[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101518022B1 - Method for producing cycloamylose using 4-alpha-glucanotransferase - Google Patents

Method for producing cycloamylose using 4-alpha-glucanotransferase Download PDF

Info

Publication number
KR101518022B1
KR101518022B1 KR1020140024867A KR20140024867A KR101518022B1 KR 101518022 B1 KR101518022 B1 KR 101518022B1 KR 1020140024867 A KR1020140024867 A KR 1020140024867A KR 20140024867 A KR20140024867 A KR 20140024867A KR 101518022 B1 KR101518022 B1 KR 101518022B1
Authority
KR
South Korea
Prior art keywords
glucanotransferase
cycloamylose
ala
alpha
leu
Prior art date
Application number
KR1020140024867A
Other languages
Korean (ko)
Inventor
박종태
고재민
김정은
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020140024867A priority Critical patent/KR101518022B1/en
Application granted granted Critical
Publication of KR101518022B1 publication Critical patent/KR101518022B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/20Amylose or amylopectin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/010254-Alpha-glucanotransferase (2.4.1.25)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a method of manufacturing cycloamylose and a use thereof, wherein the method enables to inhibit coupling reaction destroying cycloamylose and facilitate production reaction of cycloamylose for glucanotransferase derived from Deinococcus geothermalis. According to the present invention, a method comprises the steps of: manufacturing recombinant vectors including genes to encode 4-α-glucanotransferase consisting of the amino acid sequence derived from Deinococcus geothermalis (SEQ ID NO: 2); and processing additionally the same.

Description

4-알파-글루카노트랜스퍼라제를 이용한 사이클로아밀로스의 제조방법{Method for producing cycloamylose using 4-alpha-glucanotransferase}[0001] The present invention relates to a method for producing cycloamylose using 4-alpha-glucanotransferase,

본 발명은 4-알파-글루카노트랜스퍼라제를 이용한 사이클로아밀로스의 제조방법에 관한 것으로, 보다 상세하게는 데이노코커스 지오써말리스(Deinococcus geothermalis)에서 유래한 4-알파-글루카노트랜스퍼라제와 아밀로스가 함유된 기질 사이의 반응을 이용하여 사이클로아밀로스를 제조하는 방법에 관한 것이다.The present invention relates to a process for preparing cycloamylase using 4-alpha-glucanotransferase, and more particularly to a process for producing cycloamylase from 4-alpha-glucanotransferase derived from Deinococcus geothermalis , The present invention relates to a method for producing cycloamylase by using a reaction between a contained substrate.

4-알파-글루카노트랜스퍼라제 (4-α-glucanotransferase, EC 2.4.1.25)는 당전이 활성을 가지는 효소로, 하나의 선형 α-글루칸 분자에서 다른 선형 α-글루칸 분자로 당 사슬을 전이시키는 재배열(disproportionation) 반응, 하나의 선형 α-글루칸 분자 내에서의 당전이 반응으로 환형 글루칸을 생성시키는 고리화(cyclization) 반응 및 환형 글루칸을 개환하여 선형 글루칸으로 전이하는 커플링(coupling) 반응을 촉매한다. 아밀로스를 기질로 하여 4-알파-글루카노트랜스퍼라제의 당전이 활성으로 사이클로아밀로스를 생성한다.4-alpha-glucanotransferase (EC 2.4.1.25) is an enzyme having sugar-exchange activity. It is an enzyme that transfers sugar chains from one linear? -Glucan molecule to another linear? -Glucan molecule A disproportionation reaction, a cyclization reaction in which a cyclic glucan is generated in a single linear α-glucan molecule by reaction, and a coupling reaction in which cyclic glucan is converted into a linear glucan by opening a cyclic glucan, do. Amylose is used as a substrate to generate cycloamylase by the action of 4-alpha-glucanotransferase.

사이클로아밀로스는 친수성의 외부와 환상 형태의 내부 공동(cavity)을 가지기 때문에, 소수성의 화합물을 포집하여 그 물질의 용해성, 반응성, 안정성을 향상시킨다. 이러한 특이 성질로 인하여 사이클로아밀로스는 식품, 의약, 화학 및 화장품 산업 등에서 유용하다. 예를 들어, 중합도(degree of polymerization, 이하 DP라고 한다) 6 내지 8의 사이클로아밀로스는 식이섬유, 마요네즈의 유화성 개선제, 착향료의 안정제 및 탈취제 등으로 폭넓게 사용되어지는 사이클로아밀로스이다. 반면 중합도가 20 이상의 사이클로아밀로스의 존재는 1990년대에 알려지면서 산업적 활용이 시작되었다. 이들 사이클로아밀로스의 단백질 재접힘에 관여하는 인공 샤페론(artificial chaperone) 기능이 밝혀지면서 사이클로아밀로스의 산업적 활용 범위가 넓어지고 있다. 현재까지는 일부 사이클로아밀로스의 화학적 합성 방법이 알려져있으나 그 방법은 많은 처리단계를 거치므로 산업적 방법으로 유용하지 못하고 있다. 이에 당업계에서는 생체 효소를 이용하여 다양한 사이클로아밀로스를 제조하는 방법을 수행한다. Cycloamylose has hydrophilic outer and annular inner cavities, and captures hydrophobic compounds to improve the solubility, reactivity, and stability of the material. Due to these specific properties, cycloamylose is useful in the food, pharmaceutical, chemical and cosmetic industries. For example, cycloamylose having a degree of polymerization (DP) of 6 to 8 is widely used as a dietary fiber, an emulsifying agent for mayonnaise, a stabilizer for flavoring agents, and a deodorant. On the other hand, the presence of cycloamylose with a degree of polymerization of 20 or more was known in the 1990s and industrial applications began. As the artificial chaperone function involved in the protein refolding of these cyclamyloses has become known, the industrial application of cycloamylose has been widening. Until now, chemical synthesis methods of some cycloamyloses have been known, but the method has not been useful in industrial methods because it has undergone many processing steps. Accordingly, in the art, a method of producing various cycloamyloses using a biosynthetic enzyme is performed.

현재 주로 사용되는 사이클로아밀로스의 제조방법은 4-알파-글루카노트랜스퍼라제의 당전이 활성을 이용한 방법이다. 4-알파-글루카노트랜스퍼라제는 대장균에서 처음으로 클로닝되었으며, 식물과 미생물에 존재한다. 미생물에서 유래한 4-알파-글루카노트랜스퍼라제가 산업적으로 이용되고 있으며 일례로 써머스 스코토덕터스(Thermus scotoductus)에서 유래한 글루카노트랜스퍼라제(TSαGT)(한국등록특허 제10-0645993호)가 있다. 또한 종래에 알려진 미생물에서 유래한 글루카노트랜스퍼라제와 추가적인 이차 효소를 동시 반응시켜서 사이클로아밀로스의 수율을 향상시키는 방법이 있다(한국등록특허 제10-1214572호 및 제10-1045357호). 그러나 본 발명의 새로운 글루카노트랜스퍼라제로 다양한 조성의 사이클로아밀로스 수율을 향상시키는 방법에 대해서는 기재된 바가 없다.A method of producing cycloamylose, which is mainly used at present, is a method using the sugar transfer activity of 4-alpha-glucanotransferase. The 4-alpha-glucanotransferase was first cloned in E. coli and is present in plants and microorganisms. Alpha-glucanotransferase derived from a microorganism is industrially used. For example, there is a glucanotransferase (TS alpha GT) (Korean Patent No. 10-0645993) derived from Thermus scotoductus . Further, there is a method of simultaneously reacting a glucanotransferase derived from a conventionally known microorganism with an additional secondary enzyme to improve the yield of cycloamylose (Korean Patent Nos. 10-1214572 and 10-1045357). However, a method for improving the yield of cycloamylose of various compositions by the novel glucanotransferase of the present invention has not been described.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 데이노코커스 지오써말리스(Deinococcus geothermalis)에서 유래한 글루카노트랜스퍼라제(DgαGT)를 이용하여 고리화(cyclization)/커플링(coupling) 비율을 증가시키고, 기질인 아밀로스와의 짧은 반응 시간 내에 중합도 26과 같은 높은 중합도를 가진 사이클로아밀로스를 제조할 수 있음을 확인함으로써, 본 발명을 완성하였다. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned needs, and an object of the present invention is to provide a method for increasing the cyclization / coupling ratio using glucanotransferase (Dg? GT) derived from Deinococcus geothermalis And amylose having a polymerization degree as high as 26 in a short reaction time with amylose as a substrate can be produced. The present invention has been completed based on this finding.

상기 과제를 해결하기 위해, 본 발명은 4-알파-글루카노트랜스퍼라제와 아밀로스를 반응하는 단계를 포함하는 것을 특징으로 하는 사이클로아밀로스의 제조방법을 제공한다.In order to solve the above problems, the present invention provides a method for producing cycloamylase, which comprises reacting 4-alpha-glucanotransferase with amylose.

본 발명의 데이노코커스 지오써말리스(Deinococcus geothermalis) 유래 4-알파-글루카노트랜스퍼라제 효소를 이용하여 향상된 수율의 사이클로아밀로스를 얻었으며, 특히 본 발명의 4-알파-글루카노트랜스퍼라제 효소는 써머스 스코토덕터스(Thermus scotoductus)에서 유래한 글루카노트랜스퍼라제(TSαGT)에 비해 고리화(cyclization)/커플링(coupling) 비율을 증가시키고, 기질인 아밀로스와의 짧은 반응 시간 내에 중합도 26과 같은 높은 중합도를 가진 사이클로아밀로스를 제조할 수 있다. 따라서 본 발명의 4-알파-글루카노트랜스퍼라제는 사이클로아밀로스의 산업적 생산에 유용하게 활용될 것으로 기대된다.The Deinococcus of the present invention It was obtained in a cycle amylose glue Kano improved yield by using a transferase enzyme, in particular alpha-4 of the present invention - - geothermalis) derived from 4-alpha glue Kano transferase enzyme is derived from gluconic sseomeoseu seukoto virtue Tuscan (Thermus scotoductus) It is possible to increase the cyclization / coupling ratio with respect to the cano transferase (TS alpha GT) and to produce a cycloamylase having a high degree of polymerization such as a degree of polymerization of 26 within a short reaction time with the substrate amylose. Therefore, the 4-alpha-glucanotransferase of the present invention is expected to be useful for the industrial production of cycloamylose.

도 1은 E. coli BL21(DE3)에서 발현된 DgαGT 효소의 SDS-PAGE 결과이다. M, 사이즈 마커; 1, 세포 추출물; 2, 불용성 분획; 3, Ni-NTA 친화성 크로마토그래피 후 분획.
도 2는 DgαGT 효소의 온도 변화에 따른 상대적 활성을 측정한 그래프이다.
도 3은 DgαGT 효소의 pH 변화에 따른 상대적 활성을 측정한 그래프이다.
도 4는 반응 시간대별 DgαGT(A) 및 TSαGT(B) 효소를 이용하여 생성된 사이클로아밀로스를 고성능 음이온 교환 크로마토그래피법(HPAEC)을 이용하여 분석한 결과이다.
도 5는 반응 시간대별 DgαGT(A)와 TSαGT(B) 효소를 이용하여 생성된 다양한 중합도를 가지는 사이클로아밀로스의 정량적 변화를 비교한 결과이다.
도 6은 반응 시간대별 DgαGT(A)와 TSαGT(B) 효소를 이용하여 생성된 중합도 6 및 26을 가지는 사이클로아밀로스의 정량적 변화를 비교한 결과이다.
Figure 1 shows the results of SDS-PAGE of Dg < alpha > GT enzyme expressed in E. coli BL21 (DE3). M, size marker; 1, cell extract; 2, insoluble fraction; 3, fraction after Ni-NTA affinity chromatography.
FIG. 2 is a graph showing the relative activity of Dg? GT enzyme according to temperature change.
FIG. 3 is a graph showing the relative activity of Dg? GT enzyme according to pH change.
FIG. 4 shows the results of analysis of cycloamylase produced using the DgαGT (A) and TSαGT (B) enzymes by the high performance anion exchange chromatography (HPAEC).
FIG. 5 shows the results obtained by comparing quantitative changes of cycloamylase having various degrees of polymerization produced using Dg? GT (A) and TS? GT (B) enzymes at reaction time intervals.
FIG. 6 shows the results obtained by comparing quantitative changes of cycloamylase having polymerization degrees of 6 and 26 produced using Dg? GT (A) and TS? GT (B) enzymes at reaction time intervals.

본 발명의 목적을 달성하기 위하여, 본 발명은 4-알파-글루카노트랜스퍼라제와 아밀로스를 반응하는 단계를 포함하는 것을 특징으로 하는 사이클로아밀로스의 제조방법을 제공한다.In order to accomplish the object of the present invention, the present invention provides a method for producing cycloamylase, which comprises reacting 4-alpha-glucanotransferase with amylose.

본 발명의 일 구현 예에 따른 방법은 보다 구체적으로는 The method according to an embodiment of the present invention is more particularly

4-α-글루카노트랜스퍼라제(4-α-glucanotransferase)를 코딩하는 유전자를 포함하는 재조합 벡터를 제조하는 단계;Preparing a recombinant vector comprising a gene encoding 4-a-glucanotransferase;

상기 제조된 재조합 벡터를 대장균에 형질전환시키는 단계;Transforming the prepared recombinant vector into E. coli;

상기 형질전환된 대장균으로부터 4-α-글루카노트랜스퍼라제 효소를 분리 및 정제하는 단계; 및Isolating and purifying the 4-alpha-glucanotransferase enzyme from the transformed E. coli; And

상기 정제된 4-α-글루카노트랜스퍼라제 효소와 아밀로스를 반응하는 단계를 포함할 수 있다.And then reacting the purified 4-alpha-glucanotransferase enzyme with amylose.

본 발명의 일 구현 예에 따른 방법에 있어서, 상기 4-α-글루카노트랜스퍼라제는 바람직하게는 서열번호 2의 아미노산 서열로 이루어진 데이노코커스 지오써말리스(Deinococcus geothermalis) 유래의 4-α-글루카노트랜스퍼라제일 수 있으나, 이에 제한되지 않는다. 본 발명에 따른 4-α-글루카노트랜스퍼라제 단백질의 범위는 서열번호 2로 표시되는 아미노산 서열을 갖는 단백질 및 상기 단백질의 기능적 동등물을 포함한다. "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호 2로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 2로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. "실질적으로 동질의 생리활성"이란 사이클로아밀로스를 생성하는 활성을 의미한다.In a method according to an embodiment of the present invention, the 4-a-glucanotransferase is preferably a Deinococcus strain comprising the amino acid sequence of SEQ ID NO: 2 geothermalis derived 4-alpha-glucanotransferase, but are not limited thereto. The 4-alpha-glucanotransferase The range of the protein includes a protein having the amino acid sequence represented by SEQ ID NO: 2 and a functional equivalent of the protein. Is at least 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 90% or more, more preferably 90% or more, Quot; refers to a protein having a homology of at least 95% with a physiological activity substantially equivalent to that of the protein represented by SEQ ID NO: 2. "Substantially homogenous bioactivity" means an activity that produces cycloamylose.

바람직하게는, 본 발명의 4-α-글루카노트랜스퍼라제를 코딩하는 유전자는 서열번호 1로 표시되는 염기서열을 포함할 수 있다. 또한, 상기 염기 서열의 상동체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 유전자는 서열번호 1의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.Preferably, the gene encoding the 4-alpha-glucanotransferase of the present invention may include the nucleotide sequence shown in SEQ ID NO: 1. In addition, homologues of the nucleotide sequences are included within the scope of the present invention. Specifically, the gene has a nucleotide sequence having a sequence homology of 70% or more, more preferably 80% or more, still more preferably 90% or more, and most preferably 95% or more, with the nucleotide sequence of SEQ ID NO: 1 . "% Of sequence homology to polynucleotides" is ascertained by comparing the comparison region with two optimally aligned sequences, and a portion of the polynucleotide sequence in the comparison region is the reference sequence for the optimal alignment of the two sequences (I. E., A gap) relative to the < / RTI >

본 발명의 일 구현 예에 따른 방법에 있어서, 상기 4-α-글루카노트랜스퍼라제는 고리화(cyclization)/커플링(coupling) 비율을 증가시키는 것을 특징으로 하나, 이에 제한되지 않는다. 예를 들면, 본 발명의 4-알파-글루카노트랜스퍼라제 효소는 써머스 스코토덕터스(Thermus scotoductus)에서 유래한 글루카노트랜스퍼라제(TSαGT)에 비해 고리화(cyclization)/커플링(coupling) 비율을 증가시킬 수 있다.In the method according to one embodiment of the present invention, the 4-α-glucanotransferase is characterized by increasing the cyclization / coupling ratio, but is not limited thereto. For example, the 4-alpha-glucanotransferase enzyme of the present invention has a higher cyclization / coupling ratio than the glucanotransferase (TS alpha GT ) derived from Thermus scotoductus .

본 발명의 일 구현 예에 따른 방법은 상기 정제된 4-α-글루카노트랜스퍼라제 효소와 아밀로스를 반응하는 단계를 포함하는데, 상기 반응에서 반응 온도는 바람직하게는 50 내지 55℃이고, 가장 바람직하게는 50℃일 수 있으나, 이에 제한되지 않는다. 또한, 반응 시간은 바람직하게는 3 내지 12시간일 수 있고, 더욱 바람직하게는 3 내지 6시간일 수 있으나, 가장 바람직하게는 6시간일 수 있으나, 이에 제한되지 않는다. 또한, 상기 반응의 pH는 6.0 내지 9.0일 수 있고, 더욱 바람직하게는 6.0일 수 있으나, 이에 제한되지 않는다.The method according to an embodiment of the present invention comprises reacting the purified 4-a-glucanotransferase enzyme with amylose, wherein the reaction temperature is preferably 50-55 ° C, and most preferably Lt; RTI ID = 0.0 > 50 C, < / RTI > Further, the reaction time may be preferably 3 to 12 hours, more preferably 3 to 6 hours, but most preferably 6 hours, but is not limited thereto. In addition, the pH of the reaction may be 6.0 to 9.0, and more preferably 6.0, but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에서, 사이클로아밀로스를 제조하는데 사용되는 기질은 아밀로스 또는 아밀로스가 함유된 것은 제한 없이 선택하여 사용될 수 있고, 바람직하게는 아밀로스가 기질로 사용될 수 있다.In the method according to one embodiment of the present invention, the substrate used to prepare the cycloamylose may be selected without limitation including amylose or amylose, preferably amylose can be used as the substrate.

본 발명의 글루카노트랜스퍼라제(이하, 4-알파-글루카노트랜스퍼라제와 혼용하여 사용함)와 아밀로스가 함유된 기질이 반응하는 단계 이후에 사이클로아밀로스를 정제하기 위해서 크로마토그래피법을 이용할 수 있고, 바람직하게는 고성능 음이온 교환 크로마토그래피법을 이용할 수 있으나, 이에 제한되지 않는다.Chromatography can be used to purify the cycloamylase after the step of reacting the glucanotransferase of the present invention (hereinafter, used in combination with 4-alpha-glucanotransferase) and the substrate containing amylose, A high performance anion exchange chromatography method may be used, but the present invention is not limited thereto.

본 발명의 일 구현 예에 따른 방법에서, 상기 얻어진 사이클로아밀로스는 중합도가 5 내지 37인 사이클로아밀로스일 수 있으나, 이에 제한되지 않는다. 또한, 생성된 사이클로아밀로스는 중합도가 5인 사이클로아밀로스가 전체 생성된 사이클로아밀로스의 중량 기준으로 10% 이하, 바람직하게는 5~10%로 함유될 수 있으나, 이에 제한되지 않는다.In the method according to one embodiment of the present invention, the obtained cycloamylose may be amylose with a degree of polymerization of 5 to 37, but is not limited thereto. In addition, the produced cycloamylose may be contained in an amount of 10% or less, preferably 5 to 10%, based on the weight of the total produced cycloamylase, but not limited thereto.

본 발명의 방법은 바람직하게는 반응 시간은 3 내지 4시간이고, 사이클로아밀로스는 중합도가 24 내지 28인 사이클로아밀로스가 주성분인 것을 특징으로 하나, 이에 제한되지 않는다. 예를 들면, 써머스 스코토덕터스(Thermus scotoductus)에서 유래한 글루카노트랜스퍼라제(TSαGT)는 3시간 정도의 짧은 반응 시간에는 중합도 26과 같은 중합도가 높은 사이클로아밀로스를 거의 생산하지 못하는 반면에, 본 발명의 4-알파-글루카노트랜스퍼라제 효소는 3시간 정도의 짧은 반응 시간 내에 중합도 26과 같은 중합도가 높은 사이클로아밀로스를 많이 생산할 수 있는 것이다(도 6 참고). 따라서, 단기간의 반응시간 내에 중합도가 높은 사이클로아밀로스를 많이 생산하기 위해서는 본 발명의 4-알파-글루카노트랜스퍼라제 효소가 매우 유용한 것이다.
The method of the present invention is preferably characterized in that the reaction time is 3 to 4 hours, and the amylose of cycloamyl is a main component of cycloamylase having a degree of polymerization of 24 to 28. However, the present invention is not limited thereto. For example, Thermus < RTI ID = 0.0 > glucanotransferase (TSαGT) derived from the scotoductus can hardly produce amylose having a high degree of polymerization, such as a polymerization degree of 26, in a short reaction time of about 3 hours, while the 4-alpha-glucanotransferase enzyme Can produce a large amount of cycloamylose having a high degree of polymerization such as a polymerization degree of 26 within a short reaction time of about 3 hours (see FIG. 6). Therefore, the 4-alpha-glucanotransferase enzyme of the present invention is very useful for producing a large amount of cycloamylose having a high degree of polymerization within a short reaction time.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

실시예Example 1: 4-알파- 1: 4- 글루카노트랜스퍼라제(αGT)의Of glucanotransferase (? GT) 제조 Produce

데이노코커스 지오써말리스(Deinococcus geothermalis)에서 유래한 글루카노트랜스퍼라제(DgαGT) 유전자를 포함하는 재조합 벡터를 제조하였다. 글루카노트랜스퍼라제 유전자를 클로닝하기 위한 PCR 주형은 데이노코커스 지오써말리스의 게놈 DNA를 이용하였으며 클로닝 벡터로는 p6xH119를 사용하였다. 상기 재조합 벡터 p6xHis119_DgαGT에 클로닝된 DgαGT 유전자는 511 개의 아미노산으로 이루어진 57.2 kDa의 글루카노트랜스퍼라제를 생산하였다. Deinococcus A recombinant vector containing a glucanotransferase (Dg? GT) gene derived from geothermal was prepared. Genomic DNA of DYNOCOCCUS geothermally was used as a PCR template for cloning the glucanotransferase gene and p6xH119 was used as a cloning vector. The DgαGT gene cloned into the recombinant vector p6xHis119_DgαGT produced a 57.2 kDa glucanotransferase consisting of 511 amino acids.

상기 재조합 벡터 p6xHis119_DgαGT를 대장균 BL21(DE3)에 형질전환한 후 형질전환한 대장균을 엠피실린을 함유하는 LB 배지 1L에 접종 및 배양하였다. 배양액을 4℃에서 3699xg의 조건으로 20분간 원심분리하여 균체를 회수하였다. 상기 회수된 균체를 100 ㎖의 용균 완충액(300 mM NaCl, 50 mM Tris-HCl (pH 7.5), 10 mM imidazole)으로 현탁한 후, 초음파 분쇄하였다. 세포 추출물을 얻은 후 Ni-NTA 친화성 크로마토그래피를 수행하여 효소를 정제하였다. 정제된 효소는 70% 황산암모늄으로 농축하고 50 mM Tris-HCl (pH7.5) 완충액으로 희석시켰다. 효소 농도는 단백질 정량법(Bradford assay)으로 결정되었다. 정제도는 SDS-PAGE를 이용하여 확인하였으며 그 결과는 도 1에 나타내었다.The recombinant vector p6xHis119_Dg? GT was transformed into E. coli After transforming BL21 (DE3), the transformed E. coli was inoculated and cultured in 1 L of LB medium containing ampicillin. The culture was centrifuged at 4 ° C under 3699xg for 20 minutes to collect the cells. The recovered cells were suspended in 100 ml of lysis buffer (300 mM NaCl, 50 mM Tris-HCl (pH 7.5), 10 mM imidazole), followed by ultrasonic pulverization. After obtaining a cell extract, Ni-NTA affinity chromatography was performed to purify the enzyme. The purified enzyme was concentrated to 70% ammonium sulfate and diluted with 50 mM Tris-HCl (pH 7.5) buffer. Enzyme concentration was determined by the Bradford assay. Purification was confirmed by SDS-PAGE and the results are shown in Fig.

상기 글루카노트랜스퍼라제의 효소 활성과 사이클로아밀로스 수율 비교를 위해서 당업계에서 주지되어지는 써머스 스코토덕터스(Thermus scotoductus)에서 유래한 글루카노트랜스퍼라제(TSαGT)를 획득하여 하기 실험에 사용하였다.
Glucanotransferase ( TSαGT ) derived from Thermus scotoductus , which is well known in the art, was obtained and used in the following experiment for comparison of the enzymatic activity of the glucanotransferase and the yield of cycloamylase.

실시예Example 2:  2: 글루카노트랜스퍼라제Glucanotransferase 효소의 활성 측정 Enzyme activity measurement

2-1. 온도와 pH 안정성 측정2-1. Measurement of temperature and pH stability

1 mg/ml 아밀로스 기질을 포함하는 50 mM 소듐 아세트산 완충액(pH 6.0)에 0.05 U/mg 글루카노트랜스퍼라제를 첨가하여 30 내지 60℃에서 각각 5℃ 간격으로 30분간 반응시킨 후 효소 활성에 미치는 온도의 영향을 측정하였다. 상기 실험 결과는 도 2에서와 같이 55℃에서 최대 활성을 나타내었고 60℃에서는 활성을 거의 잃게 되었다. 0.05 U / mg of glucanotransferase was added to 50 mM sodium acetate buffer (pH 6.0) containing 1 mg / ml amylose substrate and reacted at 30 to 60 ° C for 30 minutes at 5 ° C intervals, Were measured. As shown in FIG. 2, the test results showed the maximum activity at 55 ° C and the activity was almost lost at 60 ° C.

아밀로스 기질을 포함하는 서로 다른 pH의 완충액에 글루카노트랜스퍼라제를 첨가하여 30분간 반응시킨 후 효소 활성에 미치는 pH의 영향을 측정하였다. pH 3.5 내지 6.5에서는 50 mM 소듐 아세트산, pH 6.5 내지 8.5에서는 MOPs 완충액, 및 pH 8.5 내지 10에서는 CHEs 완충액을 사용하였다. 상기 실험 결과는 도 3에 나타내었다. pH 6.0 내지 9.0에서 최적 활성을 나타내었다.
Glucanotransferase was added to the buffers of different pH including amylose substrate and reacted for 30 minutes, and the effect of pH on enzyme activity was measured. 50 mM sodium acetic acid at pH 3.5 to 6.5, MOPs buffer at pH 6.5 to 8.5, and CHEs buffer at pH 8.5 to 10 were used. The results of the experiment are shown in FIG. and showed optimum activity at pH 6.0 to 9.0.

2-2. 고리화 활성 측정2-2. Measurement of cyclization activity

고리화 활성은 아밀로스를 기질로 하여 선형 당의 감소를 측정하여 결정하였다. 기질을 포함하는 반응액에 정제된 글루카노트랜스퍼라제를 첨가하여 30분 동안 처리한 후 10분간 끊여서 반응을 종결시키고 β-아밀라제를 첨가하여 선형 당을 제거하였다. 반응물을 5분간 끊인 후 575 nm에서의 흡광도를 측정하여 사이클로아밀로스 중량을 구하였다. 1 유닛 효소 활성은 분당 1 μmole 기질을 촉매하는 효소양으로 정의한다.
The cyclization activity was determined by measuring the reduction of linear sugars using amylose as a substrate. The purified glucanotransferase was added to the reaction solution containing the substrate, treated for 30 minutes, and then the reaction was terminated for 10 minutes and β-amylase was added to remove the linear saccharide. After the reaction was terminated for 5 minutes, the absorbance at 575 nm was measured to determine the weight of cycloamylose. One unit of enzyme activity is defined as the amount of enzyme that catalyzes a 1 μmole substrate per minute.

2-3. 커플링 활성 측정2-3. Measurement of coupling activity

커플링 활성은 사이클로아밀로스와 글루코스를 사용하였다. 상기 활성은 GOD-POD 방법(Werner 등, 1970, Analytical Chemistry 252:224-228)으로 글루코스 중량의 감소를 측정하여 구하였다. 반응을 종결시킨 후 GOD-POD 용액에 30분간 처리하여 500 nm에서의 흡광도를 측정하였다.Coupling activity was achieved using cycloamylose and glucose. The activity was determined by measuring the decrease in glucose weight with the GOD-POD method (Werner et al., 1970, Analytical Chemistry 252: 224-228). After the reaction was terminated, the absorbance at 500 nm was measured by treatment with GOD-POD solution for 30 minutes.

하기 표 1은 글루카노트랜스퍼라제의 고리화 및 커플링 반응 속도를 나타내었다. DgαGT는 TSαGT보다 커플링 반응 속도가 현저히 느림을 보여주었다.Table 1 below shows the cyclization and coupling reaction rates of glucotransferase. DgαGT showed a significantly slower coupling reaction rate than TSαGT.

고리화 (U/nmole protein)U / nmole protein 커플링 (U/nmole protein)Coupling (U / nmole protein) 고리화/커플링Cyclization / Coupling DgαGTDgαGT 599x102 599x10 2 564x102 564x10 2 1.061.06 TSαGTTSαGT 125x103 125x10 3 452x103 452x10 3 0.2760.276

room 시예Sime 3:  3: 사이클로아밀로스의Cycloamylic 제조 Produce

3-1. 사이클로아밀로스 수율 측정3-1. Cycloamylase yield determination

1 mg/ml 아밀로스를 포함하는 50 mM 소듐 아세트산 완충액(pH 6.0)에 정제된 0.05 U/mg 글루카노트랜스퍼라제를 첨가하여 50℃에서 각각 0.5, 1, 2, 3, 6, 12, 24, 및 30시간으로 반응시켰다. 반응 후 생성된 사이클로아밀로스는 80% 에탄올로 침전시켰고, 이를 건조시켜 증류수에 녹인 후 β-아밀라제를 0.25 U/mg 처리하여 pH 5.5, 35℃에서 2일간 반응시켰다. 말토스와 같은 작은 말토덱스트린을 제거하기 위해서 사이클로아밀로스를 80% 에탄올로 침전시켰고, 침전물을 80% 에탄올로 씻어주었다. 사이클로아밀로스 침전물을 건조한 후 증류수에 녹여 실험을 진행하였다.The purified 0.05 U / mg glucanotransferase was added to a 50 mM sodium acetate buffer (pH 6.0) containing 1 mg / ml amylose and incubated at 50 ° C for 0.5, 1, 2, 3, 6, 12, 30 hours. After the reaction, the resulting cycloamylose was precipitated with 80% ethanol, dried and dissolved in distilled water, treated with 0.25 U / mg of β-amylase at pH 5.5 and 35 ° C. for 2 days. To remove small maltodextrins such as maltose, cycloamylose was precipitated with 80% ethanol and the precipitate was washed with 80% ethanol. Cycloamylase precipitate was dried and dissolved in distilled water.

수율은 반응 전 넣어준 아밀로스 양에 대한 반응 후 생성된 사이클로아밀로스의 백분율(w/w)로 계산하였다. 하기 표 2는 반응 시간대별 사이클로아밀로스 생성 수율의 변화를 나타내었다. DgαGT는 TSαGT보다 더 빨리 사이클로아밀로스를 축적하였고 6시간 반응시 최대 수율 53%를 보인 후 감소하는 것으로 나타났다.The yield was calculated as the percentage (w / w) of cycloamylase produced after reaction to the amount of amylose added before the reaction. Table 2 below shows the change in the yield of amylose production in cycles by reaction time. DgαGT accumulated cycloamylase more rapidly than TSαGT and showed a maximum yield of 53% after 6 hours of reaction and then decreased.

반응 시간 (hr)Reaction time (hr) DgαGTDgαGT TSαGTTSαGT 0.50.5 14%14% 1% 미만Less than 1% 1One 14%14% 1% 미만Less than 1% 22 16%16% 1% 미만Less than 1% 33 39%39% 1%One% 66 53%53% 43%43% 1212 45%45% 46%46% 2424 23%23% 46%46% 3030 37%37% 44%44%

3-2. 고성능 음이온 교환 크로마토그래피법를 이용한 분석3-2. Analysis using high performance anion exchange chromatography

상기 3-1 반응 후 생성된 사이클로아밀로스는 고성능 음이온 교환 크로마토프그래피(HPAEC)법을 이용하여 분석하였다. HPAEC 분석은 Dionex사(미국)의 DX-500 system으로 ED40 전기화학적 검출기, 카보팩 컬럼(Carbopac PA-1) 및 가드 컬럼을 이용하여 수행하였다. 컬럼은 150mM의 가성 소다액으로 평형시킨 후 600mM 소듐아세테이트로 1ml/분 유속으로 용출하였다. Cycloamylase produced after 3-1 reaction was analyzed by high performance anion exchange chromatography (HPAEC) method. HPAEC analysis was performed using a Dionex (USA) DX-500 system with ED40 electrochemical detector, CarboPac column (Carbopac PA-1) and guard column. The column was equilibrated with 150 mM of caustic soda solution and then eluted with 600 mM sodium acetate at a flow rate of 1 ml / min.

도 4는 반응 시간대별 DgαGT(A) 및 TSαGT(B) 효소로부터 생성된 사이클로아밀로스를 상기 방법을 수행하여 얻은 결과를 나타내었다. DgαGT 에서 생성된 사이클로아밀로스는 TSαGT에서 생성된 사이클로아밀로스보다 빠르게 생성되었고, 반응 30분 후부터 사이클로아밀로스 피크를 보였다.
FIG. 4 shows the results obtained by performing the above method on the cycloamylase produced from the Dg? GT (A) and TS? GT (B) enzymes by reaction time scale. The cycloamylase produced in DgαGT was produced faster than the cycloamylose produced in TSαGT and showed a cycloamylose peak after 30 minutes of reaction.

3-3. MALDI-TOF/MS을 이용한 사이클로아밀로스의 정량 분석3-3. Quantitative analysis of cycloamylase using MALDI-TOF / MS

상기 3-1 반응 후 생성된 사이클로아밀로스의 분자량 조성을 MALDI-TOF/MS를 이용하여 측정하였으며 시스템은 Bruker ultrafleXtremeTM system(미국)를 사용하였다. The molecular weight composition of the cycloamylose produced after the 3-1 reaction was measured using MALDI-TOF / MS. The system was a Bruker ultraflexXtreme TM system (USA).

상기 결과는 도 5에서 DgαGT(A) 및 TSαGT(B) 효소로부터 생성된 전체 사이클로아밀로스를 비교 분석하였다. 도 5에 기재된 바와 같이 중합도가 5 내지 36인 사이클로아밀로스가 두 개의 봉우리 모양을 보였고, 중간 사이즈의 사이클로아밀로스의 양은 적었다. 반응 3시간 후 TSαGT는 거의 사이클로아밀로스를 생성하지 못하는 반면에 DgαGT 효소는 사이클로아밀로스를 상당량 생성하였다(도 5). 특히 도 6에서 보는 바와 같이 반응 3시간에 중합도가 26인 사이클로아밀로스 생성이 현저히 높음을 보여주었다. 도 5 및 6을 종합하여 볼 때 DgαGT 효소가 반응 3 내지 4시간에 중합도가 24 내지 28인 사이클로아밀로스를 효율적으로 생성한다는 것을 알 수 있다.The results compared and analyzed the total cycloamylase produced from the Dg? GT (A) and TS? GT (B) enzymes in FIG. As shown in Fig. 5, the amylose exhibited two peaks in the degree of polymerization of 5 to 36, and the amount of amylose in the medium size was small. After 3 hours of reaction, TSαGT produced almost no cycloamylase whereas DgαGT enzyme produced a significant amount of cycloamylose (FIG. 5). In particular, as shown in FIG. 6, amylose production was remarkably high in a cycle with a degree of polymerization of 26 at 3 hours of reaction. 5 and 6, it can be seen that the Dg &ggr; GT enzyme efficiently produces amylose in a cycle of 24 to 28 in the reaction time of 3 to 4 hours.

<110> The Industry & Academic Cooperation in Chungnam National University (IAC) <120> Method for producing cycloamylose using 4-alpha-glucanotransferase <130> PN14017 <160> 2 <170> KopatentIn 2.0 <210> 1 <211> 1536 <212> DNA <213> Deinococcus geothermalis <400> 1 atggaacacc atcaccatca ccatatgctc accaagcgtt ccagcggcgt gctgctgcat 60 cccaccagcc ttcccggtcc ctacggcatt ggggaactcg gcgcgcaggc gcggcatttc 120 gtggactggc tggcgcgggc cggtcagacg tactggcagg tgatgccgct tggcccaacc 180 gggtacggcg acagcccgta tcaggctttt agcgcctttg ccggcaatcc ctatctgatc 240 gacctcacca cgctgcgcga ggaaggcctg ctgcacgcga gcgacttcga gggcacgccc 300 gacttcgacg caggccgagt ggactttggg ttgcagtacg tgtggcggat gcagatgctg 360 ggccgtgcct acgcacattt cgctttcggg caccaccccg agctgaaagc cgcgtttgaa 420 gcctttaagg ctgaggaggc ggcctggctg gacgactacg cgctctttat ggcgctcaag 480 gacgcgcacg gtggcttgcc ctggaacgcc tgggaacccg gcacacgcga ccgcgagccg 540 caggcgctgg cggcagcaca ggaacagctc gcgcccaaca tcgagcgcgt gaagttcatc 600 cagttcctgt tctttcggca gtggcgagcg ctgcgcacct acgctcgcga gcgcggcgtg 660 ggggtgatcg gggacatccc gattttcgtg gccatggact ccagtgatgc ctgggccaac 720 cgcgagcagt tctatttcga cgaacagggc cagcctaccg tcgtggcggg cgtcccgcca 780 gactacttca gcgagacggg gcagctgtgg ggcaatcccc tttaccgctg ggacgtgatg 840 gagcaagacg gcttccactg gtggatcgag cgcttccgcg gcagcctgaa gctctacgac 900 ctcatccgga tcgaccactt ccgcgggttt gccgcctact gggagattcc ctaccccgcc 960 gagaacgcga ttcatggccg ctgggtgccc gcgccgggcc acgcgctgct ggaggcggtg 1020 cgccgggcgc tggggcagat gcccatcatc gcagaagact tgggggtcat cacgcccgac 1080 gtcgaacagc tgcgtgatga ttttgggttg cccggtatgg ccgtcttgca cttcgctttt 1140 ggcggcggcg actttagcgt gaatgccttc ctgccgcaca acctcaaggc caatcaggtc 1200 gtgtacaccg gcacccacga caacgacacc tcgcgcggct ggtggcagca tgccgatgag 1260 caagagcggc agaacttccg cctctacacc cacagtgacc ccagcgagga gaccttcgcc 1320 tggcagctga ccgagatcgc cctggaaagc cgccccaatc tggcgattgt tcccttgcag 1380 gacctcctga acctgggcag cgaggcgcgc atgaacttcc ccggcaccac tggcccccac 1440 aactggacct ggcgttacct cgccgcggac ctgcgccccg atctggcgac aaagctgcgg 1500 gcgctgacgg agagaacagg ccgagtcgaa cggtaa 1536 <210> 2 <211> 511 <212> PRT <213> Deinococcus geothermalis <400> 2 Met Glu His His His His His His Met Leu Thr Lys Arg Ser Ser Gly 1 5 10 15 Val Leu Leu His Pro Thr Ser Leu Pro Gly Pro Tyr Gly Ile Gly Glu 20 25 30 Leu Gly Ala Gln Ala Arg His Phe Val Asp Trp Leu Ala Arg Ala Gly 35 40 45 Gln Thr Tyr Trp Gln Val Met Pro Leu Gly Pro Thr Gly Tyr Gly Asp 50 55 60 Ser Pro Tyr Gln Ala Phe Ser Ala Phe Ala Gly Asn Pro Tyr Leu Ile 65 70 75 80 Asp Leu Thr Thr Leu Arg Glu Glu Gly Leu Leu His Ala Ser Asp Phe 85 90 95 Glu Gly Thr Pro Asp Phe Asp Ala Gly Arg Val Asp Phe Gly Leu Gln 100 105 110 Tyr Val Trp Arg Met Gln Met Leu Gly Arg Ala Tyr Ala His Phe Ala 115 120 125 Phe Gly His His Pro Glu Leu Lys Ala Ala Phe Glu Ala Phe Lys Ala 130 135 140 Glu Glu Ala Ala Trp Leu Asp Asp Tyr Ala Leu Phe Met Ala Leu Lys 145 150 155 160 Asp Ala His Gly Gly Leu Pro Trp Asn Ala Trp Glu Pro Gly Thr Arg 165 170 175 Asp Arg Glu Pro Gln Ala Leu Ala Ala Ala Gln Glu Gln Leu Ala Pro 180 185 190 Asn Ile Glu Arg Val Lys Phe Ile Gln Phe Leu Phe Phe Arg Gln Trp 195 200 205 Arg Ala Leu Arg Thr Tyr Ala Arg Glu Arg Gly Val Gly Val Ile Gly 210 215 220 Asp Ile Pro Ile Phe Val Ala Met Asp Ser Ser Asp Ala Trp Ala Asn 225 230 235 240 Arg Glu Gln Phe Tyr Phe Asp Glu Gln Gly Gln Pro Thr Val Val Ala 245 250 255 Gly Val Pro Pro Asp Tyr Phe Ser Glu Thr Gly Gln Leu Trp Gly Asn 260 265 270 Pro Leu Tyr Arg Trp Asp Val Met Glu Gln Asp Gly Phe His Trp Trp 275 280 285 Ile Glu Arg Phe Arg Gly Ser Leu Lys Leu Tyr Asp Leu Ile Arg Ile 290 295 300 Asp His Phe Arg Gly Phe Ala Ala Tyr Trp Glu Ile Pro Tyr Pro Ala 305 310 315 320 Glu Asn Ala Ile His Gly Arg Trp Val Pro Ala Pro Gly His Ala Leu 325 330 335 Leu Glu Ala Val Arg Arg Ala Leu Gly Gln Met Pro Ile Ile Ala Glu 340 345 350 Asp Leu Gly Val Ile Thr Pro Asp Val Glu Gln Leu Arg Asp Asp Phe 355 360 365 Gly Leu Pro Gly Met Ala Val Leu His Phe Ala Phe Gly Gly Gly Asp 370 375 380 Phe Ser Val Asn Ala Phe Leu Pro His Asn Leu Lys Ala Asn Gln Val 385 390 395 400 Val Tyr Thr Gly Thr His Asp Asn Asp Thr Ser Arg Gly Trp Trp Gln 405 410 415 His Ala Asp Glu Gln Glu Arg Gln Asn Phe Arg Leu Tyr Thr His Ser 420 425 430 Asp Pro Ser Glu Glu Thr Phe Ala Trp Gln Leu Thr Glu Ile Ala Leu 435 440 445 Glu Ser Arg Pro Asn Leu Ala Ile Val Pro Leu Gln Asp Leu Leu Asn 450 455 460 Leu Gly Ser Glu Ala Arg Met Asn Phe Pro Gly Thr Thr Gly Pro His 465 470 475 480 Asn Trp Thr Trp Arg Tyr Leu Ala Ala Asp Leu Arg Pro Asp Leu Ala 485 490 495 Thr Lys Leu Arg Ala Leu Thr Glu Arg Thr Gly Arg Val Glu Arg 500 505 510 <110> The Industry & Academic Cooperation in Chungnam National University (IAC) <120> Method for producing cycloamylose using          4-alpha-glucanotransferase <130> PN14017 <160> 2 <170> Kopatentin 2.0 <210> 1 <211> 1536 <212> DNA <213> Deinococcus geothermalis <400> 1 atggaacacc atcaccatca ccatatgctc accaagcgtt ccagcggcgt gctgctgcat 60 cccaccagcc ttcccggtcc ctacggcatt ggggaactcg gcgcgcaggc gcggcatttc 120 gtggactggc tggcgcgggc cggtcagacg tactggcagg tgatgccgct tggcccaacc 180 gggtacggcg acagcccgta tcaggctttt agcgcctttg ccggcaatcc ctatctgatc 240 gacctcacca cgctgcgcga ggaaggcctg ctgcacgcga gcgacttcga gggcacgccc 300 gacttcgacg caggccgagt ggactttggg ttgcagtacg tgtggcggat gcagatgctg 360 ggccgtgcct acgcacattt cgctttcggg caccaccccg agctgaaagc cgcgtttgaa 420 gcctttaagg ctgaggaggc ggcctggctg gacgactacg cgctctttat ggcgctcaag 480 gcgcgcacg gtggcttgcc ctggaacgcc tgggaacccg gcacacgcga ccgcgagccg 540 caggcgctgg cggcagcaca ggaacagctc gcgcccaaca tcgagcgcgt gaagttcatc 600 cagttcctgt tctttcggca gtggcgagcg ctgcgcacct acgctcgcga gcgcggcgtg 660 ggggtgatcg gggacatccc gattttcgtg gccatggact ccagtgatgc ctgggccaac 720 cgcgagcagt tctatttcga cgaacagggc cagcctaccg tcgtggcggg cgtcccgcca 780 gctacttca gcgagacggg gcagctgtgg ggcaatcccc tttaccgctg ggacgtgatg 840 gagcaagacg gcttccactg gtggatcgag cgcttccgcg gcagcctgaa gctctacgac 900 ctcatccgga tcgaccactt ccgcgggttt gccgcctact gggagattcc ctaccccgcc 960 ggaacgcga ttcatggccg ctgggtgccc gcgccgggcc acgcgctgct ggaggcggtg 1020 cgccgggcgc tggggcagat gcccatcatc gcagaagact tgggggtcat cacgcccgac 1080 gtcgaacagc tgcgtgatga ttttgggttg cccggtatgg ccgtcttgca cttcgctttt 1140 ggcggcggcg actttagcgt gaatgccttc ctgccgcaca acctcaaggc caatcaggtc 1200 gtgtacaccg gcacccacga caacgacacc tcgcgcggct ggtggcagca tgccgatgag 1260 caagagcggc agaacttccg cctctacacc cacagtgacc ccagcgagga gaccttcgcc 1320 tggcagctga ccgagatcgc cctggaaagc cgccccaatc tggcgattgt tcccttgcag 1380 gacctcctga acctgggcag cgaggcgcgc atgaacttcc ccggcaccac tggcccccac 1440 aactggacct ggcgttacct cgccgcggac ctgcgccccg atctggcgac aaagctgcgg 1500 gcgctgacgg agagaacagg ccgagtcgaa cggtaa 1536 <210> 2 <211> 511 <212> PRT <213> Deinococcus geothermalis <400> 2 Met Glu His His His His His Met Leu Thr Lys Arg Ser Ser Gly   1 5 10 15 Val Leu Leu His Pro Thr Ser Leu Pro Gly Pro Tyr Gly Ile Gly Glu              20 25 30 Leu Gly Ala Gln Ala Arg His Phe Val Asp Trp Leu Ala Arg Ala Gly          35 40 45 Gln Thr Tyr Trp Gln Val Met Pro Leu Gly Pro Thr Gly Tyr Gly Asp      50 55 60 Ser Pro Tyr Gln Ala Phe Ser Ala Phe Ala Gly Asn Pro Tyr Leu Ile  65 70 75 80 Asp Leu Thr Thr Leu Arg Glu Glu Gly Leu Leu His Ala Ser Asp Phe                  85 90 95 Glu Gly Thr Pro Asp Phe Asp Ala Gly Arg Val Asp Phe Gly Leu Gln             100 105 110 Tyr Val Trp Arg Met Gln Met Leu Gly Arg Ala Tyr Ala His Phe Ala         115 120 125 Phe Gly His His Pro Glu Leu Lys Ala Ala Phe Glu Ala Phe Lys Ala     130 135 140 Glu Glu Ala Ala Trp Leu Asp Asp Tyr Ala Leu Phe Met Ala Leu Lys 145 150 155 160 Asp Ala His Gly Gly Leu Pro Trp Asn Ala Trp Glu Pro Gly Thr Arg                 165 170 175 Asp Arg Glu Pro Gln Ala Leu Ala Ala Ala Gln Glu Gln Leu Ala Pro             180 185 190 Asn Ile Glu Arg Val Lys Phe Ile Gln Phe Leu Phe Phe Arg Gln Trp         195 200 205 Arg Ala Leu Arg Thr Tyr Ala Arg Glu Arg Gly Val Gly Val Ile Gly     210 215 220 Asp Ile Pro Ile Phe Val Ala Met Asp Ser Ser Asp Ala Trp Ala Asn 225 230 235 240 Arg Glu Gln Phe Tyr Phe Asp Glu Gln Gly Gln Pro Thr Val Val Ala                 245 250 255 Gly Val Pro Pro Asp Tyr Phe Ser Glu Thr Gly Gln Leu Trp Gly Asn             260 265 270 Pro Leu Tyr Arg Trp Asp Val Met Glu Gln Asp Gly Phe His Trp Trp         275 280 285 Ile Glu Arg Phe Arg Gly Ser Leu Lys Leu Tyr Asp Leu Ile Arg Ile     290 295 300 Asp His Phe Arg Gly Phe Ala Ala Tyr Trp Glu Ile Pro Tyr Pro Ala 305 310 315 320 Glu Asn Ala Ile His Gly Arg Trp Val Pro Ala Pro Gly His Ala Leu                 325 330 335 Leu Glu Ala Val Arg Ala Leu Gly Gln Met Pro Ile Ile Ala Glu             340 345 350 Asp Leu Gly Val Ile Thr Pro Asp Val Glu Gln Leu Arg Asp Asp Phe         355 360 365 Gly Leu Pro Gly Met Ala Val Leu His Phe Ala Phe Gly Gly Gly Asp     370 375 380 Phe Ser Val Asn Ala Phe Leu Pro His Asn Leu Lys Ala Asn Gln Val 385 390 395 400 Val Tyr Thr Gly Thr His Asp Asn Asp Thr Ser Arg Gly Trp Trp Gln                 405 410 415 His Ala Asp Glu Gln Glu Arg Gln Asn Phe Arg Leu Tyr Thr His Ser             420 425 430 Asp Pro Ser Glu Glu Thr Phe Ala Trp Gln Leu Thr Glu Ile Ala Leu         435 440 445 Glu Ser Arg Pro Asn Leu Ala Ile Val Pro Leu Gln Asp Leu Leu Asn     450 455 460 Leu Gly Ser Glu Ala Arg Met Asn Phe Pro Gly Thr Thr Gly Pro His 465 470 475 480 Asn Trp Thr Trp Arg Tyr Leu Ala Ala Asp Leu Arg Pro Asp Leu Ala                 485 490 495 Thr Lys Leu Arg Ala Leu Thr Glu Arg Thr Gly Arg Val Glu Arg             500 505 510

Claims (6)

데이노코커스 지오써말리스(Deinococcus geothermalis) 유래의 서열번호 2의 아미노산 서열로 이루어진 4-α-글루카노트랜스퍼라제(4-α-glucanotransferase)를 코딩하는 유전자를 포함하는 재조합 벡터를 제조하는 단계;
상기 제조된 재조합 벡터를 대장균에 형질전환시키는 단계;
상기 형질전환된 대장균으로부터 4-α-글루카노트랜스퍼라제 효소를 분리 및 정제하는 단계; 및
상기 정제된 4-α-글루카노트랜스퍼라제 효소와 아밀로스를 pH는 6.0이고, 온도는 50℃인 조건 하에서 3 내지 6시간 동안 반응하는 단계;를 포함하며, 중합도가 5인 사이클로아밀로스가 전체 생성된 사이클로아밀로스의 중량 기준으로 5~10%를 함유하고, 중합도가 24 내지 28의 사이클로아밀로스가 주성분인 것을 특징으로 하는 사이클로아밀로스의 제조방법.
Preparing a recombinant vector comprising a gene encoding 4-alpha-glucanotransferase consisting of the amino acid sequence of SEQ ID NO: 2 derived from Deinococcus geothermalis ;
Transforming the prepared recombinant vector into E. coli;
Isolating and purifying the 4-alpha-glucanotransferase enzyme from the transformed E. coli; And
Reacting the purified 4-α-glucanotransferase enzyme with amylose at a pH of 6.0 and a temperature of 50 ° C. for 3 to 6 hours, wherein the amylose having a degree of polymerization of 5 is completely produced Wherein the amylose is a main component comprising 5 to 10% by weight of cycloamylose and a cycloamylose having a degree of polymerization of 24 to 28. [
삭제delete 제1항에 있어서, 상기 4-α-글루카노트랜스퍼라제는 커플링(coupling) 반응속도에 대한 고리화(cyclization) 반응속도의 비율을 증가시키는 것을 특징으로 하는 사이클로아밀로스의 제조방법.2. The method according to claim 1, wherein the 4-alpha-glucanotransferase increases the rate of cyclization reaction rate to the coupling reaction rate. 삭제delete 삭제delete 삭제delete
KR1020140024867A 2014-03-03 2014-03-03 Method for producing cycloamylose using 4-alpha-glucanotransferase KR101518022B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140024867A KR101518022B1 (en) 2014-03-03 2014-03-03 Method for producing cycloamylose using 4-alpha-glucanotransferase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140024867A KR101518022B1 (en) 2014-03-03 2014-03-03 Method for producing cycloamylose using 4-alpha-glucanotransferase

Publications (1)

Publication Number Publication Date
KR101518022B1 true KR101518022B1 (en) 2015-05-06

Family

ID=53393980

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140024867A KR101518022B1 (en) 2014-03-03 2014-03-03 Method for producing cycloamylose using 4-alpha-glucanotransferase

Country Status (1)

Country Link
KR (1) KR101518022B1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GenBank Accession Number WP_011529810 (2013.05.16.) *
GenBank Accession Number WP_011529810 (2013.05.16.)*
Shakhawat Hossain Bhuiyan 등. Journal of Molecular Catalysis B: Enzymatic. Vol. 22, No. 1-2, 페이지 45-53 (2003) *
Shakhawat Hossain Bhuiyan 등. Journal of Molecular Catalysis B: Enzymatic. Vol. 22, No. 1-2, 페이지 45-53 (2003)*

Similar Documents

Publication Publication Date Title
KR100868329B1 (en) A method for preparing enzymatically highly branched-amylose and amylopectin cluster
CN111041017B (en) Chitosanase mutant and application thereof
CN108753747B (en) MTSase mutant with improved thermal stability and trehalose yield
CN114836494B (en) Method for preparing high-purity chitobiose by using chitinase SaChiZg
CN110157688B (en) Linear maltooligosaccharide-producing enzyme mutant with improved maltopentaose production capacity
CN114015708B (en) Deep sea bacteria-derived alpha-glucosidase QsGH13 and encoding gene and application thereof
CN109929860B (en) Fucoidan encoding gene and preparation and application of enzyme
CN118240805B (en) Chitosan CsnQB-D35E and application thereof in preparation of chitosan oligosaccharide functional biscuits
JP6993637B2 (en) Endoglycosidase that specifically cleaves fucose-containing sugar chains
CN109486804A (en) It is a kind of with the novel chitosan enzyme CsnM of hot recovery characteristics and its application
CN110656096B (en) Cyclodextrin glucosyltransferase mutant for reducing hydrolysis side reaction degree
KR101518022B1 (en) Method for producing cycloamylose using 4-alpha-glucanotransferase
CN108753746B (en) Maltooligosyl trehalose synthase mutant with improved thermal stability
CN109456950B (en) Mutant of cyclodextrin glucosyltransferase and application thereof
Kang et al. Functional, genetic, and bioinformatic characterization of dextransucrase (DSRBCB4) gene in Leuconostoc mesenteroides B-1299CB4
CN112921020B (en) Algin lyase mutant for relieving divalent metal ion dependence and application thereof
CN113151327B (en) Mutant of bacillus cereus high-yield maltopentaose alpha-amylase and application thereof
CN106434586B (en) Trehalose synthetase mutant and gene thereof
CN115747236A (en) Alpha-glucosidase, coding gene, vector, host and application thereof
CN110144340B (en) Chitosanase CsnQ and application thereof
KR101228974B1 (en) A thermostable H2O forming NADH oxidase from Lactobacillus rhamnosus and a preparation method thereof
CN114085824B (en) Sucrose isomerase mutant, construction method and application thereof, recombinant expression vector and recombinant bacterium
Jongsareejit et al. Cloning of hyaluronan synthase (sz-has) gene from Streptococcus zooepidemicus in Escherichia coli
CN114507656B (en) Method for preparing fucoidan rich in guluronic acid
KR101574952B1 (en) -23 -26 method for screening -23 and -26 sialyltransferase variants and their application for synthesis of sialyloligosaccharides

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 4