[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101444976B1 - Method For Preparing α,β-unsaturated Aldehyde - Google Patents

Method For Preparing α,β-unsaturated Aldehyde Download PDF

Info

Publication number
KR101444976B1
KR101444976B1 KR1020100096856A KR20100096856A KR101444976B1 KR 101444976 B1 KR101444976 B1 KR 101444976B1 KR 1020100096856 A KR1020100096856 A KR 1020100096856A KR 20100096856 A KR20100096856 A KR 20100096856A KR 101444976 B1 KR101444976 B1 KR 101444976B1
Authority
KR
South Korea
Prior art keywords
aqueous solution
aldehyde
naoh aqueous
beta
alpha
Prior art date
Application number
KR1020100096856A
Other languages
Korean (ko)
Other versions
KR20120035368A (en
Inventor
권오학
엄성식
고동현
홍무호
김대철
최재희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020100096856A priority Critical patent/KR101444976B1/en
Publication of KR20120035368A publication Critical patent/KR20120035368A/en
Application granted granted Critical
Publication of KR101444976B1 publication Critical patent/KR101444976B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/783Separation; Purification; Stabilisation; Use of additives by gas-liquid treatment, e.g. by gas-liquid absorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 α,β-불포화 알데히드의 제조방법에 관한 것으로, 보다 상세하게는 알돌-축합 반응을 이용한 α,β-불포화 알데히드의 제조방법에 있어서, 상기 알돌-축합 반응은 알데히드 및 0.2 내지 2.0 % NaOH 수용액을 포함하여 90 내지 130 ℃에서 실시되되, 상기 알데히드와 상기 NaOH 수용액의 중량비(알데히드:NaOH 수용액)는 1.0:0.6 내지 1.0:1.7 인 것을 특징으로 하는 α,β-불포화 알데히드의 제조방법에 관한 것이다.
본 발명에 따르면, 부반응이 적고 생성물의 선택도가 뛰어난 α,β-불포화 알데히드의 제조방법을 제공하는 효과가 있다.
More particularly, the present invention relates to a process for producing an alpha, beta -unsaturated aldehyde using an aldol-condensation reaction, wherein the aldol condensation reaction is carried out in the presence of aldehyde and 0.2 to 2.0% Wherein the weight ratio of the aldehyde and the NaOH aqueous solution (aldehyde: NaOH aqueous solution) is in the range of 1.0: 0.6 to 1.0: 1.7, .
According to the present invention, there is an effect of providing a process for producing an alpha, beta -unsaturated aldehyde having a small side reaction and excellent selectivity of a product.

Description

α,β-불포화 알데히드의 제조방법{Method For Preparing α,β-unsaturated Aldehyde}Method for preparing alpha, beta-unsaturated aldehydes {Method For Preparing alpha, beta-unsaturated Aldehyde}

본 발명은 α,β-불포화 알데히드의 제조방법에 관한 것으로, 보다 상세하게는 부반응이 적고 생성물의 선택도가 뛰어난 α,β-불포화 알데히드의 제조방법에 관한 것이다.
More particularly, the present invention relates to a process for producing an alpha, beta -unsaturated aldehyde having a small side reaction and an excellent selectivity of a product.

알돌-축합 반응은 산업상 매우 중요한 반응인데, 이때 생성되는 α, β-불포화 카보닐 화합물은 특유의 반응성으로 인해 수 많은 유기 화합물의 합성을 위한 출발 물질 또는 중간체로 이용된다. The aldol condensation reaction is a very important reaction in industry. The α, β-unsaturated carbonyl compound produced at this time is used as a starting material or an intermediate for the synthesis of numerous organic compounds due to the specific reactivity.

또한, α,β-불포화 알데히드는 수소화되어, 카르복실산으로 산화될 수 있는 포화 알데히드로 전환되는데, 이는 플라스틱용 윤활유, 건조제, 퍼에스테르 또는 안정제 등의 원료로 이용된다. In addition, the alpha, beta -unsaturated aldehydes are hydrogenated and converted to saturated aldehydes which can be oxidized to carboxylic acids, which are used as raw materials for lubricating oils, desiccants, peresters or stabilizers for plastics.

또한, α,β-불포화 알데하이드를 완전히 수소화시키면, 세제 및 가소제의 제조에 이용되거나 용매로서 사용되는 1급 포화 알콜이 생성된다.Further, complete hydrogenation of the alpha, beta -unsaturated aldehydes results in the formation of primary, saturated alcohols used in the preparation of detergents and plasticizers or as solvents.

상기 알돌-축합 반응은 산 또는 염기에 의해 촉진되는데, 산업적 공정에서는 염기, 특히 NaOH와 같은 무기 염기가 많이 사용된다.The aldol condensation reaction is catalyzed by an acid or a base, and inorganic bases such as NaOH are used in industrial processes.

독일특허 제3,530,839호는 n-부티르알데히드를 0.5 내지 5 중량% 농도의 수산화나트륨 수용액을 사용하고, 초대기압 하에 100 내지 170 ℃의 유동관 내에서 체류 시간을 0.2 내지 5 분으로 반응시킨 다음, 60 ℃로 냉각시키고, 반응 생성물을 촉매 수용액과 유기상으로 분리한 후, 촉매 수용액의 일부분을 배출시켜 제거함과 동시에 새로운 촉매 용액으로 교체하여 유동관으로 재순환시키고 유기상으로부터 2-에틸헥스-2-엔알을 얻는 알돌-축합 반응을 개시하였다.German Patent No. 3,530,839 discloses that n-butyraldehyde is reacted at a retention time of 0.2 to 5 minutes in a flow tube at 100 to 170 DEG C under a superatmospheric pressure using an aqueous solution of sodium hydroxide at a concentration of 0.5 to 5 wt% Deg.] C, separating the reaction product into a catalyst aqueous solution and an organic phase, discharging a portion of the catalyst aqueous solution to remove it, and replacing the catalyst solution with a new catalyst solution, recirculating the catalyst solution into the flow tube, and obtaining 2-ethylhex- - condensation reaction.

그러나, 촉매 수용액의 일부를 배출시켜 제거함으로써 촉매가 다량 소비되고, 배출된 촉매 수용액은 유기 화합물을 함유하고 있으므로, 후처리하거나 또는 용출액 처리장치 내에서 처리해야 하므로, 추가 비용이 드는 문제가 있다.However, since a large amount of the catalyst is consumed by discharging and removing a part of the catalyst aqueous solution, and the discharged catalyst aqueous solution contains an organic compound, there is a problem of additional cost because it needs to be post-treated or treated in the effluent treatment apparatus.

또한, 유럽특허 제634,994호는 a) 출발 알데히드와 촉매 수용액을 비단열 조건하에 교반 반응기 내에 주입하는 단계; b) 교반 반응기로부터 수득한 반응 혼합물을 증류관의 중간 부분에 도입하는 단계; c) 증류관 상부의 유기층(출발물질과 수증기)과 하부의 수성층(촉매 수용액, 생성물 및 부산물)으로 분리되는 단계; d) 수성층의 일부를 배출시키는 단계; e) 유기층을 반응기로 재순환시키는 단계; f) 증류관 하부의 수성층을 하부 생성물로 수득하는 단계; g) 하부 생성물을 냉각시키는 단계; h) 냉각된 하부 생성물을 생성물, 고분자량의 부산물 및 소량의 촉매 용액이 함유된 상부의 유기상과, 염 형태의 부산물로서 생성된 카르복실산이 함유되어 있는 하부의 촉매 수용액으로 분리하는 단계; i) 촉매 수용액을 반응기로 재순환시키는 단계; 및 j) 상부의 유기상을 배출시키는 단계;를 포함하는 연속적인 알돌-축합 반응을 개시하였다.Also, EP 634,994 discloses a process for the preparation of a catalyst comprising the steps of: a) injecting a starting aldehyde and a catalyst aqueous solution into a stirred reactor under non-adiabatic conditions; b) introducing the reaction mixture obtained from the stirred reactor into the middle part of the distillation column; c) separating the organic layer (starting material and water vapor) on the distillation column and the aqueous layer (catalyst aqueous solution, product and byproduct) on the bottom; d) discharging a portion of the aqueous layer; e) recirculating the organic layer to the reactor; f) obtaining an aqueous layer below the distillation column as a bottom product; g) cooling the bottom product; h) separating the cooled bottom product into an upper organic phase containing the product, a high molecular weight byproduct and a small amount of the catalyst solution, and a lower catalyst aqueous solution containing the carboxylic acid formed as a by-product of the salt form; i) recirculating the catalyst aqueous solution to the reactor; And j) discharging the organic phase on top of the aldol condensation reaction.

그러나, 반응 혼합물의 증류에 에너지가 필요하고, 하부 생성물을 냉각시키기 위해서는 냉각 매질이 필요하며, 증류 단계에서 촉매상에 존재하는 반응 혼합물은 열적 응력을 받아 카니자로(cannizzaro reaction) 반응에 의한 부산물 생성이 용이해져 수율이 저하되고, 최종 조생성물은 세정 없이 장치로부터 분리되는데, 소량의 촉매를 여전히 함유하여 저장기간 동안 생성물의 품질을 악화시키며, 이를 화학 합성, 예를 들면, 수소화 반응 등에 사용하는 경우 심각한 문제를 일으킬 수 있다.However, energy is required for the distillation of the reaction mixture, a cooling medium is required for cooling the lower product, and the reaction mixture present on the catalyst in the distillation step is thermally stressed to produce by-products by the cannizzaro reaction And the final crude product is separated from the apparatus without being cleaned and still contains a small amount of catalyst to deteriorate the quality of the product during the storage period and when it is used for chemical synthesis such as hydrogenation reaction It can cause serious problems.

따라서, 부반응이 적고 생성물에 대한 선택성이 높아 효율성 및 경제성이 뛰어난 α,β-불포화 알데히드의 제조방법의 개발이 시급한 실정이다.
Therefore, it is urgent to develop a process for producing an alpha, beta -unsaturated aldehyde having a low side reaction and high selectivity for a product, which is excellent in efficiency and economical efficiency.

상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 부반응이 적고 생성물의 선택도가 뛰어난 α,β-불포화 알데히드의 제조방법을 제공하는 것을 목적으로 한다. In order to solve the problems of the prior art as described above, it is an object of the present invention to provide a process for producing an alpha, beta -unsaturated aldehyde having a small side reaction and excellent selectivity of products.

본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
These and other objects of the present invention can be achieved by the present invention described below.

상기의 목적을 달성하기 위하여, 본 발명은 알돌-축합 반응을 이용한 α,β-불포화 알데히드의 제조방법에 있어서, 상기 알돌-축합 반응은 알데히드 및 0.2 내지 2.0 % NaOH 수용액을 포함하여 90 내지 130 ℃에서 실시되되, 상기 알데히드와 상기 NaOH 수용액의 중량비(알데히드:NaOH 수용액)는 1.0:0.6 내지 1.0:1.7인 것을 특징으로 하는 α,β-불포화 알데히드의 제조방법을 제공한다.
In order to achieve the above object, the present invention provides a process for producing an alpha, beta -unsaturated aldehyde using an aldol-condensation reaction, wherein the aldol condensation reaction is carried out at 90 to 130 ° C , Wherein the weight ratio of the aldehyde and the NaOH aqueous solution (aldehyde: NaOH aqueous solution) is 1.0: 0.6 to 1.0: 1.7.

상기에서 살펴본 바와 같이, 본 발명에 따르면 부반응이 적고 생성물의 선택도가 뛰어난 α,β-불포화 알데히드의 제조방법을 제공하는 효과가 있다.
As described above, according to the present invention, there is an effect of providing a process for producing an alpha, beta -unsaturated aldehyde having a small side reaction and an excellent selectivity of a product.

도 1은 본 발명에 따른 α,β-불포화 알데히드의 제조방법이 적용된 반응장치의 일례를 개략적으로 도시한 장치도이다.1 is a schematic view showing an example of a reaction apparatus to which the process for producing an alpha, beta -unsaturated aldehyde according to the present invention is applied.

이하 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.

본 발명의 α,β-불포화 알데히드의 제조방법은 알돌-축합 반응을 이용한 α,β-불포화 알데히드의 제조방법에 있어서, 상기 알돌-축합 반응은 알데히드 및 0.2 내지 2.0 % NaOH 수용액을 포함하여 90 내지 130 ℃에서 실시되되, 상기 알데히드와 상기 NaOH 수용액의 중량비(알데히드:NaOH 수용액)는 1.0:0.6 내지 1.0:1.7인 것을 특징으로 한다.
The process for producing an alpha, beta -unsaturated aldehyde according to the present invention is a process for producing an alpha, beta -unsaturated aldehyde using an aldol condensation reaction, wherein the aldol condensation reaction is carried out at a temperature of 90 - (Aldehyde: NaOH aqueous solution) of the aldehyde and the NaOH aqueous solution is 1.0: 0.6 to 1.0: 1.7.

상기 알돌-축합 반응은 대칭 알돌-축합 반응인 것이 바람직할 수 있는데, 구체적인 반응예를 하기 그림 1에 기재하였다.The aldol condensation reaction may be preferably a symmetrical aldol condensation reaction. Specific reaction examples are shown in FIG.

[그림 1][Figure 1]

Figure 112010064294011-pat00001
Figure 112010064294011-pat00001

상기 알데히드는 노르말 알데히드인 것이 바람직하고, 보다 바람직하게는 N-부티르알데히드이다.The aldehyde is preferably n-aldehyde, more preferably N-butyraldehyde.

상기 NaOH 수용액은 0.2 내지 2.0 % NaOH 수용액일 수 있고, 바람직하게는 0.3 내지 1.8% NaOH 수용액이며, 보다 바람직하게는 0.8 내지 1.0 % NaOH 수용인데, 이 범위 내에서 2-에틸헥센알(2-ethylhexenal)의 수율이 높게 나타나는 효과가 있다.The NaOH aqueous solution may be a 0.2 to 2.0% NaOH aqueous solution, preferably 0.3 to 1.8% NaOH aqueous solution, more preferably 0.8 to 1.0% NaOH aqueous solution. Within this range, 2-ethylhexenal ) Is high.

상기 % NaOH 수용액은 중량% NaOH 수용액을 의미한다.The% NaOH aqueous solution means a weight% NaOH aqueous solution.

상기 알데히드와 상기 NaOH 수용액의 중량비(알데히드:NaOH 수용액)는 1.0:0.6 내지 1.0:1.7일 수 있고, 바람직하게는 1.0:1.0 내지 1.0:1.3이며, 2-에틸헥센알(2-ethylhexenal)의 수율이 높게 나타나는 효과가 있다.The weight ratio (aldehyde: NaOH aqueous solution) of the aldehyde and the NaOH aqueous solution may be 1.0: 0.6 to 1.0: 1.7, preferably 1.0: 1.0 to 1.0: 1.3, and the yield of 2-ethylhexenal Is high.

상기 알돌-축합 반응은 90 내지 130 ℃에서 실시되는 것이 바람직하고, 보다 바람직하게는 100 내지 110 ℃에서 실시되는 것인데, 이 범위 내에서 미반응된 n-부탄알의 양이 증가하지 않으며, 탄소수 12개 이상의 고비점 성분의 발생량이 적어 2-에틸헥센알(2-ethylhexenal)의 수율을 높이는 효과가 있다.The aldol condensation reaction is preferably carried out at 90 to 130 ° C, more preferably 100 to 110 ° C. In this range, the amount of unreacted n-butane is not increased, and the number of carbon atoms is 12 And the yield of 2-ethylhexenal is increased.

상기 알돌-축합 반응은 1 내지 10 bar에서 실시되는 것일 수 있고, 바람직하게는 2 내지 4 bar에서 실시되는 것인데, 이 범위 내에서 반응물인 n-부탄알의 증기압 이상의 압력으로 반응물이 기화하지 않아 액상 알돌반응에 효과적이며, 4 bar를 초과하는 높은 압력은 알돌반응에 불필요하다.The aldol condensation reaction may be carried out at a pressure of 1 to 10 bar, preferably at a pressure of 2 to 4 bar. Within this range, the reactant does not vaporize at a pressure higher than the vapor pressure of n-butanal, Effective for aldol reactions, high pressures exceeding 4 bar are unnecessary for aldol reactions.

상기 알돌-축합 반응은 0.1 내지 1.0 시간 동안 실시될 수 있고, 바람직하게는 0.2 내지 0.5 시간 동안 실시되는 것인데, 이 범위 내에서 미반응된 n-부탄알을 일정 수준으로 유지하면서, 탄소수 12개 이상의 고비점 화합물를 감소시킬수 있어 2-에틸헥센알(2-ethylhexenal)의 수율을 높이는 효과가 있다.The aldol condensation reaction may be carried out for 0.1 to 1.0 hour, preferably for 0.2 to 0.5 hour. While maintaining the unreacted n-butane egg at a certain level within this range, It is possible to reduce the high-boiling point compound, thereby increasing the yield of 2-ethylhexenal.

상기 알돌-축합 반응에 사용되는 반응기의 형태는 연속식 반응기(CSTR)가 바람직한데, 이 경우 반응물인 n-부탄알과 촉매를 포함한 수용액의 혼합을 용이하게 하여, 반응이 일어나는 수용액 상으로 반응물인 n-부탄알의 물질전달이 원할이 일어나고, 알돌반응의 반응열 제어가 용이한 효과가 있다.
The reactor used in the aldol condensation reaction is preferably a continuous reactor (CSTR). In this case, the mixing of the reactant n-butanol and the aqueous solution containing the catalyst is facilitated, the mass transfer of n-butanal is expected to occur, and the reaction heat of the aldol reaction can be easily controlled.

하기 도 1은 본 발명의 α,β-불포화 알데히드의 제조방법이 적용되는 반응장치(100)의 구체적인 일례를 나타낸다. 다만, 당업자에게 지극히 당연한 반응온도 제어수단, 반응압력 조절수단 등은 생략되었다.1 shows a concrete example of a reaction apparatus 100 to which the method for producing an alpha, beta -unsaturated aldehyde of the present invention is applied. However, reaction temperature control means, reaction pressure control means and the like, which are well known to those skilled in the art, have been omitted.

반응원료 공급배관(1)을 통해 출발물질인 알데히드 및 NaOH 수용액이 알돌-축합 반응기(10)로 투입되고, 소정 온도, 압력 및 시간 하에 알돌-축합 반응이 실시된 후, 생성된 혼합물이 배출관(2)을 통해 증류 컬럼(20)으로 유입된다. Aldehyde and an aqueous NaOH solution, which are starting materials, are introduced into the aldol condensation reactor (10) through a reaction material feed pipe (1), subjected to aldol condensation reaction at a predetermined temperature, pressure and time, 2 to the distillation column 20. [

증류 컬럼(20)으로 유입된 생성 혼합물 중에서 비점이 낮은 알데히드와 일부 α,β-불포화 알데히드 등은 상부배관(3)을 거쳐 알데히드/생성물 분리기(30)로 이동된 다음, 알데히드는 회수배관(4)을 통해 알돌-축합 반응기(10)로 재순환되고, 생성물인 α,β-불포화 알데히드는 배출배관(7)을 통해 수득된다. The aldehyde with low boiling point and some alpha, beta -unsaturated aldehyde and the like are moved to the aldehyde / product separator 30 via the upper pipe 3 and the aldehyde is recovered through the recovery pipe 4 ), And the product?,? - unsaturated aldehyde is obtained through the discharge pipe (7).

한편, 증류 컬럼(20)으로 유입된 생성 혼합물 중에서 비점이 높은 NaOH 수용액과 α,β-불포화 알데히드 등은 하부배관(5)을 거쳐 촉매용액/생성물 분리기(40)로 이동된 다음, 촉매용액은 회수배관(6)을 통해 알돌-축합 반응기(10)로 재순환되고, 생성물인 α,β-불포화 알데히드는 배출배관(8)을 통해 수득된다.
On the other hand, in the product mixture flowing into the distillation column 20, the NaOH aqueous solution and the alpha, beta -unsaturated aldehyde, etc. having a high boiling point are transferred to the catalyst solution / product separator 40 via the bottom pipe 5, Is recycled to the aldol condensation reactor (10) through the recovery pipe (6), and the product?,? - unsaturated aldehyde is obtained through the discharge pipe (8).

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention. Such variations and modifications are intended to be within the scope of the appended claims.

[실시예][Example]

실시예 1Example 1

반응물인 n-부탄알(순도 99.8% 이상, LG화학)과 1.8% NaOH 수용액 각 10kg을 각각의 원료탱크에 충진하였다. 1L 용량의 CSTR 반응기 내에는 1.8% NaOH 수용액과 2-에틸헥센알을 순서대로 각각 330g씩 정량하여 주입하였다. 이후, CSTR 반응기를 질소로 가압하여 반응기내가 2bar를 유지하도록 하였고, CSTR 반응기의 교반기를 500rpm으로 교반하면서 반응기의 온도를 130℃까지 상승시켰다. 반응기 내부의 온도가 반응온도 +/- 1.0 ℃ 내외로 안정화되었을 때, 교반속도를 1500rpm으로 상승시켰다. 이후, 다이아프램 펌프를 이용하여 반응물인 n-부탄알과 NaOH 수용액을 각각 1.28kg/hr, 1.04kg/hr의 속도로 정량하여 CSTR 반응기 내로 공급하였고, 반응기내의 액상의 높이가 일정하게 유지 되도록 반응물의 투입과 동시에 레벨 조절 밸브를 통해 생성물을 회수하였다. 반응물의 공급 후 매 1시간 마다 생성물을 샘플링하였는데, 샘플은 약 30g을 취하였으며, 샘플링 후 분별 깔때기를 이용하여 1시간 동안 물층과 유기층을 분리하고, 분리된 물층은 0.1N 농도의 HCl을 이용하여 적정하여 NaOH 농도 측정을 실시하였고, 유기층은 가스크로마토그래피를 이용하여 성분분석을 실시하였다. 이때 성분분석은 하기 시험예에 기재된 방법으로 실시하였고, 그 결과는 하기의 표 1에 나타내었다.
10 kg of the reactant n-butanol (purity of 99.8% or more, LG Chemical) and 1.8% NaOH aqueous solution were charged in the respective raw material tanks. In a CSTR reactor having a capacity of 1 L, 1.8 g NaOH aqueous solution and 2-ethylhexenal were injected in the order of 330 g each. Thereafter, the CSTR reactor was pressurized with nitrogen to keep the reactor at 2 bar, and the temperature of the reactor was raised to 130 ° C. while stirring the stirrer of the CSTR reactor at 500 rpm. When the internal temperature of the reactor was stabilized at a reaction temperature of about +/- 1.0 DEG C, the stirring speed was increased to 1500 rpm. Then, the reactant n-butane and NaOH aqueous solution were supplied to the CSTR reactor at a rate of 1.28 kg / hr and 1.04 kg / hr, respectively, using a diaphragm pump, and the reactant The product was recovered through the level control valve. The product was sampled every hour after the reaction was supplied. The sample was taken about 30 g. After sampling, the water layer and the organic layer were separated using a separatory funnel for 1 hour. The separated water layer was washed with 0.1N HCl NaOH concentration was measured by titration and the organic layer was analyzed by gas chromatography. At this time, the components were analyzed by the methods described in the following test examples, and the results are shown in Table 1 below.

실시예 2Example 2

상기 실시예 1에서 반응온도가 110℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated, except that the reaction temperature was changed to 110 ° C.

실시예 3Example 3

상기 실시예 1에서 반응온도가 90℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that the reaction temperature was 90 ° C in Example 1.

실시예 4Example 4

상기 실시예 1에서 1.4% NaOH 수용액을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 1.4% NaOH aqueous solution was used in Example 1.

실시예 5Example 5

상기 실시예 1에서 1.4% NaOH 수용액을 사용하고, 반응온도가 110℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 1.4% NaOH aqueous solution was used in Example 1 and the reaction temperature was 110 ° C.

실시예 6Example 6

상기 실시예 1에서 1.4% NaOH 수용액을 사용하고, 반응온도가 90℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 1.4% NaOH aqueous solution was used in Example 1 and the reaction temperature was 90 ° C.

실시예 7Example 7

상기 실시예 1에서 1.2% NaOH 수용액을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 1.2% NaOH aqueous solution was used in Example 1.

실시예 8Example 8

상기 실시예 1에서 1.2% NaOH 수용액을 사용하고, 반응온도가 110℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. Example 1 was carried out in the same manner as in Example 1, except that 1.2% NaOH aqueous solution was used and the reaction temperature was 110 ° C.

실시예 9Example 9

상기 실시예 1에서 1.2% NaOH 수용액을 사용하고, 반응온도가 90℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 1.2% NaOH aqueous solution was used in Example 1 and the reaction temperature was 90 ° C.

실시예 10Example 10

상기 실시예 1에서 0.8% NaOH 수용액을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 0.8% NaOH aqueous solution was used in Example 1.

실시예 11Example 11

상기 실시예 1에서 0.8% NaOH 수용액을 사용하고, 반응온도가 110℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 0.8% aqueous NaOH solution was used in Example 1 and the reaction temperature was 110 ° C.

실시예 12Example 12

상기 실시예 1에서 0.8% NaOH 수용액을 사용하고, 반응온도가 90℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 0.8% NaOH aqueous solution was used in Example 1 and the reaction temperature was 90 ° C.

실시예 13Example 13

상기 실시예 1에서 0.4% NaOH 수용액을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 0.4% NaOH aqueous solution was used in Example 1.

실시예 14 Example 14

상기 실시예 1에서 0.4% NaOH 수용액을 사용하고, 반응온도가 110℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 0.4% NaOH aqueous solution was used in Example 1 and the reaction temperature was 110 ° C.

실시예 15Example 15

상기 실시예 1에서 0.4% NaOH 수용액을 사용하고, 반응온도가 90℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The same procedure as in Example 1 was carried out except that 0.4% NaOH aqueous solution was used in Example 1 and the reaction temperature was 90 ° C.

실시예 16Example 16

상기 실시예 1에서 0.2% NaOH 수용액을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 0.2% NaOH aqueous solution was used in Example 1.

실시예 17Example 17

상기 실시예 1에서 0.2% NaOH 수용액을 사용하고, 반응온도가 110℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 0.2% NaOH aqueous solution was used in Example 1 and the reaction temperature was 110 ° C.

실시예 18Example 18

상기 실시예 1에서 0.2% NaOH 수용액을 사용하고, 반응온도가 90℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. The procedure of Example 1 was repeated except that 0.2% NaOH aqueous solution was used in Example 1 and the reaction temperature was 90 ° C.

비교예 1Comparative Example 1

상기 실시예 1에서 0.1% NaOH 수용액을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.The same procedure as in Example 1 was carried out except that 0.1% NaOH aqueous solution was used in Example 1 above.

비교예 2Comparative Example 2

상기 실시예 1에서 반응온도가 150℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.The procedure of Example 1 was repeated except that the reaction temperature was 150 ° C in Example 1.

비교예 3Comparative Example 3

상기 실시예 1에서 반응온도가 80℃인 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.The reaction was carried out in the same manner as in Example 1 except that the reaction temperature in Example 1 was 80 占 폚.

실시예 19Example 19

상기 실시예 1에서 0.8% NaOH 수용액을 사용하고, 반응온도를 100℃로 하며, NaOH 수용액의 공급속도를 1.02kg/hr(알데히드와 NaOH 수용액의 중량비(알데히드:NaOH 수용액)=1.28:1.02, NaOH 수용액/알데히드=0.8)로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. A reaction rate of 1.02 kg / hr (weight ratio of aldehyde and NaOH aqueous solution (aldehyde: NaOH aqueous solution) = 1.28: 1.02, NaOH Aqueous solution / aldehyde = 0.8) was used as the catalyst.

실시예 20Example 20

상기 실시예 19에서 NaOH 수용액의 공급속도를 1.28kg/hr(알데히드와 NaOH 수용액의 중량비(알데히드:NaOH 수용액)=1.28:1.28, NaOH 수용액/알데히드=1.0)로 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다. Example 1 was repeated except that the feeding rate of the aqueous NaOH solution was changed to 1.28 kg / hr (the weight ratio of aldehyde and NaOH aqueous solution (aldehyde: NaOH aqueous solution) = 1.28: 1.28, NaOH aqueous solution / aldehyde = 1.0) . ≪ / RTI >

실시예 21Example 21

상기 실시예 19에서 NaOH 수용액의 공급속도를 1.53kg/hr(알데히드와 NaOH 수용액의 중량비(알데히드:NaOH 수용액)=1.28:1.53, NaOH 수용액/알데히드=1.2)로 한 것을 제외하고는 상기 실시예 20과 동일한 방법으로 실시하였다. The procedure of Example 20 was repeated except that the feed rate of the aqueous NaOH solution was changed to 1.53 kg / hr (weight ratio of aldehyde and NaOH aqueous solution (aldehyde: NaOH aqueous solution) = 1.28: 1.53, aqueous NaOH solution / . ≪ / RTI >

비교예 4Comparative Example 4

상기 실시예 20에서 NaOH 수용액의 공급속도를 0.64kg/hr(알데히드와 NaOH 수용액의 중량비(알데히드:NaOH 수용액)=1.28:0.64, NaOH 수용액/알데히드=0.5)로 한 것을 제외하고는 상기 실시예 20과 동일한 방법으로 실시하였다. The procedure of Example 20 was repeated except that the feed rate of the aqueous NaOH solution was changed to 0.64 kg / hr (the weight ratio of aldehyde to NaOH aqueous solution (aldehyde: NaOH aqueous solution) = 1.28: 0.64, NaOH aqueous solution / aldehyde = 0.5) . ≪ / RTI >

비교예 5 Comparative Example 5

상기 실시예 20에서 NaOH 수용액의 공급속도를 2.56kg/hr(알데히드와 NaOH 수용액의 중량비(알데히드:NaOH 수용액)=1.28:2.56, NaOH 수용액/알데히드=2.0)로 하는 것을 제외하고는 상기 실시예 20과 동일한 방법으로 실시하였다.
The procedure of Example 20 was repeated except that the feeding rate of the NaOH aqueous solution was changed to 2.56 kg / hr (weight ratio of aldehyde to NaOH aqueous solution (aldehyde: NaOH aqueous solution) = 1.28: 2.56, NaOH aqueous solution / aldehyde = 2.0) . ≪ / RTI >

[시험예][Test Example]

상기 실시예에서 제조된 α,β-불포화 알데히드의 조성 및 함량을 기체 크로마토그래피 질량 분광분석법(HP 5890, 휴렛팩커드사)으로 측정 및 분석하였다. 측정된 조성으로부터 하기 수학식 1 내지 3을 이용하여 반응물인 n-부탄알의 전환율, 2-ehtylhexenal 선택도 및 수율을 계산하였고, 그 결과를 하기의 표 1에 나타내었다.
The compositions and contents of the?,? - unsaturated aldehydes prepared in the above Examples were measured and analyzed by gas chromatography mass spectrometry (HP 5890, Hewlett-Packard Company). The conversion of n-butanal, the selectivity of 2-ehtylhexenal and the yield were calculated from the measured composition by using the following equations (1) to (3), and the results are shown in Table 1 below.

Figure 112010064294011-pat00002
Figure 112010064294011-pat00002

Figure 112010064294011-pat00003
Figure 112010064294011-pat00003

Figure 112010064294011-pat00004
Figure 112010064294011-pat00004

Figure 112010064294011-pat00005
Figure 112010064294011-pat00005

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 α,β-불포화 알데히드의 제조방법(실시예 1 ~21)은 NaOH 수용액의 농도, 반응온도 및 알데히드와 NaOH 수용액의 함량비가 본 발명의 범위를 벗어나는 경우(비교예 1~5)에 비하여 n-부탄알 전환율, 2-에틸헥센알의 선택도 및 수율이 모두 높음을 확인할 수 있었다. As shown in Table 1 above, the production methods of the?,? - unsaturated aldehydes (Examples 1 to 21) according to the present invention are different from those of the present invention in that the concentration of NaOH aqueous solution, reaction temperature and content ratio of aldehyde and NaOH aqueous solution Butanal conversion and the selectivity and yield of 2-ethylhexenal were all higher than those of Comparative Example 1 (Comparative Examples 1 to 5).

참고로, NaOH 수용액 농도가 본 발명의 범위를 벗어나는 경우(비교예 1) n-부탄알 전환율 및 2-에틸헥센알의 수율이 현저히 낮아졌고, 반응온도가 본 발명의 범위를 벗어나는 경우(비교예 2 및 3) 2-에틸헥센알의 선택도와 수율이 크게 저하되거나 n-부탄알 전환율과 2-에틸헥센알의 수율이 크게 저하되었으며, 알데히드와 NaOH 수용액의 중량비가 본 발명의 범위를 벗어나는 경우(비교예 4 및 5) n-부탄알 전환율과 2-에틸헥센알의 수율이 현저히 떨어지거나 2-에틸헥센알의 선택도와 수율이 현저히 떨어짐을 확인할 수 있었다.
For reference, when the NaOH aqueous solution concentration was outside the range of the present invention (Comparative Example 1), the conversion of n-butanol and the yield of 2-ethylhexenal were significantly lowered. When the reaction temperature was outside the range of the present invention 2 and 3), the selectivity and yield of 2-ethylhexenal were significantly lowered or the n-butanal conversion and the yield of 2-ethylhexenal were significantly lowered. When the weight ratio of the aldehyde and NaOH aqueous solution was out of the range of the present invention Comparative Examples 4 and 5) It was confirmed that the conversion of n-butanol and the yield of 2-ethylhexenal were remarkably lowered, and the selectivity and yield of 2-ethylhexenal were significantly lowered.

1: 반응원료 공급배관 2: 반응생성혼합물 배출관
3: 상부배관 4: 알데히드 회수배관
5: 하부배관 6: 촉매용액 회수배관
7, 8: 생성물 배출배관
10: 알돌-축합 반응기 20: 증류 컬럼
30: 알데히드/생성물 분리기 40: 촉매용액/생성물 분리기
1: Reaction raw material supply pipe 2: Reaction product mixture discharge pipe
3: Top piping 4: Aldehyde recovery piping
5: lower pipe 6: catalyst solution recovery pipe
7, 8: Product discharge piping
10: aldol condensation reactor 20: distillation column
30: aldehyde / product separator 40: catalyst solution / product separator

Claims (7)

알돌-축합 반응을 이용한 α,β-불포화 알데히드의 제조방법에 있어서, 상기 알돌-축합 반응은 알데히드 및 0.2 내지 2.0 중량% NaOH 수용액을 포함하여 90 내지 130 ℃에서 실시되되,
상기 알데히드와 상기 NaOH 수용액의 중량비(알데히드:NaOH 수용액)는 1.0:0.6 내지 1.0:1.7인 것을 특징으로 하는
α,β-불포화 알데히드의 제조방법.
In the process for producing an alpha, beta -unsaturated aldehyde by an aldol condensation reaction, the aldol condensation reaction is carried out at 90 to 130 ° C including an aldehyde and an aqueous solution of 0.2 to 2.0 wt% NaOH,
The weight ratio (aldehyde: NaOH aqueous solution) of the aldehyde and the NaOH aqueous solution is 1.0: 0.6 to 1.0: 1.7
A process for producing an alpha, beta-unsaturated aldehyde.
제 1항에 있어서,
상기 알돌-축합반응은, 대칭 알돌-축합반응인 것을 특징으로 하는
α,β-불포화 알데히드의 제조방법.
The method according to claim 1,
The aldol condensation reaction is a symmetrical aldol condensation reaction.
A process for producing an alpha, beta-unsaturated aldehyde.
제 1항에 있어서,
상기 알데히드는, 노르말 알데히드인 것을 특징으로 하는
α,β-불포화 알데히드의 제조방법.
The method according to claim 1,
Characterized in that the aldehyde is n-aldehyde
A process for producing an alpha, beta-unsaturated aldehyde.
제 1항에 있어서,
상기 NaOH 수용액은, 0.8 내지 1.0 중량% NaOH 수용액인 것을 특징으로 하는
α,β-불포화 알데히드의 제조방법.
The method according to claim 1,
The NaOH aqueous solution is a 0.8 to 1.0 wt% NaOH aqueous solution
A process for producing an alpha, beta-unsaturated aldehyde.
제 1항에 있어서,
상기 알데히드와 상기 NaOH 수용액의 중량비는, 1.0:1.0 내지 1.0: 1.3인 것을 특징으로 하는
α,β-불포화 알데히드의 제조방법.
The method according to claim 1,
Wherein the weight ratio of the aldehyde to the NaOH aqueous solution is 1.0: 1.0 to 1.0: 1.3
A process for producing an alpha, beta-unsaturated aldehyde.
제 1항에 있어서,
상기 알돌-축합 반응은, 1 내지 10 bar에서 실시되 것을 특징으로 하는
α,β-불포화 알데히드의 제조방법.
The method according to claim 1,
The aldol condensation reaction is carried out at a pressure of 1 to 10 bar.
A process for producing an alpha, beta-unsaturated aldehyde.
제 1항에 있어서,
상기 알돌-축합 반응은, 연속식 반응기(CSTR)에 의하여 실시되는 것을 특징으로 하는
α,β-불포화 알데히드의 제조방법.
The method according to claim 1,
The aldol condensation reaction is carried out by a continuous-type reactor (CSTR)
A process for producing an alpha, beta-unsaturated aldehyde.
KR1020100096856A 2010-10-05 2010-10-05 Method For Preparing α,β-unsaturated Aldehyde KR101444976B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100096856A KR101444976B1 (en) 2010-10-05 2010-10-05 Method For Preparing α,β-unsaturated Aldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100096856A KR101444976B1 (en) 2010-10-05 2010-10-05 Method For Preparing α,β-unsaturated Aldehyde

Publications (2)

Publication Number Publication Date
KR20120035368A KR20120035368A (en) 2012-04-16
KR101444976B1 true KR101444976B1 (en) 2014-09-26

Family

ID=46137292

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100096856A KR101444976B1 (en) 2010-10-05 2010-10-05 Method For Preparing α,β-unsaturated Aldehyde

Country Status (1)

Country Link
KR (1) KR101444976B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102675020B1 (en) * 2019-10-08 2024-06-14 한화솔루션 주식회사 Apparatus for aldol condensation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010052030A (en) * 1999-11-30 2001-06-25 뮐러 리하르트, 슈베르트페거 Process for catalytic aldol condensations by means of a multiphase reaction
JP2009167183A (en) 2007-12-20 2009-07-30 Mitsubishi Chemicals Corp Method for producing alcohol
WO2010105892A1 (en) * 2009-03-17 2010-09-23 Evonik Oxeno Gmbh Method for producing α,β-unsaturated c10-aldehydes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010052030A (en) * 1999-11-30 2001-06-25 뮐러 리하르트, 슈베르트페거 Process for catalytic aldol condensations by means of a multiphase reaction
JP2009167183A (en) 2007-12-20 2009-07-30 Mitsubishi Chemicals Corp Method for producing alcohol
WO2010105892A1 (en) * 2009-03-17 2010-09-23 Evonik Oxeno Gmbh Method for producing α,β-unsaturated c10-aldehydes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.AGRIC.FOOD,2004 *

Also Published As

Publication number Publication date
KR20120035368A (en) 2012-04-16

Similar Documents

Publication Publication Date Title
US8252961B2 (en) Method of producing lower alcohols from glycerol
US20100019192A1 (en) Method of producing lower alcohols from glycerol
KR101587302B1 (en) Method for separating 1-butene from c4-containing hydrocarbon streams by hydroformylation
KR100622288B1 (en) Process for carrying out aldol condensations
KR101665735B1 (en) Manufacture of gamma-delta-unsaturated ketones
JP7046932B2 (en) Methods for Producing 2-Alkyl Alkanol
JP7250039B2 (en) Method for supplying normal butanol, iso-butanol, and 2-alkylalkanol
FR2925046A1 (en) PROCESS FOR OBTAINING ALCOHOL FROM ALDEHYDE
KR20170029311A (en) Apparatus and method for preparing glycol
JP2001010999A (en) Production of tricyclodecanedimethanol and/or pentacyclodecanedimethanol
KR101444976B1 (en) Method For Preparing α,β-unsaturated Aldehyde
TWI417272B (en) Process
JP6889179B2 (en) Hydroformylation process
JP4754058B2 (en) Method for producing isopropyl alcohol
PL99233B1 (en) A CONTINUOUS METHOD OF MANUFACTURING 2-ETHYLHEXANOL
CN113999096B (en) Method for synthesizing 6-methyl-5-octene-2-ketone by condensation hydrogenation
KR101352309B1 (en) Apparatus For Producing Alcohol From Olefin
EP2415740B1 (en) Method for producing high-purity terminal olefin compound
FR2980791A1 (en) PROCESS FOR THE PREPARATION OF A MIXTURE OF ALCOHOLS
KR100231644B1 (en) Process for producing neopentylglycol
KR101457734B1 (en) An apparatus for separation of a catalyst for the hydroformylation of olefin, and a method for separation using thereof
JP2022147136A (en) Manufacturing method of tricyclodecane dimethanol
JP4466050B2 (en) Method for producing alcohol
CN102574763B (en) Method for producing 4-pentenoic acid
JP2005281255A (en) Method for production of refined alcohol

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170718

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180619

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 6