KR101434602B1 - Method for Preparing 3―O―Xylosyl Quercetin from Quercetin Using Microorganism Mutants - Google Patents
Method for Preparing 3―O―Xylosyl Quercetin from Quercetin Using Microorganism Mutants Download PDFInfo
- Publication number
- KR101434602B1 KR101434602B1 KR1020120073860A KR20120073860A KR101434602B1 KR 101434602 B1 KR101434602 B1 KR 101434602B1 KR 1020120073860 A KR1020120073860 A KR 1020120073860A KR 20120073860 A KR20120073860 A KR 20120073860A KR 101434602 B1 KR101434602 B1 KR 101434602B1
- Authority
- KR
- South Korea
- Prior art keywords
- quercetin
- glucose
- udp
- microorganism
- xylosyl
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1241—Nucleotidyltransferases (2.7.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/44—Preparation of O-glycosides, e.g. glucosides
- C12P19/60—Preparation of O-glycosides, e.g. glucosides having an oxygen of the saccharide radical directly bound to a non-saccharide heterocyclic ring or a condensed ring system containing a non-saccharide heterocyclic ring, e.g. coumermycin, novobiocin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01022—UDP-glucose 6-dehydrogenase (1.1.1.22)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/07—Nucleotidyltransferases (2.7.7)
- C12Y207/07009—UTP-glucose-1-phosphate uridylyltransferase (2.7.7.9), i.e. UDP-glucose-pyrophosphorylase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01035—UDP-glucuronate decarboxylase (4.1.1.35), i.e. UDP-D-xylose synthase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y504/00—Intramolecular transferases (5.4)
- C12Y504/02—Phosphotransferases (phosphomutases) (5.4.2)
- C12Y504/02002—Phosphoglucomutase (5.4.2.2)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 미생물 변이체를 이용한 케르세틴(quercetin)에서 3-O-자일로실 케르세틴(3-O-xylosyl quercetin)를 제조하는 방법에 관한 것으로, 더욱 자세하게는 UDP-자일로오스 생합성 경로(UDP-xylose biosynthtic pathway)와 관련된 효소를 코딩하는 유전자 및 글리코실트랜스퍼레이즈(glycosyltransferase)를 코딩하는 유전자가 도입되어 케르세틴에서 3-O-자일로실 케르세틴의 생산능을 가지는 미생물 변이체 및 미생물 변이체를 이용하여 케르세틴에서 3-O-자일로실 케르세틴을 제조하는 방법에 관한 것이다.
본 발명의 UDP-자일로오스 생합성 경로와 관련된 효소를 코딩하는 유전자 및 글리코실트랜스퍼레이즈를 코딩하는 유전자가 도입된 미생물 변이체를 이용하여 생산된 3-O-자일로실 케르세틴은 항암효과가 있어 암치료를 위한 의약품으로 개발될 수 있으며, 노화방지, 미백 및 항스트레스 등의 효과가 있기 때문에 식품 및 화장용 조성물로 유용하게 사용될 수 있다.The invention in quercetin 3- O (quercetin) using the mutant microorganism-xylene to room quercetin (3- O -xylosyl quercetin) the present invention relates to a method of making, and more particularly, to trehalose biosynthesis pathway UDP- xylene (UDP-xylose biosynthtic pathway) and a gene coding for glycosyltransferase were introduced into microorganism variants and microorganism variants having the ability to produce 3- O -xylosylcerecetin in quercetin, O -xylosyl quercetin. ≪ / RTI >
The 3- O -xylosyl quercetin produced using the gene encoding the enzyme related to the UDP-xylose biosynthetic pathway of the present invention and the microorganism variant into which the gene coding for glycosyltransferase is introduced has anti-cancer effect, It can be used as a food and cosmetic composition because it has effects such as anti-aging, whitening and anti-stress.
Description
본 발명은 미생물 변이체를 이용한 케르세틴(quercetin)에서 3-O-자일로실 케르세틴(3-O-xylosyl quercetin)를 제조하는 방법에 관한 것으로, 더욱 자세하게는 UDP-자일로오스 생합성 경로(UDP-xylose biosynthtic pathway)와 관련된 효소를 코딩(coding)하는 유전자 및 글리코실트랜스퍼레이즈(glycosyltransferase)를 코딩하는 유전자가 도입되어 케르세틴에서 3-O-자일로실 케르세틴의 생산능을 가지는 미생물 변이체 및 미생물 변이체를 이용하여 케르세틴에서 3-O-자일로실 케르세틴을 제조하는 방법에 관한 것이다.
The invention in quercetin 3- O (quercetin) using the mutant microorganism-xylene to room quercetin (3- O -xylosyl quercetin) the present invention relates to a method of making, and more particularly, to trehalose biosynthesis pathway UDP- xylene (UDP-xylose a gene coding for an enzyme associated with the biosynthtic pathway and a gene coding for glycosyltransferase are introduced and microorganism variants and microorganism variants having the ability to produce 3- O -xylosylcerecetin in quercetin are used 0.0 > 3- O -xylosyl quercetin < / RTI > in quercetin.
식물 유래의 여러 가지 파이토케미칼(phytochemical) 중에서, 플라보노이드(flavonoid)는 식품에 널리 분포하는 노란색 계통의 색소로, 페닐기 2개가 C3 사슬에 매개하여 C6-C3-C6형 탄소 골격구조로 되어 있으며, 이것이 여러 당류와 에테르 결합을 통해 배당체(glycoside)의 형태로 존재하는 경우가 많다. 플라보노이드는 항균, 항암, 항바이러스, 항알레르기 및 항염증 활성이 있고, 의약분야에서는 새로운 플라보노이드 물질이 추출됨에 따라 치료대상 질환이 다양해져서 간질환, 당뇨병, 류마티스관절염, 각종 암, 진통, 바이러스성 질환, 알레르기성 질환, 동맥경화 등 혈관계 질환, 심근 관련 질환, 스트레스 및 우울증 등에 약리활성이 있다는 것이 알려지면서 물질의 개발 및 활용에 관한 관심이 커지고 있다.Among the various phytochemicals derived from plants, flavonoids are yellow-based pigments widely distributed in foods. Two phenyl groups mediate the C 3 chain to form a C 6 -C 3 -C 6 carbon skeleton And it is often present in the form of a glycoside through several sugars and ether linkages. Flavonoids have antimicrobial, anticancer, antiviral, antiallergic and anti-inflammatory activities. In the field of medicine, new flavonoid substances are extracted and the diseases to be treated are diversified to be used for various diseases such as liver disease, diabetes, rheumatoid arthritis, various cancers, , An allergic disease, atherosclerosis, vascular diseases, myocardial diseases, stress and depression are known to have pharmacological activity.
케르세틴은 항산화, 항염증 및 기억력 증강의 효과가 있는 것으로 알려져 있는 플라보노이드로서, 사과, 살구, 포도 및 베리류와 같은 과일 또는 브로커리, 상추, 토마토 및 양파와 같은 야채에 있는 것으로 알려져 있다. 케르세틴은 다른 플라보노이드와 같이 항산화 효과가 있어 활성산소를 제거하고 세포나 글루타티온의 양을 적절하게 유지시키며, 면역체계를 유지시키고 히스타민의 방출과 염증반응을 조절하는 항염증 및 항 알레르기 효과 및 동맥경화를 막고 혈압을 감소시키는 효과가 있으며, 케르세틴의 배당체는 장내의 포도당 흡수를 저해하는 효과가 있는 것으로 알려져 케르세틴에 대한 연구가 다양하게 진행되고 있다 (Jeremy Appleton, ND et al ., Natural Medicine Journal, 2(1):1, 2010). Quercetin is a flavonoid known to be effective in antioxidant, anti-inflammatory and memory enhancement and is known to be found in vegetables such as apples, apricots, grapes and berries, fruits or broccoli, lettuce, tomatoes and onions. Quercetin, like other flavonoids, has antioxidant properties that remove active oxygen, maintain the proper amount of cells and glutathione, maintain anti-inflammatory and anti-allergic effects, regulate histamine release and inflammatory responses, and arteriosclerosis (Jeremy Appleton, ND et al . , Natural (2002)) . In addition , quercetin has been shown to inhibit intestinal glucose uptake Medicine Journal , 2 (1): 1, 2010).
케르세틴은 플라보노이드계 화합물들처럼 열에 대한 불안정성, 산화 조건에 대한 불안정성, 및 물에 대한 불용성 등의 문제점이 있으나, 케르세틴의 배당체는 이러한 문제가 감소하고 생물학적 이용성이 증가는 것으로 알려져 있으며, 식물체 내에서도 비배당체 형태보다는 글루코오스(glucose), 람노오스(rhamnose), 갈락토오스(galactose) 및 아라비노오스(arabinose) 등 여러 종류의 단일 또는 다수의 당과 결합된 배당체의 형태로 존재한다.Quercetin, like flavonoid compounds, has problems such as heat instability, instability of oxidizing conditions, and insolubility to water. However, quercetin glycosides are known to have such a problem to be reduced and bioavailability to be increased, But rather in the form of glycosides combined with several types of single or multiple sugars, such as glucose, rhamnose, galactose and arabinose, rather than form.
대장균(E. coli), 스트렙토미세스(Streptomyces) 및 사카로미세스(Saccharomyces) 등과 같은 미생물을 형질전환시켜 미생물의 발효산물로 플라보노이드, 이소플라보노이드 및 안토시아닌 등을 생산하는 방법이 연구가 되고 있으며, 케르세틴의 배당화에 사용되는 당전이 효소 또는, UDP-글루코오스, 슈크로오스, TDP-람노오스(TDP-rhamnose), TDP-알로오스(TDP-allose) 및 UDP-자일로오스(UDP-xylose) 등과 같은 당공여체가 세포내 과발현 되도록 미생물을 형질전환 하는 방법이 연구되고 있다 (Malla, S., et al., Appl . Environ . Microbiol ., 78:684, 2011; Park, S. R. et al ., J. Microbiol . Biotechnol., 21:1143. 2011; Trantas, E et al ., Metab . Eng ., 11:355, 2009; Yan, Y. et al ., Appl . Environ . Microbiol., 71:3617, 2005; Katsuyama, Y. et al ., Chem . Biol ., 14:613, 2007). Methods for producing flavonoids, isoflavonoids, and anthocyanins and the like as microorganism fermentation products by transforming microorganisms such as E. coli , Streptomyces , and Saccharomyces have been studied, and quercetin Such as UDP-glucose, sucrose, TDP-rhamnose, TDP-allose, and UDP-xylose, which are used for glycosylation, A method of transforming a microorganism so that the sugar donor is overexpressed in cells has been studied (Malla, S., et al ., Appl . Environ . Microbiol . , 78: 684, 2011; Park, SR et al . , J. Microbiol . Biotechnol ., 21: 1143. 2011; Trantas, E et al . , Metab . Eng ., 11: 355, 2009; Yan, Y. meat al . , Appl . Environ . Microbiol. , ≪ / RTI > 71: 3617, 2005; Katsuyama, Y. meat al . , Chem . Biol . , 14: 613, 2007).
한편, 본 발명의 발명자들은 상기와 같은 방법으로 형질전환시킨 미생물 변이체를 이용하여 3-O-람노실 케르세틴(rhamnosyl quercetin), 3-O-람노실 캠페롤(rhamnosyl kaempferol), 3-O-알로실 케르세틴(allosyl quercetin)(Simkhada, D. et al ., Biotechnol Bioeng ., 107:154, 2010), 나린게닌 7-O-자일로사이드(naringenin 7-O-xyloside)(Simkhada, D. et al ., Mol Cells ., 28:397, 2009) 등을 성공적으로 배당화시켰으며, 애기장대 유래 당전이 효소와 당공여체로 사용되는 UDP-Ara4FN의 생합성 경로와 관련된 효소를 대장균에 과발현시켜 케르세틴에서 케르세틴-3-O-Ara4FN을 생산하였다 (Kim, B. G. et al ., Chembiochem ., 11:2389, 2010). On the other hand, the inventors of the present invention using a microorganism mutant was transformed in the same manner as 3- O - Lam nosil quercetin (rhamnosyl quercetin), 3- O - Lam nosil campaign roll (rhamnosyl kaempferol), 3- O - allo Allosyl quercetin (Simkhada, D. et al . , Biotechnol Bioeng . , 107: 154, 2010), Naryn genin 7- O - Giles the side (naringenin 7- O -xyloside) (Simkhada , D. et al . , Mol Cells . , 28: 397, 2009), a stylized flower successfully allocated, the over-expression to the enzyme associated with the biosynthesis of UDP-Ara4FN the Arabidopsis thaliana derived dangjeon used as the enzyme donor and a sugar, such as E. coli quercetin in quercetin -3- O - Ara4FN (Kim, BG et < RTI ID = 0.0 > al . , & Lt ; / RTI > Chembiochem ., 11: 2389, 2010).
이에, 본 발명자들은 케르세틴에서 3-O-자일로실 케르세틴으로 제조하는 방법을 개발하고자 예의 노력한 결과, UDP-자일로오스 생합성 경로와 관련된 효소를 코딩하는 유전자 및 글리코실트랜스퍼레이즈를 코딩하는 유전자가 도입된 미생물 변이체를 이용하면 높은 전환율로 케르세틴에서 3-O-자일로실 케르세틴이 생산되는 것을 확인하고, 본 발명을 완성하게 되었다.
Therefore, the present inventors have made intensive efforts to develop a method for producing 3- O -xylosylcerecetin in quercetin. As a result, the inventors have found that a gene encoding an enzyme related to the UDP-xylose biosynthetic pathway and a gene encoding glycosyltransferase O -xylosyl quercetin was produced in quercetin at a high conversion rate when the introduced microorganism variant was used, thereby completing the present invention.
본 발명의 목적은 UDP-자일로스 생합성 경로와 관련된 효소를 코딩하는 유전자 및 글리코실트랜스퍼레이즈를 코딩하는 유전자가 도입되어 케르세틴에서 3-O-자일로실 케르세틴의 생산능을 가지는 미생물 변이체 및 미생물 변이체 이용한 케르세틴에서 3-O-자일로실 케르세틴을 제조하는 방법을 제공하는데 있다.
It is an object of the present invention to provide a microorganism variant and microorganism variant having an ability to produce 3- O -xylosylcerecetin in quercetin by introducing a gene encoding an enzyme associated with the UDP-xylose biosynthetic pathway and a gene encoding glycosyltransferase, O -xylosyl quercetin by using quercetin.
상기의 목적을 달성하기 위해서, 본 발명은 글루코오스-6-포스페이트(glucose-6-phosphate)로부터 UDP-자일로오스(UDP-xylose)를 생합성 하는 경로와 글리코실트랜스퍼레이즈(glycosyltransferase)를 코딩하는 arGt -3 유전자가 도입되어 케르세틴에서 3-O-자일로실 케르세틴의 생산능을 가지는 미생물 변이체를 제공한다. In order to accomplish the above object, the present invention provides a method for producing UDP-xylose from glucose-6-phosphate and a method for synthesizing a gene encoding a glycosyltransferase-encoding gene, -3 gene is introduced to provide a microorganism variant having the ability to produce 3- O -xylosylcercetin in quercetin.
본 발명은 또한, (a) 상기의 미생물 변이체를 케르세틴을 함유하는 배지에서 배양하여 3-O-자일로실 케르세틴을 생성하는 단계; 및 (b) 생성된 3-O-자일로실 케르세틴을 회수하는 단계를 포함하는 케르세틴에서 3-O-자일로실 케르세틴의 제조방법을 제공한다.
The present invention also relates to a method for producing 3- O -xylosyl quercetin, comprising: (a) culturing said microorganism variant in a medium containing quercetin to produce 3- O -xylosyl quercetin; And (b) the resulting 3- O - recovering the quercetin in xylene at room quercetin 3- O - provides a method for producing yarn quercetin as characters.
본 발명의 UDP-자일로오스 생합성 경로와 관련된 효소를 코딩하는 유전자 및 글리코실트랜스퍼레이즈를 코딩하는 유전자가 도입된 미생물 변이체를 이용하여 생산된 3-O-자일로실 케르세틴은 항암효과가 있어 암치료를 위한 의약품으로 개발될 수 있으며, 노화방지, 미백 및 항스트레스 등의 효과가 있기 때문에 식품 및 화장용 조성물로 유용하게 사용될 수 있다.
The 3- O -xylosyl quercetin produced using the gene encoding the enzyme related to the UDP-xylose biosynthetic pathway of the present invention and the microorganism variant into which the gene coding for glycosyltransferase is introduced has anti-cancer effect, It can be used as a food and cosmetic composition because it has effects such as anti-aging, whitening and anti-stress.
도 1은 UDP-자일로오스의 생합성 경로와 글라이코실트랜스퍼레이즈에 의해 케르세틴에 자일로오스가 배당화되어 3-O-자일로실 케르세틴을 생성단계를 나타낸 모식도이다.
도 2는 형질전환된 미생물 변이체내에서 3-O-자일로실 케르세틴을 생산하는 방법에 관한 모식도이다.
도 3은 생산된 3-O-자일로실 케르세틴을 크로마토그래피 방법을 이용해 분석한 데이터이다 (A; 3-O-자일로실 케르세틴의 TLC 분석 테이터, B: 케르세틴(●) 및 3-O-자일로실 케르세틴(★)의 HPLC 분석 테이터).
도 4는 생산된 3-O-자일로실 케르세틴의 질량분석에 관한 데이터이다 (A: 3-O-자일로실 케르세틴의 fragmentation pattern, B: 3-O-자일로실 케르세틴의 ESI-MS/MS 분석 데이타, C: 케르세틴의 ESI-MS/MS 분석 데이터).
도 5는 케르세틴을 다양한 농도로 처리했을 때 3-O-자일로실 케르세틴의 생산정도를 확인한 데이터이다.
도 6은 LB 배지, TB 배지 및 M9 배지에서 3-O-자일로실 케르세틴의 생산정도를 확인한 데이터이다.
도 7은 S1, S2, S3 및 S4 변이체에서 3-O-자일로실 케르세틴의 생산정도를 확인한 데이터이다.
도 8은 스케일 업 (scale-up) 시스템에서 3-O-자일로실 케르세틴의 생산정도를 확인한 데이터이다.FIG. 1 is a schematic diagram showing the step of generating 3- O -xylosyl quercetin by glycosylation of xylose by quercetin by biosynthesis pathway of UDP-xylose and glycosyl transferase.
FIG. 2 is a schematic diagram of a method for producing 3- O -xylosylcerquercetin in a transformed microorganism variant.
Figure 3 is a 3- O production - an analysis using a chromatographic method the yarn quercetin in xylene data (A; 3- O - xylene chamber TLC analysis data from the quercetin, a B: quercetin (●), and 3- O - HPLC analysis data of xylosyl quercetin (*)).
Figure 4 is a 3- O production - the data concerning the mass analysis chamber quercetin in xylene (A: 3- O - xylene room quercetin fragmentation pattern of a, B: 3- O - of the yarn to Giles quercetin ESI-MS / MS analysis data, C: ESI-MS / MS analysis data of quercetin).
FIG. 5 shows data on the degree of production of 3- O -xylosylcerecetin when quercetin was treated at various concentrations.
FIG. 6 shows data on the degree of production of 3- O -xylosylcercetin in LB medium, TB medium and M9 medium.
Figure 7 is data confirming the degree of production of 3- O -xylosylcherchetin in S1, S2, S3 and S4 variants.
8 is data confirming the degree of production of 3- O -xylosylcerecetin in a scale-up system.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명의 일 관점에서, 본 발명은 글루코오스-6-포스페이트(glucose-6-phosphate)로부터 UDP-자일로오스(UDP-xylose)를 생합성 하는 경로와 글리코실트랜스퍼레이즈(glycosyltransferase)를 코딩하는 arGt -3 유전자가 도입되어 케르세틴에서 3-O-자일로실 케르세틴의 생산능을 가지는 미생물 변이체에 관한 것이다. In one aspect of the invention, the invention is glucose-6-phosphate arGt encoding a trehalose (UDP-xylose) path and the glycosyl transferase raised (glycosyltransferase) that the biosynthesis as xylene from UDP- (glucose-6-phosphate) - 3 gene into a microorganism variant having the ability to produce 3- O -xylosylcercetin in quercetin.
본 발명에 있어서, UDP-자일로오스(UDP-xylose)를 생합성 하는 경로는 포스포글루코뮤네이즈(phosphoglucomutase)를 코딩하는 유전자, 글루코오스-1-포스페이트 유리딜리트랜스퍼레이즈(glucose-1-phosphate uridylyltransferase)를 코딩하는 유전자, UDP-글루코오스 디하이드로지네이즈(UDP-glucose dehydrogenase)를 코딩하는 유전자 및 UDP-글루쿠론산 디카복실레이즈(UDP-glucuronic acid decarboxylase)를 코딩하는 유전자를 포함하는 것을 특징으로 할 수 있다.In the present invention, a pathway for biosynthesis of UDP-xylose is a gene encoding phosphoglucomutase, glucose-1-phosphate uridyl lyransferase, A gene encoding UDP-glucose dehydrogenase, and a gene encoding UDP-glucuronic acid decarboxylase. The gene encoding UDP-glucose dehydrogenase may be, for example, have.
본 발명에 있어서, 포스포글루코뮤네이즈(phosphoglucomutase)를 코딩하는 유전자, 글루코오스-1-포스페이트 유리딜리트랜스퍼레이즈(glucose-1-phosphate uridylyltransferase)를 코딩하는 유전자, UDP-글루코오스 디하이드로지네이즈(UDP-glucose dehydrogenase)를 코딩하는 유전자 및 UDP-글루쿠론산 디카복실레이즈(UDP-glucuronic acid decarboxylase)를 코딩하는 유전자는 각각 nfa44530 , galU, calS8 및 calS9인 것을 특징으로 할 수 있다.In the present invention, a gene encoding phosphoglucomutase, a gene encoding glucose-1-phosphate uridylltransferase, a gene encoding UDP-glucose dihydrogenase (UDP- glucose dehydrogenase, and UDP-glucuronic acid decarboxylase are nfa44530 , galU, calS8 and calS9 , respectively.
상기의 UDP-자일로오스(UDP-xylose) 생합성 경로는 글루코오스-6-포스페이트(glucose-6-phosphate)를 글루코오스-1-포스페이트glucose-1-phosphate)로 전환시켜 최종적으로 UDP-자일로오스를 생산하는 것을 특징으로 할 수 있다. The above UDP-xylose biosynthetic pathway converts glucose-6-phosphate into glucose-1-phosphate glucose-1-phosphate and finally converts UDP-xylose into glucose- And the like.
본 발명에 있어서, 상기의 미생물 변이체는 글루코오스 포스파테이트 아이소머레이즈(glucose phosphate isomerase)를 코딩하는 유전자 및 글루코오스-6-포스페이트 디하이드로게네이즈(glucose-6-phosphate dehydrogenase)를 코딩하는 유전자 중 하나 이상이 추가로 결손되어 있는 것을 특징으로 할 수 있다. In the present invention, the microorganism variant may be a gene encoding glucose phosphate isomerase and a gene encoding glucose-6-phosphate dehydrogenase. Or more is further defective.
본 발명에 있어서, 글루코오스 포스파테이트 아이소머레이즈(glucose phosphate isomerase)를 코딩하는 유전자 및 글루코오스-6-포스페이트 디하이드로게네이즈(glucose-6-phosphate dehydrogenase)를 코딩하는 유전자는 각각 pgi 및 zwf 인 것을 특징으로 할 수 있다. In the present invention, a gene encoding glucose phosphate isomerase and a gene encoding glucose-6-phosphate dehydrogenase are referred to as pgi And zwf .
본 발명에 있어서, 유전자의 '결손' 이란 상기 유전자가 염색체상 또는 플라스미드 상에서 삭제되어 상기 유전자가 코딩하는 단백질을 생산할 수 없게 된 상태를 의미한다.In the present invention, a 'deletion' of a gene means a state in which the gene is deleted on a chromosome or a plasmid so that the gene can not produce a protein encoded by the gene.
상기의 글루코오스 포스파테이트 아이소머레이즈(glucose phosphate isomerase) 및 글루코오스-6-포스페이트 디하이드로게네이즈(glucose-6-phosphate dehydrogenase)는 글루코오스-6-포스페이트를 각각 프락토오스-6-포스페이트(fructose-6-phosphate) 및 6-포스포글루토노락톤(6-phosphogluconolactone)으로 전환시켜 해당과정(glycolysis) 및 5탄당인산경로(pentose phosphate pathway)에 사용하므로, 두 유전자를 결손시키면 해당과정(glycolysis) 및 5탄당인산경로(pentose phosphate pathway)가 차단되어 대부분의 글루코오스-6-포스페이트가 UDP-자일로오스 생합성 경로에 사용되어 UDP-자일로오스의 생산이 증가하게 된다. The above glucose phosphate isomerase and glucose-6-phosphate dehydrogenase are prepared by reacting glucose-6-phosphate with fructose-6-phosphate phosphogluconolactone and used for glycolysis and pentose phosphate pathway. When two genes are defected, glycolysis and 5-phosphogluconolactone are converted into 6-phosphogluconolactone. The pentose phosphate pathway is blocked and most of the glucose-6-phosphate is used in the UDP-xylose biosynthetic pathway, resulting in increased production of UDP-xylose.
본 발명에 있어서, 상기의 미생물은 대장균(Escherichia coli)인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다. In the present invention, the microorganism is Escherichia coli ), but the present invention is not limited thereto.
본 발명에 있어서, 상기의 포스포글루코뮤네이즈(phosphoglucomutase)는 노카디아 파시니카(Nocardia farcinica)IFM10152 유래인 것을 특징으로 할 수 있다. In the present invention, the above-mentioned phosphoglucomutase is preferably a phosphogluconase selected from the group consisting of Nocardia farcinica IFM10152. < / RTI >
본 발명에 있어서, 상기의 글루코오스-1-포스페이트 유리딜리트랜스퍼레이즈(glucose-1-phosphate uridylyltransferase)는 대장균(Escherichia coli)K-12 유래인 것을 특징으로 할 수 있다.In the present invention, the above-mentioned glucose-1-phosphate glassy 1-phosphate uridyl lransferase is preferably Escherichia coli K-12. < / RTI >
본 발명에 있어서, 상기의 UDP-글루코오스 디하이드로지네이즈(UDP-glucose dehydrogenase) 및 UDP-글루쿠론산 디카복실레이즈(UDP-glucuronic acid decarboxylase)는 마이크로모노스포라 에키노스포라(Micromonospora echinospora ssp.) 유래인 것을 특징으로 할 수 있다.In the present invention, the UDP-glucose dehydrogenase and the UDP-glucuronic acid decarboxylase may be used in combination with a micromonospora echinospora ssp.).
본 발명에 있어서, 상기 글리코실트랜스퍼레이즈(glycosyltransferase)는 애기장대(Arabidopsis thaliana ) 유래인 것을 특징으로 할 수 있다. In the present invention, the glycosyltransferase may be Arabidopsis thaliana . < / RTI >
상기 글리코실트랜스퍼레이즈(glycosyltransferase)는 UDP-자일로오스 생합성 경로를 통해 생산된 UDP-자일로오스를 이용하여 케르세틴에서 3-O-자일로실 케르세틴으로 배당화하는 것을 특징으로 할 수 있다. The glycosyltransferase may be characterized in that UDP-xylose produced through a UDP-xylose biosynthetic pathway is used to divide quercetin into 3- O -xylosyl quercetin.
본 발명의 일 실시예에서, 대장균 내에서 UDP-자일로오스를 과발현 시키기 위해, UDP-자일로스 경로와 관련된 효소인 포스포글루코뮤네이즈(phosphoglucomutase, nfa44530), 글루코오스-1-포스페이트 유리딜리트랜스퍼레이즈(glucose-1-phosphate uridylyltransferase, galU), UDP-글루코오스 디하이드로지네이즈(UDP-glucose dehydrogenase, calS8) 및 UDP-글루쿠론산 디카복실레이즈(UDP-glucuronic acid decarboxylase, calS9)와 글리코실트랜스퍼레이즈(glycosyltransferase)의 유전자를 클로닝하여 플라스미드를 제작하였다. 또한, 글루코오스 포스파테이트 아이소머레이즈(glucose phosphate isomerase)를 코딩하는 pgi 유전자 및 글루코오스-6-포스페이트 디하이드로게네이즈(glucose-6-phosphate dehydrogenase)를 코딩하는 zwf 유전자 중 하나 이상이 추가로 결실된 대장균 변이체를 제작하여 최종적으로 S1, S2, S3 및 S4 변이체를 제작하였다 (표 2). In one embodiment of the present invention, in order to overexpress UDP-xylose in E. coli, phosphoglucomutase ( nfa44530 ), an enzyme associated with the UDP-xylose pathway, glucose-1-phosphate glassylytransferase (glucose-1-phosphate uridylyltransferase, g alU), UDP- glucose-dihydro-rise centipede (UDP-glucose dehydrogenase, calS8) and UDP- glucuronic dicarboxylate raised (UDP-glucuronic acid decarboxylase, calS9 ) and a glycosyl transferase Reyes and a gene of glycosyltransferase was cloned to prepare a plasmid. In addition, the pgi gene coding for glucose phosphate isomerase and the zwf gene encoding glucose-6-phosphate dehydrogenase Escherichia coli mutants in which one or more of the genes were further deleted were finally prepared to produce S1, S2, S3 and S4 variants (Table 2).
본 발명의 다른 관점에서, 본 발명은 (a) 상기의 미생물 변이체를 케르세틴을 함유하는 배지에서 배양하여 3-O-자일로실 케르세틴을 생성하는 단계; 및 (b) 생성된 3-O-자일로실 케르세틴을 회수하는 단계를 포함하는 케르세틴에서 3-O-자일로실 케르세틴의 제조방법에 관한 것이다. In another aspect of the present invention, the present invention provides a method for producing 3- O -xylosyl quercetin, comprising: (a) culturing the microorganism variant in a medium containing quercetin to produce 3- O -xylosyl quercetin; And (b) the resulting 3- O - recovering the quercetin in xylene at room quercetin 3- O - relates to a process for producing quercetin chamber with xylene.
본 발명의 일 양태에서, 형질전환된 대장균 변이체는 글루코오스를 글루코오스-6-포스페이트로 전환시킨 후에 과발현된 UDP-자일로오스 생합성 경로와 관련된 효소에 의해 UDP-자일로오스가 생성되고, 케르세틴을 첨가하여 배양하면 대장균 변이체 내에서 과발현된 글라이코실트랜스퍼레이즈는 상기에서 생성된 UDP-자일로오스를 당공여체로 사용하여 케르세틴을 3-O-자일로실 케르세틴으로 전환시키는 과정을 거쳐 최종적으로 3-O-자일로실 케르세틴을 제조할 수 있다 (도 2). In one embodiment of the present invention, the transformed E. coli mutant is produced by converting glucose to glucose-6-phosphate and then generating UDP-xylose by an enzyme associated with the over-expressed UDP-xylose biosynthetic pathway and adding quercetin , The glycosyltransferase overexpressed in E. coli mutant is converted to 3- O -xylosyl quercetin by using UDP-xylose produced as described above as a sugar donor, and finally, 3- O -xylosyl quercetin can be prepared (Fig. 2).
본 발명의 형질전환된 대장균 변이체가 케르세틴에서 3-O-자일로실 케르세틴을 생산하는지 확인하기 위하여 S1 변이체에 케르세틴을 첨가하여 배양한 후 TLC 방법을 이용하여 분석한 결과, Rf 값은 0.5로 S1 변이체에서 3-O-자일로실 케르세틴이 생산된 것을 확인하였으며(도 3A), HPLC를 이용하여 분석한 결과, 케르세틴의 표준 물질 및 3-O-xylosyl quercetin의 표준 물질의 잔류 시간(retention time)은 14.2분 및 5.8분으로 S1 변이체의 배양 시간에 따라 케르세틴에서 3-O-자일로실 케르세틴으로 전환율이 증가하는 것을 확인하였다 (도 3B)To confirm that the transformed Escherichia coli mutant of the present invention produced 3- O -xylosyl quercetin in quercetin, quercetin was added to the S1 mutant and cultured and analyzed by the TLC method. As a result, the R f value was 0.5 3- O -xylosyl quercetin was produced in the S1 mutant (FIG. 3A). As a result, the retention time of the standard substance of quercetin and the standard substance of 3- O- xylosyl quercetin ) Showed 14.2 min and 5.8 min, indicating an increase in the conversion rate from quercetin to 3- O -xylosyl quercetin according to the incubation time of the S1 variants (Fig. 3B)
또한, 생산된 3-O-자일로실 케르세틴의 양적 확인을 위해, ESI-MS/MS(electrospray ionization tandem mass spectrometry)방법을 통해 분석한 결과, 분리된 화합물의 총 m/z 값은 433으로 S1 변이체에 의해 케르세틴([M-xyl] - m/z = 301)의 자일로실화가 된 것을 확인하였으며, 3-O-자일로실 케르세틴의 표준물질과 비교한 결과, 본 발명의 제조방법으로 생산된 3-O-자일로실 케르세틴은 표준물질과 일치하는 것을 확인할 수 있었다 (도 4 및 표 3).In addition, the production of 3- O - for quantitative check of the actual quercetin as xylene, ESI-MS / MS (electrospray ionization tandem mass spectrometry) was analyzed by the method, a total of m / z values of the isolated compound is 433 to S1 quercetin by the mutant ([M-xyl] - m / z = 301) it was found that an acylated in xylene of, 3- O - were compared with the standard of the actual quercetin as xylene, produced by the production process of the invention O -xylosyl quercetin was confirmed to be consistent with the reference material (FIG. 4 and Table 3).
본 발명의 형질전환된 대장균 변이체를 이용하여 케르세틴에서 3-O-자일로실 케르세틴의 전환수율을 높이기 위해 케르세틴의 100μM, 200μM, 300μM, 500μM 및 1000μM으로 첨가하여 3-O-자일로실 케르세틴의 전환수율을 확인한 결과, 높은 농도의 케르세틴을 첨가한 경우 세포독성으로 인해 3-O-자일로실 케르세틴의 전환수율이 감소하였으며, 100μM의 케르세틴 첨가하여 48시간 동안 배양하였을 때 8.01μM 농도로 3-O-자일로실 케르세틴이 생산되는 것을 확인하였다 (도 5). 또한, LB 배지, TB 배지 및 M9 배지를 이용하여 S1 변이체를 배양한 결과, TB 배지에서 변이체를 배양한 경우 LB 배지 및 M9 배지 보다 각각 1.43배 및 3.44배 높은 11.46μM의 3-O-자일로실 케르세틴을 생산하는 것을 확인하였다 (도 6).In order to increase the conversion yield of 3- O -xylosyl quercetin in quercetin using the transformed E. coli mutant of the present invention, 100 μM, 200 μM, 300 μM, 500 μM and 1000 μM of quercetin were added to obtain 3- O -xylosyl quercetin The conversion yield of 3- O -xylosylcerecetin was decreased due to cytotoxicity when high concentration of quercetin was added. When cultured for 48 hours with 100 μM of quercetin, the conversion yield of 3- O -xylosyl quercetin was produced (Fig. 5). When S1 mutants were cultured using LB medium, TB medium, and M9 medium, 11.46 μM 3- O -xyloin was obtained when mutants were cultured in TB medium, which were 1.43 times and 3.44 times higher than LB medium and M9 medium, respectively (Fig. 6). ≪ tb >< TABLE >
본 발명의 형질전환된 대장균 변이체에서 UDP-자일로오스의 생산을 증가시키기 위해 pgi 유전자 및 zwf 유전자가 결손된 대장균 변이체(S2, S3 및 S4)를 제작하여 3-O-자일로실 케르세틴의 전환수율을 확인한 결과, S2 변이체는 28.6%의 전환율을 보여 S1 변이체 보다 3.6배 높은 전환수율을 가지는 것을 확인하였으며, S3 변이체 및 S4 변이체 보다 각각 1.7배 및 1.32배 높은 전환수율을 가지는 것을 확인하였다 (도 7). 또한, pgi 유전자가 결손된 변이체가 zwf 유전자가 결손된 변이체에 비해 3-O-자일로실 케르세틴의 전환수율이 높은 것을 확인할 수 있었다. In order to increase the production of UDP-xylose in the transformed E. coli mutant of the present invention, Escherichia coli mutants (S2, S3 and S4) lacking the pgi gene and the zwf gene were prepared and the conversion of 3- O -xylosylcerecetin As a result, it was confirmed that the S2 mutant had a conversion rate of 28.6%, 3.6 times higher than the S1 mutant, and 1.7 times and 1.32 times higher than the S3 mutant and S4 mutant, respectively 7). In addition, it was confirmed that the mutant in which the pgi gene was deleted showed a higher conversion yield of 3- O -xylosyl quercetin than the mutant in which the zwf gene was deleted.
본 발명에서 케르세틴에서 3-O-자일로실 케르세틴으로의 높은 전환수율을 보인 S2 변이체를 이용하여 3ℓ발효조에서 케르세틴과 함께 배양하였을 때, 케르세틴에서 3-O-자일로실 케르세틴의 전환수율을 확인한 결과, 6시간 동안 배양하였을 때 약 98% (127.6mg)의 수율로 3-O-자일로실 케르세틴이 전환된 것을 확인할 수 있었다 (도 8).
When using a S2 variant showed a high conversion yield of the room as quercetin in xylene of culture with quercetin in 3ℓ fermenter, 3- O in quercetin-3- O in the present invention in confirming the quercetin in the chamber quercetin conversion yield in Giles As a result, it was confirmed that 3- O -xylosyl quercetin was converted at a yield of about 98% (127.6 mg) when cultured for 6 hours (FIG. 8).
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.
실시예1Example 1 . . UDPUDP -- 자일로스Xylose 경로관련 효소 및 Pathway-related enzymes and 글리코실트랜스퍼레이즈가Glycosyltransferase 형질전환된 대장균 변이체 제작 Production of transformed E. coli mutants
1-1 : 1-1: UDPUDP -- 자일로오스Xylose 생합성 과정 관련된 효소 및 Enzymes involved in the biosynthesis process and 글리코실트랜스퍼레이즈Glycosyltransferase 가 end 클로닝된Cloned 플라스미드 제작 Plasmid production
대장균 내에서 UDP-자일로스를 과발현 시키기 위해, UDP-자일로스 경로와 관련된 효소인 포스포글루코뮤네이즈(phosphoglucomutase, nfa44530), 글루코오스-1-포스페이트 유리딜리트랜스퍼레이즈(glucose-1-phosphate uridylyltransferase, galU), UDP-글루코오스 디하이드로지네이즈(UDP-glucose dehydrogenase, calS8) 및 UDP-글루쿠론산 디카복실레이즈(UDP-glucuronic acid decarboxylase, calS9)와 글리코실트랜스퍼레이즈(glycosyltransferase)의 유전자를 클로닝하여 플라스미드를 제작하였다.In order to overexpress UDP-xylose in E. coli, phosphoglucomutase ( nfa44530 ), glucose-1-phosphate uridyllyl transferase (g alU), UDP- glucose-dihydro-rise centipede (UDP-glucose dehydrogenase, calS8) and UDP- glucuronic dicarboxylate raised (UDP-glucuronic acid decarboxylase, calS9 ) and glycosyl by cloning the gene transfer raise (glycosyltransferase) plasmid Respectively.
우선, nfa44530(GenBank accession No. BAD59304, 서열번호 1) 유전자와 galU(GenBank accession No. BAA36104, 서열번호 2) 유전자는 nfa44530F/nfa44530R(서열번호 3 및 4)와 galUF/galUR(서열번호 5 및 6) 프라이머 쌍을 이용하여 PCR법으로 증폭시킨 후, 각각 pETDuet-1 벡터의 MCS1 (restriction sites EcoRI/HindIII) 및 MCS2 (restriction sites EcoRV/KpnI) 속에 클로닝하여 pET-nfa44530-galU 플라스미드를 제작하였다. First, the nfa44530 (GenBank accession No. BAD59304, SEQ ID NO: 1) gene and galU (GenBank accession No. BAA36104, SEQ ID NO: 2) gene are nfa44530 F / nfa44530 R (SEQ ID NOS: 3 and 4) and galU F / galU R Nos. 5 and 6) was amplified by PCR using a pair of primers, restriction sites Eco (MCS1 of each pETDuet-1 vector RI / Hin dIII) and was cloned into the MCS2 (restriction sites Eco RV / Kpn I) pET- nfa44530 -galU plasmid.
calS8 (GenBank accession No.AAM70332.1 서열번호 7) 유전자 및 calS9(Genbank accession No.AAM70333.1, 서열번호 8) 유전자는 calS8F/calS8R(서열번호 9 및 10) 및 calS9F/calS9R(서열번호 11 및 12)의 프라이머 쌍을 이용하여 PCR법으로 증폭시킨 후, 각각 pCDFDuet-1 벡터의 MCS1 (BamHI/HindIII) 및 MCS2 (NdeI/XhoI) 속에 클로닝하여 pCDF-calS89 플라스미드를 제작하였다. calS8 (GenBank accession No.AAM70332.1 SEQ ID NO: 7) gene and c alS9 (Genbank accession No.AAM70333.1, SEQ ID NO: 8) gene calS8 F / calS8 R (SEQ ID NO: 9 and 10) and calS9 F / R calS9 ( Bam HI / Hin dIII) and MCS2 ( NdeI / XhoI ) of the pCDFDuet-1 vector, respectively, and then cloned into pCDF- calS89 ( SEQ ID NO: The plasmid Respectively.
galU 유전자가 포함된 통합벡터(integration vector)를 제작하기 위하여 galU-I F/galU-I R(서열번호 13 및 14)의 프라이머 쌍을 이용하여 PCR법으로 증폭시킨 후, pLOI2223 통합벡터의 EcoRI/BamHI 제한효소 위치에 클로닝하여 pLOI2223-galU 플라스미드를 제작하였다. In order to produce a galU integrated vector (integration vector), the gene containing the galU -IF / galU -IR after using the primer pair (SEQ ID NO: 13 and 14) were amplified by PCR, pLOI2223 integration vector Eco RI / Bam HI restriction enzyme site to construct pLLO2223- galU plasmid.
애기장대(Arabidosis thaliana) 유래의 당전이효소인 arGt -3 (GenBank accession No. AF360160, 서열번호 15) 유전자는 arGt -3F/arGt -3R(서열번호 16 및 17) 프라이머를 이용하여 PCR법으로 증폭시킨 후, pET28 a(+) 벡터의 EcoRI/XhoI위치 속에 클로닝하여 pET28-arGt -3 플라스미드를 제작하였다. Arabidosis thaliana) a transferase per derived arGt -3 (GenBank accession No. AF360160, SEQ ID NO: 15) gene was amplified by PCR using the arGt -3 F / arGt -3 R (SEQ ID NO: 16 and 17) primers , and cloned into the Eco RI / Xho I site of pET28a (+) vector to construct pET28- arGt- 3 plasmid.
1-2 : 1-2: PgiPgi 유전자 및 Gene and zwfzwf 유전자가 The gene 결손된Deficient 변이체의Mutant 제작 making
본 발명의 3-O-자일로실 케르세틴의 생산을 증가시키기 위해 글루코오스 포스파테이트 아이소머레이즈(glucose phosphate isomerase)를 코딩하는 pgi 유전자 및 글루코오스-6-포스페이트 디하이드로게네이즈(glucose-6-phosphate dehydrogenase)를 코딩하는 zwf 유전자 중 하나 이상이 추가로 결실된 대장균 변이체를 제작하였다. pgi(유전자 번호, 서열번호 18) 및 zwf(유전자 번호, 서열번호 19)유전자를 FLP/FRT 시스템과 DelpgiF/DelpgiR(서열번호 20 및 21) 및 DelzwfF/DelpzwfR(서열번호 22 및 23) 프라이머를 이용하여 최종적으로 pgi 유전자와 zwf 유전자가 결손된 미생물 변이체를 확보하였다.
In order to increase the production of the 3- O -xylosyl quercetin of the present invention, the pgi gene encoding glucose phosphate isomerase and glucose-6-phosphate dehydrogenase (glucose-6-phosphate dehydrogenase) zwf coding for the dehydrogenase) Escherichia coli mutants were produced in which one or more of the genes were further deleted. pg (gene number, SEQ ID NO: 18) and zwf (gene number, SEQ ID NO: 19) genes were cloned into the FLP / FRT system and Del pgi F / Del pgi R (SEQ ID NOs: 20 and 21) Using the zwf F Del / Del pzwf R (SEQ ID NO: 22 and 23) primers finally pgi Gene and zwf And a microorganism mutant in which the gene was deleted was obtained.
1-3. 재조합 플라스미드를 이용한 형질전환체 구축1-3. Construction of Transformants Using Recombinant Plasmids
상기에서 제조된 재조합 플라스미드를 대장균(Escherichia coli, BL21) 및 pgi 유전자와 zwf 유전자가 결손 되어있는 대장균 변이체에 다양한 조건으로 도입하여 형질전환체를 구축하였다 (표 2). S1 변이체는 야생형(wild type) 대장균에 nfa44530, galU, calS8 및 calS9 유전자를 도입하였고, S2 변이체는 pgi 유전자가 결손되어있는 대장균(BL21/Δpgi)에 nfa44530, galU, calS8 및 calS9 유전자를 도입하였다. 또한, S3 변이체는 zwf 유전자가 결손 되어있는 대장균(BL21/Δzwf)에 nfa44530, galU, calS8 및 calS9 유전자를 도입하였고, S4 변이체는 통합벡터(integration vector)를 사용하여 galU 유전자가 도입되어있고 pgi 유전자가 결손 되어있는 대장균(BL21/Δpgi)에 calS8 및 calS9 유전자를 도입하였다.
The recombinant plasmids prepared above were introduced into Escherichia coli ( BL21) and Escherichia coli mutants lacking the pgi gene and the zwf gene under various conditions to construct a transformant (Table 2). S1 mutant wild-type (wild type) was introduced into the gene nfa44530, galU, calS8 and calS9 in E. coli, S2 variants were introduced nfa44530, galU, calS8 and calS9 gene in E. coli (BL21 / Δ pgi) with a pgi gene is deficient . Also, S3 variant was introduced into nfa44530, galU, calS8 and calS9 gene in E. coli (BL21 / Δ zwf) with the zwf gene is deficient, S4 variant is the galU gene transfer using the integrated vector (integration vector) and pgi It was introduced and calS8 calS9 gene in E. coli (BL21 / Δ pgi), which gene is deficient.
실험예Experimental Example 1 : 형질전환된 미생물 1: Transformed microorganism 변이체를Mutant 이용한 케르세틴에서 3- In the quercetin used, 3- OO -- 자일로실Xylosyl 케르세틴의 제조 Manufacture of quercetin
상기 실시예 1-3에서 형질전환된 미생물 변이체를 이용하여 케르세틴에서 3-O-자일로실 케르세틴의 생산 정도를 확인하기 위하여 실험을 수행하였다. Experiments were performed to confirm the production of 3- O -xylosylcerecetin in quercetin using the transformed microorganism variants in Example 1-3.
S1 변이체를 항생제를 포함하는 LB 액상 배지 3㎖에 접종시킨 후, 하룻밤 동안 7℃, 220 rpm에서 배양하였다. 배양된 S1 변이체 500㎕를 취해 5㎖ LB 배지에 접종 한 후, OD(600nm) 값이 0.6에 도달할 때까지 37℃에서 배양하였다. 그리고, IPTG(isopropyl-β-D-thiogalactopyranoside) 0.2mM을 첨가하여 20℃에서 3시간 동안 배양한 후, 케르세틴(quercetin) 100μM을 추가로 첨가하여 20℃에서 60시간 동안 220rpm으로 진탕 배양하였다. 배양하는 동안 12시간마다 300㎕를 취하여 두배 볼륨의 에틸아세테이트(ethyl acetate, JUNSEI, Japan)를 처리한 후 용매를 증발을 위해 건조시켜 농축하였다. 농축된 물질은 500㎕의 메탄올에 용해시켜 TLC 및 HPLC 등의 분석에 사용하였다.
S1 mutants were inoculated in 3 ml of LB liquid medium containing antibiotics, and then cultured overnight at 7 DEG C and 220 rpm. 500 쨉 l of the cultured S1 mutant was inoculated into 5 ml of LB medium and cultured at 37 째 C until OD (600 nm) reached 0.6. Then, 0.2 mM IPTG (isopropyl-β-D-thiogalactopyranoside) was added and cultured at 20 ° C. for 3 hours. Then, 100 μM of quercetin was further added and incubated at 20 ° C. for 60 hours with shaking at 220 rpm. During the incubation, 300 μl was taken every 12 hours, treated with twice the volume of ethyl acetate (JUNSEI, Japan), and then the solvent was evaporated to dryness and concentrated. The concentrated material was dissolved in 500 μl of methanol and used for analysis such as TLC and HPLC.
실험예Experimental Example 2. 미생물 2. Microorganisms 변이체를Mutant 이용하여 제조된 3- 3- OO -- 자일로실Xylosyl 케르세틴의 분석 Analysis of Quercetin
2-1. 2-1. TLCTLC 및 And HPLCHPLC 를 이용한 3-Lt; RTI ID = OO -- 자일로실Xylosyl 케르세틴의 분석 Analysis of Quercetin
상기 실험예 1의 S1 변이체를 이용하여 제조된 3-O-자일로실 케르세틴을 분석하기 위하여 TLC(thin-layer chromatography) 및 HPLC(High Performance Liquid Chromatography) 방법을 이용하여 분석을 하였다. O -xylosyl quercetin prepared using the S1 mutant of Experimental Example 1 was analyzed by thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC).
TLC판에 로딩된 표본은 ethyl acetate : methanol : water : toluene( 10 : 1.5 : 1.3 : 0.2 ) 조건으로 닫혀진 TLC 챔버에서 순상 시스템으로 진행하였으며, UV조명(illumination)을 통해 스팟들을 가시화하였다. 역상 HPLC분석은 C18 컬럼(Mightysil, ODS Hypersil; 4.6ⅹ250 mm; 5 μm diameter particle)과 연결된 UV 검출기(330nm)을 이용하여 70% 물(0.1% trifluroacetic acid buffer)과 30% 아세토니트릴(acetonitrile)을 1㎖/min의 유속 하에서 isocratic방법으로 진행하였다. The specimens loaded on the TLC plate were run on a normal system in a closed TLC chamber under the conditions of ethyl acetate: methanol: water: toluene (10: 1.5: 1.3: 0.2) and the spots were visualized by UV illumination. Reversed phase HPLC analysis was carried out using 70% water (0.1% trifluroacetic acid buffer) and 30% acetonitrile using a UV detector (330 nm) connected to a C18 column (Mightysil, ODS Hypersil; 4.6 × 250 mm; Lt; RTI ID = 0.0 > ml / min. ≪ / RTI >
TLC 방법을 이용하여 분석한 결과, Rf 값은 0.5로 S1 변이체에서 3-O-자일로실 케르세틴이 생산된 것을 확인하였으며(도 3A), HPLC를 이용하여 분석한 결과, 케르세틴의 표준 물질 및 3-O-xylosyl quercetin의 표준 물질의 잔류 시간(retention time)은 14.2분 및 5.8분으로 S1 변이체의 배양 시간에 따라 케르세틴에서 3-O-자일로실 케르세틴으로 전환율이 증가하는 것을 확인하였다 (도 3B)As a result of TLC analysis, it was confirmed that 3- O -xylosyl quercetin was produced in the S1 mutant ( Rf value: 0.5) (FIG. 3A). As a result of HPLC analysis, quercetin standards and 3- O- xylosyl residence time (retention time) of the reference material of quercetin is quercetin 3- O in accordance with the incubation time of the S1 mutant with 14.2 minutes and 5.8 minutes was found to increase the conversion rate as quercetin chamber in xylene (FIG. 3B)
결과물의 양적 확인을 위해, 정확한 케르세틴의 검량곡선은 다양한 농도조건에서 확인되었으며, Thermo Finnigan TSQ 7000 mass spectrometer을 이용하여ESI-MS/MS(electrospray ionization tandem mass spectrometry)을 통해 분석하였다. For the quantitative determination of the results, an accurate quercetin calibration curve was identified at various concentration conditions and analyzed by ESI-MS / MS (electrospray ionization tandem mass spectrometry) using a Thermo Finnigan TSQ 7000 mass spectrometer.
그 결과, 분리된 화합물의 총 m/z 값은 433으로 S1 변이체에 의해 케르세틴([M-xyl] - m/z = 301)의 자일로실화가 된 것을 확인하였으며, 3-O-자일로실 케르세틴의 표준물질과 비교한 결과, 본 발명의 제조방법으로 생산된 3-O-자일로실 케르세틴은 표준물질과 일치하는 것을 확인할 수 있었다 (도 4).
As a result, the total of m / z values of the isolated compounds by the S1 mutant with
2-2 : 3-O-2-2: 3-O- xylosylxylosyl quercetinquercetin 정제 및 구조 분석 Purification and structure analysis
상기 S1 변이체를 이용하여 제조된 3-O-자일로실 케르세틴을 정제하여 구조를 분석하기 위하여 실험예 1의 샘플을 isocratic 용매 시스템을 이용하여 실리카 젤 컬럼크로마토그래피를 사용하여 정제하였다. 부분적으로 정제된 결과물은 Amberlite® XAD7HP (20-60 mesh; Sigma-Aldrich)비이온 및 흡수성의 레진에 의해 정제하여 동결건조 하였으며, NMR spectra(aVarian Unity Inova 300 MHz, FT-NMR)를 이용하여 구조를 분석하였다 (표 3).
In order to purify and analyze the structure of 3- O -xylosyl quercetin prepared using the S1 mutant, the sample of Experimental Example 1 was purified using silica gel column chromatography using an isocratic solvent system. The partially purified result is Amberlite ® XAD7HP (20-60 mesh; Sigma -Aldrich) using a non-ionic and was freeze-dried to yield the resin of the absorbent, NMR spectra (
실험예Experimental Example 3. 미생물 3. Microorganisms 변이체를Mutant 이용한 케르세틴에서 케르세틴-3- Quercetin-3- OO -- 자일로사이드Xyloside 를 생산하기 위한 최적반응조건 확인Determination of optimal reaction conditions to produce
본 발명의 형질전환된 대장균 변이체를 이용하여 케르세틴에서 케르세틴-3-O-자일로사이드를 생산하기 위한 최적반응조건을 확립하기 위해, S1 변이체를 상기 실험예 1과 같은 방법으로 배양한 후에 케르세틴의 농도를 100μM, 200μM, 300μM, 500μM 및 1000μM가 되도록 첨가하여 20℃에서 60시간 동안 배양하였으며, 12시간 간격으로 샘플링하여 분석하였다. In order to establish optimal reaction conditions for producing quercetin-3- O -xyloside in quercetin using the transformed E. coli mutant of the present invention, the S1 mutant was cultured in the same manner as in Experimental Example 1, The concentrations were 100 μM, 200 μM, 300 μM, 500 μM and 1000 μM, and cultured at 20 ° C. for 60 hours.
그 결과, 다른 조건들에 비해 100μM의 케르세틴을 첨가하여 48시간 동안 배양하였을 때 8.01μM로 3-O-자일로실 케르세틴이 많이 생산된 것을 확인하였다 (도 5). 이는 높은 농도의 케르세틴을 첨가하면 세포 독성으로 인해 세포의 성장이 이루어지지 않기 때문으로 볼 수 있다. As a result, it was confirmed that 3- O -xylosyl quercetin was abundantly produced at 8.01 μM when quercetin was added at 100 μM for 48 hours compared with other conditions (FIG. 5). This can be attributed to the lack of cell growth due to cytotoxicity when high concentrations of quercetin are added.
또한, 최적반응조건을 정하기 위하여 LB 배지, TB 배지 및 M9 배지를 이용하여 S1 변이체를 실험예 1과 같은 방법으로 배양한 결과, TB 배지에서 변이체를 배양하였을 때, LB 배지 및 M9 배지 보다 각각 1.43배 및 3.44배 높은 11.46μM의 3-O-자일로실 케르세틴을 생산하는 것을 확인하였다 (도 6).
In order to determine the optimal reaction conditions, S1 mutants were cultured in the same manner as in Experimental Example 1 using LB medium, TB medium, and M9 medium. As a result, when the mutants were cultured in TB medium, the mutants were 1.43 O -xylosyl quercetin (FIG. 6).
실험예Experimental Example 4. 다양한 조건의 미생물 4. Microorganisms of various conditions 변이체를Mutant 이용한 케르세틴에서 Using quercetin 3-3- OO -자일로실 케르세틴의 제조- Preparation of xylosyl quercetin
본 발명의 형질전환된 대장균 변이체를 이용하여 케르세틴에서 3-O-자일로실 케르세틴의 전환수율을 높이기 위해 실시예 1에서와 같이 글루코오스 포스파테이트 아이소머레이즈(glucose phosphate isomerase)를 코딩하는 pgi 유전자 및 글루코오스-6-포스페이트 디하이드로게네이즈(glucose-6-phosphate dehydrogenase)를 코딩하는 zwf 유전자가 결손된 대장균 변이체(S2, S3 및 S4)를 제작하여 TB 배지를 이용하여 실험예 1과 같은 방법으로 배양한 후 3-O-자일로실 케르세틴으로의 전환수율을 확인하였다. In order to increase the conversion yield of 3- O -xylosyl quercetin in quercetin by using the transformed E. coli mutant of the present invention, as in Example 1, the pgi gene encoding glucose phosphate isomerase (S2, S3 and S4) lacking the zwf gene coding for glucose-6-phosphate dehydrogenase were prepared and subjected to the same procedure as in Experimental Example 1 using TB medium After cultivation, the conversion yield to 3- O -xylosyl quercetin was confirmed.
그 결과, S2 변이체는 28.6%의 전환율을 보여 S1 변이체 보다 3.6배 높은 전환수율을 가지는 것을 확인하였으며, S3 변이체 및 S4 변이체 보다 각각 1.7배 및 1.32배 높은 전환수율을 가지는 것을 확인하였다 (도 7). 또한, pgi 유전자가 결손된 변이체가 zwf 유전자가 결손된 변이체에 비해 3-O-자일로실 케르세틴의 전환수율이 높은 것을 확인할 수 있었다.
As a result, it was confirmed that the S2 mutant had a conversion rate of 28.6%, which was 3.6 times higher than the S1 mutant, and 1.7 and 1.32 times higher conversion efficiency than the S3 and S4 mutants, respectively (FIG. 7) . Also, pgi It was confirmed that the mutant lacking the gene had a higher conversion yield of 3- O -xylosyl quercetin than the mutant lacking the zwf gene.
실험예Experimental Example 5. 발효조를 이용한 스케일 업 ( 5. Scale up using fermenter ( scalescale -- upup ) 시스템에서 케르세틴에서 ) From quercetin in the system 3-3- OO -자-character 일Work 로실 케르세틴의 제조Manufacture of losyl quercetin
상기에서 높은 전환수율을 보인 S2 변이체를 이용하여 3ℓ발효조에서 배양하였을 때, 케르세틴에서 3-O-자일로실 케르세틴의 전환수율을 확인하기 위한 실험을 수행하였다. When the S2 mutant showing a high conversion yield was cultured in a 3 L fermenter, an experiment was conducted to confirm the conversion yield of 3- O -xylosyl quercetin in quercetin.
S2 변이체를 항생제를 포함하는 TB 액상 배지 300㎖에 접종시킨 후, 하룻밤 동안 7℃, 220rpm에서 배양하였다. 배양된 S2 변이체를 3ℓ 멸균된 TB 배지와 함께 무균상태에서 발효조 안에 첨가하였다. 암모니움 하이드로옥사이드(ammonium hydroxide, 28%; DAEJUNG, Korea)를 이용하여 pH는 7.0으로 유지하였으며, 용존산소량(DO) 95% 이상으로 시작하여 20%이하로 내려가지 않도록 유지하였다. 600nm에서의 흡광도가 최소 5의 값을 보였을 때, 0.2mM IPTG를 첨가하여 5시간 동안 배양한 후에 최종농도가 100μM이 되도록 케르세틴을 첨가하여 25℃에서 48시간 동안 배양하였다. 배양하는 동안 배지에 글루코오스 용액이 공급되었으며, 4시간 간격으로 샘플링하여 HPLC분석에 사용하였다. S2 mutants were inoculated in 300 ml of TB liquid medium containing antibiotics, and then cultured overnight at 7 DEG C and 220 rpm. The cultured S2 mutant was added to the fermenter in sterile condition with 3 L sterilized TB medium. The pH was kept at 7.0 using ammonium hydroxide (28%; DAEJUNG, Korea) and maintained at 95% or more of dissolved oxygen (DO) and kept below 20%. When the absorbance at 600 nm was at least 5, 0.2 mM IPTG was added and cultured for 5 hours. Then, quercetin was added to a final concentration of 100 μM and cultured at 25 ° C for 48 hours. Glucose solution was fed to the medium during incubation and sampled at 4 hour intervals for HPLC analysis.
그 결과, 36시간 배양하였을 때 약 98%(127.6mg)의 수율로 3-O-자일로실 케르세틴이 생산된 것을 확인하였다 (도 8).
As a result, it was confirmed that 3- O -xylosyl quercetin was produced at a yield of about 98% (127.6 mg) when cultured for 36 hours (FIG. 8).
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
<110> Sunmoon University Industry-University Cooperation Foundation <120> Method for Preparing 3-O-Xylosyl Quercetin from Quercetin Using Microorganism Mutants <130> P12-B113 <160> 23 <170> KopatentIn 2.0 <210> 1 <211> 1689 <212> DNA <213> Escherichia coli K-12 nfa44530 <400> 1 tcacggctgg agcgccttgc ccaccatctc ctcggcggcg gcctggacct gggcgaggtg 60 ctcggggccc tggaacgact cggcgtagat cttgtacttg tcctcggtgc cggagggccg 120 ggccgcgaac caggcgttct cggtggtcac cttcaacccg cccaggggcg cgccgttgcc 180 gggggcgcgg gtgagcacgg cggtgatcgg ctcgccggcg atctcttcgc tggtgatcat 240 gtccggtgtc aactgcgaaa gcagcttctt ctgttccgcg ccggccggtg cgtcgatgcg 300 ggcgtaggcg gggctgccgt accggcgctc gagttcgccg tagcgggccg agggggtctg 360 gccggtgacg gcggcgatct cggcggccag cagggccagc aggatgccgt ccttgtcggt 420 ggtccacacg gtgccgtcca tgcgcaggaa cgacgcgccc gcgctctcct cgccgccgaa 480 agcgagactg ccgctgaaca atccgggcac gaaccatttg aagccgaccg gcacctcgtg 540 cacctggcgg ccgagcacgc tcaccacccg gtccaccatc gacgaggtga cgacggtctt 600 gccgatcttg gtcagcgcgt cccagcccat ccggttggcg accaggtatt cgatggcgac 660 ggccaggaag tggttggggt tcatcaggcc accgtcgggg gtgacgatgc cgtgccggtc 720 ggcgtcggcg tcgttgccgg tggagatgtc gtagtcgtcc ttgatcgcga cgagcccggc 780 catggcgtag cgggaggagg gatccatgcg gatcttgccg tcgctgtcga gggtcatgaa 840 acgccaggtg gggtcgacga acgggttgac gacctcgagc tcgaggtcgt agcgctggcc 900 gatctcctcc cagtagtcga cgctggcgcc gcccatcggg tcggcgccga gccggatgcc 960 cgcgccgcga atcgcgtcca ggttcagcac attcggcagg tcggcgatgt agtggtcgag 1020 gtagtcgtag cgttcgacgc cggtggccag cgcctgctgg taggtggcgc gacgcacccc 1080 tgtcagcccg tcggccagca gttcgttggc gcgggcggcg atggcgtcgg tgacgccggt 1140 gtcggccgga ccaccgtgcg gggggttgta tttgaagccg ccgtcgcggg gcgggttgtg 1200 tgagggggtc accacgatgc cgtcggcctg gtgcttggtg ccgccgcggt tgtgccgcag 1260 cacggcgtgg ctcagcgccg gggtgggggt gtagcggtcg cgggcgtcga tcatggcggt 1320 gacgccgttg ccggccagca cctcgagggc ggtggtccag gcgggctcgg acagcgcgtg 1380 ggtgtcgcgg gccaggtaga ccgggcccgt gatgccgcgc gtggcacggt attccacgat 1440 cgcctgggtg atggcgagga tgtgggcttc gttgaacgcg cagtccaggc tggacccgcg 1500 gtgtcccgag gtgccgaaca ccactcgctg tgccggatcc cgcggatcgg gcacgcggct 1560 gaagtaggcg gtcaccaggt gcgcgatgtc gtccaggtcg ctcgcgcgcg cgggacgccc 1620 ggctcgatcg tgggccatgc tcgggtctcc cttccaggtc ggctgcgccc ggctcgtcat 1680 caggatcat 1689 <210> 2 <211> 909 <212> DNA <213> Escherichia coli K-12 galU <400> 2 atggctgcca ttaatacgaa agtcaaaaaa gccgttatcc ccgttgcggg attaggaacc 60 aggatgttgc cggcgacgaa agccatcccg aaagagatgc tgccacttgt cgataagcca 120 ttaattcaat acgtcgtgaa tgaatgtatt gcggctggca ttactgaaat tgtgctggtt 180 acacactcat ctaaaaactc tattgaaaac cactttgata ccagttttga actggaagca 240 atgctggaaa aacgtgtaaa acgtcaactg cttgatgaag tgcagtctat ttgtccaccg 300 cacgtgacta ttatgcaagt tcgtcagggt ctggcgaaag gcctgggaca cgcggtattg 360 tgtgctcacc cggtagtggg tgatgaaccg gtagctgtta ttttgcctga tgttattctg 420 gatgaatatg aatccgattt gtcacaggat aacctggcag agatgatccg ccgctttgat 480 gaaacgggtc atagccagat catggttgaa ccggttgctg atgtgaccgc atatggcgtt 540 gtggattgca aaggcgttga attagcgccg ggtgaaagcg taccgatggt tggtgtggta 600 gaaaaaccga aagcggatgt tgcgccgtct aatctcgcta ttgtgggtcg ttacgtactt 660 agcgcggata tttggccgtt gctggcaaaa acccctccgg gagctggtga tgaaattcag 720 ctcaccgacg caattgatat gctgatcgaa aaagaaacgg tggaagccta tcatatgaaa 780 gggaagagcc atgactgcgg taataaatta ggttacatgc aggccttcgt tgaatacggt 840 attcgtcata acacccttgg cacggaattt aaagcctggc ttgaagaaga gatgggcatt 900 aagaagtaa 909 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> nfa44530F <400> 3 gaattcgatg atcctgatga cgagccggg 29 <210> 4 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> nfa44530R <400> 4 aagctttcac ggctggagcg ccttgcc 27 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> galUF <400> 5 gatatcgatg gctgccatta atacgaaagt 30 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> galUR <400> 6 ggtaccttac ttcttaatgc ccatctcttc 30 <210> 7 <211> 1362 <212> DNA <213> Nocardia farcinica IFM10152 calS8 <400> 7 atgccgttcc ttcccgaccc gggcgaaccg tccccgctga aggtggtcat cgccggcgcc 60 ggctacgtcg gcacctgtct cgccgtcacc ctcgccggcc gcggcgccga ggtggtcgcg 120 gtcgacagcg acccgggcac cgtcgcggac ctgcgggccg gccggtgccg gctgcccgag 180 cccggcctgg ccggcgccgt ccgggacctc gccgcgaccg gacggctgac ggcgagcacg 240 tcgtacgacc cggtcggcgc ggcggacgtg gtgatcgtga cggtcggcac cccgaccgac 300 gccggccacg agatggtcac cgaccagctc gtcgcggcgt gcgagcagat cgccccgcgg 360 ctgcgcgccg ggcaactggt gatcctcaag tcgacggtct ccccgggcac cacccggacc 420 ctcgtcgcgc ccctgctgga gagcggcggg ctggtgcacg agcgcgactt cgggctggcc 480 ttctgcccgg agcggctcgc cgagggggtg gcgctggcgc aggtgcggac gctgccggtg 540 gtggtgggtg ggtgcggccc gcgcagcgcc gccgcggccg aacggttctg gcggtccgcg 600 ctcggcgtcg acgtccggca ggtgccgtcg gccgagtccg ccgaggtggt caagctcgcg 660 accaactggt ggatcgacgc gaacgtggcg atcgccaacg aactcgcccg gtactgcgcg 720 gtgctggggg tggacgtcct cgacgtgatc ggcgcggcga acaccctgcc caagggcagc 780 agcatggtga acctgctgct gccgggggtg ggtgtcggcg gctcctgcct gacgaaggac 840 ccgtggatgg cgtggcggga cggccgggac cggggcgtgc ccctgcgcac ggtcgagacg 900 gcccgcgcgg tcaacgacga catgccccgc cacaccgccg ccgtcatcgc cgacgagctg 960 gtcaagctgg gacgggatcg gaacgacacg acgatcgccg tgctcggcgc ggcgttcaag 1020 aacgacaccg gcgacgtccg caacaccccg gtgcgcgggg tcgtggcggc gctgcgcgac 1080 agcggcttcc gggtccggat cttcgacccg ctggccgatc ccgccgagat cgtcgcccgg 1140 ttcggcaccg cgccggcggc gagcctggac gaggcggtga gcggggcggg ctgcctggcc 1200 ttcctcgccg ggcaccgcca gttccacgag ctcgacttcg gcgccctggc cgagcgggtg 1260 gacgagccct gcctggtctt cgacggccgc atgcacctcc cgccggcgcg catccgcgag 1320 ctgcaccggt tcggcttcgc ctaccgcggc attggaaggt ga 1362 <210> 8 <211> 990 <212> DNA <213> Nocardia farcinica IFM10152 calS9 <400> 8 gtgcccagat ccctggtcac cggcggcttc ggcttcgtcg gcagtcacgt cgtcgaacgg 60 ctggtccgcc ggggtgacga ggtcgtcgtc tacgacctcg ccgacccgcc gcccgacctg 120 gagcacccgc cgggcgcgat ccggcacgtc cgcggcgacg tccgggacgc cgacgggctg 180 gcggccgccg ccaccggcgt ggacgaggtc taccacctcg cggcggtcgt cggcgtcgac 240 cggtacctca gccggccgct ggacgtggtc gagatcaacg tggacggcac ccggaacgcg 300 ttgcgcgccg cactgcgcgc cggtgcccgg gtcgtggtgt ccagcaccag cgaggtgtac 360 gggcgcaatc cgcgggtgcc gtggcgggag gacgacgacc gggtgctcgg cagcacggcg 420 acggaccggt ggtcgtactc gacgagcaag gcggcggccg agcacctggc cttcgccttc 480 caccggcagg agggcctgcc ggtgacggtg ctgcggtact tcaacgtcta cggcccacgc 540 cagcgcccgg cgtacgtcct cagccgcacc gtcgcccgcc tgctgcgggg cgttccgccc 600 gtggtgtacg acgacggccg ccagacgcgg tgcttcacct ggatcgacga ggcggccgag 660 gcgaccctgc tggccgccgc ccacccgcgg gccgtcggcg agtgtttcaa catcggcagc 720 agcgtggaga ccaccgtcgc cgaggcggtc cggctggccg gcacggtggc cggggtgccg 780 gtggcggccc agaccgcgga caccggagcc gggctcggcg cccgctacca ggacattccc 840 cgccgcgtac cggactgcgg caaggccgcc gcgctgctgg actggcgggc ccgggtgccg 900 ctggtgaccg gcctgcgccg gaccgtcgag tgggcccgcc gcaacccgtg gtggaccgcc 960 caggccgacg acggactggt cgtcaggtag 990 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> calS8F <400> 9 agcggatccc atcatgccgt tccttcc 27 <210> 10 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> calS8R <400> 10 agcaagcttt caccttccaa tgccgc 26 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> calS9F <400> 11 aaccatatgc ccagatccct ggtcacc 27 <210> 12 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> calS9R <400> 12 agtctcgagc tacctgacga ccagtcc 27 <210> 13 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> galU-IF <400> 13 agcgaattca tggctgccat taatacg 27 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> galU-IR <400> 14 gcaggatcct tacttcttaa tgcccat 27 <210> 15 <211> 1533 <212> DNA <213> Arabidopsis thaliana putative UDP glucose:flavonoid 3-o-glucosyltransferase <400> 15 atcattcact cacgacacta accatgacca aattctccga gccaatcaga gactcccacg 60 tggcagttct cgcgtttttc cccgttggcg ctcatgccgg tcctctctta gccgtcactc 120 gccgtctcgc cgccgcttct ccctccacca tcttttcttt cttcaacacc gcaagatcaa 180 acgcgtcgtt gttctcctct gatcatcccg agaacatcaa ggtccacgac gtctctgacg 240 gtgttccgga gggaaccatg ctcgggaatc cactggagat ggtcgagctg tttctcgaag 300 cggctccacg tattttccgg agcgaaatcg cggcggcaga gatagaagtt ggaaagaaag 360 tgacatgcat gctaacagat gccttcttct ggttcgcagc ggacatagcg gctgagctga 420 acgcgacttg ggttgccttc tgggccggcg gagcaaactc actctgtgct catctctaca 480 ctgatctcat cagagaaacc atcggtctca aagatgtgag tatggaagag acattagggt 540 ttataccagg aatggagaat tacagagtta aagatatacc agaggaagtt gtatttgaag 600 atttggactc tgttttccca aaggctttat accaaatgag tcttgcttta cctcgtgcct 660 ctgctgtttt catcagttcc tttgaagagt tagaacctac attgaactat aacctaagat 720 ccaaacttaa acgtttcttg aacatcgccc ctctcacgtt attatcttct acatcggaga 780 aagagatgcg tgatcctcat ggctgctttg cttggatggg gaagagatca gctgcttctg 840 tagcgtacat tagcttcggc accgtcatgg aacctcctcc tgaagagctt gtggcgatag 900 cacaagggtt ggaatcaagc aaagtgccgt ttgtttggtc gctgaaggag aagaacatgg 960 ttcatctacc aaaagggttt ttggatcgga caagagagca agggatagtg gttccttggg 1020 ctccacaagt ggaactgctg aaacacgagg caatgggtgt gaatgtgaca cattgtggat 1080 ggaactcagt gttggagagt gtgtcggcag gtgtaccgat gatcggcaga ccgattttgg 1140 cggataatag gctcaacgga agagcagtgg aggttgtgtg gaaggttgga gtgatgatgg 1200 ataatggagt cttcacgaaa gaaggatttg agaagtgttt gaatgatgtt tttgttcatg 1260 atgatggtaa gacgatgaag gctaatgcca agaagcttaa agaaaaactc caagaagatt 1320 tctccatgaa aggaagctct ttagagaatt tcaaaatatt gttggacgaa attgtgaaag 1380 tttaggttgt ttacaacata attgaagact ataaatgtga tttcaaaatt aacaaaatca 1440 tagtcaaata agtgtgtgcc tattctattt tgtcaaagta agagtgtatg gatctattct 1500 atttcaaagg gttgttgaaa aaaaaaaaaa aaa 1533 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> argt-3F <400> 16 agcgaattca tgaccaaatt ctccgag 27 <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> argt-3R <400> 17 agcctcgagc taaactttca caatttc 27 <210> 18 <211> 1650 <212> DNA <213> Escherichia coli phosphoglucoseisomerase <400> 18 atgaaaaaca tcaatccaac gcagaccgct gcctggcagg cactacagaa acacttcgat 60 gaaatgaaag acgttacgat cgccgatctt tttgctaaag acggcgatcg tttttctaag 120 ttctccgcaa ccttcgacga tcagatgctg gtggattact ccaaaaaccg catcactgaa 180 gagacgctgg cgaaattaca ggatctggcg aaagagtgcg atctggcggg cgcgattaag 240 tcgatgttct ctggcgagaa gatcaaccgc actgaaaacc gcgccgtgct gcacgtagcg 300 ctgcgtaacc gtagcaatac cccgattttg gttgatggca aagacgtaat gccggaagtc 360 aacgcggtgc tggagaagat gaaaaccttc tcagaagcga ttatttccgg tgagtggaaa 420 ggttataccg gcaaagcaat cactgacgta gtgaacatcg ggatcggcgg ttctgacctc 480 ggcccataca tggtgaccga agctctgcgt ccgtacaaaa accacctgaa catgcacttt 540 gtttctaacg tcgatgggac tcacatcgcg gaagtgctga aaaaagtaaa cccggaaacc 600 acgctgttcc tggtagcatc taaaaccttc accactcagg aaactatgac caacgcccat 660 agcgcgcgtg actggttcct gaaagcggca ggtgatgaaa aacacgttgc aaaacacttt 720 gcggcgcttt ccaccaatgc caaagccgtt ggcgagtttg gtattgatac tgccaacatg 780 ttcgagttct gggactgggt tggcggccgt tactctttgt ggtcagcgat tggcctgtcg 840 attgttctct ccatcggctt tgataacttc gttgaactgc tttccggcgc acacgcgatg 900 gacaagcatt tctccaccac gcctgccgag aaaaacctgc ctgtactgct ggcgctgatt 960 ggcatctggt acaacaattt ctttggtgcg gaaactgaag cgattctgcc gtatgaccag 1020 tatatgcacc gtttcgcggc gtacttccag cagggcaata tggagtccaa cggtaagtat 1080 gttgaccgta acggtaacgt tgtggattac cagactggcc cgattatctg gggtgaacca 1140 ggcactaacg gtcagcacgc gttctaccag ctgatccacc agggaaccaa aatggtaccg 1200 tgcgatttca tcgctccggc tatcacccat aacccgctct ctgatcatca ccagaaactg 1260 ctgtctaact tcttcgccca gaccgaagcg ctggcgtttg gtaaatcccg cgaagtggtt 1320 gagcaggaat atcgtgatca gggtaaagat ccggcaacgc ttgactacgt ggtgccgttc 1380 aaagtattcg aaggtaaccg cccgaccaac tccatcctgc tgcgtgaaat cactccgttc 1440 agcctgggtg cgttgattgc gctgtatgag cacaaaatct ttactcaggg cgtgatcctg 1500 aacatcttca ccttcgacca gtggggcgtg gaactgggta aacagctggc gaaccgtatt 1560 ctgccagagc tgaaagatga taaagaaatc agcagccacg atagctcgac caatggtctg 1620 attaaccgct ataaagcgtg gcgcggttaa 1650 <210> 19 <211> 1477 <212> DNA <213> Escherichia coli glucose 6-phosphate-1-dehydrogenase <400> 19 atggcggtaa cgcaaacagc ccaggcctgt gacctggtca ttttcggcgc gaaaggcgac 60 cttgcgcgtc gtaaattgct gccttccctg tatcaactgg aaaaagccgg tcagctcaac 120 ccggacaccc ggattatcgg cgtagggcgt gctgactggg ataaagcggc gtataccaaa 180 gttgtccgcg aggcgctcga aactttcatg aaagaaacca ttgatgaagg tttatgggac 240 accctgagtg cacgtctgga tttttgtaat ctcgatgtca atgacactgc tgcattcaac 300 cgtctcggcg cgatgctgga tcaaaaaaat cgtatcacca ttaactactt tgccatgccg 360 cccagcactt ttggcgcaat ttgcaaaggg cttggcgagg caaaactgaa tgctaaaccg 420 gcacgcgtag tcatggagaa accgctgggg acgtcgctgg cgacctcgca ggaaatcaat 480 gatcaggttg gcgaatactt cgaggagtgc caggtttacc gtatcgacca ctatcttggt 540 aaagaaacgg tgctgaacct gttggcgctg cgttttgcta actccctgtt tgtgaataac 600 tgggacaatc gcaccattga tcatgttgag attaccgtgg cagaagaagt ggggatcgaa 660 gggcgctggg gctattttga taaagccggt cagatgcgcg atatgatcca aaaccacctg 720 ctgcaaattc tctgcatgat tgcgatgtct ccgccatctg acctgagcgc agacagcatc 780 cgcgatgaaa aagtgaaagt actgaagtcc ctgcgccgca tcgaccgctc caacgtacgc 840 gaaaaaaccg tacgtgggca atatactgcg ggcttcgccc agggcaaaaa agtgccggga 900 tatctggaag aagagggcgc gaacaagagc agcaatacag aaaccttcgt ggcgatccgc 960 gtcgacattg ataactggcg ctgggccggt gtgccattct acctgcgtac tggtaaacgt 1020 ctgccgacca aatgttctga agtcgtggtc tatttcaaaa cacctgaact gaatctgttt 1080 aaagagtcgt ggcaggatct gccgcagaat aaactgacta tccgtctgca acctgatgaa 1140 ggcgtggata tccaggtact gaataaagtt cctggccttg accacaaaca taacctgcaa 1200 atcaccaagc tggatctgag ctattcagaa acctttaatc agacgcatct ggcggatgcc 1260 tatgaacgtc tgctgctgga aaccatgcgt ggtattcagg cactgtttgt tcgtcgcgac 1320 gaagtggaag aagcctggaa atgggtagac tccattactg aggcgtgggc gatggacaat 1380 gatgcgccga aaccgtatca ggccggaacc tggggacccg ttgcctcggt ggcgatgatt 1440 acccgtgatg gtcgttcctg gaatgagttt gagtaat 1477 <210> 20 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> DelpgiF <400> 20 ttccaaagtc acaattctca aaatcagaag agtattgcta gtgtaggctg gagctgcttc 60 60 <210> 21 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> DelpgiR <400> 21 gcggcgtgaa cgccttatcc ggcctacata tcgacgatga catatgaata tcctccttag 60 60 <210> 22 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> DelzwfF <400> 22 ctggcttaag taccgggtta gttaacttaa ggagaatgac gtgtaggctg gagctgcttc 60 60 <210> 23 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> DelzwfR <400> 23 atgttaccgg taaaataacc ataaaggata agcgcagata catatgaata tcctccttag 60 60 <110> Sunmoon University Industry-University Cooperation Foundation <120> Method for Preparing 3-O-Xylosyl Quercetin from Quercetin Using Microorganism Mutants <130> P12-B113 <160> 23 <170> Kopatentin 2.0 <210> 1 <211> 1689 <212> DNA <213> Escherichia coli K-12 nfa44530 <400> 1 tcacggctgg agcgccttgc ccaccatctc ctcggcggcg gcctggacct gggcgaggtg 60 ctcggggccc tggaacgact cggcgtagat cttgtacttg tcctcggtgc cggagggccg 120 ggccgcgaac caggcgttct cggtggtcac cttcaacccg cccaggggcg cgccgttgcc 180 gggggcgcgg gtgagcacgg cggtgatcgg ctcgccggcg atctcttcgc tggtgatcat 240 gtccggtgtc aactgcgaaa gcagcttctt ctgttccgcg ccggccggtg cgtcgatgcg 300 ggcgtaggcg gggctgccgt accggcgctc gagttcgccg tagcgggccg agggggtctg 360 gccggtgacg gcggcgatct cggcggccag cagggccagc aggatgccgt ccttgtcggt 420 ggtccacacg gtgccgtcca tgcgcaggaa cgacgcgccc gcgctctcct cgccgccgaa 480 agcgagactg ccgctgaaca atccgggcac gaaccatttg aagccgaccg gcacctcgtg 540 cacctggcgg ccgagcacgc tcaccacccg gtccaccatc gacgaggtga cgacggtctt 600 gccgatcttg gtcagcgcgt cccagcccat ccggttggcg accaggtatt cgatggcgac 660 ggccaggaag tggttggggt tcatcaggcc accgtcgggg gtgacgatgc cgtgccggtc 720 ggcgtcggcg tcgttgccgg tggagatgtc gtagtcgtcc ttgatcgcga cgagcccggc 780 catggcgtag cgggaggag gatccatgcg gatcttgccg tcgctgtcga gggtcatgaa 840 acgccaggtg gggtcgacga acgggttgac gacctcgagc tcgaggtcgt agcgctggcc 900 gatctcctcc cagtagtcga cgctggcgcc gcccatcggg tcggcgccga gccggatgcc 960 cgcgccgcga atcgcgtcca ggttcagcac attcggcagg tcggcgatgt agtggtcgag 1020 gtagtcgtag cgttcgacgc cggtggccag cgcctgctgg taggtggcgc gacgcacccc 1080 tgtcagcccg tcggccagca gttcgttggc gcgggcggcg atggcgtcgg tgacgccggt 1140 gtcggccgga ccaccgtgcg gggggttgta tttgaagccg ccgtcgcggg gcgggttgtg 1200 tgagggggtc accacgatgc cgtcggcctg gtgcttggtg ccgccgcggt tgtgccgcag 1260 ccggcgtgg ctcagcgccg gggtgggggt gtagcggtcg cgggcgtcga tcatggcggt 1320 gacgccgttg ccggccagca cctcgagggc ggtggtccag gcgggctcgg acagcgcgtg 1380 ggtgtcgcgg gccaggtaga ccgggcccgt gatgccgcgc gtggcacggt attccacgat 1440 cgcctgggtg atggcgagga tgtgggcttc gttgaacgcg cagtccaggc tggacccgcg 1500 gtgtcccgag gtgccgaaca ccactcgctg tgccggatcc cgcggatcgg gcacgcggct 1560 gaagtaggcg gtcaccaggt gcgcgatgtc gtccaggtcg ctcgcgcgcg cgggacgccc 1620 ggctcgatcg tgggccatgc tcgggtctcc cttccaggtc ggctgcgccc ggctcgtcat 1680 caggatcat 1689 <210> 2 <211> 909 <212> DNA <213> Escherichia coli K-12 galU <400> 2 atggctgcca ttaatacgaa agtcaaaaaa gccgttatcc ccgttgcggg attaggaacc 60 aggatgttgc cggcgacgaa agccatcccg aaagagatgc tgccacttgt cgataagcca 120 ttaattcaat acgtcgtgaa tgaatgtatt gcggctggca ttactgaaat tgtgctggtt 180 acacactcat ctaaaaactc tattgaaaac cactttgata ccagttttga actggaagca 240 atgctggaaa aacgtgtaaa acgtcaactg cttgatgaag tgcagtctat ttgtccaccg 300 ccgtgacta ttatgcaagt tcgtcagggt ctggcgaaag gcctgggaca cgcggtattg 360 tgtgctcacc cggtagtggg tgatgaaccg gtagctgtta ttttgcctga tgttattctg 420 gatgaatatg aatccgattt gtcacaggat aacctggcag agatgatccg ccgctttgat 480 gaaacgggtc atagccagat catggttgaa ccggttgctg atgtgaccgc atatggcgtt 540 gtggattgca aaggcgttga attagcgccg ggtgaaagcg taccgatggt tggtgtggta 600 gaaaaaccga aagcggatgt tgcgccgtct aatctcgcta ttgtgggtcg ttacgtactt 660 agcgcggata tttggccgtt gctggcaaaa acccctccgg gagctggtga tgaaattcag 720 ctcaccgacg caattgatat gctgatcgaa aaagaaacgg tggaagccta tcatatgaaa 780 gggaagagcc atgactgcgg taataaatta ggttacatgc aggccttcgt tgaatacggt 840 attcgtcata acacccttgg cacggaattt aaagcctggc ttgaagaaga gatgggcatt 900 aagaagtaa 909 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> nfa44530F <400> 3 gaattcgatg atcctgatga cgagccggg 29 <210> 4 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> nfa44530R <400> 4 aagctttcac ggctggagcg ccttgcc 27 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> galUF <400> 5 gatatcgatg gctgccatta atacgaaagt 30 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> gall <400> 6 ggtaccttac ttcttaatgc ccatctcttc 30 <210> 7 <211> 1362 <212> DNA <213> Nocardia farcinica IFM10152 calS8 <400> 7 atgccgttcc ttcccgaccc gggcgaaccg tccccgctga aggtggtcat cgccggcgcc 60 ggctacgtcg gcacctgtct cgccgtcacc ctcgccggcc gcggcgccga ggtggtcgcg 120 gtcgacagcg acccgggcac cgtcgcggac ctgcgggccg gccggtgccg gctgcccgag 180 cccggcctgg ccggcgccgt ccgggacctc gccgcgaccg gacggctgac ggcgagcacg 240 tcgtacgacc cggtcggcgc ggcggacgtg gtgatcgtga cggtcggcac cccgaccgac 300 gccggccacg agatggtcac cgaccagctc gtcgcggcgt gcgagcagat cgccccgcgg 360 ctgcgcgccg ggcaactggt gatcctcaag tcgacggtct ccccgggcac cacccggacc 420 ctcgtcgcgc ccctgctgga gagcggcggg ctggtgcacg agcgcgactt cgggctggcc 480 ttctgcccgg agcggctcgc cgagggggtg gcgctggcgc aggtgcggac gctgccggtg 540 gtggtgggtg ggtgcggccc gcgcagcgcc gccgcggccg aacggttctg gcggtccgcg 600 ctcggcgtcg acgtccggca ggtgccgtcg gccgagtccg ccgaggtggt caagctcgcg 660 accaactggt ggatcgacgc gaacgtggcg atcgccaacg aactcgcccg gtactgcgcg 720 gtgctggggg tggacgtcct cgacgtgatc ggcgcggcga acaccctgcc caagggcagc 780 agcatggtga acctgctgct gccgggggtg ggtgtcggcg gctcctgcct gacgaaggac 840 ccgtggatgg cgtggcggga cggccgggac cggggcgtgc ccctgcgcac ggtcgagacg 900 gcccgcgcgg tcaacgacga catgccccgc cacaccgccg ccgtcatcgc cgacgagctg 960 gtcaagctgg gacgggatcg gaacgacacg acgatcgccg tgctcggcgc ggcgttcaag 1020 aacgacaccg gcgacgtccg caacaccccg gtgcgcgggg tcgtggcggc gctgcgcgac 1080 agcggcttcc gggtccggat cttcgacccg ctggccgatc ccgccgagat cgtcgcccgg 1140 ttcggcaccg cgccggcggc gagcctggac gaggcggtga gcggggcggg ctgcctggcc 1200 ttcctcgccg ggcaccgcca gttccacgag ctcgacttcg gcgccctggc cgagcgggtg 1260 gcgagccct gcctggtctt cgacggccgc atgcacctcc cgccggcgcg catccgcgag 1320 ctgcaccggt tcggcttcgc ctaccgcggc attggaaggt ga 1362 <210> 8 <211> 990 <212> DNA <213> Nocardia farcinica IFM10152 calS9 <400> 8 gtgcccagat ccctggtcac cggcggcttc ggcttcgtcg gcagtcacgt cgtcgaacgg 60 ctggtccgcc ggggtgacga ggtcgtcgtc tacgacctcg ccgacccgcc gcccgacctg 120 gagcacccgc cgggcgcgat ccggcacgtc cgcggcgacg tccgggacgc cgacgggctg 180 gcggccgccg ccaccggcgt ggacgaggtc taccacctcg cggcggtcgt cggcgtcgac 240 cggtacctca gccggccgct ggacgtggtc gagatcaacg tggacggcac ccggaacgcg 300 ttgcgcgccg cactgcgcgc cggtgcccgg gtcgtggtgt ccagcaccag cgaggtgtac 360 gggcgcaatc cgcgggtgcc gtggcgggag gacgacgacc gggtgctcgg cagcacggcg 420 acggaccggt ggtcgtactc gacgagcaag gcggcggccg agcacctggc cttcgccttc 480 caccggcagg agggcctgcc ggtgacggtg ctgcggtact tcaacgtcta cggcccacgc 540 cagcgcccgg cgtacgtcct cagccgcacc gtcgcccgcc tgctgcgggg cgttccgccc 600 gtggtgtacg acgacggccg ccagacgcgg tgcttcacct ggatcgacga ggcggccgag 660 gcgaccctgc tggccgccgc ccacccgcgg gccgtcggcg agtgtttcaa catcggcagc 720 agcgtggaga ccaccgtcgc cgaggcggtc cggctggccg gcacggtggc cggggtgccg 780 gtggcggccc agaccgcgga caccggagcc gggctcggcg cccgctacca ggacattccc 840 cgccgcgtac cggactgcgg caaggccgcc gcgctgctgg actggcgggc ccgggtgccg 900 ctggtgaccg gcctgcgccg gaccgtcgag tgggcccgcc gcaacccgtg gtggaccgcc 960 caggccgacg acggactggt cgtcaggtag 990 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> calS8F <400> 9 agcggatccc atcatgccgt tccttcc 27 <210> 10 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> calS8R <400> 10 agcaagcttt caccttccaa tgccgc 26 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> calS9F <400> 11 aaccatatgc ccagatccct ggtcacc 27 <210> 12 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> calS9R <400> 12 agtctcgagc tacctgacga ccagtcc 27 <210> 13 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> galU-IF <400> 13 agcgaattca tggctgccat taatacg 27 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> galU-IR <400> 14 gcaggatcct tacttcttaa tgcccat 27 <210> 15 <211> 1533 <212> DNA <213> Arabidopsis thaliana putative UDP glucose: flavonoid 3-o-glucosyltransferase <400> 15 atcattcact cacgacacta accatgacca aattctccga gccaatcaga gactcccacg 60 tggcagttct cgcgtttttc cccgttggcg ctcatgccgg tcctctctta gccgtcactc 120 gccgtctcgc cgccgcttct ccctccacca tcttttcttt cttcaacacc gcaagatcaa 180 acgcgtcgtt gttctcctct gatcatcccg agaacatcaa ggtccacgac gtctctgacg 240 gtgttccgga gggaaccatg ctcgggaatc cactggagat ggtcgagctg tttctcgaag 300 cggctccacg tattttccgg agcgaaatcg cggcggcaga gatagaagtt ggaaagaaag 360 tgacatgcat gctaacagat gccttcttct ggttcgcagc ggacatagcg gctgagctga 420 acgcgacttg ggttgccttc tgggccggcg gagcaaactc actctgtgct catctctaca 480 ctgatctcat cagagaaacc atcggtctca aagatgtgag tatggaagag acattagggt 540 ttataccagg aatggagaat tacagagtta aagatatacc agaggaagtt gtatttgaag 600 atttggactc tgttttccca aaggctttat accaaatgag tcttgcttta cctcgtgcct 660 ctgctgtttt catcagttcc tttgaagagt tagaacctac attgaactat aacctaagat 720 ccaaacttaa acgtttcttg aacatcgccc ctctcacgtt attatcttct acatcggaga 780 aagagatgcg tgatcctcat ggctgctttg cttggatggg gaagagatca gctgcttctg 840 tagcgtacat tagcttcggc accgtcatgg aacctcctcc tgaagagctt gtggcgatag 900 cacaagggtt ggaatcaagc aaagtgccgt ttgtttggtc gctgaaggag aagaacatgg 960 ttcatctacc aaaagggttt ttggatcgga caagagagca agggatagtg gttccttggg 1020 ctccacaagt ggaactgctg aaacacgagg caatgggtgt gaatgtgaca cattgtggat 1080 gt; cggataatag gctcaacgga agagcagtgg aggttgtgtg gaaggttgga gtgatgatgg 1200 ataatggagt cttcacgaaa gaaggatttg agaagtgttt gaatgatgtt tttgttcatg 1260 atgatggtaa gacgatgaag gctaatgcca agaagcttaa agaaaaactc caagaagatt 1320 tctccatgaa aggaagctct ttagagaatt tcaaaatatt gttggacgaa attgtgaaag 1380 tttaggttgt ttacaacata attgaagact ataaatgtga tttcaaaatt aacaaaatca 1440 tagtcaaata agtgtgtgcc tattctattt tgtcaaagta agagtgtatg gatctattct 1500 atttcaaagg gttgttgaaa aaaaaaaaaa aaa 1533 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> argt-3F <400> 16 agcgaattca tgaccaaatt ctccgag 27 <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> argt-3R <400> 17 agcctcgagc taaactttca caatttc 27 <210> 18 <211> 1650 <212> DNA <213> Escherichia coli phosphoglucoseisomerase <400> 18 atgaaaaaca tcaatccaac gcagaccgct gcctggcagg cactacagaa acacttcgat 60 gaaatgaaag acgttacgat cgccgatctt tttgctaaag acggcgatcg tttttctaag 120 ttctccgcaa ccttcgacga tcagatgctg gtggattact ccaaaaaccg catcactgaa 180 gagacgctgg cgaaattaca ggatctggcg aaagagtgcg atctggcggg cgcgattaag 240 tcgatgttct ctggcgagaa gatcaaccgc actgaaaacc gcgccgtgct gcacgtagcg 300 ctgcgtaacc gtagcaatac cccgattttg gttgatggca aagacgtaat gccggaagtc 360 aacgcggtgc tggagaagat gaaaaccttc tcagaagcga ttatttccgg tgagtggaaa 420 ggttataccg gcaaagcaat cactgacgta gtgaacatcg ggatcggcgg ttctgacctc 480 ggcccataca tggtgaccga agctctgcgt ccgtacaaaa accacctgaa catgcacttt 540 gtttctaacg tcgatgggac tcacatcgcg gaagtgctga aaaaagtaaa cccggaaacc 600 acgctgttcc tggtagcatc taaaaccttc accactcagg aaactatgac caacgcccat 660 agcgcgcgtg actggttcct gaaagcggca ggtgatgaaa aacacgttgc aaaacacttt 720 gcggcgcttt ccaccaatgc caaagccgtt ggcgagtttg gtattgatac tgccaacatg 780 ttcgagttct gggactgggt tggcggccgt tactctttgt ggtcagcgat tggcctgtcg 840 attgttctct ccatcggctt tgataacttc gttgaactgc tttccggcgc acacgcgatg 900 gacaagcatt tctccaccac gcctgccgag aaaaacctgc ctgtactgct ggcgctgatt 960 ggcatctggt acaacaattt ctttggtgcg gaaactgaag cgattctgcc gtatgaccag 1020 tatatgcacc gtttcgcggc gtacttccag cagggcaata tggagtccaa cggtaagtat 1080 gttgaccgta acggtaacgt tgtggattac cagactggcc cgattatctg gggtgaacca 1140 ggcactaacg gtcagcacgc gttctaccag ctgatccacc agggaaccaa aatggtaccg 1200 tgcgatttca tcgctccggc tatcacccat aacccgctct ctgatcatca ccagaaactg 1260 ctgtctaact tcttcgccca gaccgaagcg ctggcgtttg gtaaatcccg cgaagtggtt 1320 ggcaggaat atcgtgatca gggtaaagat ccggcaacgc ttgactacgt ggtgccgttc 1380 aaagtattcg aaggtaaccg cccgaccaac tccatcctgc tgcgtgaaat cactccgttc 1440 agcctgggtg cgttgattgc gctgtatgag cacaaaatct ttactcaggg cgtgatcctg 1500 aacatcttca ccttcgacca gtggggcgtg gaactgggta aacagctggc gaaccgtatt 1560 ctgccagagc tgaaagatga taaagaaatc agcagccacg atagctcgac caatggtctg 1620 attaaccgct ataaagcgtg gcgcggttaa 1650 <210> 19 <211> 1477 <212> DNA <213> Escherichia coli glucose 6-phosphate-1-dehydrogenase <400> 19 atggcggtaa cgcaaacagc ccaggcctgt gacctggtca ttttcggcgc gaaaggcgac 60 cttgcgcgtc gtaaattgct gccttccctg tatcaactgg aaaaagccgg tcagctcaac 120 ccggacaccc ggattatcgg cgtagggcgt gctgactggg ataaagcggc gtataccaaa 180 gttgtccgcg aggcgctcga aactttcatg aaagaaacca ttgatgaagg tttatgggac 240 accctgagtg cacgtctgga tttttgtaat ctcgatgtca atgacactgc tgcattcaac 300 cgtctcggcg cgatgctgga tcaaaaaaat cgtatcacca ttaactactt tgccatgccg 360 cccagcactt ttggcgcaat ttgcaaaggg cttggcgagg caaaactgaa tgctaaaccg 420 gcacgcgtag tcatggagaa accgctgggg acgtcgctgg cgacctcgca ggaaatcaat 480 gatcaggttg gcgaatactt cgaggagtgc caggtttacc gtatcgacca ctatcttggt 540 aaagaaacgg tgctgaacct gttggcgctg cgttttgcta actccctgtt tgtgaataac 600 tgggacaatc gcaccattga tcatgttgag attaccgtgg cagaagaagt ggggatcgaa 660 gggcgctggg gctattttga taaagccggt cagatgcgcg atatgatcca aaaccacctg 720 ctgcaaattc tctgcatgat tgcgatgtct ccgccatctg acctgagcgc agacagcatc 780 cgcgatgaaa aagtgaaagt actgaagtcc ctgcgccgca tcgaccgctc caacgtacgc 840 gaaaaaaccg tacgtgggca atatactgcg ggcttcgccc agggcaaaaa agtgccggga 900 tatctggaag aagagggcgc gaacaagagc agcaatacag aaaccttcgt ggcgatccgc 960 gtcgacattg ataactggcg ctgggccggt gtgccattct acctgcgtac tggtaaacgt 1020 ctgccgacca aatgttctga agtcgtggtc tatttcaaaa cacctgaact gaatctgttt 1080 aaagagtcgt ggcaggatct gccgcagaat aaactgacta tccgtctgca acctgatgaa 1140 ggcgtggata tccaggtact gaataaagtt cctggccttg accacaaaca taacctgcaa 1200 atcaccaagc tggatctgag ctattcagaa acctttaatc agacgcatct ggcggatgcc 1260 tatgaacgtc tgctgctgga aaccatgcgt ggtattcagg cactgtttgt tcgtcgcgac 1320 gaagtggaag aagcctggaa atgggtagac tccattactg aggcgtgggc gatggacaat 1380 gatgcgccga aaccgtatca ggccggaacc tggggacccg ttgcctcggt ggcgatgatt 1440 acccgtgatg gtcgttcctg gaatgagttt gagtaat 1477 <210> 20 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> DelpgiF <400> 20 ttccaaagtc acaattctca aaatcagaag agtattgcta gtgtaggctg gagctgcttc 60 60 <210> 21 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> DelpgiR <400> 21 gcggcgtgaa cgccttatcc ggcctacata tcgacgatga catatgaata tcctccttag 60 60 <210> 22 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> DelzwfF <400> 22 ctggcttaag taccgggtta gttaacttaa ggagaatgac gtgtaggctg gagctgcttc 60 60 <210> 23 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> DelzwfR <400> 23 atgttaccgg taaaataacc ataaaggata agcgcagata catatgaata tcctccttag 60 60
Claims (11)
The present invention relates to a microorganism having the ability to produce glucose-6-phosphate from glucose, which comprises (i) a gene encoding phosphoglucomutase, (ii) glucose-1-phosphate free DNA ligase (UDP-glucose dehydrogenase), and (iv) a UDP-glucuronic acid decarboxylase (UDP-glucuronic acid decarboxylase) gene encoding a UDP-glucose dehydrogenase. (UDP-xylose) from glucose-6-phosphate containing a gene coding for a glycosyltransferase and an arGt-3 gene encoding glycosyltransferase Wherein the microorganism has the ability to produce 3- O -xylosylcercetin in quercetin.
The method according to claim 1, wherein the gene coding for phosphoglucomutase, the gene encoding glucose-1-phosphate uridylltransferase, the gene encoding UDP-glucose dihydrogenase (UDP- -glucose dehydrogenase and UDP-glucuronic acid decarboxylase are nfa44530, galU, calS8, and calS9 , respectively. The microorganism variant according to claim 1, wherein the gene coding for UDP-glucuronic acid decarboxylase is nfa44530, galU, calS8 and calS9 .
2. The method according to claim 1, wherein at least one of a gene encoding glucose phosphate isomerase and a gene encoding glucose-6-phosphate dehydrogenase is further added Wherein the microorganism is defective.
5. The method according to claim 4, wherein the gene encoding glucose phosphate isomerase and the gene encoding glucose-6-phosphate dehydrogenase are pgi And zwf .
The microorganism according to claim 1, wherein the microorganism is Escherichia coli ). < / RTI >
The microorganism variant according to claim 1, wherein the phosphoglucomutase is derived from Nocardia farcinica IFM10152.
The method according to claim 1, wherein the glucose-1-phosphate uridyl lyransferase is Escherichia coli K-12. < / RTI >
The method according to claim 1, wherein the UDP-glucose dehydrogenase and the UDP-glucuronic acid decarboxylase are derived from Micromonospora echinospora ssp. Wherein the microorganism is a microorganism.
The method of claim 1, wherein the glycosyltransferase is Arabidopsis thaliana. < / RTI >
(a) 제1항, 제3항 내지 제5항 중 어느 한 항의 미생물 변이체 미생물 변이체를 케르세틴을 함유하는 배지에서 배양하여 3-O-자일로실 케르세틴을 생성하는 단계; 및
(b) 생성된 3-O-자일로실 케르세틴을 회수하는 단계. O -xylosyl quercetin in quercetin comprising the steps of:
(a) culturing the microorganism mutant microorganism variant of any one of claims 1 to 3 in a culture medium containing quercetin to produce 3-O-xylosyl quercetin; And
(b) recovering the resulting 3- O -xylosyl quercetin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120073860A KR101434602B1 (en) | 2012-07-06 | 2012-07-06 | Method for Preparing 3―O―Xylosyl Quercetin from Quercetin Using Microorganism Mutants |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120073860A KR101434602B1 (en) | 2012-07-06 | 2012-07-06 | Method for Preparing 3―O―Xylosyl Quercetin from Quercetin Using Microorganism Mutants |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140005675A KR20140005675A (en) | 2014-01-15 |
KR101434602B1 true KR101434602B1 (en) | 2014-08-26 |
Family
ID=50141036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120073860A KR101434602B1 (en) | 2012-07-06 | 2012-07-06 | Method for Preparing 3―O―Xylosyl Quercetin from Quercetin Using Microorganism Mutants |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101434602B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120049684A (en) * | 2010-11-09 | 2012-05-17 | 건국대학교 산학협력단 | A novel compound, quercetin 3-o-n-acetylglucosamine, gene for producing the compound, and method for producing the compound |
-
2012
- 2012-07-06 KR KR1020120073860A patent/KR101434602B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120049684A (en) * | 2010-11-09 | 2012-05-17 | 건국대학교 산학협력단 | A novel compound, quercetin 3-o-n-acetylglucosamine, gene for producing the compound, and method for producing the compound |
Non-Patent Citations (2)
Title |
---|
디네쉬 심타다. 선문대학교 대학원 박사학위 논문 (2009.12.) 전공학으로 개량된 Escherichia coli BL21(DE3)로 부터 당화된 플라보노이드 생산 * |
디네쉬 심타다. 선문대학교 대학원 박사학위 논문 (2009.12.) 전공학으로 개량된 Escherichia coli BL21(DE3)로 부터 당화된 플라보노이드 생산* |
Also Published As
Publication number | Publication date |
---|---|
KR20140005675A (en) | 2014-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101802547B1 (en) | Recombinant Production of Steviol Glycosides | |
Shrestha et al. | Biosynthesis of flavone C-glucosides in engineered Escherichia coli | |
Masada et al. | Functional and structural characterization of a flavonoid glucoside 1, 6-glucosyltransferase from Catharanthus roseus | |
EP2963122A1 (en) | Method for preparing rebaudioside a from stevioside | |
CN109750071A (en) | Method for synthesizing rebaudioside M through biocatalysis | |
Thuan et al. | Escherichia coli modular coculture system for resveratrol glucosides production | |
KR20180132696A (en) | Production of steviol glycosides in recombinant hosts | |
Thuan et al. | Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin | |
Simkhada et al. | Genetic engineering approach for the production of rhamnosyl and allosyl flavonoids from Escherichia coli | |
CN115927240A (en) | Flavone glycosyltransferase and coding gene and application thereof | |
EP3353311B1 (en) | Method for small molecule glycosylation | |
KR101418788B1 (en) | Method for Preparing Quercetin Glycoside Using Glycosyltransferase | |
EP3204506B1 (en) | Steviol glycoside production | |
KR101997597B1 (en) | Synthesis method of stevioside glucosides using modified Leuconostoc and Novel stevioside glucosides made by the same | |
CN112010924B (en) | Novel Nosiheptide glycosylated derivative and preparation method and application thereof | |
CN111032671A (en) | Protected tetrasaccharide, method for its preparation, and use thereof as a substrate for the transglucosylase receptor in the chemoenzymatic synthesis of shigella flexneri-specific oligosaccharides | |
KR101434602B1 (en) | Method for Preparing 3―O―Xylosyl Quercetin from Quercetin Using Microorganism Mutants | |
AU2018200459A1 (en) | Recombinant production of steviol glycosides | |
JP2008187927A (en) | New phenol glycosidase | |
JP2017123844A (en) | Method for producing glycoside | |
KR101257897B1 (en) | Method for preparing Ramnosyl Flavonoid Using Recombinant Strain | |
CN115449514B (en) | Beta-1, 2-glycosyltransferase and application thereof | |
Amoah et al. | Biosynthesis of apigenin glucosides in engineered Corynebacterium glutamicum | |
KR101718508B1 (en) | Recombinat Bacillus subtilis Having Metabolic Engineered Biosynthesis Pathway of 2-Deoxy-scyllo-inosose and Method for Preparing 2-Deoxy-scyllo-inosose Using Thereof | |
US12018307B2 (en) | Process for producing a glucuronide and genetically modified microorganisms useful in this process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170626 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180702 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190625 Year of fee payment: 6 |