 2002-193871호 공보Patent Document 4: JP-A-2002-193871
특허문헌 5: 국제 공개 제2005/113127호 팜플렛Patent Document 5: International Publication No. 2005/113127 pamphlet
발명의 개시DISCLOSURE OF INVENTION
발명이 해결하고자 하는 과제Problems to be solved by the invention
그러나 그 촉매 열화 억제의 정도는 공업적인 실시에 있어서는 반드시 충분하다고는 할 수 없어, 한층 더 기술 혁신이 요망되고 있다. However, the degree of catalyst deterioration inhibition is not necessarily sufficient in industrial practice, and further technical innovation is demanded.
본 발명은, 메타크롤레인을 분자상 산소에 의해 기상 접촉 산화시켜 메타크릴산을 제조하는데 있어서, 촉매를 장기간 사용 가능한 방법을 제공하는 것을 목적으로 하고 있다. An object of the present invention is to provide a method capable of long-term use of a catalyst in the production of methacrylic acid by gas-phase catalytic oxidation of methacrolein with molecular oxygen.
과제를 해결하기 위한 수단Means for solving the problem
본 발명은, 몰리브덴 및 인을 함유하는 복합 산화물로 이루어지는 촉매의 존재 하에 원료인 메타크롤레인을 분자상 산소에 의해 기상 접촉 산화시켜 메타크릴산을 제조하는 방법으로서, 285℃ 이상 305℃ 이하의 반응 온도 범위에서 상기 원료의 반응률이 일정하게 되도록, 반응 압력을 단계적으로 또는 연속적으로 변경하는 압력제어를 행함과 함께, 상기 압력 제어와 동시에 또는 독립적으로 반응 가스 중의 분자상 산소/원료의 몰비를 단계적으로 또는 연속적으로 변경하는 몰비 제어를 행하는 것을 특징으로 하는 메타크릴산의 제조방법이다. The present invention relates to a method for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein as a raw material with molecular oxygen in the presence of a catalyst composed of a composite oxide containing molybdenum and phosphorus, Pressure control for changing the reaction pressure stepwise or continuously so that the reaction rate of the raw material is constant in the temperature range and at the same time or independently controlling the molar ratio of the molecular oxygen / Or continuously changing the molar ratio of the methacrylic acid.
발명의 효과Effects of the Invention
본 발명의 메타크릴산의 제조방법에 의하면, 촉매를 실질적으로 장기간에 걸쳐 사용할 수 있다. According to the method for producing methacrylic acid of the present invention, the catalyst can be used for a substantially long period of time.
도 1은 실시예 1에 있어서의 제 2 반응의 제어 방법을 나타내는 도면이다. 1 is a view showing a control method of a second reaction in Example 1. Fig.
도 2는 비교예 1에 있어서의 제 2 반응의 제어 방법을 나타내는 도면이다. 2 is a diagram showing a control method of the second reaction in Comparative Example 1. Fig.
도 3은 비교예 2에 있어서의 제 2 반응의 제어 방법을 나타내는 도면이다. 3 is a view showing a control method of the second reaction in Comparative Example 2. Fig.
발명을 실시하기 위한 최선의 형태BEST MODE FOR CARRYING OUT THE INVENTION
본 발명에 있어서 사용하는 촉매는, 몰리브덴 및 인을 함유하는 복합 산화물이면 특별히 한정되지 않지만, 하기 화학식 1로 표시되는 조성을 갖는 복합 산화물이 바람직하다. The catalyst used in the present invention is not particularly limited as long as it is a complex oxide containing molybdenum and phosphorus, but a complex oxide having a composition represented by the following formula (1) is preferable.
(식중, Mo, P, Cu, V 및 O는 각각 몰리브덴, 인, 구리, 바나듐 및 산소를 나타내고, X는 철, 코발트, 니켈, 아연, 마그네슘, 칼슘, 스트론튬, 바륨, 타이타늄, 크로뮴, 텅스텐, 망간, 은, 붕소, 규소, 주석, 납, 비소, 안티몬, 비스무트, 니오븀, 탄탈럼, 지르코늄, 인듐, 황, 셀레늄, 텔루륨, 란타늄 및 세륨으로 이루어진 군으로부터 선택된 1종 이상의 원소, Y는 칼륨, 루비듐, 세슘 및 탈륨으로 이루어진 군으로부터 선택된 1종 이상의 원소를 나타낸다. 단, a, b, c, d, e, f 및 g는 각 원소의 원자비를 나타내고, a=12일 경우, 0.1≤b≤3, 0.01≤c≤3, 0.01≤d≤3, 0≤e≤10, 0.01≤f≤3이며, g는 상기 각 성분의 원자가를 만족하는 데 필요한 산소의 원자비이다.)Wherein X represents at least one element selected from the group consisting of iron, cobalt, nickel, zinc, magnesium, calcium, strontium, barium, titanium, chromium, tungsten, At least one element selected from the group consisting of manganese, silver, boron, silicon, tin, lead, arsenic, antimony, bismuth, niobium, tantalum, zirconium, indium, sulfur, selenium, tellurium, lanthanum, A, b, c, d, e, f and g represent atomic ratios of the respective elements, and when a = 12, 0.1? 3, 0.01? c? 3, 0.01? d? 3, 0? e? 10 and 0.01? f? 3, and g is an atomic ratio of oxygen required to satisfy the valence of each component.
본 발명에 있어서, 몰리브덴 및 인을 함유하는 복합 산화물 촉매를 조제하는 방법으로서는 특수한 방법에 한정할 필요는 없고, 종래부터 잘 알려져 있는 공침법, 증발 건고(乾固)법, 산화물 혼합법 등 여러 가지 방법을 이용할 수 있다. 구체적으로는, 복합 산화물의 구성 원소를 포함하는 원료를 이용하여, 그 소요량을 물 등의 용매 중에 적절히 용해 또는 현탁시키고, 수득된 혼합 용액 또는 수성 슬러리를 증발 건고하고, 추가로 필요에 따라 분쇄, 성형한 후, 열처리하여 얻는 방법을 예시할 수 있다. 열처리는, 예컨대, 산소 유통 하, 공기 유통 하 또는 질소 유통 하에서, 200 내지 500℃에서 1 내지 30시간 행하는 것이 바람직하다. In the present invention, the method for preparing the composite oxide catalyst containing molybdenum and phosphor is not limited to a specific method, and various methods such as coprecipitation, evaporation, Method can be used. Specifically, the raw material containing the constituent elements of the composite oxide is used to dissolve or suspend the required amount in a solvent such as water, and the obtained mixed solution or aqueous slurry is evaporated to dryness, and further, Followed by shaping, followed by heat treatment. The heat treatment is preferably carried out at 200 to 500 DEG C for 1 to 30 hours under oxygen flow, under air flow or nitrogen flow.
본 발명에 있어서, 촉매의 조제에 이용하는 원료로서는 특별히 한정되지 않고, 각 원소의 질산염, 탄산염, 아세트산염, 암모늄염, 산화물, 할로젠화물 등을 조합시켜 사용할 수 있다. 예컨대, 몰리브덴 원료로서는 파라몰리브덴산 암모늄, 삼산화몰리브덴, 몰리브덴산, 염화몰리브덴 등을 사용할 수 있다. 인 원료로서는 정인산, 메타인산, 오산화이인, 피로인산, 인산 암모늄 등을 이용할 수 있다. In the present invention, the raw material used for preparing the catalyst is not particularly limited, and a nitrate, carbonate, acetate, ammonium salt, oxide, or halide of each element can be used in combination. As the molybdenum raw material, for example, ammonium paramolybdate, molybdenum trioxide, molybdic acid, molybdenum chloride and the like can be used. As the phosphorus raw materials, there can be used polyphosphoric acid, metaphosphoric acid, hydrogen peroxide, pyrophosphoric acid, ammonium phosphate and the like.
본 발명에 사용되는 촉매는 무담체의 성형 촉매라도 좋지만, 실리카, 알루미나, 실리카·알루미나, 실리콘 카바이드 등의 불활성 담체에 담지시키거나, 또는 이들로 희석하여 이용할 수도 있다. The catalyst to be used in the present invention may be a catalyst for forming an uncarrier, but may be carried on an inert carrier such as silica, alumina, silica-alumina, or silicon carbide, or may be used by diluting them.
본 발명에서는, 상기와 같은 촉매의 존재 하에 원료인 메타크롤레인을 분자상 산소에 의해 기상 접촉 산화시켜, 메타크릴산을 제조한다. 예컨대, 원료 및 분 자상 산소를 포함하는 반응 가스를, 상기 촉매가 충전된 반응관을 통과시킴으로써 기상 접촉 산화를 행할 수 있다. In the present invention, methacrolein, which is a starting material, is subjected to gas-phase catalytic oxidation with molecular oxygen in the presence of the above catalyst to produce methacrylic acid. For example, gas-phase catalytic oxidation can be performed by passing a reaction gas containing a raw material and molecular oxygen through a reaction tube filled with the catalyst.
분자상 산소원으로서는 공기를 이용하는 것이 경제적이지만, 필요하면 순(純)산소로 부화(富化)시킨 공기를 이용할 수 있다. 반응 가스 중의 분자상 산소와 원료의 농도비(몰비)는 0.5 내지 3:1의 범위가 바람직하다. 반응 가스에는, 희석을 위한 불활성 가스가 포함되어 있는 것이 바람직하다. 반응 가스에는 수증기를 포함하고 있더라도 좋다. 반응 가스 중의 원료의 농도는 1 내지 10용량%가 바람직하다. Although it is economical to use air as a molecular oxygen source, if necessary, air enriched with pure oxygen can be used. The molar ratio of the molecular oxygen to the raw material in the reaction gas is preferably in the range of 0.5 to 3: 1. It is preferable that the reactive gas contains an inert gas for dilution. The reaction gas may contain steam. The concentration of the raw material in the reaction gas is preferably 1 to 10% by volume.
반응 압력은, 반응기의 반응 가스 입(入) 압력 및 출(出) 압력의 평균 압력으로서, 20 내지 300kPa(게이지압; 이하, 압력 표기는 모두 게이지압임)가 바람직하다. 반응 온도는 230 내지 400℃, 특히 250 내지 350℃의 범위가 바람직하다. The reaction pressure is preferably 20 to 300 kPa (gauge pressure; hereinafter, pressure notation is all gauge pressure) as an average pressure of the reaction gas inlet / outlet pressure of the reactor. The reaction temperature is preferably in the range of 230 to 400 ° C, particularly 250 to 350 ° C.
단, 이러한 기상 접촉 산화에 사용되는 촉매는 경시적으로 활성이 저하된다. 그 활성 저하의 원인으로서는, 온도에 의한 촉매 구조의 분해(촉매 성분의 승화·비산, 촉매 구조 중의 결정상의 변화), 반응물(메타크롤레인)에 의한 촉매 성분의 환원, 반응물(메타크롤레인)과 온도에 의한 촉매 성분의 환원 등, 다양한 설이 있다. 본원 발명자들은, 예의 검토의 결과, 본 촉매계에서는, 열화 원인으로서, 온도에 의한 촉매 구조의 분해 또는 반응물(메타크롤레인)과 온도에 의한 촉매 성분의 환원이 지배적인 것을 알아내어, 본 발명에 이른 것이다. However, the catalyst used for such gas-phase catalytic oxidation is degraded with time. Causes of the decrease in activity include decomposition of the catalyst structure due to temperature (sublimation and scattering of the catalyst component, change of the crystal phase in the catalyst structure), reduction of the catalyst component by the reactant (methacrolein) Reduction of the catalyst component by temperature, and the like. As a result of intensive studies, the inventors of the present invention have found that, in the present catalyst system, decomposition of a catalyst structure due to temperature or reduction of a catalyst component due to a reactant (methacrolein) and temperature is dominant as a cause of deterioration, will be.
즉, 본 발명에서는, 될 수 있는 한 반응 온도를 상승시키지 않고서 원료의 반응률을 유지하기 위해, 285℃ 이상 305℃ 이하의 반응 온도 범위로, 반응 압력을 단계적으로 또는 연속적으로 변경하는 압력 제어를 행함과 동시에, 상기 압력 제어와 동시에 또는 독립적으로 반응 가스 중의 분자상 산소/원료의 몰비(O/R)를 단계적으로 또는 연속적으로 변경하는 몰비 제어를 행한다. 이러한 두 가지의 제어를 행함으로써 촉매 구조의 온도에 의한 분해나 반응물과 온도에 의한 촉매 성분의 환원이 억제되어, 종래의 반응 온도만의 제어의 경우에 비교하여, 촉매의 사용 기간(촉매 수명)이 비약적으로 개선된다. That is, in the present invention, the pressure control is performed so as to change the reaction pressure stepwise or continuously in a reaction temperature range of 285 DEG C to 305 DEG C so as to maintain the reaction rate of the raw material without raising the reaction temperature as much as possible And at the same time, the molar ratio control is performed to change the molar ratio (O / R) of the molecular oxygen in the reaction gas or the raw material (O / R) in the reaction gas stepwise or continuously. By performing these two kinds of control, decomposition by the temperature of the catalyst structure and reduction of the catalyst component due to the reactants and the temperature are suppressed, and compared with the case of controlling only the conventional reaction temperature, the use period (catalyst life) Is dramatically improved.
반응 압력의 변경, 및/또는 반응 가스 중의 분자상 산소/원료의 몰비의 변경은, 원료의 반응률이 일정하게 되도록 행한다. 여기서, 「원료의 반응률이 일정」하다는 것은, 정상 운전시의 운전 관리 반응률로부터 ±2.5%의 범위인 것을 의미한다. 운전 관리 반응률은 정상 운전시에 목표로 하는 반응률이다. 예컨대, 원료의 반응률이 (운전 관리 반응률-2)%를 하회할 때까지 저하된 시점에서, 원료의 반응률이 (운전 관리 반응률+2.5)%를 넘지 않도록, 반응 압력을 변경함과 함께, 반응 가스 중의 분자상 산소/원료의 몰비를 변경하는 방법이라도 좋다. The change of the reaction pressure and / or the change of the molar ratio of the molecular oxygen / raw material in the reaction gas is performed so that the reaction rate of the raw material becomes constant. Here, "the reaction rate of the raw material is constant" means that it is within the range of ± 2.5% from the operation management reaction rate in the normal operation. The operation response rate is the target response rate during normal operation. For example, the reaction pressure is changed so that the reaction rate of the raw material does not exceed (the operation management reaction rate + 2.5%) at the point when the reaction rate of the raw material decreases until the reaction rate of the raw material falls below (the operation management reaction rate -2) The mole ratio of the molecular oxygen in the raw material to the molar ratio of the raw material may be changed.
이러한 운전 방법으로서는, 예컨대, 활성이 저하되어 반응률이 낮아졌을 때에, 반응 압력, 및 반응 가스 중의 분자상 산소/원료의 몰비(O/R)의 한쪽 또는 양쪽을 높여 반응률을 거의 일정하게 유지하는 운전 방법 등을 들 수 있다. 반응 계속 중에 촉매의 활성이 일시적으로 상승하는 경우도 있지만, 촉매의 활성은 장기적으로는 개시시보다 낮아진다. 반응률을 일정하게 유지하는 운전 방법으로, 활성이 일시적으로 상승한 경우는, 반응 압력, 및 반응 가스 중의 분자상 산소/원료의 몰비(O/R)의 한쪽 또는 양쪽을 낮추어 대처하면 된다. As such an operation method, for example, when the activity is lowered and the reaction rate is lowered, the reaction rate and the molar ratio (O / R) of the molecular oxygen / raw material in the reaction gas are increased to keep the reaction rate almost constant And the like. While the activity of the catalyst temporarily increases during the continuation of the reaction, the activity of the catalyst becomes lower in the long run than in the initiation. When the activity temporarily increases, the reaction method may be performed by lowering one or both of the reaction pressure and the molar ratio (O / R) of the molecular oxygen / raw material in the reaction gas.
반응 압력은, 반응의 진행에 따라 상승시키는 제어를 행하는 것이 효과적이다. 반응 개시시의 압력은 90 내지 130kPa로 하는 것이 바람직하고, 100 내지 120kPa가 보다 바람직하다. 반응 종료시의 압력은, 100 내지 140kPa가 바람직하고, 110 내지 130kPa가 보다 바람직하다. 반응 압력은 연속적으로 상승시키더라도 좋지만, 제어 용이성의 관점에서 단계적으로 상승시키는 것이 바람직하다. 반응 압력을 단계적으로 상승시킬 때는, 2회 이상으로 나누어 상승시키는 것이 바람직하다. 2회로 나누어 상승시키는 경우, 예컨대, 최초의 반응 압력을 100 내지 110kPa, 반응 도중에서 한번 반응 압력을 110 내지 120kPa로 하고, 최종적으로 반응 압력을 120 내지 130kPa로 하는 것이 바람직하다. 한편, 여기서 말하는 반응 압력이란, 반응기의 입 압력과 출 압력의 평균 압력이다. It is effective to perform the control so as to raise the reaction pressure with the progress of the reaction. The pressure at the start of the reaction is preferably 90 to 130 kPa, more preferably 100 to 120 kPa. The pressure at the end of the reaction is preferably 100 to 140 kPa, more preferably 110 to 130 kPa. Although the reaction pressure may be continuously increased, it is preferable to raise the reaction pressure stepwise from the viewpoint of control easiness. When raising the reaction pressure stepwise, it is preferable to raise the reaction pressure by two or more times. For example, the initial reaction pressure is set to 100 to 110 kPa, the reaction pressure once to 110 to 120 kPa in the course of the reaction, and finally the reaction pressure is set to 120 to 130 kPa. On the other hand, the reaction pressure referred to herein is an average pressure of the inlet pressure and the outlet pressure of the reactor.
압력을 상승시키는 방법은 특별히 한정되지 않고, 예컨대 반응 가스 출구의 컨트롤 밸브 설정치를 변경하여, 입 압력, 출 압력을 함께 상승시키는 방법을 들 수 있다. The method of raising the pressure is not particularly limited, and for example, a method of changing the control valve set value at the outlet of the reaction gas to increase the inlet pressure and the outlet pressure together.
반응 가스 중의 분자상 산소/원료의 몰비(O/R)는, 반응의 진행에 따라 상승시키는 제어를 행하는 것이 효과적이다. 반응 개시시의 몰비(O/R)는 1.4 내지 1.9가 바람직하고, 1.5 내지 1.6이 보다 바람직하다. 반응 종료시의 몰비(O/R)는 1.6 내지 1.9가 바람직하고, 1.7 내지 1.8이 보다 바람직하다. 몰비(O/R)는 연속적으로 상승시키더라도 좋지만, 제어 용이성의 관점에서 단계적으로 상승시키는 것이 바람직하다. 단계적으로 상승시킬 때는, 2회 이상으로 나누어 상승시키는 것이 바람직하다. 2회로 나누어 상승시키는 경우, 예컨대, 최초의 몰비(O/R)를 1.5 내지 1.6, 반응 도중에서 한번 몰비(O/R)를 1.6 내지 1.7로 하고, 최종적으로 몰비(O/R)를 1.7 내지 1.8로 하는 것이 바람직하다. 몰비(O/R)를 변경하는 방법으로서는, 예컨대, 원료 가스 중의 분자상 산소의 농도와 원료의 농도 중 어느 한쪽을 변화시키더라도 좋고, 양쪽을 변화시키더라도 좋지만, 메타크릴산의 생산량을 일정하게 하는 경우에는, 원료의 농도는 변화시키지 않고, 분자상 산소의 농도만을 변화시키는 것이 바람직하다. 또한, 분자상 산소의 농도만을 변화시키는 경우에는, 원료 가스의 공간 속도가 변하지 않도록 질소 등의 불활성 가스의 농도를 조절하는 것이 바람직하다. It is effective to control the molar ratio (O / R) of the molecular oxygen in the reaction gas to the raw material in accordance with the progress of the reaction. The molar ratio (O / R) at the start of the reaction is preferably 1.4 to 1.9, more preferably 1.5 to 1.6. The molar ratio (O / R) at the end of the reaction is preferably 1.6 to 1.9, more preferably 1.7 to 1.8. Although the molar ratio (O / R) may be continuously increased, it is preferable to raise the molar ratio (O / R) stepwise from the viewpoint of control easiness. When raising the temperature stepwise, it is preferable to raise the temperature by two or more times. (O / R) of 1.5 to 1.6 and a molar ratio (O / R) of 1.6 to 1.7 once in the course of the reaction, and finally the molar ratio (O / R) 1.8. As a method for changing the molar ratio (O / R), for example, either the concentration of the molecular oxygen in the raw material gas and the concentration of the raw material may be changed or both may be varied, but the production amount of methacrylic acid It is preferable to change only the concentration of the molecular oxygen without changing the concentration of the raw material. In the case of changing only the concentration of molecular oxygen, it is preferable to adjust the concentration of the inert gas such as nitrogen so that the space velocity of the raw material gas does not change.
반응 압력, 및 반응 가스 중의 분자상 산소/원료의 몰비(O/R)는, 각각 독립적으로 변경할 수 있고, 동시에 변경할 수도 있고, 교대로 변경할 수도 있다. 이와 같이, 반응 압력의 변경과, 반응 가스중의 분자상 산소/원료의 몰비의 변경을 조합시킨 제어를 행함으로써 큰 효과가 얻어진다. The reaction pressure and the molar ratio (O / R) of the molecular oxygen / raw material in the reaction gas can be independently changed, and can be changed simultaneously or alternately. As described above, a great effect is obtained by performing control in which the change of the reaction pressure and the change of the molar ratio of the molecular oxygen in the reaction gas / the raw material in the reaction gas are combined.
반응 압력의 변경, 및/또는 반응 가스 중의 분자상 산소/원료의 몰비(O/R)의 변경에 대응하여서는, 촉매의 활성 변화의 정도에 따라, 경시적으로 조건을 되돌리더라도 상관없다. Depending on the change in the reaction pressure and / or the change in the molar ratio (O / R) of the molecular oxygen / raw material in the reaction gas, the conditions may be reversed depending on the degree of change in the activity of the catalyst.
반응 압력의 변경, 및 반응 가스 중의 분자상 산소/원료의 몰비(O/R)의 변경에 더하여, 반응 온도를 변경하는 온도 제어를 행함으로써 보다 높은 효과를 얻을 수 있다. 예컨대, 원료의 반응률이 (운전 관리 반응률-2)%를 하회할 때까지 저하된 시점에서, 원료의 반응률이 (운전 관리 반응률+2.5)%를 넘지 않도록, 반응 온도를 변경하는 방법이라도 좋다. 반응 온도는, 반응 압력 및/또는 몰비(O/R)와, 각 각 독립적으로 변경할 수 있고, 동시에 변경할 수도 있다. In addition to the change of the reaction pressure and the change of the molar ratio (O / R) of the molecular oxygen / raw material in the reaction gas, a higher effect can be obtained by controlling the temperature by changing the reaction temperature. For example, the reaction temperature may be changed so that the reaction rate of the raw material does not exceed (the operation management reaction rate + 2.5%) at the point when the reaction rate of the raw material is lowered below the (management reaction reaction rate -2)%. The reaction temperature can be changed independently of the reaction pressure and / or the molar ratio (O / R), and can be changed at the same time.
이 제어 하에서의 반응을 행한 후의 촉매를, 추가로 통상의 기상 접촉 산화에 사용할 수도 있고, 그 때의 촉매의 사용 기간(촉매 수명)도 개선된다. The catalyst after the reaction under this control can be further used for ordinary gas-phase catalytic oxidation, and the period of use (catalyst life) of the catalyst at that time is also improved.
이하, 실시예를 들어 본 발명을 더욱 구체적으로 설명한다. 한편, 실시예 및 비교예 중의 「부」는 질량부를 의미한다. 원료 가스 및 반응 생성 가스의 분석은 가스 크로마토그래피에 의해 행했다. Hereinafter, the present invention will be described more specifically by way of examples. In the examples and comparative examples, " part " means the mass part. The analysis of the raw material gas and the reaction product gas was carried out by gas chromatography.
또한, 이하의 실시예에서는, 원료인 메타크롤레인의 기상 접촉 산화 반응을 행하고 있다. 메타크롤레인의 반응률, 생성된 메타크릴산의 선택률 및 수율은 각각 이하와 같이 정의된다. In the following examples, the vapor phase catalytic oxidation reaction of the raw material, methacrolein, is carried out. The reaction rates of methacrolein, the selectivity and yield of methacrylic acid produced are respectively defined as follows.
메타크롤레인의 반응률(%)=(B/A)×100Reaction rate (%) of methacrolein = (B / A) x 100
메타크릴산의 선택률(%)=(C/B)×100Selectivity (%) of methacrylic acid = (C / B) x 100
메타크릴산의 수율(%)=(C/A)×100Yield (%) of methacrylic acid = (C / A) x 100
여기서, A는 공급된 메타크롤레인의 몰수, B는 반응한 메타크롤레인의 몰수, C는 생성된 메타크릴산의 몰수이다. Where A is the number of moles of metacrolein supplied, B is the number of moles of methacrolein reacted, and C is the number of moles of methacrylic acid produced.
[참고예][Reference Example]
(촉매의 제조)(Preparation of catalyst)
파라몰리브덴산 암모늄 100부, 메타바나드산 암모늄 2.8부 및 질산세슘 9.2부를 순수(純水) 300부에 용해했다. 이것을 교반하면서, 85질량% 인산 수용액 7.7 부를 순수 10부에 용해한 용액 및 텔루륨산 1.1부를 순수 10부에 용해한 용액을 가하여, 교반하면서 95℃로 승온시켰다. 이어서 질산구리 2.3부, 질산제2철 7.6부, 질산아연 1.4부 및 질산마그네슘 1.8부를 순수 80부에 용해한 용액을 가했다. 추가로 이 혼합액을 100℃에서 15분간 교반하고, 수득된 슬러리를 분무 건조기를 이용하여 건조했다. 100 parts of ammonium paramolybdate, 2.8 parts of ammonium metavanadate and 9.2 parts of cesium nitrate were dissolved in 300 parts of pure water. While stirring this, a solution prepared by dissolving 7.7 parts of an 85 mass% aqueous phosphoric acid solution in 10 parts of pure water and 1.1 parts of tellurium acid in 10 parts of pure water was added and the temperature was raised to 95 캜 with stirring. Subsequently, a solution prepared by dissolving 2.3 parts of copper nitrate, 7.6 parts of ferric nitrate, 1.4 parts of zinc nitrate and 1.8 parts of magnesium nitrate in 80 parts of pure water was added. Further, this mixed solution was stirred at 100 DEG C for 15 minutes, and the obtained slurry was dried by using a spray dryer.
수득된 건조물 100부에 대하여 흑연 2부를 첨가 혼합하여, 타정(打錠) 성형기에 의해 외경 5mm, 내경 2mm, 길이 5mm의 링 형상으로 성형했다. 이 타정 성형물을 공기 유통 하에 380℃로 5시간 소성하여, 촉매를 수득했다. 촉매의 조성은, 산소를 제외한 원자비로, To 100 parts of the obtained dried product, 2 parts of graphite was added and mixed and molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm and a length of 5 mm by a tableting molding machine. The resultant molded product was calcined at 380 캜 for 5 hours under air circulation to obtain a catalyst. The composition of the catalyst is an atomic ratio excluding oxygen,
Mo12P1.4Cu0.2V0.5Fe0.4Te0.1Mg0.15Zn0.1Cs1이었다. Mo 12 P 1.4 Cu 0.2 V 0.5 Fe 0.4 Te 0.1 Mg 0.15 Zn 0.1 Cs 1 .
[실시예 1][Example 1]
(제 1 반응)(First reaction)
참고예에서 수득된 촉매 3000g을, 외부에 열매욕(熱媒浴)을 갖는 외경 27.5mm, 높이 6m의 스테인레스제 반응관에 충전했다. 계속해서, 열매욕의 온도를 285℃(이하, 열매욕의 온도를 반응 온도로 봄)로 하고, 메타크롤레인 6용량%, 산소 9.9용량%, 수증기 10용량% 및 질소 74.1용량%로 이루어지는 반응 가스를 공간 속도 1000hr-1로 촉매층을 통과시키는 조건 하에서 메타크롤레인의 기상 접촉 산화를 행했다. 초기의 반응 생성물을 분석한 결과, 메타크롤레인 반응률 75.3%, 메타크릴산의 선택률 80.7%, 메타크릴산의 수율 60.8%였다. 이 단계에서의 열매욕의 온도 는 285℃, 반응 압력은 110kPa, 반응 가스 중의 분자상 산소/원료의 몰비는 1.65이다. 3000 g of the catalyst obtained in Reference Example was charged into a stainless steel reaction tube having an outer diameter of 27.5 mm and a height of 6 m and having a heat transfer bath on the outside. Subsequently, the reaction was carried out at a temperature of 285 占 폚 (hereinafter referred to as a reaction bath temperature) and a reaction consisting of 6% by volume of methacrolein, 9.9% by volume of oxygen, 10% by volume of water vapor and 74.1% by volume of nitrogen Gas catalytic oxidation of methacrolein was carried out under the condition that the gas was passed through the catalyst layer at a space velocity of 1000 hr < -1 & gt ;. The initial reaction products were analyzed to find that the methacrolein reaction rate was 75.3%, the selectivity of methacrylic acid was 80.7%, and the yield of methacrylic acid was 60.8%. The temperature of the heat bath at this stage is 285 ° C, the reaction pressure is 110 kPa, and the mole ratio of molecular oxygen / raw material in the reaction gas is 1.65.
(제 2 반응)(Second reaction)
제 1 반응에 계속해서, 운전 관리 반응률 75%로 제어를 행했다. 구체적으로는, 도 1에 나타낸 바와 같이, 열매욕의 온도, 반응 압력 및 반응 가스 중의 분자상 산소/원료의 몰비를 변경하고, 메타크롤레인 반응률을 75±2.5%로 유지했다. 한편, 도 1에 있어서, T는 열매욕의 온도, P는 반응 압력, M은 반응 가스 중의 분자상 산소/원료의 몰비, R은 메타크롤레인 반응률, t는 연속 운전 시간이다(도 2 내지 3에 있어서도 같음). 제 2 반응의 연속 운전의 기간은 2880시간이 되었다. 이 단계의 반응 생성물을 분석한 결과, 메타크롤레인 반응률 75.4%, 메타크릴산의 선택률 82.3%, 메타크릴산의 수율 62.1%였다. 이 단계에서의 열매욕의 온도는 305℃, 반응 압력은 130kPa, 반응 가스 중의 분자상 산소/원료의 몰비는 1.85이다. 한편, 분자상 산소/원료 몰비를 증가시킬 때는, 원료의 농도는 일정하게 하고, 분자상 산소의 농도만을 증가시키고, 질소의 농도를 그 부분만큼 감소시켰기 때문에, 공간 속도도 일정했다. Subsequent to the first reaction, control was performed at an operation management reaction rate of 75%. Specifically, as shown in Fig. 1, the temperature of the heat bath, the reaction pressure, and the mole ratio of the molecular oxygen / raw material in the reaction gas were changed, and the methacrolein reaction rate was maintained at 75 ± 2.5%. 1, T is the temperature of the heat bath, P is the reaction pressure, M is the mole ratio of the molecular oxygen / raw material in the reaction gas, R is the methacrolein reaction rate, and t is the continuous operation time . The duration of the continuous operation of the second reaction was 2880 hours. Analysis of the reaction product at this stage showed that the reaction rate of methacrolein was 75.4%, the selectivity of methacrylic acid was 82.3%, and the yield of methacrylic acid was 62.1%. The temperature of the heat bath at this stage is 305 ° C, the reaction pressure is 130 kPa, and the mole ratio of molecular oxygen / raw material in the reaction gas is 1.85. On the other hand, when increasing the molecular oxygen / raw material molar ratio, the space velocity was also constant since the concentration of the raw material was made constant, the concentration of molecular oxygen was increased only, and the concentration of nitrogen was decreased by that portion.
(제 3 반응)(Third reaction)
제 2 반응 후, 메타크롤레인의 운전 관리 반응률이 75% 정도로 일정하게 되도록 열매욕의 온도를 상승시키는 제어를 행하면서, 열매욕의 온도가 320℃가 될 때까지 반응을 계속했다. 제 3 반응 종료까지의 연속 운전의 기간은 통산으로 4704시간이 되었다. 이 단계의 반응 생성물을 분석한 결과, 메타크롤레인 반응률 75.2%, 메타크릴산의 선택률 81.2%, 메타크릴산의 수율 61.1%였다. After the second reaction, the reaction was continued until the temperature of the heat bath reached 320 캜 while controlling the temperature of the heat bath so that the operation management reaction rate of the methacrolein was constant at about 75%. The period of continuous operation until the end of the third reaction was 4704 hours in total. The reaction products of this stage were analyzed to find that the methacrolein reaction rate was 75.2%, the selectivity of methacrylic acid was 81.2%, and the yield of methacrylic acid was 61.1%.
[비교예 1][Comparative Example 1]
(제 1 반응)(First reaction)
실시예 1과 같이 제 1 반응을 행했다. The first reaction was carried out as in Example 1. [
(제 2 반응)(Second reaction)
제 1 반응에 계속해서, 도 2에 나타낸 바와 같이, 열매욕의 온도, 및 반응 압력을 변경하고, 메타크롤레인 반응률을 75±2.5%로 유지한 것 이외는, 실시예 1과 같이 제 2 반응을 행했다. 제 2 반응의 연속 운전의 기간은 2616시간이 되었다. 이 단계의 반응 생성물을 분석한 결과, 메타크롤레인 반응률 75.1%, 메타크릴산의 선택률 82.5%, 메타크릴산의 수율 62.0%였다. 이 단계에서의 열매욕의 온도는 305℃, 반응 압력은 130kPa, 반응 가스 중의 분자상 산소/원료의 몰비는 1.65이다. As in Example 1, except that the temperature of the heat bath and the reaction pressure were changed and the methacrolein reaction rate was maintained at 75 ± 2.5% as shown in FIG. 2, the second reaction . The duration of the continuous operation of the second reaction was 2616 hours. Analysis of the reaction products at this stage revealed that the methacrolein reaction rate was 75.1%, the selectivity of methacrylic acid was 82.5%, and the yield of methacrylic acid was 62.0%. At this stage, the temperature of the heating bath is 305 ° C, the reaction pressure is 130 kPa, and the molar ratio of molecular oxygen / raw material in the reaction gas is 1.65.
(제 3 반응)(Third reaction)
제 2 반응 후, 실시예 1과 같이 제 3 반응을 행했다. 제 3 반응 종료까지의 연속 운전의 기간은 통산으로 4464시간이 되었다. 이 단계의 반응 생성물을 분석한 결과, 메타크롤레인 반응률 75.2%, 메타크릴산의 선택률 81.0%, 메타크릴산의 수율 60.9%였다. After the second reaction, the third reaction was carried out as in Example 1. The period of continuous operation until the end of the third reaction was 4464 hours in total. Analysis of the reaction products at this stage revealed that the methacrolein reaction rate was 75.2%, the selectivity of methacrylic acid was 81.0%, and the yield of methacrylic acid was 60.9%.
[비교예 2][Comparative Example 2]
(제 1 반응)(First reaction)
실시예 1과 같이 제 1 반응을 행했다. The first reaction was carried out as in Example 1. [
(제 2 반응)(Second reaction)
제 1 반응에 계속해서, 도 3에 나타낸 바와 같이, 열매욕의 온도를 변경하고, 메타크롤레인 반응률을 75±2.5%로 유지한 것 이외는, 실시예 1과 같이 제 2 반응을 행했다. 제 2 반응의 연속 운전의 기간은 2160시간이 되었다. 이 단계의 반응 생성물을 분석한 결과, 메타크롤레인 반응률 75.2%, 메타크릴산의 선택률 82.5%, 메타크릴산의 수율 62.0%였다. 이 단계에서의 열매욕의 온도는 305℃, 반응 압력은 110kPa, 반응 가스중의 분자상 산소/원료의 몰비는 1.65이다. As shown in Fig. 3, the second reaction was carried out in the same manner as in Example 1, except that the temperature of the heat bath was changed and the methacrolein reaction rate was maintained at 75 ± 2.5%. The duration of the continuous operation of the second reaction was 2160 hours. Analysis of the reaction products at this stage revealed that the methacrolein reaction rate was 75.2%, the selectivity of methacrylic acid was 82.5%, and the yield of methacrylic acid was 62.0%. The temperature of the heat bath at this stage is 305 ° C, the reaction pressure is 110 kPa, and the molar ratio of molecular oxygen / raw material in the reaction gas is 1.65.
(제 3 반응)(Third reaction)
제 2 반응 후, 실시예 1과 같이 제 3 반응을 행했다. 제 3 반응 종료까지의 연속 운전의 기간은 통산으로 3792시간이 되었다. 이 단계의 반응 생성물을 분석한 결과, 메타크롤레인 반응률 75.1%, 메타크릴산의 선택률 81.2%, 메타크릴산의 수율 61.0%였다. After the second reaction, the third reaction was carried out as in Example 1. The period of continuous operation until the end of the third reaction was 3792 hours in total. The reaction product of this stage was analyzed to find that the methacrolein reaction rate was 75.1%, the selectivity of methacrylic acid was 81.2%, and the yield of methacrylic acid was 61.0%.
이상과 같이, 원료인 메타크롤레인의 반응률이 일정하게 되도록, 반응 압력, 및/또는 반응 가스 중의 분자상 산소/원료의 몰비를 변경하는 제어를 행함으로써 촉매를 장기간 사용 가능하게 된다. As described above, the catalyst can be used for a long period of time by controlling the reaction pressure and / or changing the mole ratio of the molecular oxygen / raw material in the reaction gas so that the reaction rate of the raw material, methacrolein, becomes constant.
Claims (3)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2007-128210 | 2007-05-14 | ||
JP2007128210 | 2007-05-14 | ||
PCT/JP2008/058746 WO2008143052A1 (en) | 2007-05-14 | 2008-05-13 | Process for producing methacrylic acid |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100017782A KR20100017782A (en) | 2010-02-16 |
KR101534355B1 true KR101534355B1 (en) | 2015-07-06 |
Family
ID=40031761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020097025940A Active KR101534355B1 (en) | 2007-05-14 | 2008-05-13 | Process for producing methacrylic acid |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5340732B2 (en) |
KR (1) | KR101534355B1 (en) |
CN (1) | CN101679180B (en) |
WO (1) | WO2008143052A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5479803B2 (en) * | 2009-07-29 | 2014-04-23 | 三菱レイヨン株式会社 | Method for producing (meth) acrolein or (meth) acrylic acid |
CN104649893B (en) * | 2013-11-19 | 2016-07-13 | 中国石油天然气股份有限公司 | A kind of method for preparing unsaturated acid |
KR102228713B1 (en) * | 2016-08-22 | 2021-03-16 | 미쯔비시 케미컬 주식회사 | Method for producing a catalyst for producing methacrylic acid, a method for producing methacrylic acid, and a method for producing methacrylic acid ester |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002193871A (en) * | 2000-12-25 | 2002-07-10 | Mitsubishi Rayon Co Ltd | Method for producing methacrylic acid |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3486565B2 (en) * | 1998-12-25 | 2004-01-13 | 三菱レイヨン株式会社 | Method for producing methacrylic acid |
CN100390126C (en) * | 2003-04-09 | 2008-05-28 | 巴斯福股份公司 | Heterogeneously catalyzed partial direct oxidation of propane and/or isobutane |
DE102004025445A1 (en) * | 2004-05-19 | 2005-02-10 | Basf Ag | Gas-phase partial oxidation of an organic compound on a heterogeneous catalyst comprises counteracting deactivation of the catalyst by increasing the gas pressure |
JP4947917B2 (en) * | 2005-04-18 | 2012-06-06 | 株式会社日本触媒 | Fixed bed reactor for gas phase catalytic oxidation and method for producing acrolein or acrylic acid |
-
2008
- 2008-05-13 JP JP2008528281A patent/JP5340732B2/en active Active
- 2008-05-13 CN CN200880015774.4A patent/CN101679180B/en active Active
- 2008-05-13 WO PCT/JP2008/058746 patent/WO2008143052A1/en active Application Filing
- 2008-05-13 KR KR1020097025940A patent/KR101534355B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002193871A (en) * | 2000-12-25 | 2002-07-10 | Mitsubishi Rayon Co Ltd | Method for producing methacrylic acid |
Also Published As
Publication number | Publication date |
---|---|
JP5340732B2 (en) | 2013-11-13 |
KR20100017782A (en) | 2010-02-16 |
JPWO2008143052A1 (en) | 2010-08-05 |
CN101679180A (en) | 2010-03-24 |
WO2008143052A1 (en) | 2008-11-27 |
CN101679180B (en) | 2013-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3943284B2 (en) | Acrylic acid production method | |
KR100585288B1 (en) | Process for producing acrylic acid | |
JP4900449B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP3763246B2 (en) | Method for regenerating heteropolyacid catalyst and method for producing methacrylic acid | |
JP3948837B2 (en) | Acrylic acid production method | |
JP5680373B2 (en) | Catalyst and method for producing acrylic acid | |
JP4222721B2 (en) | Method for producing methacrylic acid | |
KR101534355B1 (en) | Process for producing methacrylic acid | |
CN103360237B (en) | Produce the method for alkyl methacrylate | |
JP3939187B2 (en) | Process for producing unsaturated aldehyde | |
WO2005113140A1 (en) | Process for producing composite oxide and composite oxide catalyst | |
JP5214500B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP2003171340A (en) | Method for producing acrylic acid | |
US8329942B2 (en) | Method for producing unsaturated aldehyde and unsaturated carboxylic acid | |
JP4824871B2 (en) | Method for producing acrolein and acrylic acid | |
JP4745653B2 (en) | Method for producing methacrylic acid | |
JP2004351297A (en) | Catalyst for methacrylic acid production, its production method, and production method of methacrylic acid | |
JP4248163B2 (en) | Method for producing methacrylic acid | |
JP2013086008A (en) | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid | |
JP2013091016A (en) | Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid | |
KR20020025026A (en) | Method for reactivating catalyst for methacrylic acid preparation | |
JP4900532B2 (en) | Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid | |
JP2013180251A (en) | Method of producing catalyst for producing methacrylic acid and method of producing methacrylic acid | |
JP5433321B2 (en) | Method for producing (meth) acrylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0105 | International application |
Patent event date: 20091211 Patent event code: PA01051R01D Comment text: International Patent Application |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20130326 Comment text: Request for Examination of Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20141118 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20150508 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20150630 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20150630 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20180529 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20180529 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190530 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20190530 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20200619 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20210621 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20220609 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20230601 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20240605 Start annual number: 10 End annual number: 10 |