[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101486065B1 - Phosphorescence phosphor composite and manufacturing method thereof - Google Patents

Phosphorescence phosphor composite and manufacturing method thereof Download PDF

Info

Publication number
KR101486065B1
KR101486065B1 KR20130058408A KR20130058408A KR101486065B1 KR 101486065 B1 KR101486065 B1 KR 101486065B1 KR 20130058408 A KR20130058408 A KR 20130058408A KR 20130058408 A KR20130058408 A KR 20130058408A KR 101486065 B1 KR101486065 B1 KR 101486065B1
Authority
KR
South Korea
Prior art keywords
composition
phosphorescent
mixing
powder
flux
Prior art date
Application number
KR20130058408A
Other languages
Korean (ko)
Other versions
KR20140138408A (en
Inventor
김종우
이상혁
Original Assignee
주식회사 하슬라
김종우
이상혁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하슬라, 김종우, 이상혁 filed Critical 주식회사 하슬라
Priority to KR20130058408A priority Critical patent/KR101486065B1/en
Publication of KR20140138408A publication Critical patent/KR20140138408A/en
Application granted granted Critical
Publication of KR101486065B1 publication Critical patent/KR101486065B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/63Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명은 빛의 자극을 받아 에너지를 흡수한 후, 흡수한 에너지를 낮은 준위의 가시광으로 환원하여 발광하는 성질을 갖는 축광체 조성물 및 축광체 조성물의 제조방법에 관한 것으로서, MAl2O4로 표시되는 모체, 부활제 및 공부활제를 포함하여 구성되는 기본조성물에, 발광성 향상을 위한 반응촉진제와 같은 기능을 수행을 위하여 질화붕소 또는 탄화붕소 중 어느 하나 이상의 것으로 구성되는 융제가 첨가되어 구성되는 축광체 조성물에 관한 것이고, 상기와 같은 축광체 조성물을 원활하게 제조하기 위한 축광체 조성물 제조방법에 관한 것이다.
또한 본 발명은 기본조성물을 구성하는 조성물들을 원활하게 혼합시킬 수 있는 질화붕소 또는 탄화붕소 중 어느 하나 이상의 것으로 구성되는 융제를 제시하여, 기본조성물을 구성하는 조성물들을 혼합하는 혼합시간을 단축시켜, 생산성을 향상시킬 수 있는 효과를 얻을 수 있고; 본 발명에 의한 융제에 의하여 종래보다 더욱 균질하게 혼합된 기본조성물의 조성물들이 가열 및 연소반응되어 종래보다 더욱 우수한 발광성을 가지는 축광체 조성물을 제시하는 효과를 얻을 수 있다.
The present invention after receiving the poles of the light absorbing energy, relates to a production method of having a property of light emission by reducing the visible light of the low to the absorption energy level luminous body composition and the luminous body composition, expressed as MAl 2 O 4 Which is constituted by adding a flux composed of at least one of boron nitride and boron carbide to a basic composition constituted of a host material, an activator and a lubricant for performing a function such as a reaction promoter for improving luminous efficiency The present invention relates to a method for preparing a phosphorescent composition for the production of such a phosphorescent composition smoothly.
Further, the present invention proposes a flux composed of at least one of boron nitride or boron carbide capable of smoothly mixing the compositions constituting the base composition, thereby shortening the mixing time for mixing the compositions constituting the base composition, Can be improved; By the flux according to the present invention, the composition of the base composition, which is more homogeneously mixed than in the prior art, is heated and burned to provide a phosphorescent composition having more excellent luminous properties than the conventional ones.

Description

축광체 조성물 및 이의 제조방법{Phosphorescence phosphor composite and manufacturing method thereof}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphorescent phosphor composite and a manufacturing method thereof,

본 발명은 빛의 자극을 받아 에너지를 흡수한 후, 흡수한 에너지를 낮은 준위의 가시광으로 환원하여 발광하는 성질을 갖는 축광체 조성물 및 축광체 조성물의 제조방법에 관한 것으로서, MAl2O4로 표시되는 모체, 부활제 및 공부활제를 포함하여 구성되는 기본조성물에, 발광성 향상을 위하여 질화붕소 또는 탄화붕소 중 어느 하나 이상의 것으로 구성되는 융제가 첨가되어 구성되는 축광체 조성물에 관한 분야이고, 상기와 같은 축광체 조성물을 원활하게 제조하기 위한 축광체 조성물 제조방법에 관한 분야이다.
The present invention after receiving the poles of the light absorbing energy, relates to a production method of having a property of light emission by reducing the visible light of the low to the absorption energy level luminous body composition and the luminous body composition, expressed as MAl 2 O 4 And a lubricant composed of at least one of boron nitride and boron carbide is added to a base composition comprising a base, an activator, and a lubricant for improving luminous efficiency. The present invention relates to a phosphorescent composition comprising The present invention relates to a method for producing a phosphorescent composition for smoothly preparing a phosphorescent composition.

일반적으로 형광체에 전자기적인 외부자극을 가하는 경우 발광이 이루어지며, 이 외부자극을 정지하면 통상 형광체의 잔광시간은 극히 짧으므로 발광이 빠르게 소멸되는 것이 보통이다.Generally, when an external electromagnetic stimulus is applied to a phosphor, light emission occurs. When the external stimulus is stopped, the afterglow time of the conventional phosphor is usually extremely short, so that the emission is usually rapidly extinguished.

이와 달리 축광재료는 전등이나 태양광 등과 같이 비교적 높은 준위를 갖는 빛의 자극을 받아 에너지를 흡수한 후, 이를 낮은 준위의 가시광으로 환원하여 어두운 곳에서도 장시간 발광하는 성질을 갖는 소재로서, 장잔광성 인광체 또는 축광체가 이에 해당된다.Alternatively, the phosphorescent material is a material having a property of absorbing energy by being stimulated by light having a relatively high level such as a lamp or a sunlight, and then reducing the energy to a low-level visible light to emit light for a long time in a dark place. Or a phosphorescent material.

이러한 축광재료로 사용되는 대표적인 화합물들을 살펴보면, CaS:Bi(자청색 발광), CaSrS:Bi(청색 발광), ZnS:Cu(녹색 발광), ZnCdS:Cu(황색 ~ 등색발광) 등의 황화물계 축광체가 알려져 있다.Representative compounds used as such a phosphorescent material include sulfide-based phosphors such as CaS: Bi (blue emission), CaSrS: Bi (blue emission), ZnS: Cu (green emission), ZnCdS: Cu The body is known.

그러나, 상기한 황화물계 축광체들은 화학적으로 안정되지 못할 뿐만 아니라, 습기가 많은 장소에서는 내광성이 떨어지는 등 실제 사용에 있어 여러 가지 문제점을 안고 있다.However, the sulfide-based phosphors described above are not only chemically stable but also suffer from various problems in actual use such as poor light resistance in places with high humidity.

이에, 최근에는 화학적으로 안정되고, 내구성이 우수하며, 여기원으로서 방사성 물질을 함유하지 않은 스트론튬-산화알루미늄계(SrO-Al2O3)의 축광체가 알려지면서 점차 관심을 기울이고 있는 실정에 있으나, 현재 이에 대한 많은 연구 개발이 진행되지 않아, 우수한 발광 및 장잔광 특성 구현에 어려움이 있고, 그에 따라 상기한 축광체의 사용 용도 역시, 극히 제한적일 수밖에 없는 문제점이 있었다.
Recently, strontium-aluminum oxide (SrO-Al2O3) phosphors which are chemically stable and excellent in durability and which do not contain a radioactive material as an excitation source are known, and they are gradually getting attention. However, There is a problem in that it is difficult to realize excellent luminescence and long afterglow characteristics because the research and development have not been carried out so much, and accordingly the use of the above-mentioned phosphorescent material is also extremely limited.

또한 이러한 축광체는 모체성분에 부활제와 공부활제를 첨가하고 고온으로 소성하여 제조되는데, 모체와 부활제의 조합에 의하여 발광되는 색상과 휘도 등이 달라진다.In addition, such a phosphorescent material is prepared by adding an activator and a lubricant to the matrix component and baking the mixture at a high temperature. The combination of the matrix and the activator changes the color and brightness of the emitted light.

이와 같은 축광체 중에서 알칼리토금속의 알루민산계 축광체가 제안되었다. 상기 알칼리토금속의 알루민산계 축광체는 조성이 간단하고 제조가 간편하므로 가장 일반적으로 사용되고 있다.Among these phosphors, an aluminate-based phosphorescent material of an alkaline earth metal has been proposed. The aluminate-based phosphorescent material of the alkaline earth metal is most commonly used because of its simple composition and easy manufacture.

한편, 모체와 부활제 및 공부활제를 합성하여 축광체를 제조할 때에는 합성이 용이하게 일어나도록 반응촉진제인 융제가 첨가된다. 일반적으로는 이러한 융제로 산화붕소(B2O3)가 사용된다. 그런데 산화붕소는 물에 용해되어 다른 원료들을 엉기게 만들어 균질한 혼합이 어려운 문제가 있으며, 축광체의 제조시 융제가 고르게 혼합되지 않은 경우에는 모체와 부활제의 합성율이 저하되어 축광체의 휘도가 저하되는 문제점이 발생되었다.On the other hand, when a phosphorescent material is prepared by synthesizing a matrix, an activator, and a working lubricant, a flux as a reaction promoter is added so that synthesis can be easily performed. Generally, boron oxide (B 2 O 3) is used as such a flux. However, since the boron oxide is dissolved in water, the other raw materials are clogged and homogeneous mixing is difficult. When the flux is not mixed evenly in the preparation of the phosphorescent material, the synthesis ratio of the host and the activator is lowered, A problem of lowering occurred.

따라서 종래 반응촉진제로 산화붕소를 사용하는 경우에는 산화붕소를 비롯하여 다른 원료들이 고르게 혼합되도록 원료에 고가의 무수알코올을 사용하여 장시간 동안 습식혼합을 행하여 왔는데, 상기와 같은 경우에는 무수알코올의 사용에 따라 비용이 상승되며, 공정의 지연으로 인해 제조비용을 상승시키는 원인이 되어왔다.
Therefore, when boron oxide is used as a conventional reaction promoter, wet mixing is performed for a long period of time by using an expensive anhydrous alcohol in a raw material so that other raw materials including boron oxide are evenly mixed. In such a case, depending on the use of anhydrous alcohol The cost has increased, and the manufacturing cost has been increased due to the delay of the process.

다음은 축광체 조성물과 그의 제조방법에 관한 대표적인 종래기술이다.The following is a representative prior art related to the phosphorescent composition and its manufacturing method.

국내등록특허 제10-1250142호는 연소반응법을 이용한 축광체분말 제조방법 및 그 축광체분말과, 상기 축광체분말을 이용하여 제조한 발광시트에 관한 것으로서, 스트론튬염, 알루미늄염, 부활제, 공부활제를 0.97 : 2.0 : 0.005 : 0.01의 몰비(molar ratio)로 혼합하고, 융제를 첨가한 후 반응연료를 사용하여 가열 및 열처리하여 연소반응시킴으로서, 황록색 발광을 나타내는 스트론튬-산화알루미늄(SrO-Al2O3)계 축광체분말에 관한 것이다.Korean Patent No. 10-1250142 discloses a method for preparing a phosphorescent powder using a combustion reaction method, a phosphorescent powder thereof, and a luminescent sheet prepared using the phosphorescent powder, wherein strontium salt, aluminum salt, (SrO-Al 2 O 3) which exhibits yellowish green luminescence can be obtained by mixing the lubricant with a molar ratio of 0.97: 2.0: 0.005: 0.01, adding a flux, and heating and heat- ) Based phosphorescent powder.

하지만 상기 종래기술은 스트론튬염, 알루미늄염, 부활제 및 공부활제와 혼합되는 융제가 일반적인 산화붕소이기 때문에, 제조완료된 축광체분말(본 발명의 '축광체 조성물'과 대응됨.)의 발광성이 뛰어나지 못한 문제가 발생하여, 이를 해결하기 위한 지속적인 연구개발이 요구되는 실정이다.
However, in the above conventional art, since the boron mixed with the strontium salt, the aluminum salt, the activator and the curing agent is general boron oxide, the luminous body powder (corresponding to the phosphorescent composition of the present invention) There is a problem that can not be solved, and continuous research and development is required to solve this problem.

본 발명은 축광체 조성물 및 이의 제조방법의 종래기술에 따른 문제점들을 개선하고자 안출된 기술로서, 종래 축광체 조성물은 발광성이 우수한 MAl2O4로 표시되는 화합물을 모체로 하고, 부활제 및 공활제가 상기 모체에 혼합되어 기본조성물을 이루며, 상기 기본조성물에 산화붕소가 융제로 포함되어 기본조성물을 구성하는 조성물들 간의 혼합성을 향상시켜, 제조되는 축광체 조성물의 발광성을 향상시키는 기능을 수행하였으나, 융제로 포함되는 산화붕소는 기본조성물의 혼합시에 포함되는 물에 용해되어 기본조성물을 구성하는 조성물들의 균질한 혼합이 어려운 문제가 발생하였고;DISCLOSURE OF THE INVENTION The present invention has been made in order to solve the problems of the prior art phosphorescent composition and its manufacturing method, wherein the conventional phosphorescent composition comprises a compound represented by MAl 2 O 4 having excellent luminescence as a host, The basic composition is mixed with the mother body to improve the mixing property between the compositions constituting the basic composition and boron oxide as a flux to improve the luminous efficiency of the phosphorescent composition to be produced. The boron oxide contained in the flux is dissolved in the water contained in the mixing of the base composition, so that it is difficult to homogeneously mix the compositions constituting the base composition;

상기 결과로, 기본조성물 혼합이 미흡하여, 기본조성물의 혼합시간이 길어지는 문제가 발생하였고;As a result, there was a problem that the basic composition mixing was insufficient and the mixing time of the basic composition became long;

산화붕소에 의한 혼합성 향상 효과가 미흡하여, 제조된 축광체 조성물의 발광성 향상 효과가 미흡한 문제가 발생하여, 이에 대한 해결점을 제공하는 것을 주된 목적으로 하는 것이다.
It is a main object of the present invention to provide a solution to the above problem that the effect of improving the mixing property by boron oxide is insufficient and the luminous efficiency improving effect of the produced phosphorescent composition is insufficient.

본 발명은 상기와 같은 소기의 목적을 실현하고자,The present invention has been made to solve the above-

MAl2O4로 표시되는 화합물이고, 상기 M은 칼슘, 스트론튬, 바륨 중에서 선택된 하나 이상의 금속원소 또는 상기 금속원소에 마그네슘이 첨가된 화합물인 모체와, 부활제와 및 공부활제를 포함하여 구성되는 기본조성물 97~99.9중량%와; 질화붕소 또는 탄화붕소 중 어느 하나 이상의 것으로 구성되는 융제 0.1~3중량%;가 혼합되고, 가열 및 연소반응되어 축광체로 만들어지도록 구성되는 축광체 조성물을 제시하고,MAl 2 O 4 , wherein M is at least one element selected from the group consisting of calcium, strontium and barium, or a compound in which magnesium is added to the metal element, a base comprising an activator and a study agent, 97 to 99.9% by weight of a composition; And 0.1 to 3% by weight of a flux composed of at least one of boron nitride and boron carbide are mixed and heated and burned to produce a phosphorescent body,

MAl2O4로 표시되는 화합물이고, 상기 M은 칼슘, 스트론튬, 바륨 중에서 선택된 하나 이상의 금속원소 또는 상기 금속원소에 마그네슘이 첨가된 화합물인 모체와, 부활제와 및 공부활제를 포함하여 구성되는 기본조성물과; 질화붕소 또는 탄화붕소 중 어느 하나 이상의 것으로 구성되는 융제;를 물과 혼합하여 습식혼합하는 혼합단계와; 상기 혼합단계 처리된 혼합물을 가열로에 수용시킨 후, 가열 및 연소반응시켜 M-산화알루미늄 조성의 분말을 만드는 분말제조단계와; 상기 분말제조단계 처리된 M-산화알루미늄 조성의 분말을 수소 환원 분위기에서 열처리하여 M-산화알루미늄계 축광체 조성물을 만드는 축광체분말제조단계;를 포함하여 구성되는 축광체 조성물 제조방법을 제시한다.
MAl 2 O 4 , wherein M is at least one element selected from the group consisting of calcium, strontium and barium, or a compound in which magnesium is added to the metal element, a base comprising an activator and a study agent, A composition; A flux consisting of at least one of boron nitride and boron carbide; mixing the mixture with water and wet mixing; A step of preparing a powder of the M-aluminum oxide composition by receiving the mixture subjected to the mixing step in a heating furnace, followed by heating and combustion reaction; The present invention also provides a method for preparing a phosphorescent composition comprising the steps of: preparing a phosphorescent powder by subjecting a powder of the M-aluminum oxide composition to a heat treatment in a hydrogen reducing atmosphere to produce an M-aluminum oxide phosphorescent composition;

상기와 같이 제시된 본 발명에 의한 축광체 조성물 및 이의 제조방법은 기본조성물을 구성하는 조성물들을 원활하게 혼합시킬 수 있는 질화붕소 또는 탄화붕소 중 어느 하나 이상의 것으로 구성되는 융제를 제시하여, 기본조성물을 구성하는 조성물들을 혼합하는 혼합시간을 단축시켜, 생산성을 향상시킬 수 있는 효과를 얻을 수 있고;The phosphorescent composition according to the present invention and the method for producing the same according to the present invention can be prepared by providing a flux composed of at least one of boron nitride or boron carbide capable of smoothly mixing the compositions constituting the base composition, The mixing time for mixing the compositions of the present invention can be shortened, and productivity can be improved;

본 발명에 의한 융제에 의하여 종래보다 더욱 균질하게 혼합된 기본조성물의 조성물들이 가열 및 연소반응되어 종래보다 더욱 우수한 발광성을 가지는 축광체 조성물을 제시하는 효과를 얻을 수 있다.
By the flux according to the present invention, the composition of the base composition, which is more homogeneously mixed than in the prior art, is heated and burned to provide a phosphorescent composition having more excellent luminous properties than the conventional ones.

도 1은 본 발명의 바람직한 실시예에 의한 축광체 조성물 제조방법의 공정순서를 나타내는 공정도.
도 2는 본 발명의 바람직한 실시예에 의한 축광체 조성물 및 종래 축광체 조성물의 발광성을 시험한 결과 그래프.
도 3은 본 발명의 바람직한 실시예 3에 의한 축광체 조성물 시료에 의한 휘도 시험결과를 나타내는 시험성적서.
도 4는 본 발명의 바람직한 실시예 3에 의한 축광체 조성물 시료에 의한 휘도 시험결과를 나타내는 그래프.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process chart showing a process sequence of a method for manufacturing a phosphorescent material according to a preferred embodiment of the present invention; FIG.
FIG. 2 is a graph showing the luminous properties of a phosphorescent composition and a conventional phosphorescent composition according to a preferred embodiment of the present invention.
FIG. 3 is a test report showing the results of a luminance test by a sample of a phosphorescent composition according to a third embodiment of the present invention. FIG.
4 is a graph showing the results of a luminance test by a sample of a phosphorescent composition according to a third preferred embodiment of the present invention.

본 발명은 빛의 자극을 받아 에너지를 흡수한 후, 흡수한 에너지를 낮은 준위의 가시광으로 환원하여 발광하는 성질을 갖는 축광체 조성물 및 축광체 조성물의 제조방법에 관한 것이다.The present invention relates to a phosphorescent composition and a method for preparing the phosphorescent composition which absorb energy by being stimulated by light and then reduce the absorbed energy to low-level visible light and emit light.

이하 본 발명의 실시예를 도시한 도면 1 내지 4를 참고하여 본 발명을 구체적으로 설명하면 다음과 같다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

[[ 축광체Phosphorescent 조성물] Composition]

우선, 본 발명에 의한 축광체 조성물은 MAl2O4로 표시되는 화합물이고 상기 M은 칼슘, 스트론튬, 바륨 중에서 선택된 하나 이상의 금속원소 또는 상기 금속원소에 마그네슘이 첨가된 화합물인 모체와, 부활제와 및 공부활제를 포함하여 구성되는 기본조성물 97~99.9중량%와; 질화붕소 또는 탄화붕소 중 어느 하나 이상의 것으로 구성되는 융제 0.1~3중량%;가 혼합되고, 가열 및 연소반응되어 축광체로 만들어지도록 구성된다.First, the phosphorescent composition according to the present invention is a compound represented by MAl 2 O 4 , wherein M is at least one metal element selected from calcium, strontium and barium, or a compound in which magnesium is added to the metal element, And a lubricant; 97 to 99.9% by weight of the base composition; 0.1 to 3% by weight of a flux composed of at least one of boron nitride and boron carbide is mixed and heated and burned to form a phosphorescent body.

구체적으로, 상기 기본조성물은 모체, 부활제 및 공부활제가 혼합되는 구성으로서, 상기 모체는 알칼리 토금속 원소에 해당하는 칼슘, 스트론튬 또는 바륨 중에 선택된 하나 이상의 금속원소 또는 상기 금속원소에 마그네슘이 첨가된 화합물인 M과 산화알루미늄(Al2O4)의 결합에 의하여 표시되는 화합물이다.Specifically, the base composition is a composition in which a matrix, an activator, and a lubricant are mixed, wherein the matrix is a mixture of at least one metal element selected from calcium, strontium or barium corresponding to an alkaline earth metal element or a compound in which magnesium is added to the metal element Is a compound represented by the bond of phosphorus M and aluminum oxide (Al 2 O 4 ).

또한 모체를 구성하는 M과 산화알루미늄 간의 조성비는 일반적인 M과 산화알루미늄 간의 조성비를 가질 수 있으나, 산화알루미늄 1몰%에 대하여 0.95~0.99몰%의 조성비를 가지는 것이 바람직하다.The composition ratio between M and aluminum oxide constituting the mother body may have a composition ratio between general M and aluminum oxide, but preferably has a composition ratio of 0.95 to 0.99 mol% based on 1 mol% of aluminum oxide.

아울러 부활제는 축광체의 휘도(발광성)에 영향을 미치는 조성물로서, 일반적으로 이용되는 유로퓸을 이용하는 것이 바람직하고, 부활제의 조성비는 상기 모체의 M으로 표시한 금속원소에 대하여 몰%로 0.001~5몰%를 유지하는 것이 바람직하다. 즉, 부활제의 조성비가 0.001몰% 미만이면 부활제의 조성이 미미하여 제조완료된 축광체 조성물에 의하여 만들어진 축광체의 휘도의 향상 정도가 미흡해지는 문제가 발생하고, 5몰%를 초과하면 부활제의 조성이 지나지게 많아 기본조성물의 물성을 저해하고, 휘도 향상 정도가 다시 저하되는 문제가 발생하므로, 상기 범위 내의 조성비를 유지하는 것이 바람직하다.In addition, the activator is preferably a composition that affects the brightness (luminescence) of the phosphorescent material, and it is preferable to use commonly used europium. The composition ratio of the activator is 0.001 to 0.005 mol% It is preferable to maintain 5 mol%. That is, when the composition ratio of the activator is less than 0.001 mol%, the composition of the activator is insignificant, resulting in a problem that the degree of improvement of the brightness of the phosphorescent material produced by the finished phosphorescent composition becomes insufficient. There are problems that the physical properties of the base composition are deteriorated and the degree of luminance improvement is lowered again because of the excessively large amount of the composition, so that it is preferable to maintain the composition ratio within the above range.

상기와 연관하여, 유로퓸을 포함하는 축광체는 유로퓸이 산화물계이므로 황화물계 부활제를 포함하는 종래의 축광체보다 화학적으로 안정하며, 내광성이 우수한 특성이 있다.
In connection with the above, the phosphorescent material containing europium is chemically more stable than the conventional phosphorescent material containing a sulfide-based activator because europium is oxide-based, and has excellent light resistance.

또한 공부활제는 축광체의 휘도에 영향을 미치는 조성물로서, 일반적으로 이용되는 세륨, 프라세오디뮴, 네오디뮴, 사마륨, 디스프로슘, 산화디스프로슘, 에르븀, 툴륨, 에테르븀 또는 루테륨 중 어느 하나 이상의 것을 이용하는 것이 바람직하고, 공부활제의 조성비는 상기 모체의 M으로 표시한 금속원소에 대하여 몰%로 0.001~5몰%를 유지하는 것이 바람직하다. 이때, 공부활제는 상기 부활제와 마찬가지로, 공부활제의 조성비가 0.001몰% 미만이면 공부활제의 조성이 미미하여 제조완료된 축광체 조성물에 의하여 만들어진 축광체의 휘도의 향상 정도가 미흡해지는 문제가 발생하고, 5몰%를 초과하면 공부활제의 조성이 지나지게 많아 기본조성물의 물성을 저해하고, 휘도 향상 정도가 다시 저하되는 문제가 발생하므로, 상기 범위 내의 조성비를 유지하는 것이 바람직하다.It is preferable to use at least one of cerium, praseodymium, neodymium, samarium, dysprosium, dysprosium oxide, erbium, thulium, erbium, or lutetium, which is generally used as a composition that affects the brightness of the phosphorescent body , And the composition ratio of the lubricant is preferably 0.001 to 5 mol% in terms of mole% with respect to the metal element represented by M of the matrix. If the composition ratio of the lubricant is less than 0.001 mol%, the composition of the lubricant is insignificant, so that the degree of improvement of the brightness of the phosphorescent body produced by the finished phosphorescent composition becomes insufficient, When the amount is more than 5 mol%, the composition of the lubricant is excessively large, thereby deteriorating the physical properties of the base composition and raising a problem that the degree of improvement in brightness is lowered again.

상기와 연관하여, 공부활제를 포함하는 축광체는 상기에서 제시한 공부활제가 산화물계이므로 황화물계 부활제를 포함하는 종래의 축광체보다 화학적으로 안정하며, 내광성이 우수한 특성이 있다.
In connection with the above, the phosphorescent material containing a working lubricant is chemically more stable than conventional phosphorescent materials containing a sulfide-based activator and has excellent light resistance because the luminescent material is oxide-based.

아울러 상기 기본조성물과 혼합되는 융제는 기본조성물의 융해시에 융해를 촉진하고, 축광체 분말 결정의 입자성장을 촉진시켜 발광세기를 향상시키는 역할을 하는 구성으로서, 본 발명에 있어서는 질화붕소 또는 탄화붕소 중 어느 하나 이상의 것으로 구성된다.In addition, the flux mixed with the base composition promotes the fusion at the time of melting the base composition and promotes the grain growth of the phosphorescent powder crystal to improve the luminescence intensity. In the present invention, boron nitride or boron carbide As shown in FIG.

즉, 질화붕소 또는 탄화붕소 중 어느 하나 이상의 것으로 구성되는 융제는 본 발명의 주된 기술적 사상으로서, 일반적인 축광체 조성물은 산화붕소를 융제로 이용하여 발광세기 향상을 실현하였으나, 산화붕소보다 기본조성물을 더욱 균질하게 혼합시키고, 그 결과 모체와 부활제 또는 모체와 공부활제 간의 반응률을 향상시켜 축광체 조성물의 발광세기를 향상시킬 수 있는 효과를 실현하는 구성이다. (이때, 질화붕소 또는 탄화붕소가 산화붕소에 비하여 기본조성물을 더욱 균일하게 혼합시키는 이론적인 원인은 증명할 수는 없음.)That is, a flux composed of at least one of boron nitride and boron carbide is a main technical idea of the present invention. In general phosphorescent compositions, boron oxide is used as a flux to improve light emission intensity. However, Thereby realizing the effect of improving the luminescence intensity of the phosphorescent composition by improving the reaction rate between the host and the activator or between the host and the study activator. (At this time, the theoretical reason why the boron nitride or boron carbide is more uniformly mixed with the base composition than the boron oxide can not be proved.)

구체적으로, 상기 질화붕소(BN)는 질소와 붕소를 고온으로 반응시키거나 붕사를 염화암모늄과 가열할 때 생성되고, 무색 굳기름 모양을 하며, 물이나 다른 용매에 잘 녹지 않는 가루형태의 물질이다. 또한 내열성이 우수하여 약 3,000℃정도의 고열에서도 견딜 수 있는 특성으로 인하여, 기본조성물에 혼합되어 가열 및 연소반응되어도 쉽게 반응하지 않는 효과를 실현한다.Specifically, the boron nitride (BN) is a powdery substance which is formed when boron reacts with nitrogen or boron at high temperature or when borax is heated with ammonium chloride, is in the form of a colorless hardwood, and is insoluble in water or other solvents. Also, because of its excellent heat resistance and ability to withstand high temperatures of about 3,000 DEG C, it is mixed with the base composition and realizes an effect that the reaction does not easily occur even if heating and combustion are performed.

또한 탄화붕소는 흑색의 분립상 또는 능면체의 결정을 가지고 있고, 다이아몬드 다음으로 강한 경도를 지녀 탄화규소보다도 단단하고, 중성자의 흡수능력이 큰 특성을 가지며, 약 2,450℃ 정도의 융점을 갖아 기본조성물에 혼합되어 가열 및 연소반응되어도 쉽게 반응하지 않는 효과를 실현하며, 특히 본 발명에 있어서는 상기 질화붕소와 동일하게 기본조성물을 구성하는 모체, 부활제 및 공부활제의 혼합시에 기본조성물이 균질하게 혼합될 수 있도록 하는 효과를 발휘한다.Further, boron carbide has a black, granular or rhombohedral crystal, has a strong hardness after the diamond, is harder than silicon carbide, has a high absorption capacity of neutrons, has a melting point of about 2,450 DEG C, In the present invention, in the present invention, in the same manner as in the case of boron nitride, the base composition is mixed homogeneously during mixing of the matrix constituting the base composition, the activator and the lubricant, And the like.

아울러 상기 구성의 질화붕소 또는 탄화붕소는 기본조성물과 일정의 조성비로 혼합될 때, 도면 2와 같이, 종래 산화붕소를 이용한 축광체의 PL(Photoluminescence, 이하 'PL'이라 칭함.) 강도보다 본 발명에 의한 축광체 조성물로 제조된 축광체가 더 우수한 PL 강도를 가질 수 있도록 하는 효과를 실현한다.In addition, when boron nitride or boron carbide of the above composition is mixed with the base composition at a predetermined composition ratio, as shown in FIG. 2, when the phosphorescence intensity of PL (photoluminescence, hereinafter referred to as PL) Thereby realizing the effect that the phosphorescent material produced from the phosphorescent composition by the phosphorescent material composition can have a higher PL intensity.

즉, 본 발명에 의한 융제는 기본조성물과 융제를 혼합한 혼합물 전체의 중량을 기준하여, 기본조성물 97~99.9중량%와 융제 0.1~3중량%의 조성비로 혼합되는 것이 바람직한데, 이는 융제의 조성비가 0.1중량% 미만이면 융제의 조성비가 미미하여 기본조성물을 구성하는 조성물들 간의 균일한 혼합을 원활하게 유도할 수 없어 제조완료된 축광체의 발광세기가 종래 산화붕소 융제를 이용한 축광체보다 미흡해지는 문제가 발생하고, 3중량%를 초과하면 융제가 고용한계를 초과하여 기본조성물에 첨가되어 제2상(질화붕소염 또는 탄화붕소염)으로 석출되고, 그로 인하여 본 발명에 의한 축광체의 발광강도가 오히려 종래 산화붕소 융제를 이용한 축광체보다 저하되고, 발광하는 빛의 파장도 변화될 수 있는 문제가 발생하므로, 상기 범위 내의 조성비를 유지하는 것이 바람직하다.
That is, the flux according to the present invention is preferably blended in a composition ratio of 97 to 99.9% by weight of the base composition and 0.1 to 3% by weight of a flux, based on the weight of the entire mixture of the base composition and the flux, Is less than 0.1% by weight, the composition ratio of the flux is insufficient, so that uniform mixing between the compositions constituting the base composition can not be smoothly induced, so that the luminous intensity of the manufactured phosphorescent body is insufficient compared with the phosphors using the conventional boron oxide flux (Boron nitride salt or boron carbide salt) is added to the base composition so that the flux exceeds the solubility limit and the emission intensity of the phosphorescent material according to the present invention is rather high A problem occurs that the wavelength of emitted light is lowered than that of phosphorescent phosphors using a boron oxide flux in the prior art, It is preferred.

또한 본 발명에 의한 축광체 조성물을 제조하기 위한 방법은 당업자의 판단에 따라 다양하게 제시가능하지만, 본 발명에 의한 축광체 조성물의 바람직한 실시예에 의한 제조방법을 제시하면 다음과 같다.
The method for preparing the phosphorescent composition according to the present invention can be variously presented according to the judgment of a person skilled in the art, but the production method according to the preferred embodiment of the phosphorescent composition according to the present invention is as follows.

[[ 축광체Phosphorescent 조성물 제조방법] Method for preparing composition]

본 발명에 의한 축광체 조성물 제조방법은 MAl2O4로 표시되는 화합물이고, 상기 M은 칼슘, 스트론튬, 바륨 중에서 선택된 하나 이상의 금속원소 또는 상기 금속원소에 마그네슘이 첨가된 화합물을 모체와, 부활제와 및 공부활제를 포함하여 구성되는 기본조성물과; 질화붕소 또는 탄화붕소 중 어느 하나 이상의 것으로 구성되는 융제;를 물과 혼합하여 습식혼합하는 혼합단계(S100)와; 상기 혼합단계(S100) 처리된 혼합물을 가열로에 수용시킨 후, 가열 및 연소반응시켜 M-산화알루미늄 조성의 분말을 만드는 분말제조단계(S200)와; 상기 분말제조단계(S200) 처리된 M-산화알루미늄 조성의 분말을 수소 환원 분위기에서 열처리하여 M-산화알루미늄계 축광체분말을 만드는 축광체분말제조단계(S300);를 포함하여 구성된다.The method for preparing a phosphorescent composition according to the present invention is a compound represented by MAl 2 O 4 , wherein M is at least one metal element selected from calcium, strontium and barium, or a compound wherein magnesium is added to the metal element, And a base lubricant; (S100) in which a flux composed of at least one of boron nitride and boron carbide is mixed with water and mixed by wet mixing; (S200) of preparing a powder of the M-aluminum oxide composition by heating and burning the mixture after the mixing step (S100) is performed in a heating furnace; And a phosphorescent powder preparation step (S300) of forming a M-oxide-based phosphorescent powder by heat-treating the powder of the M-aluminum oxide composition treated in the powder preparation step (S200) in a hydrogen reducing atmosphere.

구체적으로, 상기 혼합단계(S100)는 M으로 표시되는 칼슘, 스트론튬, 바륨 중에서 선택된 하나 이상의 금속원소 또는 상기 금속원소에 마그네슘이 첨가된 화합물과 산화알루미늄(Al2O4)을 상기 축광체 조성물에 관한 설명에서 언급한 바와 같은 조성비로 혼합하여 모체를 구성하고, 부활제, 공부활제 및 융제를 상기 구성의 모체와 일정의 조성비로 혼합하는 과정이다.Specifically, the mixing step (S100) is calcium, strontium, and aluminum oxide, the magnesium in one or more of metal element or a metal element selected from the group consisting of barium was added the compound represented by M (Al 2 O 4) to the luminous body composition To form a matrix, and mixing the activator, the lubricant, and the flux at a predetermined composition ratio with the matrix of the composition.

이때, 모체, 부활제, 공부활제 및 융제의 조성비에 관한 구체적인 설명은 상기 축광체 조성물에 관한 설명으로 대신하겠고, 기본조성물과 융제를 혼합하는 방법은 일반적인 축광체 조성물의 혼합방법과 동일하게 처리가능하나, 본 발명에 있어서는 기본조성물과 융제를 혼합한 혼합물에 일정량의 물을 혼합하고, 지르코니아 볼밀을 이용하여 10~15시간 동안 습식혼합하는 것이 바람직하다.A detailed description of the composition ratio of the matrix, the activator, the lubricant and the flux will be described in the above description of the phosphorescent composition, and the basic composition and the flux may be mixed in the same manner as the usual phosphorescent composition mixing method In the present invention, it is preferable to mix a predetermined amount of water with a mixture of a base composition and a flux and wet-mix the mixture using a zirconia ball mill for 10 to 15 hours.

즉, 기본조성물과 융제를 혼합한 혼합물에 물을 첨가하여 혼합하는 것은 지르코니아 볼밀을 이용한 혼합시에 발생되는 마찰에 대한 기본조성물과 융제의 마찰열을 줄이는 효과를 제공하고, 기본조성물과 융제가 물에 용해되지 않아 불필요한 반응이 일어나는 것을 방지하며, 하기 분말제조단계(S200)에서 가해지는 열로서 물만 용이하게 제거할 수 있는 효과를 얻을 수 있기 때문이다. 이때, 첨가되는 물의 양은 이용되는 습식혼합장치의 종류에 따라 다양하게 적용할 수 있음은 자명할 것이다.
That is, the addition of water to the mixture of the basic composition and the flux provides the effect of reducing the frictional heat of the base composition and the flux against friction generated during mixing using the zirconia ball mill, This is because it is possible to prevent unnecessary reaction from occurring due to not dissolving and to easily remove only water as heat applied in the following powder production step (S200). At this time, it will be apparent that the amount of water to be added can be variously applied depending on the type of the wet mixing apparatus to be used.

또한 분말제조단계(S200)는 상기 혼합단계(S100) 처리된 혼합물(물이 혼합되어 용액상태를 가짐.)을 가열로에 수용시킨 후, 가열 및 연소반응시켜 M-산화알루미늄 조성의 분말을 만드는 과정으로서, 혼합물에 포함된 모체를 구성하는 M과 산화알루미늄을 융해시켜 반을시키기 위한 과정이다.In the powder manufacturing step (S200), the mixture (water is mixed and has a solution state) in the mixing step (S100) is received in a heating furnace, and then heated and burned to produce a powder of M-aluminum oxide composition As a process, it is a process for melting M and aluminum oxide constituting the matrix contained in the mixture to make a half.

즉, 혼합물은 보트에 수용된 상태로 일반적인 가열로(전기로)에 수용되어 대기압하에서 1,100~1,300℃의 온도로 1~3시간 동안 열처리되어 가열 및 연소반응되도록 구성되는 것이 바람직하다. 이때, 가열온도가 1,100℃ 미만이면 M과 산화알루미늄 간의 원활한 반응을 유도하기 어려운 문제가 발생하고, 1,300℃를 초과하면 열처리 시간은 짧아지나, M-산화알루미늄 조성의 분말이 열화되어 물성이 변할 수 있는 문제가 발생하므로, 상기 범위 내의 가열온도로 상기 시간 동안 열처리되는 것이 바람직하다.
That is, it is preferable that the mixture is accommodated in a general heating furnace (electric furnace) while being accommodated in a boat, and is heat-treated at a temperature of 1,100 to 1,300 ° C under atmospheric pressure for 1 to 3 hours to be heated and combusted. If the heating temperature is less than 1,100 ° C., there is a problem that it is difficult to induce a smooth reaction between M and aluminum oxide. When the heating temperature exceeds 1,300 ° C., the heat treatment time is shortened. However, the powder of M- It is preferable that the heat treatment is performed at the heating temperature within the above-mentioned range for the time.

아울러 축광체분말제조단계(S300)는 상기 분말제조단계(S200) 처리된 M-산화알루미늄 조성의 분말을 수소 환원 분위기에서 열처리하여 M-산화알루미늄계 축광체 조성물을 만드는 과정으로서, M-산화알루미늄 조성의 분말에서 수소를 환원시키기 위한 일반적인 과정이다.In addition, the phosphorescent powder preparation step (S300) comprises a step of heat-treating the powder of the M-aluminum oxide composition treated in the powder preparation step (S200) in a hydrogen reducing atmosphere to produce an M-aluminum oxide- Is a general process for reducing hydrogen in the powder of the composition.

즉, 축광체분말제조단계(S300)는 가열로에 분말제조단계(S200) 처리된 M-산화알루미늄 조성의 분말을 수용시킨 후, 가열로 내부를 질소-수소 혼합가스(97~90:3~10) 기류중(유량: 50~80㏄/분)에서 1,100~1,500℃ 온도의 조건으로 유지시키고, 2~4시간 동안 열처리하여 처리하여, 축광체 조성물을 제조완료한다.
That is, in the step S300 of producing the phosphorescent body, the powder of the M-aluminum oxide composition treated in the powder manufacturing step S200 is accommodated in the heating furnace, 10) is maintained at a temperature of 1,100 to 1,500 占 폚 in an air stream (flow rate: 50 to 80 cc / min), and is heat-treated for 2 to 4 hours to complete the preparation of the phosphorescent composition.

상기와 연관하여, 축광체분말제조단계(S300) 처리된 축광체 조성물은 사용용도에 따라 다양한 분말 입자 크기를 갖도록 후처리될 수 있으나, 100~300메시의 크기를 갖도록 분쇄하는 분쇄단계(S400)를 더 처리되어 다양한 용도로 이용되는 것이 바람직하다. 이때, 분쇄단계(S400)는 100~300메시의 크기를 갖는 체를 이용하여 수행가능하고, 당업자가 원하는 크기보다 축광체 조성물 입자가 큰 경우에는, 다양한 종류의 분쇄기를 이용하여 입자크기를 조절할 수 있다.
In connection with the above, the phosphorescent composition prepared in the phosphorescent powder preparation step (S300) may be post-treated to have various powder particle sizes depending on the application, but it may be pulverized (S400) to have a size of 100 to 300 mesh, Is further processed and used for various purposes. In this case, the pulverization step (S400) can be carried out using a sieve having a size of 100 to 300 meshes. When the phosphorescent composition particle is larger than a size desired by a person skilled in the art, the particle size can be adjusted using various kinds of pulverizers have.

다음은 본 발명에 의한 축광체 조성물을 제조하기 위한 바람직한 실시예와 본 발명의 축광체 조성물에 첨가되는 융제를 일반적인 조성으로 하여 제조한 비교예이다.
The following are comparative examples prepared by using the preferred composition for preparing the phosphorescent composition according to the present invention and the flux added to the phosphorescent composition of the present invention as general compositions.

1. 혼합단계1. Mixing step

① 탄산스트론튬 146.1g(0.99몰)과 산화알루미늄 102g(1몰)로 구성되는 모체에 부활제인 산화유로퓸(Eu2O3) 17.6g(0.05몰) 및 공부활제인 산화디스프로슘(DyO) 18.7g(0.05몰)로 구성되는 기본조성물 284.4g(99.9중량%)과; 융제인 질화붕소(BN) 0.285g(0.1중량%) 및; 증류수 100g을 혼합하여 혼합물을 만든다.(1) 17.6 g (0.05 mol) of europium oxide (Eu 2 O 3 ) as an activator and 18.7 g of dysprosium oxide (DyO) as a lubricant were added to a matrix composed of 146.1 g (0.99 mol) of strontium carbonate and 102 g 0.05 mole) of a basic composition; 0.285 g (0.1 wt%) of boron nitride (BN) as a flux; 100 g of distilled water is mixed to prepare a mixture.

② 상기 ①에서 혼합된 혼합물을 지르코니아 볼밀장치에 인입시킨 후, 12시간 동안 습식혼합한다.
(2) In (1), the mixed mixture is drawn into a zirconia ball mill and wet mixed for 12 hours.

2. 분말제조단계2. Powder production step

상기 분말제조단계 처리된 혼합물을 혼합물을 알루미나 보트에 담아 관상형 전기로에 수용시킨 후, 대기중에서 1,200℃의 온도로 2시간 동안 유지시켜 탄산스트론튬-산화알루미늄 조성의 분말을 만든다.
The mixture thus prepared is placed in a tubular electric furnace in an alumina boat and maintained at 1,200 DEG C for 2 hours in the atmosphere to produce a strontium carbonate-aluminum oxide composition powder.

3. 축광체분말제조단계3. Phosphorescent powder manufacturing step

상기 분말제조단계 처리되어 만들어진 탄산스트론튬-산화알루미늄 조성의 분말을 전기로를 사용하여 질소-수소 혼합가스(95:5) 기류중(유량: 60㏄/분)에서 1,300℃ 온도로 3시간 동안 환원열처리하여 탄산스트론튬-산화알루미늄계 축광체 조성물을 만든다.
The powder of the strontium carbonate-aluminum oxide composition produced by the above powder preparation step was subjected to reduction heat treatment at 1,300 ° C for 3 hours in a nitrogen-hydrogen mixed gas (95: 5) flow (flow rate: 60 cc / Thereby preparing a strontium carbonate-aluminum oxide phosphorescent composition.

4. 분쇄단계4. Crushing step

상기 축광체분말제조단계 처리되어 만들어진 탄산스트론튬-산화알루미늄계 축광체 조성물을 알루미나질 유발에서 분쇄하여 100메시의 체를 통과한 것을 축광체 조성물 시료로 사용한다.
The strontium carbonate-aluminum oxide-based phosphorescent composition prepared by the above phosphorescent powder preparation step is pulverized in an alumina mortar and passed through a sieve of 100 mesh to use as a phosphorescent composition sample.

상기 실시예1의 1. 혼합단계, 2. 분말제조단계, 3. 축광체분말제조단계 및 4. 분쇄단계를 순차적으로 수행하되, 1. 혼합단계의 ①에 혼합되는 기본조성물의 질량을 284.4g(99중량%)하고, 융제인 질화붕소(BN)의 질량을 2.873g(1중량%)으로 하며, 증류수 100g을 혼합하여 혼합물을 만들어 수행한다.
The first mixing step of Example 1, the second powder producing step, the third phosphorescent powder producing step and the fourth pulverizing step are carried out in sequence. The mass of the basic composition to be mixed in ① of the mixing step is 284.4 g (99% by weight), the weight of boron nitride (BN) as a flux is adjusted to 2.873 g (1% by weight), and 100 g of distilled water is mixed to prepare a mixture.

상기 실시예1의 1. 혼합단계, 2. 분말제조단계, 3. 축광체분말제조단계 및 4. 분쇄단계를 순차적으로 수행하되, 1. 혼합단계의 ①에 혼합되는 기본조성물의 질량을 284.4g(98중량%)하고, 융제인 질화붕소(BN)의 질량을 5.804g(2중량%)으로 하며, 증류수 100g을 혼합하여 혼합물을 만들어 수행한다.
The first mixing step of Example 1, the second powder producing step, the third phosphorescent powder producing step and the fourth pulverizing step are carried out in sequence. The mass of the basic composition to be mixed in ① of the mixing step is 284.4 g (98% by weight), the mass of boron nitride (BN) as a flux is adjusted to 5.804 g (2% by weight), and 100 g of distilled water is mixed to prepare a mixture.

상기 실시예1의 1. 혼합단계, 2. 분말제조단계, 3. 축광체분말제조단계 및 4. 분쇄단계를 순차적으로 수행하되, 1. 혼합단계의 ①에 혼합되는 기본조성물의 질량을 284.4g(97중량%)하고, 융제인 질화붕소(BN)의 질량을 8.796g(3중량%)으로 하며, 증류수 100g을 혼합하여 혼합물을 만들어 수행한다.
The first mixing step of Example 1, the second powder producing step, the third phosphorescent powder producing step and the fourth pulverizing step are carried out in sequence. The mass of the basic composition to be mixed in ① of the mixing step is 284.4 g (97 wt%), 8.796 g (3 wt%) of boron nitride (BN) as a flux, and 100 g of distilled water are mixed to prepare a mixture.

1. 혼합단계1. Mixing step

① 탄산스트론튬 146.1g(0.99몰)과 산화알루미늄 102g(1몰)로 구성되는 모체에 부활제인 산화유로퓸(Eu2O3) 17.6g(0.05몰) 및 공부활제인 산화디스프로슘(DyO) 18.7g(0.05몰)로 구성되는 기본조성물 284.4g(98중량%)과; 융제인 탄산붕소(B4C) 5.804g(2중량%) 및; 증류수 100g을 혼합하여 혼합물을 만든다.(1) 17.6 g (0.05 mol) of europium oxide (Eu 2 O 3 ) as an activator and 18.7 g of dysprosium oxide (DyO) as a lubricant were added to a matrix composed of 146.1 g (0.99 mol) of strontium carbonate and 102 g 0.05 mol) of a basic composition (284.4 g) (98% by weight); 5.804 g (2 wt.%) Of boron carbonate (B 4 C); 100 g of distilled water is mixed to prepare a mixture.

② 상기 ①에서 혼합된 혼합물을 지르코니아 볼밀장치에 인입시킨 후, 12시간 동안 습식혼합한다.
(2) In (1), the mixed mixture is drawn into a zirconia ball mill and wet mixed for 12 hours.

2. 분말제조단계, 3. 축광체분말제조단계 및 4. 분쇄단계는 상기 실시예1과 동일한 방법에 의하여 수행한다.
2. Powder production step, 3. Phosphorous powder production step and 4. Crushing step are carried out in the same manner as in Example 1 above.

[비교예 1][Comparative Example 1]

1. 혼합단계1. Mixing step

① 탄산스트론튬 146.1g(0.99몰)과 산화알루미늄 102g(1몰)로 구성되는 모체에 부활제인 산화유로퓸(Eu2O3) 17.6g(0.05몰) 및 공부활제인 산화디스프로슘(DyO) 18.7g(0.05몰)로 구성되는 기본조성물 284.4g(98중량%)과; 융제인 산화붕소(B2O3) 8.796g(3중량%) 및; 증류수 100g을 혼합하여 혼합물을 만든다.(1) 17.6 g (0.05 mol) of europium oxide (Eu 2 O 3 ) as an activator and 18.7 g of dysprosium oxide (DyO) as a lubricant were added to a matrix composed of 146.1 g (0.99 mol) of strontium carbonate and 102 g 0.05 mol) of a basic composition (284.4 g) (98% by weight); 8.796 g (3% by weight) of the flux boron oxide (B 2 O 3 ); 100 g of distilled water is mixed to prepare a mixture.

② 상기 ①에서 혼합된 혼합물을 지르코니아 볼밀장치에 인입시킨 후, 12시간 동안 습식혼합한다.
(2) In (1), the mixed mixture is drawn into a zirconia ball mill and wet mixed for 12 hours.

2. 분말제조단계, 3. 축광체분말제조단계 및 4. 분쇄단계는 상기 실시예1과 동일한 방법에 의하여 수행한다.
2. Powder production step, 3. Phosphorous powder production step and 4. Crushing step are carried out in the same manner as in Example 1 above.

[시험 1][Test 1]

상기 실시예 1 내지 5에 의하여 제조된 각각의 축광체 조성물 시료와 비교예 1에 의하여 제조된 축광체 조성물 시료에 300~800nm 파장의 빛을 조사하면서, 각각의 시료에서 발광되는 빛의 파장과 상대적인 강도를 측정하여 도 2와 같은 결과를 얻었다.
The light of 300 to 800 nm wavelength was irradiated to each of the phosphorescent composition samples prepared in Examples 1 to 5 and the phosphorescent composition sample prepared in Comparative Example 1, The strength was measured and the results shown in Fig. 2 were obtained.

[시험 2][Test 2]

상기 실시예 3에 의하여 제조된 축광체 조성물 시료를 축광표지의 성능인증 및 제품검사의 기술기준(소방방재청고시 제2012-77호, 제9조(휘도시험))에 의하여, 축광유도표지 및 축광위치표지의 표시면을 0㏓ 상태에서 1시간이상 방치한 후 200㏓ 밝기의 광원으로 20분간 조사시킨 상태에서 다시 주위조도를 0㏓로 하여 휘도시험을 실시하였다. 또한 도 3 내지 4와 같은 결과를 얻었다.
The phosphorescent composition samples prepared according to Example 3 were tested for phosphorescence labeling and phosphorescence by phosphorescence labeling performance test and technical standards for product inspection (Ministry of National Defense Emergency Notification No. 2012-77, Article 9 (luminance test)). The display surface of the position marker was allowed to stand for 1 hour or more in a state of 0 ° C., and then subjected to a luminance test with the ambient illuminance at 0 ° in a state of being irradiated with a light source of 200 ㏓ brightness for 20 minutes. The results shown in Figs. 3 to 4 were also obtained.

[결과][result]

1. 시험 1에 대한 결과1. Results for Test 1

우선 도 2의 그래프에 도시된 바와 같이, 종래기술에 의한 융제인 3중량%의 산화붕소(B2O3)를 포함하여 제조된 축광체 조성물 시료는 약 520nm정도의 파장에서 약 4,500정도의 최대 PL 강도의 발광특성을 가지나, 본 발명에 의한 융제인 2중량%의 질화붕소(BN)를 포함하여 제조된 축광체 조성물 시료는 약 520nm정도의 파장에서 약 6,500정도의 최대 PL 강도의 발광특성을 가지고, 융제인 2중량%의 탄화붕소(B4C)를 포함하여 제조된 축광체 조성물 시료 역시, 약 520nm정도의 파장에서 약 6,300정도의 최대 PL 강도의 발광특성을 가지는 효과를 확인할 수 있었다.First, as shown in the graph of FIG. 2, a sample of a phosphorescent composition prepared with boron oxide (B 2 O 3 ) of 3 wt% as a flux according to the prior art has a maximum of about 4,500 at a wavelength of about 520 nm PL intensity. However, the phosphorescent composition sample prepared by using boron nitride (BN) of 2 wt% of the flux according to the present invention has a maximum PL intensity of about 6,500 at a wavelength of about 520 nm It was also confirmed that the phosphorescent composition sample prepared with boron carbide (B 4 C) of 2 wt% as a flux has a maximum PL intensity of about 6,300 at a wavelength of about 520 nm.

즉, 본 발명에 의한 융제인 질화붕소(BN) 또는 탄화붕소(B4C)는 종래 융제인 산화붕소(B2O3)보다도 적은 양이 축광체 조성물에 포함되어도, 더욱 우수한 발광성을 발휘할 수 있는 효과를 발휘한다.That is, even when boron nitride (BN) or boron carbide (B 4 C) according to the present invention is contained in an amount lower than that of boron oxide (B 2 O 3 ), which is a conventional flux, in the phosphorescent composition, The effect is.

아울러 질화붕소(BN)의 조성비가 2중량%에서 PL 강도가 최대값을 가진 후, 질화붕소(BN)의 조성비 3중량%로 커질수록 PL 강도가 작아지는 것은 융제인 질화붕소(BN)가 고용한계를 서서히 초과하여 기본조성물에 첨가되어 제2상(질화붕소염 또는 탄화붕소염)으로 석출되고, 그로 인하여 본 발명에 의한 축광체의 발광강도 서서히 작아짐을 알 수 있다.
The reason why the PL intensity becomes smaller as the composition ratio of boron nitride (BN) is 2% by weight and the PL strength is the maximum value and the composition ratio of boron nitride (BN) is 3% by weight is that boron nitride (BN) (Boron nitride salt or boron carbide salt), so that the luminescence intensity of the phosphorescent material according to the present invention is gradually decreased.

2. 시험 2에 대한 결과2. Results for Test 2

즉, 도 3의 시험성적서에 기재되고, 도 4의 그래프에 도시된 바와 같이, 본 발명에 의한 축광체 조성물 시료는 시험기준상 5분간 발광시킨후의 휘도는 1㎡당 110m㏅이상이어야 하나 370m㏅/㎡의 휘도를 나타냈고, 10분간 발광시킨후의 휘도는 1㎡당 50m㏅이상이어야 하나, 234m㏅/㎡의 휘도를 나타냈으며, 20분간 발광시킨후의 휘도는 1㎡당 24m㏅이상이어야 하나 135m㏅/㎡의 휘도를 나타냈으며, 60분간 발광시킨후의 휘도는 1㎡당 7m㏅이상이어야 하나 49m㏅/㎡의 휘도를 나타내는 결과를 보여, 매우 우수한 휘도를 가짐을 알 수 있다. 도 4의 그래프에 도시된 바와 같이, 축광형광체의 시간에 따른 잔광특성의 지속시간은 300분이 경과 됨에도 불구 하고 25m㏅/㎡로 매우 우수 함을 알 수 있다.
That is, as shown in the test report of FIG. 3 and shown in the graph of FIG. 4, the brightness of the phosphorescent composition sample according to the present invention after luminescence for 5 minutes on the test standard is 110 m? / M < 2 >, and the luminance after luminescence for 10 minutes should be not less than 50 m < 2 > per 1 m < 2 >, but the luminance after 23 minutes was not less than 24 m & ㏅ / m < 2 >, and the brightness after luminescence for 60 minutes is not less than 7 m < 3 > per 1 m < 2 > but shows a luminance of 49 m & As shown in the graph of FIG. 4, the duration of the afterglow characteristics of the phosphorescent phosphor over time is very excellent, which is 25 m㏅ / ㎡, even though 300 minutes have elapsed.

상기는 본 발명의 바람직한 실시예를 참고로 설명하였으며, 상기의 실시예에 한정되지 아니하고, 상기의 실시예를 통해 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 요지를 벗어나지 않는 범위에서 다양한 변경으로 실시할 수 있는 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It is possible to carry out various changes in the present invention.

S100 : 혼합단계
S200 : 분말제조단계
S300 : 축광체분말제조단계
S400 : 분쇄단계
S100: mixing step
S200: Powder production step
S300: Phosphorescent powder manufacturing step
S400: Crushing step

Claims (4)

MAl2O4로 표시되는 화합물이고, 상기 M은 칼슘, 스트론튬, 바륨 중에서 선택된 하나 이상의 금속원소 또는 상기 금속원소에 마그네슘이 첨가된 화합물인 모체와, 부활제와 및 공부활제를 포함하여 구성되는 기본조성물 97~99.9중량%와;
질화붕소 또는 탄화붕소 중 어느 하나 이상의 것으로 구성되는 융제 0.1~3중량%;가 혼합되고, 가열 및 연소반응되어 축광체로 만들어지도록 구성되는 것을 특징으로 하는 축광체 조성물.
MAl 2 O 4 , wherein M is at least one element selected from the group consisting of calcium, strontium and barium, or a compound in which magnesium is added to the metal element, a base comprising an activator and a study agent, 97 to 99.9% by weight of a composition;
0.1 to 3% by weight of a flux composed of at least one of boron nitride and boron carbide is mixed and heated and burned to form a phosphorescent body.
MAl2O4로 표시되는 화합물이고, 상기 M은 칼슘, 스트론튬, 바륨 중에서 선택된 하나 이상의 금속원소 또는 상기 금속원소에 마그네슘이 첨가된 화합물인 모체와, 부활제와 및 공부활제를 포함하여 구성되는 기본조성물 97~99.9중량%과; 질화붕소 또는 탄화붕소 중 어느 하나 이상의 것으로 구성되는 융제 0.1~3중량%;를 물과 혼합하여 습식혼합하는 혼합단계(S100)와;
상기 혼합단계(S100) 처리된 혼합물을 가열로에 수용시킨 후, 가열 및 연소반응시켜 M-산화알루미늄 조성의 분말을 만드는 분말제조단계(S200)와;
상기 분말제조단계(S200) 처리된 M-산화알루미늄 조성의 분말을 수소 환원 분위기에서 열처리하여 M-산화알루미늄계 축광체 조성물을 만드는 축광체분말제조단계(S300);를 포함하여 구성되고,
상기 축광체분말제조단계(S300) 처리된 축광체 조성물은 100~300메시의 크기를 갖도록 분쇄하는 분쇄단계(S400)를 더 포함하여 구성되며,
상기 혼합단계(S100)는 지르코니아 볼밀을 이용하여 10~15시간 동안 처리되도록 구성되는 것을 특징으로 하는 축광체 조성물 제조방법.
MAl 2 O 4 , wherein M is at least one element selected from the group consisting of calcium, strontium and barium, or a compound in which magnesium is added to the metal element, a base comprising an activator and a study agent, 97 to 99.9% by weight of a composition; 0.1 to 3% by weight of a flux composed of at least one of boron nitride and boron carbide; mixing and mixing the mixture with water (S100);
(S200) of preparing a powder of the M-aluminum oxide composition by heating and burning the mixture after the mixing step (S100) is performed in a heating furnace;
And a phosphorescent powder preparation step (S300) of forming an M-aluminum oxide phosphorescent composition by heat-treating the M-aluminum oxide composition powder treated in the powder preparation step (S200) in a hydrogen reducing atmosphere,
The phosphorescent body composition prepared in the phosphorescent powder production step (S300) may further comprise a grinding step (S400) of grinding the phosphorescent body composition to have a size of 100 to 300 mesh,
Wherein the mixing step (S100) is performed using a zirconia ball mill for 10 to 15 hours.
삭제delete 삭제delete
KR20130058408A 2013-05-23 2013-05-23 Phosphorescence phosphor composite and manufacturing method thereof KR101486065B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130058408A KR101486065B1 (en) 2013-05-23 2013-05-23 Phosphorescence phosphor composite and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130058408A KR101486065B1 (en) 2013-05-23 2013-05-23 Phosphorescence phosphor composite and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20140138408A KR20140138408A (en) 2014-12-04
KR101486065B1 true KR101486065B1 (en) 2015-01-26

Family

ID=52459101

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130058408A KR101486065B1 (en) 2013-05-23 2013-05-23 Phosphorescence phosphor composite and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101486065B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102322040B1 (en) * 2021-03-17 2021-11-03 신동진 Photoluminescent powder manufacturing method and photoluminescent paint manufactured using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120048906A (en) * 2010-11-08 2012-05-16 서울시립대학교 산학협력단 Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120048906A (en) * 2010-11-08 2012-05-16 서울시립대학교 산학협력단 Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet

Also Published As

Publication number Publication date
KR20140138408A (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US8158026B2 (en) Method for preparing B-Sialon phosphor
EP2554629B1 (en) Method for producing sialon-based acid nitride phosphor, and sialon-based acid nitride phosphor
JP5652967B2 (en) Luminescent phosphor and phosphorescent pigment
CN1144257A (en) Long afterglow phosphorescent body and preparation method thereof
CN107189776B (en) Green silicate long-afterglow luminescent material and preparation method thereof
CN103555330B (en) Non-rare-earth ion activated Two Colour Fluorescence powder and preparation method thereof
CN103911147A (en) Near-infrared long-afterglow fluorescent powder and preparation method thereof
CN107974250B (en) Blue-green silicate ultra-long afterglow luminescent material and preparation method thereof
Tiwari et al. Retracted Article: A study on the luminescence properties of gamma-ray-irradiated white light emitting Ca 2 Al 2 SiO 7: Dy 3+ phosphors fabricated using a combustion-assisted method
US7955523B2 (en) Long afterglow luminescent material with compounded substrates and its preparation method
EP0896994B1 (en) Rapidly excited luminescent material having high luminance and long decay and method therefor
KR101486065B1 (en) Phosphorescence phosphor composite and manufacturing method thereof
EP3088488B1 (en) Phosphorescent phosphor
JPH09143464A (en) High-luminance long-afterglow phosphorescent material and its production
JP3559210B2 (en) Heat-resistant, water-resistant, high-brightness, long-lasting yellow-green luminescent color phosphor and a method for producing the same
CN107722972B (en) Green long-afterglow luminescent material and preparation method thereof
US3639252A (en) New orange-red emitting europium-activated yttrium stannate phosphor for warm-white blends
CN107338045A (en) A kind of method of microwave irradiation synthesis long after glow luminous material
KR100733009B1 (en) Synthesis of the Phosphorescent Phosphor of Strontium Barium Aluminates
KR101250142B1 (en) Processing method of a long phosphorescence phosphor by combustion-reaction and its application for the fabrication of luminescent sheet
JP3232549B2 (en) Afterglow phosphor
CN107722978B (en) Multi-component oxide long-afterglow luminescent material and preparation method thereof
CN115838594B (en) Long-afterglow red luminous phosphor and preparation method thereof
JP2005232414A (en) Strontium aluminate-based luminous powder and its production method
JP2010100763A (en) Method of producing luminous fluorescent substance and luminous fluorescent substance

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee