KR101429686B1 - Process for preparing high viscosity and high intensity industrial polyester fibre - Google Patents
Process for preparing high viscosity and high intensity industrial polyester fibre Download PDFInfo
- Publication number
- KR101429686B1 KR101429686B1 KR1020130003869A KR20130003869A KR101429686B1 KR 101429686 B1 KR101429686 B1 KR 101429686B1 KR 1020130003869 A KR1020130003869 A KR 1020130003869A KR 20130003869 A KR20130003869 A KR 20130003869A KR 101429686 B1 KR101429686 B1 KR 101429686B1
- Authority
- KR
- South Korea
- Prior art keywords
- strength
- viscosity
- box
- pet
- intrinsic viscosity
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/62—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/447—Yarns or threads for specific use in general industrial applications, e.g. as filters or reinforcement
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/062—Load-responsive characteristics stiff, shape retention
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/063—Load-responsive characteristics high strength
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/20—Industrial for civil engineering, e.g. geotextiles
- D10B2505/204—Geotextiles
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D2300/00—Materials
- E02D2300/0085—Geotextiles
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Artificial Filaments (AREA)
Abstract
본 발명은 고점도 고강력 산업용 폴리에스테르(PET) 섬유의 제작에 관한 것으로, 통상의 PET 칩을 용융방사하여 제조하는 공정에서 사슬연장반응을 할 수 있는 CBC, p-BOX, m-BOX를 0.25 내지 1.00 중량% 첨가하여 고유점도를 상승키기고, 기존 고강력 PET 섬유 대비 점도 및 인성(Toughness)이 우수한 산업용 PET 원사를 제조하는 방법에 대한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of high viscosity, high strength industrial polyester (PET) fibers, and is capable of producing chain extension reaction of CBC, p-BOX and m- The present invention relates to a method for producing an industrial PET yarn having an increased intrinsic viscosity and excellent viscosity and toughness compared to conventional high strength PET fibers.
Description
본 발명은 고점도 고강력 산업용 폴리에스테르(PET) 섬유의 제작에 관한 것으로, 보다 상세하게는 통상의 PET 칩을 용융방사하여 제조하는 공정에서 사슬연장제를 도입하여 PET의 고유점도를 향상시키는 방법에 대한 것이다.
More particularly, the present invention relates to a method for improving the intrinsic viscosity of PET by introducing a chain extender in a process of melt-spinning a conventional PET chip, It is about.
산업용으로 사용되는 PET 섬유의 강도를 높이기 위한 유용한 종래 방법으로는 고유점도 1.0 이상의 고점도 칩을 용융한 후 용융된 폴리머 온도를 300 ℃까지 충분히 높여서 녹인 후 고화시키고, 고뎃 롤러에서 방사드래프를 800이하로 저속권취하여 얻은 미연신사를 1단 및 2단의 연신배율 5.0 이상으로 직접 연신한 후 릴랙스시켜 권취하는 방법이었다. 이 때 저속 권취로 미연신사의 배향도를 낮추고 고배율의 연신을 부여하여 고강도의 특성을 얻었다. 상기한 바와 같은 종래의 방법은 주로 가열 후드 및 냉각풍의 온도를 적절히 조정하여 미연신사의 배향도를 최소화 한 후, 고배율 연신 하는 것을 특징으로 한다. 종래의 방사 기술을 이용하여 더 높은 강도의 섬유를 얻기 위해 연신 배율을 높일 경우 방사시 가열 후드의 높은 온도로 인하여, 방사시 점도 저하, 고배율 연신에 의한 원사의 수축율 증가 및 형태안정성이 떨어진다. 고배율 연신에 의한 방사 사절이 많이 발생하는 공정상 문제와 핀사가 많이 발생하여 후 공정성이 나빠진다. 또한, 고점도 PET 수지의 방사시 점도저하 문제점 및 고배율 연신에 의한 원사의 수축률 증가 및 형태안정성 저하 문제점이 발생한다.A conventional method useful for increasing the strength of PET fibers used for industrial purposes is to melt a highly viscous chip having an intrinsic viscosity of 1.0 or higher and then melt the polymer by raising the temperature of the molten polymer sufficiently to 300 DEG C and solidify the same. And then unwinding the unstretched web obtained by direct stretching at a draw ratio of 5.0 or more in the first and second stages, followed by relaxation and winding. At this time, low-speed winding lowers the degree of orientation of undrawn yarns and gives high-strength stretching to obtain high strength characteristics. The conventional method as described above is characterized in that the temperature of the heating hood and the cooling wind is appropriately adjusted to minimize the degree of orientation of the non-drawn filament, and then the filament is drawn at a high magnification. When the stretching magnification is increased to obtain fibers having higher strength by using the conventional spinning technique, the viscosity at the time of spinning, the increase in the shrinkage ratio of the yarn due to high-rate stretching, and the shape stability are lowered due to the high temperature of the heating hood during spinning. A large number of finishing threads and finishing problems occur due to a large number of spinning yarns caused by high-ratio stretching, resulting in poor post-processability. In addition, there is a problem in that the viscosity of the high-viscosity PET resin is lowered during spinning, and the shrinkage ratio of the yarn due to high-degree stretching is increased and the shape stability is lowered.
위의 문제를 극복하기 위한 고탄성 저수축 (High Modulus Low Shiringkage (HMLS)) 공법에서도 강력과 형태 안정성 (수축율+중신)의 측면에서 강력을 취하면 형태 안정성이 떨어지고, 형태 안정성을 좋게 하면 강력을 얻지 못하는 문제가 있다.
In order to overcome the above problem, the high modulus low shrinkage (HMLS) method also shows that when the strength is taken into consideration in terms of strength and shape stability (shrinkage ratio + Chinese shine), the shape stability is lowered. There is a problem that can not be done.
본 발명은 고강력 PET 섬유 제조에 있어서, 고상중합법을 이용하지 않으며 PET 또는 그 공중합체의 고유점도를 크게 향상시킬 수 있는 방법을 제공하는 것을 목적으로 한다.
It is an object of the present invention to provide a method for producing a high strength PET fiber which does not use a solid phase polymerization method and can significantly improve intrinsic viscosity of PET or a copolymer thereof.
본 발명은 PET 산업용 고강력사 제조에서 소량 첨가한 CBC, p-BOX, m-BOX와 같은 사슬연장제가 PET 사슬 말단의 알콜과 카르복시산과 반응하여 사슬연장반응을 일으켜 고유점도를 상승시키고, 이를 통해 강도가 우수한 PET 산업용 고강력사를 제조할 수 있다.In the present invention, chain extender such as CBC, p-BOX and m-BOX added with a small amount in the production of high strength yarn for the PET industry reacts with alcohol and carboxylic acid at the terminal of the PET chain to cause chain extension reaction to increase intrinsic viscosity, High-strength yarns for the PET industry.
본 발명은 폴리에틸렌테레프탈레이트를 용융한 후 방사, 권취하여 고점도 고강력 산업용 폴리에스테르 섬유를 제조하는 과정에 있어서, 고유점도가 0.8 내지 1.10인 폴리에스테르 칩에 카보닐비스카프로락탐(Carbonyl bis caprolactam)(CBC), 1,4-페닐렌비스옥사졸린(1,4-phenylene bis oxazoline)(p-BOX) 및 1,3-페닐렌비스옥사졸린(1,3-phenylene bis oxazoline)(m-BOX)중에서 선택된 1종의 화합물을 용융방사 공정 중에서 0.25 내지 1.00 중량% 첨가한 것을 특징으로 하는 고점도 고강력 산업용 폴리에스테르 섬유의 제조방법을 제공한다.The present invention relates to a process for producing polyester fibers for high viscosity and high strength by melting polyethylene terephthalate followed by spinning and winding to obtain a polyester fiber having an intrinsic viscosity of 0.8 to 1.10 and carbonyl bis caprolactam CBC), 1,4-phenylene bis oxazoline (p-BOX), and 1,3-phenylene bis oxazoline (m-BOX) , In an amount of 0.25 to 1.00 wt% in a melt spinning process. The present invention also provides a process for producing a high-viscosity high-strength industrial polyester fiber.
본 발명의 적절한 실시 형태에 따르면, 상기 폴리에스테르 섬유의 강도가 8.0 내지 13.0 g/d인 것을 특징으로 하고, 상기 폴리에스테르 섬유의 고유점도가 폴리에틸렌테레프탈레이트 칩의 점도에 대비하여 0.07 내지 0.14 상승하는 것을 특징으로 한다.According to a preferred embodiment of the present invention, the polyester fiber has a strength of 8.0 to 13.0 g / d, wherein the intrinsic viscosity of the polyester fiber is 0.07 to 0.14 relative to the viscosity of the polyethylene terephthalate chip .
본 발명의 다른 적절한 실시 형태에 따르면, 상기 폴리에스테르 섬유의 고유점도가 1.0 내지 1.1인 것이 특징이다.
According to another preferred embodiment of the present invention, the polyester fiber has an intrinsic viscosity of 1.0 to 1.1.
본 발명으로 PET원사의 점도 증가 및 신율 증가로 인한 강도의 증가로 추후 고강력사 제작시 유리하며, 기존 고강력사 대비 점도 및 인성(Toughness)이 우수한 산업용 PET 섬유를 제조하여 재해 방지용 지오텍스타일(Geotextile) 등에 응용할 수 있다.
According to the present invention, it is possible to produce industrial PET fibers having superior viscosity and toughness compared to existing high-strength yarns and to produce geotextile for disaster prevention by increasing viscosity of PET yarn and increasing strength due to increase in elongation, And the like.
도 1은 사슬연장제에 의한 PET 사슬연장반응 과정에 관한 것이다.
도 2는 사슬연장제 함량에 따른 분자량 증가 효과를 나타낸 것이다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process for extending a chain of PET by a chain extender.
Figure 2 shows the molecular weight increase effect according to the content of the chain extender.
본 발명을 상세하게 설명하면 다음과 같다.The present invention is described in detail as follows.
본 발명은 폴리에틸렌테레프탈레이트를 용융한 후 방사, 권취하여 고점도 고강력 산업용 폴리에스테르 섬유를 제조함에 있어서, 고유점도가 0.8 내지 1.10인 폴리에스테르 칩에 카보닐비스카프로락탐(Carbonyl bis caprolactam)(CBC), 1,4-페닐렌비스옥사졸린(1,4-phenylene bis oxazoline)(p-BOX) 및 1,3-페닐렌비스옥사졸린(1,3-phenylene bis oxazoline)(m-BOX)중에서 선택된 1종의 화합물을 용융방사 공정 중에서 0.25 내지 0.75 중량% 첨가한 것을 특징으로 하는 고점도 고강력 산업용 폴리에스테르 섬유의 제조방법에 대한 것이다.The present invention relates to a process for producing polyester fiber for high viscosity and high strength by melting polyethylene terephthalate followed by spinning and winding to obtain carbonyl bis caprolactam (CBC) in a polyester chip having an intrinsic viscosity of 0.8 to 1.10, , 1,4-phenylene bis oxazoline (p-BOX), and 1,3-phenylene bis oxazoline (m-BOX). Characterized in that one kind of compound is added in an amount of 0.25 to 0.75% by weight in a melt spinning process.
상기 발명의 조성물 함량에서 CBC와 p-BOX, m-BOX를 0.25 내지 1.00 중량%를 첨가하였고, 방사 후 섬유의 고유점도(표 1-3에 Fila IV로 기재할 수 있음)가 1.0 내지 1.1로, 원료인 폴리에틸렌테레프탈레이트 칩의 점도에 대비하여 0.07 내지 0.14 만큼 상승하였음을 알 수 있다. 또한 상기 발명을 통해 제조된 폴리에스테르 섬유의 강도가 8.0 내지 13.0 g/d인 것을 특징으로 한다.0.25 to 1.00 wt% of CBC, p-BOX and m-BOX were added in the composition of the present invention, and the intrinsic viscosity of the fiber after spinning (described in Fila IV in Table 1-3) was 1.0 to 1.1 , And the viscosity of the polyethylene terephthalate chip as the raw material was increased by 0.07 to 0.14. Further, the polyester fiber produced by the present invention has a strength of 8.0 to 13.0 g / d.
상기한 본 발명에서 사슬연장제 함량이 0.25 중량% 미만이면, 점도 향상 효과가 미미하며, 사슬연장제 함량이 0.75 중량%를 초과하면, 고유점도가 오히려 감소하는 문제점이 발생함을 알 수 있다. 이는 용융온도에서 반응에 참가하는 사슬연장제 보다 열분해 된 첨가제로 인한 PET 사슬분해반응이 더 우세해 짐을 판단하는 기준이 될 수 있다. If the content of the chain extender is less than 0.25% by weight, the effect of improving the viscosity is insignificant, and if the content of the chain extender is more than 0.75% by weight, the intrinsic viscosity is rather reduced. This can be a criterion for judging that the PET chain decomposition reaction due to the pyrolyzed additive is more dominant than the chain extender participating in the reaction at the melting temperature.
또한 상기한 본 발명에서 폴리에스테르 섬유의 고유점도가 1.0 미만이면, 고점도 섬유제조로 인한 원사의 강력 향상 효과가 미미하며, 고유점도가 1.1을 초과하면, 용융압출시키는 과정에서 익스트루더 내압을 증가시키고, 노즐을 막아 공정상 문제가 일어날 수 있으며, 제조된 원사의 분절로 인해 양질의 섬유를 얻지 못하는 원인의 하나가 된다. If the intrinsic viscosity of the polyester fiber is less than 1.0, the effect of improving the strength of the yarn due to the production of the high viscosity fiber is insignificant. If the intrinsic viscosity exceeds 1.1, the extruder inner pressure is increased And the nozzle may be closed to cause a problem in the process, and it becomes one of the causes of failing to obtain high-quality fibers due to the segments of the produced yarn.
본 발명으로 제조된 PET의 고유점도(IV)평가는 우벨로드점도계를 사용하여 오르소클로로페놀 100ml에 대하여 시료 80g을 용해한 용액의 상대점도 를 25에서 측정하여 다음의 근사식에 의해 IV를 산출하였다.The intrinsic viscosity (IV) of the PET prepared according to the present invention was measured by measuring the relative viscosity of a solution prepared by dissolving 80 g of a sample in 100 ml of orthochlorophenol using a Ubbel road viscometer at 25 and calculating IV by the following approximate equation .
단, only,
t : 용액의 낙하시간(sec)t: Drop time of solution (sec)
t0 : 오르소클로로페놀의 낙하시간(sec)t 0 : Falling time of orthochlorophenol (sec)
d : 용액의 밀도(g/cc)d: density of solution (g / cc)
d0 : 오르소클로로페놀의 밀도(g/cc)
d 0 : density of orthochlorophenol (g / cc)
이하, 실시예를 들어 본 발명을 보다 구체적으로 설명하겠지만 이러한 실시예들이 본 발명의 보호범위를 제한하는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples, but these Examples do not limit the scope of protection of the present invention.
< 물성 측정방법 >≪ Method for measuring physical properties &
1. 원사의 강신도 측정방법1. How to measure the strength of yarn
원사를 표준상태인 조건, 즉 25℃ 온도와 상대습도 65%인 항온 항습실에서 24시간 방치 후 ASTM 2256 방법으로 시료를 인장 시험기를 통해 측정한다.
The yarn is allowed to stand in a standard condition, that is, in a constant temperature and humidity room at 25 ° C and a relative humidity of 65% for 24 hours, and then the sample is measured by a tensile tester using the ASTM 2256 method.
비교예 1Comparative Example 1
통상의 PET 칩을 방사온도 298 ℃, 홀직경 0.63mm, 홀길이 1.89mm인 방사구금을 사용하여 필라멘트수 126개, 최종 단사섬도가 7.9 데니어가 되도록 토출량을 조절하여 스핀드로우(Spin-Draw)공법으로 방사속도 2623m/분에서 용융방사하였다. 고뎃롤러(Godet Roller) 1단과 4단 간의 연신비를 5.8로 고정하여 권취기(Winder)상부에 교락 노즐(Interlace Nozzle)을 설치하고 가이드(Guide)는 길이 20mm, 직경 2mm의 파이프 가이드(Pipe Guide)형태를 적용하여 3.5 kgf/cm2의 압축공기로 교락을 부여하면서 폴리에스터 필라멘트사를 제조하는 공정 중에, IV가 1.05인 PET에 아무런 사슬연장제도 첨가하지 않는 조건으로 시험하였으며, 제조된 섬유의 Fila IV와 데니어, 강력, 강도, 신율 및 인성(Toughness) 결과를 표 1에 나타내었다.
A conventional PET chip was spin-drawn using a spinneret having a spinning temperature of 298 DEG C, a hole diameter of 0.63 mm, and a hole length of 1.89 mm to adjust the discharge amount to 126 filaments and final monofilament fineness to 7.9 denier At a spinning speed of 2623 m / min. An interlace nozzle was installed on the upper part of the winder by fixing the draw ratio between the first and fourth stages of the Godet Roller to 5.8 and the guide was a pipe guide having a length of 20 mm and a diameter of 2 mm, In the process of producing a polyester filament yarn with entanglement with compressed air of 3.5 kgf / cm 2 by applying the mold, a test was conducted under the condition that no chain extender was added to PET having an IV of 1.05, and the fila IV And denier, strength, strength, elongation and toughness are shown in Table 1.
실시예 1-4Examples 1-4
IV가 1.05인 PET에 CBC를 직접 또는 마스터 뱃치화하여 0.25 내지 1.00 중량%만큼 첨가하는 조건 이외에는 비교예 1과 동일한 조건으로 섬유를 제조하였다. 제조된 섬유의 Fila IV와 데니어, 강력, 강도, 신율 및 인성(Toughness) 결과를 표 1에 나타내었다.
Fiber was prepared under the same conditions as in Comparative Example 1 except that CBC was directly or master-batch-polymerized to PET having an IV of 1.05 and added in an amount of 0.25 to 1.00 wt%. Fila IV and denier, strength, strength, elongation and toughness of the produced fiber are shown in Table 1.
비교예 2Comparative Example 2
IV가 1.05인 PET에 아무런 사슬연장제도 첨가하지 않는 조건으로 비교예 1과 동일한 조건으로 시험하였으며, 제조된 섬유의 Fila IV와 데니어, 강력, 강도, 신율 및 인성(Toughness) 결과를 표 2에 나타내었다.
IV of 1.05 was tested under the same conditions as in Comparative Example 1 except that no chain extender was added. Fila IV and denier, strength, strength, elongation and toughness of the produced fibers were shown in Table 2 .
실시예 5-8Examples 5-8
IV가 1.05인 PET에 p-BOX를 직접 또는 마스터 뱃치화하여 0.25 내지 1.00 중량%만큼 첨가하는 조건 이외에는 비교예 1과 동일한 조건으로 시험하였으며, 제조된 섬유의 Fila IV와 데니어, 강력, 강도, 신율 및 인성(Toughness) 결과를 표 2에 나타내었다.
IV was 1.05, the p-BOX was directly or master-batched and added in an amount of 0.25 to 1.00 wt%, and the same conditions as those of Comparative Example 1 were tested. Fila IV and denier, strength, And toughness results are shown in Table 2. < tb >< TABLE >
비교예 3Comparative Example 3
IV가 1.05인 PET에 아무런 사슬연장제도 첨가하지 않는 조건으로 비교예 1과 동일한 조건으로 시험하였으며, 제조된 섬유의 Fila IV와 데니어, 강력, 강도, 신율 및 인성(Toughness) 결과를 표 3에 나타내었다.
IV of 1.05 was tested under the same conditions as in Comparative Example 1, except that no chain extender was added. Fila IV and denier, strength, strength, elongation and toughness of the produced fibers were shown in Table 3 .
실시예 9-12Examples 9-12
IV가 1.05인 PET에 m-BOX를 직접 또는 마스터 뱃치화하여 0.25 내지 1.00 중량%만큼 첨가하는 조건 이외에는 비교예 1과 동일한 조건으로 시험하였으며, 제조된 섬유의 Fila IV와 데니어, 강력, 강도, 신율 및 인성(Toughness) 결과를 표 3에 나타내었다.
IV was 1.05, m-BOX was directly or master-batched and added in an amount of 0.25 to 1.00 wt%, and the same conditions as in Comparative Example 1 were tested. Fila IV and denier, strength, And toughness results are shown in Table 3.
Claims (4)
고유점도가 0.8 내지 1.10dl/g인 폴리에스테르 칩에 카보닐비스카프로락탐(Carbonyl bis caprolactam)(CBC), 1,4-페닐렌비스옥사졸린(1,4-phenylene bis oxazoline)(p-BOX) 및 1,3-페닐렌비스옥사졸린(1,3-phenylene bis oxazoline)(m-BOX)중에서 선택된 1종의 화합물을 용융방사 공정 중에서 방사용 수지의 전체 중량을 기준으로 0.25 내지 1.00 중량% 첨가한 것을 특징으로 하는 고점도 고강력 산업용 폴리에스테르 섬유의 제조방법.
Polyethylene terephthalate is melted and then spun and wound to produce polyester fibers for high viscosity and high strength industries,
(CBC) and 1,4-phenylene bis oxazoline (p-BOX) were added to a polyester chip having an intrinsic viscosity of 0.8 to 1.10 dl / g, ) And 1,3-phenylene bis oxazoline (m-BOX) in the melt spinning process in an amount of 0.25 to 1.00 wt% based on the total weight of the spinning resin, By weight based on the total weight of the high-strength and high-strength industrial polyester fibers.
상기 폴리에스테르 섬유의 강도가 8.0 내지 13.0 g/d인 것을 특징으로 하는 고점도 고강력 산업용 폴리에스테르 섬유의 제조방법.
The method according to claim 1,
Wherein the polyester fiber has a strength of 8.0 to 13.0 g / d.
상기 폴리에스테르 섬유의 고유점도가 폴리에틸렌테레프탈레이트 칩의 점도에 대비하여 0.07 내지 0.14dl/g의 절대값 차이만큼 상승하는 것을 특징으로 하는 고점도 고강력 산업용 폴리에스테르 섬유의 제조방법.
The method according to claim 1,
Wherein the intrinsic viscosity of the polyester fiber is increased by an absolute value difference of 0.07 to 0.14 dl / g with respect to the viscosity of the polyethylene terephthalate chip.
상기 폴리에스테르 섬유의 고유점도가 1.0 내지 1.1dl/g인 것을 특징으로 하는 고점도 고강력 산업용 폴리에스테르 섬유의 제조방법.The method according to claim 1,
Wherein the polyester fiber has an intrinsic viscosity of 1.0 to 1.1 dl / g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130003869A KR101429686B1 (en) | 2013-01-14 | 2013-01-14 | Process for preparing high viscosity and high intensity industrial polyester fibre |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130003869A KR101429686B1 (en) | 2013-01-14 | 2013-01-14 | Process for preparing high viscosity and high intensity industrial polyester fibre |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140091868A KR20140091868A (en) | 2014-07-23 |
KR101429686B1 true KR101429686B1 (en) | 2014-09-23 |
Family
ID=51738751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130003869A KR101429686B1 (en) | 2013-01-14 | 2013-01-14 | Process for preparing high viscosity and high intensity industrial polyester fibre |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101429686B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104846448A (en) * | 2015-06-10 | 2015-08-19 | 河北金怡化纤有限公司 | Production process for producing differentiated polyester staple fibers by using PET plastic bottle sheets |
KR102339830B1 (en) | 2020-10-21 | 2021-12-15 | 이경희 | Manufacturing of high-viscosity recycled PET chips using low-viscosity PET flakes |
KR20220117934A (en) | 2021-02-17 | 2022-08-25 | 하이테크필라(주) | Manufacturing method of monofilament yarn using recycled PET |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201516679D0 (en) * | 2015-09-21 | 2015-11-04 | Colormatrix Holdings Inc | Polymeric materials |
KR20240140473A (en) * | 2023-03-17 | 2024-09-24 | 삼부정밀화학 주식회사 | Manufacturing method of recycled polyester yarn used waste-textile |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990002210A (en) * | 1997-06-19 | 1999-01-15 | 김윤 | Manufacturing method of high strength polyester fiber |
KR20000018763A (en) * | 1998-09-04 | 2000-04-06 | 김윤 | Method for producing polyester recycled fiber |
KR20070072032A (en) * | 2005-12-30 | 2007-07-04 | 주식회사 효성 | Industrial high-strength polyester fiber with less permanent deformation-rate and its manufacturing method |
KR20090072467A (en) * | 2007-12-28 | 2009-07-02 | 주식회사 효성 | High-strength polyethyleneterephthalate fiber and its manufacturing method |
-
2013
- 2013-01-14 KR KR1020130003869A patent/KR101429686B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990002210A (en) * | 1997-06-19 | 1999-01-15 | 김윤 | Manufacturing method of high strength polyester fiber |
KR20000018763A (en) * | 1998-09-04 | 2000-04-06 | 김윤 | Method for producing polyester recycled fiber |
KR20070072032A (en) * | 2005-12-30 | 2007-07-04 | 주식회사 효성 | Industrial high-strength polyester fiber with less permanent deformation-rate and its manufacturing method |
KR20090072467A (en) * | 2007-12-28 | 2009-07-02 | 주식회사 효성 | High-strength polyethyleneterephthalate fiber and its manufacturing method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104846448A (en) * | 2015-06-10 | 2015-08-19 | 河北金怡化纤有限公司 | Production process for producing differentiated polyester staple fibers by using PET plastic bottle sheets |
CN104846448B (en) * | 2015-06-10 | 2017-07-04 | 河北金怡化纤有限公司 | The production technology of differential polyester staple fiber is produced using PET bottle piece |
KR102339830B1 (en) | 2020-10-21 | 2021-12-15 | 이경희 | Manufacturing of high-viscosity recycled PET chips using low-viscosity PET flakes |
KR20220117934A (en) | 2021-02-17 | 2022-08-25 | 하이테크필라(주) | Manufacturing method of monofilament yarn using recycled PET |
Also Published As
Publication number | Publication date |
---|---|
KR20140091868A (en) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101429686B1 (en) | Process for preparing high viscosity and high intensity industrial polyester fibre | |
CN1066212C (en) | Process for manufacturing continuous polyester filament yarn | |
KR101440570B1 (en) | Polyethylene fiber and manufacturing method thereof | |
JP2005179823A (en) | Method for producing polyester fiber and spinning cap for melt spinning | |
KR101273357B1 (en) | Polyethyleneterephthalate yarn with good thermal performance and high tenacity for industrial use | |
KR100358375B1 (en) | Method of making ultra-oriented crystalline filaments | |
KR101272686B1 (en) | Industrial high-strength Polyester fiber with Controlled by molecular weight and its manufacturing method | |
KR100591210B1 (en) | A technical polyester fiber with high tenacity and low shrinkage and its manufacturing method | |
KR101888065B1 (en) | Manufacturing method of Nylon 66 fiber having high strength | |
KR101552697B1 (en) | Method for manufacturing poly(ethyleneterephthalate) drawn fiber, poly(ethyleneterephthalate) drawn fiber and tire-cord | |
KR101772586B1 (en) | A polypropylene fiber with high tenacity and low shrinkage and its manufacturing process | |
KR101110105B1 (en) | A technical polyester fiber with high toughness and a method for manufacturing the same | |
KR102430564B1 (en) | Sbhaped hollow polyethylene fiber and method for manufacturing the same | |
KR101215710B1 (en) | Industrial high-strength Polyester fiber with less permanent deformation-rate and its manufacturing method | |
JP2005248354A (en) | Method for producing cellulose fatty acid ester fiber | |
KR101262714B1 (en) | High-strength Polyester fiber for Seat Belt and its manufacturing method | |
KR20160071715A (en) | Process for preparing PET filament having better conversion ratio | |
KR102361350B1 (en) | Manufacturing method of Nylon 66 fiber having high tenacity | |
KR101664933B1 (en) | Process for preparing high modulus polyester multifilament having an excellent dimensional satability | |
WO2022039033A1 (en) | Polyamide multifilament, and method for manufacturing same | |
US20050161854A1 (en) | Dimensionally stable yarns | |
KR101427832B1 (en) | Process for preparing high tenacity polyethylene terephthalate multifilament | |
EP4190953A1 (en) | Polyethylene yarn having improved post-processability, and fabric comprising same | |
KR101143721B1 (en) | High Gravity Polyester Multi-filament and Its manufacturing Method | |
JP2023051860A (en) | Polyether sulfone fiber, fiber package, nonwoven fabric, and manufacturing method of polyether sulfone fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170712 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190711 Year of fee payment: 6 |