[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101414241B1 - Disclosed is a biodegradable aliphatic polyester film which is easy to open and a method for producing the same. - Google Patents

Disclosed is a biodegradable aliphatic polyester film which is easy to open and a method for producing the same. Download PDF

Info

Publication number
KR101414241B1
KR101414241B1 KR1020070018595A KR20070018595A KR101414241B1 KR 101414241 B1 KR101414241 B1 KR 101414241B1 KR 1020070018595 A KR1020070018595 A KR 1020070018595A KR 20070018595 A KR20070018595 A KR 20070018595A KR 101414241 B1 KR101414241 B1 KR 101414241B1
Authority
KR
South Korea
Prior art keywords
temperature
stretching
film
ratio
polyester film
Prior art date
Application number
KR1020070018595A
Other languages
Korean (ko)
Other versions
KR20080078446A (en
Inventor
한권형
김상일
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to KR1020070018595A priority Critical patent/KR101414241B1/en
Publication of KR20080078446A publication Critical patent/KR20080078446A/en
Application granted granted Critical
Publication of KR101414241B1 publication Critical patent/KR101414241B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 개봉성이 용이한 생분해성 지방족 폴리에스테르계 필름 및 이의 제조방법에 관한 것으로, 140℃ 이상의 용융온도를 갖고 D-락타이드의 함량이 12% 이하인 폴리락트산계 중합체 수지로 제조되고, 35% 내지 60%의 결정화도, 70% 이하의 종방향 신도, 5 kgf/㎜2 이상의 종방향 강도 및 90% 이상의 생분해율을 갖는 것을 특징으로 하는 개봉성이 용이한 생분해성 지방족 폴리에스테르계 필름에 관한 것이다.The present invention relates to a biodegradable aliphatic polyester film which is easy to open and a method for producing the same, which is made of a polylactic acid polymer resin having a melting temperature of 140 ° C or higher and a content of D-lactide of 12% Characterized by having a crystallinity of 60 to 60%, a longitudinal elongation of 70% or less, a longitudinal strength of 5 kgf / mm 2 or more and a biodegradation rate of 90% or more will be.

본 발명에 따른 지방족 폴리에스테르계 필름은 기계적 특성이 우수하고, 생분해성이 우수하여 친환경성 포장 용도로 사용될 수 있으며, 이인열성이 우수하여 이(易)개봉성 포장용 및 점착테이프용 필름으로도 사용될 수 있다.The aliphatic polyester film according to the present invention has excellent mechanical properties and is excellent in biodegradability and can be used for eco-friendly packaging. The aliphatic polyester film can also be used as a film for easy packaging and adhesive tape .

Description

개봉성이 용이한 생분해성 지방족 폴리에스테르계 필름 및 이의 제조방법 {BIODEGRADABLE ALIPHATIC POLYESTER FILM WITH EASY OPENING PROPERTY AND PREPARATION THEREOF}FIELD OF THE INVENTION [0001] The present invention relates to a biodegradable aliphatic polyester film and a biodegradable aliphatic polyester film,

본 발명은 생분해성 지방족 폴리에스테르계 필름에 관한 것으로, 보다 상세하게는 이인열성을 갖는 개봉성이 용이한 포장용 및 점착테이프용 생분해성 지방족 폴리에스테르계 필름에 관한 것이다.The present invention relates to a biodegradable aliphatic polyester film, and more particularly, to a biodegradable aliphatic polyester film for packaging and a pressure-sensitive adhesive tape having easy-openability with a thermosetting property.

포장 용도로 많이 사용되는 플라스틱 필름으로는 폴리에틸렌테레프탈레이트 (PET), 나일론, 폴리에틸렌 (PE), 폴리프로필렌 (PP), 폴리비닐클로라이드 (PVC) 등을 들 수 있다. 그러나, 이들 모두 토양 중 전혀 분해되지 않아 환경에 큰 도움은 되지 않는 실정이다. 또한, 쓰레기 처리 방법에 따라 여러 부산물이 발생하게 되는데, 특히 폴리비닐클로라이드의 경우에는 소각시 다이옥신 등과 같은 유해물질이 발생하여 지구 환경 뿐 아니라 사람들의 건강까지도 해치고 있는 형국이다.Examples of plastic films commonly used for packaging include polyethylene terephthalate (PET), nylon, polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC). However, all of them are not decomposed at all in the soil, so they do not help the environment. In addition, various byproducts are generated according to the waste disposal method. Especially, in the case of polyvinyl chloride, harmful substances such as dioxin are generated at the incineration, which hurts not only the global environment but also the health of the people.

그러나, 이러한 여러 부작용에도 불구하고 상기 원료들은 대부분 포장용도 및 산업용도로 가장 많이 쓰이고 있으나, 환경문제에는 무방비로 노출되어 있는 상 태이다.Despite these side effects, however, most of the raw materials are mostly used for packaging and industrial purposes, but are exposed to environmental problems unprotected.

이에 토양 매립시 100% 분해되는 원료가 많은 사람들의 관심을 끌고 있다. 이러한 원료는 크게 원료 추출방법에 따라 식물계와 석유계로 나눌 수 있는데, 대표적인 식물계 원료로는 폴리락트산 (polylactic acid), 폴리하이드록시부티레이트 (polyhydroxybutylate)를 들 수 있으며, 석유계로는 폴리카프로락톤 (polycarprolactone), 폴리부틸렌석시네이트 (polybutylenesuccinate) 등을 들 수 있다. 이 중, 물성측면에서 가장 우수한 것이 폴리락트산이며, 이에 대한 연구가 현재 많이 진행되고 있다.Therefore, 100% decomposed raw materials are attracting much attention when land is buried. These raw materials can be largely classified into plant and petroleum based on the raw material extraction method. Representative plant raw materials include polylactic acid and polyhydroxybutylate, and petroleum-based ones include polycarprolactone, , Polybutylenesuccinate, and the like. Of these, polylactic acid is the most excellent in terms of physical properties, and researches thereof are currently underway.

지방족 폴리에스테르인 폴리락트산은 락트산을 축중합하여 만들어지는 중합체이다. 락트산은 L-락트산과 D-락트산의 광학 이성질체가 있으며, 따라서 폴리락트산은 일반적으로 두 광학 이성질체간의 랜덤 공중합체로 존재하고 용융온도 (Tm)는 180℃ 부근이고 유리전이온도 (Tg)는 55℃이다. 이러한 랜덤 공중합체는 결정성을 가지지 않으므로 비결정 상태로 블로운 (blown) 필름 등으로 제조되어 내열성과 기계적 특성을 요구하지 않는 일반 봉지 등의 용도로 사용될 수 있다.Polylactic acid, which is an aliphatic polyester, is a polymer produced by intensifying lactic acid. Acid is an optical isomer of the L- lactic acid and D- lactic acid, and thus the polylactic acid is usually present in a random copolymer between the two optical isomers, and the melting temperature (T m) is near 180 ℃ and has a glass transition temperature (T g) Lt; / RTI > Such a random copolymer does not have crystallinity and can be used for a general bag which is made of a blown film or the like in an amorphous state and does not require heat resistance and mechanical properties.

또한, 랜덤 공중합체에 결정성을 부여하기 위해 다량의 무기물이나 다량의 나노 복합체 등을 첨가하여 연신 필름을 제조할 수가 있으나, 결정화 정도를 제대로 조절하기가 쉽지 않고, 투명성과 같은 필름의 광학 특성이 극도로 나쁘게 되는 문제가 있다. 또한, 다량의 무기물과 나노 복합체 등에 의해 연신 필름의 유연성이 저하되고 기계적 특성이 낮은 뻣뻣한 상태의 필름이 되어, 양호한 포장용 필름 으로 사용하기에는 문제가 있고 생분해성도 나빠지게 된다.Further, in order to impart crystallinity to the random copolymer, it is possible to prepare a stretched film by adding a large amount of an inorganic substance or a large amount of a nanocomposite or the like, but it is difficult to control the degree of crystallization properly, There is a problem that becomes extremely bad. Further, the flexibility of the stretched film is lowered by a large amount of inorganic substances and nanocomposites, and the film becomes a stiff film having low mechanical properties, which is problematic for use as a good packaging film, and biodegradability is also deteriorated.

반면, L-락타이드 단독 또는 D-락타이드 단독으로 된 중합체는 용융온도가 높고 (180℃ 부근) 결정성을 어느 정도 조절할 수 있는 반결정성 수지로서 연신 필름으로 사용될 수 있는 유용한 원료가 될 수는 있으나, 필름의 유연성이 부족하고 뻣뻣한 기술적 단점을 완전히 해결하지는 못하였으며, 순수한 호모 중합체의 제조비용이 너무 높아 실용화하기에는 문제점이 많다.On the other hand, a polymer composed of L-lactide alone or D-lactide alone can be a useful raw material that can be used as a stretched film as a semi-crystalline resin having a high melting temperature (around 180 ° C) However, the flexibility of the film is insufficient and the stiff technical disadvantages can not be completely solved, and the manufacturing cost of the pure homopolymer is too high, so there are many problems to be put to practical use.

한편, 폴리부틸렌석시네이트의 경우에는 녹는점이 115℃이고 유리전이온도가 -32℃라서 유연한 특성은 지니지만, 내열성에 있어서 치명적인 약점을 드러내고, 폴리카프로락톤은 녹는점이 60℃이기 때문에 필름으로서는 내열성이 현저하게 떨어지며, 폴리하이드록시부티레이트는 녹는점은 175℃이나 너무 뻣뻣한 성질을 지녀 필름 형성시 연신의 어려움을 겪게 된다.On the other hand, in the case of polybutylenesulfonate, although the polybutylenesulfonate has a melting point of 115 캜 and a glass transition temperature of -32 캜, it has a flexible property, but exhibits a fatal weakness in heat resistance. Since polycaprolactone has a melting point of 60 캜, And the polyhydroxybutyrate has a melting point of 175 DEG C but is too stiff to have difficulty in stretching when the film is formed.

일반적으로 필름에 인열성을 부여하기 위해서는 셀로판 필름을 주로 이용한다. 이러한, 셀로판 필름은 제조 공정상 환경오염을 유발하고, 사용단가가 높아서 근래에는 그 사용량이 줄고 있는 추세이다.Generally, a cellophane film is mainly used to impart tearing property to a film. Such cellophane films cause environmental pollution in the manufacturing process, and the use amount thereof has recently been decreasing due to high use cost.

또한, 폴리에틸렌테레프탈레이트 또는 폴리프로필렌 필름의 경우에는 분자구조상 기계적 강도가 높아 인열성 확보를 위해 노치 (notch) 가공을 통한 강제적인 인열성을 부여하였다. 하지만 노치 가공에 따른 제조원가 상승은 물론 노치 가공을 위한 외부 접힘 부위에 의해 완제품의 외관이 수려하지 못하고 부피가 커 보이며 취급 부주의시 포장이 찢어지는 단점이 있다.In addition, in the case of polyethylene terephthalate or polypropylene film, the film has high mechanical strength due to its molecular structure, thereby imparting forcible heat resistance through notch processing in order to secure heat resistance. However, not only the manufacturing cost increases due to the notch processing but also the external appearance of the finished product can not be attained due to the outer folded portion for notch processing, which leads to a bulky and tearable package.

따라서 본 발명의 목적은 랜덤 폴리락트산 공중합체를 이용하여 생분해율이 우수하면서도 기계적 특성이 우수하고 이인열성이 우수하여 노치 가공 없이도 완제품의 절단이 용이한 이개봉성 생분해성 지방족 폴리에스테르계 필름 및 이의 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a biodegradable aliphatic polyester film having excellent biodegradation rate, excellent mechanical properties and excellent heat resistance, which makes it easy to cut an article without using a random polylactic acid copolymer, and its manufacture Method.

상기 목적을 달성하기 위하여 본 발명에서는, 140℃ 이상의 용융온도를 갖고 D-락타이드의 함량이 12% 이하인 폴리락트산계 중합체 수지로 제조되고, 35% 내지 60%의 결정화도, 70% 이하의 종방향 신도, 5 kgf/㎜2 이상의 종방향 강도 및 90% 이상의 생분해율을 갖는 것을 특징으로 하는, 이개봉성 생분해성 지방족 폴리에스테르계 필름을 제공한다.In order to achieve the above object, the present invention provides a polylactic acid resin composition which is made of a polylactic acid polymer resin having a melting temperature of 140 캜 or more and a content of D-lactide of 12% or less and has a crystallinity of 35% to 60% A biodegradable aliphatic polyester film characterized by having an elongation, a longitudinal strength of 5 kgf / mm < 2 > or more and a biodegradation rate of 90% or more.

또한, 본 발명에서는 140℃ 이상의 용융온도 (Tm)를 갖는 폴리락트산계 공중합 수지를 용융 압출한 후, 용융 압출된 시트를 1.2 내지 2.5배로 종연신하고 3 내지 5배로 횡연신한 다음, 열고정하는 것을 포함하며, 상기 종연신과 횡연신의 비율이 1:2 이상인 것을 특징으로 하는, 이개봉성 생분해성 지방족 폴리에스테르계 필름의 제조방법을 제공한다.In the present invention, a polylactic acid copolymer resin having a melting temperature (T m ) of 140 ° C or more is melt-extruded, the melt-extruded sheet is longitudinally stretched at 1.2 to 2.5 times, transversely stretched at 3 to 5 times, Wherein the ratio of the longitudinal stretching to the transverse stretching is 1: 2 or more. The present invention also provides a method for producing a biodegradable aliphatic polyester film.

이하에서 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described more specifically.

본 발명에 따른 폴리락트산계 중합체는 단독 중합체 또는 소량의 다른 하이드록시 카르복실산 단위를 가진 공중합체로서 사용할 수 있다.The polylactic acid polymer according to the present invention can be used as a homopolymer or as a copolymer having a small amount of other hydroxycarboxylic acid units.

폴리락트산계 중합체의 용융온도는 140℃ 이상 200℃ 미만인 것이 바람직하고, 150℃ 이상 180℃ 미만인 것이 더욱 바람직하다. 만약, 용융온도가 140℃보다 낮게 되면 내열성과 기계적 특성이 제대로 발현되지 못하게 되므로 바람직하지 않다.The melting temperature of the polylactic acid polymer is preferably 140 ° C or more and less than 200 ° C, and more preferably 150 ° C or more and less than 180 ° C. If the melting temperature is lower than 140 占 폚, heat resistance and mechanical properties are not properly exhibited.

또한, 폴리락트산계 중합체는 옥수수 등의 식물성 원료로부터 만들어지는 락트산을 축중합한 중합체로서 D-락타이드의 함량이 12% 이하인 L-락타이드와 D-락타이드의 랜덤 공중합체이며, 80,000 g/mol 내지 500,000 g/mol의 중량 평균 분자량을 갖는 것이 바람직하다. 상기 중량 평균 분자량이 80,000 보다 작으면 내열성 및 기계적 특성이 제대로 발현되지 않고, 500,000 보다 크면 점도가 너무 높아 제대로 된 이축 연신 필름을 가공할 수 없게 된다.The polylactic acid polymer is a random copolymer of L-lactide and D-lactide having a content of D-lactide of 12% or less, which is a polymer obtained by polycondensation of lactic acid produced from a vegetable raw material such as corn, mol to 500,000 g / mol. If the weight average molecular weight is less than 80,000, heat resistance and mechanical properties are not properly exhibited. If the weight average molecular weight is more than 500,000, the viscosity is too high, so that a proper biaxially stretched film can not be processed.

본 발명에 사용될 수 있는 소량의 하이드록시 카르복실산 단위로는 글리콜산 또는 2-하이드록시-3,3-다이메틸부틸산 등을 들 수 있으며, 전체 공중합 수지에 대하여 10 중량% 이하의 양으로 사용할 수 있다.The small amount of the hydroxycarboxylic acid unit that can be used in the present invention includes glycolic acid or 2-hydroxy-3,3-dimethylbutyric acid, and the amount of the hydroxycarboxylic acid unit is preferably 10% by weight or less Can be used.

또한, 본 발명의 필름용 수지 조성물에는 통상의 정전인가제, 대전방지제, 자외선 차단제, 블로킹방지제 및 기타 무기활제가 본 발명의 효과를 손상시키지 않는 범위 내에서 첨가되어도 무방하다.In addition, the resin composition for a film of the present invention may be added with a conventional electrostatic agent, an antistatic agent, an ultraviolet screening agent, an antiblocking agent and other inorganic lubricants within the range not impairing the effect of the present invention.

본 발명에 따른 필름은 통상의 방법대로 상기 필름용 수지 조성물을 용융 압 출, 이축 연신 및 열고정하여 제조되는데, 본 발명에서는 필름의 결정화도, 종방향 신도, 종방향 강도 및 생분해율을 조절하기 위하여, 필름의 종연신비는 1.2 내지 2.5배, 횡연신비는 3 내지 5배로 하는 것이 바람직하며, 이 때 종연신비와 횡연신비의 비율은 1:2 이상인 것이 바람직하다.The film according to the present invention is prepared by melt-extruding, biaxially stretching and thermo fixing the resin composition for a film in a conventional manner. In the present invention, in order to control the crystallinity, longitudinal elongation, longitudinal strength and biodegradation rate of the film, It is preferable that the film has a longitudinal stretching ratio of 1.2 to 2.5 times and a transverse stretching ratio of 3 to 5 times. The ratio of longitudinal stretching ratio to transverse stretching ratio is preferably 1: 2 or more.

상기 종연신비가 1.2배 미만이면 종방향으로 분자들이 배향되지 않아 종방향 강도가 5 kgf/㎜2 미만이 되어 필름이 쉽게 파단되고, 반대로 종연신비가 2.5배를 초과하면 분자들이 종방향으로 과다하게 배향되므로 횡방향 인열성이 떨어지게 된다.If the longitudinal mysterious ratio is less than 1.2 times, the molecules are not oriented in the longitudinal direction so that the longitudinal strength is less than 5 kgf / mm < 2 > so that the film is easily broken. On the other hand, So that the heat resistance in the transverse direction is lowered.

또한, 횡연신비가 3배 미만이면 불충분한 연신으로 필름의 두께가 불량해지고, 분자들의 횡방향 배향이 상대적으로 적게 이루어져 횡방향 인열성이 불량하게 되며, 반대로 횡연신비가 5배를 초과하면 필름 형성이 불가능하게 된다.If the transverse stretching ratio is less than 3 times, the thickness of the film becomes poor due to insufficient stretching, and the lateral orientation of the molecules becomes relatively small, resulting in poor thermal stability in the transverse direction. On the other hand, .

또한, 횡방향 이인열성을 갖기 위해서는 분자 배향의 정도가 가장 중요한 척도인데, 만약 종연신비와 횡연신비의 비율이 1:2 미만이면 종방향과 횡방향의 분자들이 과다하게 배향되어 종방향의 신도가 70%를 넘게 되어 횡방향의 인열성이 떨어지게 되고, 반대로 상기 비율이 1:2 이상이면 횡방향 분자 배향이 종방향 분자 배향을 지배하게 되므로 종방향의 신도가 70% 이하가 된다.In addition, the degree of molecular orientation is the most important measure in order to have heat resistance in the transverse direction. If the ratio between the longitudinal mystery ratio and the transverse stretching ratio is less than 1: 2, the molecules in the longitudinal direction and the transverse direction are excessively oriented, 70% or more, and the tearing property in the transverse direction is deteriorated. On the other hand, when the ratio is 1: 2 or more, the transverse direction of molecular orientation dominates the longitudinal direction of the molecule, so that the elongation in the longitudinal direction becomes 70% or less.

상기에 따라 제조된 본 발명의 지방족 폴리에스테르계 필름은 결정화도가 35% 내지 60%, 종방향 신도가 70% 이하, 종방향 강도가 5 kgf/㎜2 이상 및 생분해율이 90% 이상임을 특징으로 한다.The aliphatic polyester film of the present invention produced according to the above is characterized by having a crystallinity of 35% to 60%, a longitudinal elongation of 70% or less, a longitudinal strength of 5 kgf / mm 2 or more, and a biodegradation rate of 90% do.

필름의 결정화도가 35% 미만이면 열처리를 저온에서 수행해야 하고, 이에 따라 필름 내의 결정성이 떨어지게 되면, 연신시 받았던 응력도 완화되지 않아 필름이 심하게 수축하게 되므로 인쇄나 후가공 공정에서 수축이 일어나게 되어 인쇄 필름의 외관에 영향을 미치게 되며, 결정화도가 60%를 초과하면 필름이 너무 뻣뻣해져 연신이 불가능하게 된다.If the crystallinity of the film is less than 35%, the heat treatment must be carried out at a low temperature. If the crystallinity in the film is lowered, the stress applied during stretching is not relaxed, and the film shrinks sharply so that shrinkage occurs in the printing or post- If the crystallinity exceeds 60%, the film becomes too stiff to be stretched.

필름의 종방향 신도가 70% 이내이고 종방향의 강도가 5 kgf/㎜2 이상이어야 횡방향 이인열성과 필름 형성시 공정안정성을 기할 수 있는데, 만약 종방향 신도가 70%를 초과하면 필름 형성시 분자 배향이 한쪽으로 치우치지 않고 여러 방향으로 고루 분포되기 때문에 파단 등의 공정 안정성에는 효과적일 수 있지만 일정한 분자 배향이 결정적인 영향을 미치는 이인열성은 오히려 나빠지게 된다. 반대로 종방향 강도가 5 kgf/㎜2 미만이면 필름의 강도가 너무 약해서 권취기 (winder)의 미세한 장력 (tension) 등에 민감하게 반응하여 필름 제작의 파단이 일어나게 된다.If the longitudinal elongation of the film is within 70% and the strength in the longitudinal direction is 5 kgf / mm 2 or more, the transverse direction thermal property and the process stability upon film formation can be achieved. If the longitudinal elongation exceeds 70% Since the molecular orientation is uniformly distributed in various directions without being deviated to one side, it can be effective for process stability such as fracture, but the thermostability of the molecule, which has a definite molecular orientation, is deteriorated. On the contrary, if the longitudinal strength is less than 5 kgf / mm < 2 >, the strength of the film is too weak to react sensitively to the minute tension of the winder,

상기와 같이 결정화도를 조절하기 위하여, 본 발명에서는 횡연신 후의 열고정 구간을 최소 4구간으로 하여 1구간 및 4구간의 온도는 Tm-50℃ 내지 Tm-10℃의 범위로, 2구간 및 3구간의 온도는 Tm-20℃ 내지 Tm-10℃로 하는 것이 바람직하며, 이때 열고정 구간의 길이를 전체 텐터 (횡연신 및 열고정 장치) 길이의 40% 이상으로 하는 것이 바람직하다.In order to control the degree of crystallization as described above, in the present invention, the temperature of the first and fourth sections is set in the range of T m -50 ° C to T m -10 ° C with at least four sections after the transverse stretching, It is preferable that the temperature of the section 3 is in the range of T m -20 ° C to T m -10 ° C, and the length of the heat fixing section is preferably 40% or more of the total length of the tenter (transverse stretching and heat fixing device).

상기에 따라 제조된 본 발명의 지방족 폴리에스테르계 필름은 100℃에서 5분 동안의 열수축률이 5% 이하인 것을 특징으로 한다.The aliphatic polyester film of the present invention produced according to the above is characterized in that the heat shrinkage rate at 100 ° C for 5 minutes is 5% or less.

상기 열수축률이 5%를 초과하면 결정화도가 35% 이하의 수준으로 떨어지게 되어 포장 필름으로 사용시 인쇄 또는 후가공 공정에서 수축이 일어나게 되어 수려한 외관을 가질 수 없다.If the heat shrinkage exceeds 5%, the crystallinity drops to 35% or less, which causes shrinkage in the printing or post-processing process when used as a packaging film, and thus can not have a good appearance.

또한, 본 발명에서는 선팽창계수 및 열변형온도를 조절하기 위하여, 종연신 및 횡연신 구간을 각각 예열 및 연신 구간으로 나누어 각 구간마다 특정 조건으로 제어한다.In the present invention, in order to control the linear expansion coefficient and the heat distortion temperature, the longitudinal stretching and transverse stretching sections are divided into preheating and stretching sections, respectively, and controlled under specific conditions for each section.

종연신시 예열온도는 Tg+20℃ 내지 Tg+50℃의 범위로, 연신온도는 이보다 10℃높게 하는 것이 바람직하며, 횡연신시에는 예열 구간을 최소 3단계로 나누어 초기온도는 Tg+30℃ 내지 Tg+50℃의 범위로, 중기온도는 초기온도 보다 5℃ 낮게, 말기온도는 중기온도보다 5℃ 낮게 하는 것이 바람직하고, 연신 구간은 최소 2단계로 나누어 초기온도는 Tg+20℃ 내지 Tg+50℃의 범위로, 말기온도는 Tg+30℃ 내지 Tg+80℃의 범위로 하는 것이 바람직하다.Longitudinal drawing synthesizer pre-heating temperature is preferably higher 10 ℃ than this is the range from T g + 20 ℃ to T g + 50 ℃, stretching temperature, into a lateral, the warm-up period during stretching by at least three step initial temperature T g + in the range of 30 ℃ to T g + 50 ℃, medium temperature is lower 5 ℃ than the initial temperature, the end temperature is preferably low 5 ℃ and stretching period is divided into at least two steps initial temperature than the medium temperature T g + to 20 ℃ to the range of T g + 50 ℃, the end temperature is preferably in the range from T g + 30 ℃ to T g + 80 ℃.

상기에 따라 제조된 본 발명의 지방족 폴리에스테르계 필름은 25℃ 내지 75℃의 온도에서의 선팽창계수가 0.2 ㎛/㎝·℃ 이하이고, 열변형온도가 70℃ 이상인 것을 특징으로 한다.The aliphatic polyester film of the present invention produced according to the above is characterized in that the coefficient of linear expansion at a temperature of 25 캜 to 75 캜 is 0.2 탆 / cm 캜 or less and the heat distortion temperature is 70 캜 or higher.

선팽창계수가 0 ㎛/㎝·℃ 미만 (-)이면 상기 온도에서 필름이 수축하게 되고, 선팽창계수가 0.2 ㎛/㎝·℃를 초과하면 상기 온도에서 필름이 지나치게 늘어 나게 되어 인쇄성이 떨어지며 양호한 포장 용도로서의 사용이 어렵게 된다.When the coefficient of linear expansion is less than 0 占 퐉 / cm 占 폚 (-), the film shrinks at the above temperature. When the linear expansion coefficient exceeds 0.2 占 퐉 / cm 占 폚, the film is excessively stretched at the above temperature, Making it difficult to use as an application.

또한, 열변형온도가 70℃ 미만이면 쉽게 수축이 일어나 인쇄 후 수축이 심하게 일어나게 되어 수려한 외관을 지닌 포장재로서의 가치가 떨어지게 된다.If the thermal deformation temperature is less than 70 캜, shrinkage easily occurs, and shrinkage occurs severely after printing, which lowers the value as a packaging material having a good appearance.

본 발명에 따라 제조된 필름은 기계적 특성이 우수하고, 생분해성이 우수하여 친환경성 포장 용도로 사용될 수 있으며, 이인열성이 우수하여 노치 가공 없이도 완제품의 절단이 용이하므로 이(易)개봉성 포장용 및 점착테이프용 필름으로도 사용될 수 있다.The film produced according to the present invention has excellent mechanical properties and excellent biodegradability and can be used for eco-friendly packaging. Since it is excellent in heat resistance, it is easy to cut an article without a notch, It can also be used as a film for an adhesive tape.

이하, 본 발명을 하기 실시예에 의거하여 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않으며, 본 발명의 실시예 및 비교예에서 제조된 필름에 대한 물성 측정 및 각종 성능 평가는 다음과 같은 방법으로 실시하였다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are intended to illustrate the present invention and are not to be construed as limiting the scope of the present invention. The properties and various properties of the films prepared in Examples and Comparative Examples of the present invention were evaluated in the following manner.

(1) 용융온도 (Tm, ℃)(1) Melting temperature (T m, ° C)

시차주사열분석기 (퍼킨엘머 사, DSC-7)를 사용하여, 1분당 20℃의 승온 속도로 결정 융해온도를 측정하였다.Using a differential scanning calorimeter (Perkin Elmer Corp., DSC-7), the crystal melting temperature was measured at a heating rate of 20 ° C per minute.

(2) 생분해율 (%)(2) Biodegradation rate (%)

ASTM D5338의 표준 측정법에 따라 180일간 측정한 생분해율 값의 표준물질과 의 비를 하기의 식에 따라 계산하였다.The ratio of the biodegradation value measured for 180 days according to the standard measurement method of ASTM D5338 to the reference material was calculated according to the following formula.

Figure 112007016163457-pat00001
Figure 112007016163457-pat00001

(3) 결정화도 (%)(3) Crystallinity (%)

시차주사열분석기 (퍼킨엘머 사, DSC-7)를 사용하여, 1분당 20℃의 승온 속도로 측정한 결정 융해 에너지 (Hc, J/g)와 승온시 생성된 결정 생성 에너지 (Ha, J/g)로부터 하기의 식에 따라 계산하였다.The crystal melting energy (Hc, J / g) measured at a heating rate of 20 ° C per minute using a differential scanning calorimeter (Perkin Elmer Corp., DSC-7) g) according to the following formula.

Figure 112007016163457-pat00002
Figure 112007016163457-pat00002

(4) 선팽창계수 (㎛/㎝·℃)(4) Coefficient of linear expansion (占 퐉 / cm 占 폚)

열변형 해석기 (TA사, TMA 2940)를 이용하여 일정 하중 0.05 N 및 10℃/분의 승온 속도로 측정하여 하기 식에 따라 계산하였다.And measured at a heating rate of 0.05 N and 10 DEG C / min under a constant load using a thermal deformation analyzer (TA, TMA 2940) and calculated according to the following equation.

Figure 112007016163457-pat00003
Figure 112007016163457-pat00003

(5) 열수축률 (%)(5) Heat shrinkage (%)

제조된 필름을 횡방향 (폭) 15 ㎜, 종방향 (길이) 200 ㎜로 절단한 후, 100℃의 온도로 유지되는 열풍 오븐 중에서 5분간 열처리한 후, 열처리 전·후의 길이를 측정하여 하기 식에 따라 계산하였다.The prepared film was cut into 15 mm width and 200 mm length in the transverse direction (width), followed by heat treatment in a hot air oven maintained at a temperature of 100 캜 for 5 minutes, and then the lengths before and after the heat treatment were measured, Respectively.

Figure 112007016163457-pat00004
Figure 112007016163457-pat00004

(6) 필름의 강도 및 신도(6) Strength and elongation of film

제조된 필름을 길이 폭 15 ㎜, 길이 50 ㎜로 절단한 후, ASTM D882 방법에 따라 UTM (인스트론 사, 4206-001)을 이용하여 상온 (23±2℃)에서 20 ㎜/분의 인장속도로 파단 신도 및 파단 강도를 측정하였다.The prepared film was cut into a length of 15 mm and a length of 50 mm and then stretched at room temperature (23 2 캜) using a UTM (Instron, 4206-001) according to ASTM D882 at a tensile rate of 20 mm / The elongation at break and the breaking strength were measured.

(7) 인열성(7) Persistence

제조된 필름을 횡방향 (폭) 15 ㎜, 종방향 (길이) 300 ㎜로 절단한 후, 가운데 10 ㎜의 간격을 손으로 잡고 천천히 잡아당겨 필름의 찢어지는 상태를 관찰하였다. 이때, 필름이 깨끗하게 절단되면 양호, 필름이 늘어나며 찢어져 절단면이 깨끗하지 못하거나 손으로 절단할 수 없으면 불량으로 구분하였다.The prepared film was cut into 15 mm in width (width) and 300 mm in length (length), and then the gap of 10 mm between the centers was gripped by hand and pulled slowly to observe the tearing state of the film. At this time, when the film is cleanly cut, the film is stretched, and the film is classified as defective if the cut surface is not clean or can not be cut by hand.

실시예 1Example 1

D-락타이드의 함량이 5 중량%, 용융온도 (Tm)가 150 내지 180℃, 유리전이온도 (Tg)가 55℃인 폴리락트산 중합체 (4042D, Natureworks LLC, 미국)를 펠렛 형태로 가공하여 압출온도 240℃로 녹인 다음, 20℃의 냉각롤에 밀착시켜 시트를 얻었다. 그 후, 종방향 연신을 위해 75℃로 예열한 후, 85℃의 연신롤을 통과시켜 1.2 배로 종연신하였다.The content of D- lactide 5% by weight, the melting temperature (T m) is 150 to 180 ℃, the glass transition temperature of the process (T g) is a polylactic acid polymer (4042D, Natureworks LLC, USA) 55 ℃ a pellet form And then extruded at an extrusion temperature of 240 DEG C, and then adhered to a cooling roll at 20 DEG C to obtain a sheet. Thereafter, the film was preheated to 75 deg. C for longitudinal drawing, passed through a drawing roll at 85 deg. C, and longitudinally drawn at 1.2 times.

연신된 필름을, 초기, 중기 및 말기의 온도가 각각 100℃, 95℃ 및 90℃인 예열 구간에서 예열한 다음, 초기 및 말기의 온도가 각각 83℃ 및 88℃인 연신 구간 내에서 4배로 횡연신하였다.The stretched film was preheated in a preheating section having initial, middle, and late temperatures of 100 deg. C, 95 deg. C, and 90 deg. C, respectively, and then stretched four times in the elongation period in which initial and final temperatures were 83 deg. Lt; / RTI >

상기의 시트를 1구간 및 4구간의 온도가 140℃이고 2구간 및 3구간의 온도가 150℃인 텐터의 열고정 구간 내에서 열고정하여 지방족 폴리에스테르인 폴리락트산 이축 연신 필름을 제조하였으며, 이때 열고정 구간의 길이는 전체 텐터 길이의 40%이었다.The above sheet was heat set in a heat fixation section of a tenter having a temperature of 140 ° C for one section and four sections and a temperature of 150 ° C for two sections and three sections to prepare a polylactic acid biaxially stretched film which is an aliphatic polyester, The length of the fixed section was 40% of the total tenter length.

필름의 종방향 신도, 종방향 강도, 결정화도, 수축률, 선팽창계수, 열변형온도, 생분해율 및 인열성을 측정하여 하기 표 1 에 나타내었다.The longitudinal elongation, longitudinal strength, crystallinity, shrinkage, linear expansion coefficient, heat distortion temperature, biodegradation rate and tearing property of the film were measured and are shown in Table 1 below.

실시예 2Example 2

D-락타이드의 함량이 2 중량%, 용융온도 (Tm)가 150 내지 180℃, 유리전이온도 (Tg)가 55℃인 폴리락트산 중합체 (4032D, Natureworks LLC, 미국)를 펠렛 형태로 가공하여 압출온도 220℃로 녹인 다음, 25℃의 냉각롤에 밀착시켜 시트를 얻었다. 그 후, 종방향 연신을 위해 78℃로 예열한 후, 88℃의 연신롤을 통과시켜 1.5배로 종연신하였다.The 2% by weight content of D- lactide, melting temperature (T m) is 150 to 180 ℃, the glass transition temperature of the process (T g) is a polylactic acid polymer (4032D, Natureworks LLC, USA) 55 ℃ a pellet form The sheet was then melted at an extrusion temperature of 220 캜 and then adhered to a cooling roll at 25 캜 to obtain a sheet. Thereafter, the film was preheated at 78 캜 for longitudinal stretching, passed through a stretching roll at 88 캜, and longitudinally stretched at a stretch ratio of 1.5 times.

연신된 필름을, 초기, 중기 및 말기의 온도가 각각 105℃, 100℃ 및 95℃인 예열 구간에서 예열한 다음, 초기 및 말기의 온도가 각각 80℃ 및 85℃인 연신 구 간 내에서 3.2배로 횡연신하였다.The stretched film was preheated in a preheating section having initial, middle, and late temperatures of 105 DEG C, 100 DEG C, and 95 DEG C, respectively, and then 3.2 times in the stretching section in which initial and final temperatures were 80 DEG C and 85 DEG C, respectively And then transversely stretched.

상기의 시트를 1구간 및 4구간의 온도가 150℃이고 2구간 및 3구간의 온도가 160℃인 텐터의 열고정 구간 내에서 열고정하여 지방족 폴리에스테르인 폴리락트산 이축 연신 필름을 제조하였으며, 이때 열고정 구간의 길이는 전체 텐터 길이의 40%이었다.The above sheet was heat set in a heat-setting zone of a tenter having a temperature of 150 DEG C and a temperature of 160 DEG C for two sections and four sections, thereby preparing a polylactic acid biaxially stretched film which is an aliphatic polyester, The length of the fixed section was 40% of the total tenter length.

필름의 특성을 측정하여 하기 표 1 에 나타내었으며, 실시예 1에 비해 더 높은 온도에서 열고정하여 열수축률이 더 낮아지게 되었으며, 다른 물성은 모두 양호하였다.The properties of the film were measured and shown in Table 1 below. The heat shrinkage rate was lowered by heating at a higher temperature than in Example 1, and the other properties were all good.

비교예 1Comparative Example 1

PLA 칩 4032D 및 4060D (Natureworks LLC, 미국)를 3:7의 비율로 혼합하여 제조된, D-락타이드의 함량이 8 중량%, 용융온도 (Tm)가 150℃, 유리전이온도 (Tg)가 55℃인 폴리락트산 중합체를 펠렛 형태로 가공하여 압출온도 240℃로 녹인 다음, 20℃의 냉각롤에 밀착시켜 시트를 얻었다. 그 후, 종방향 연신을 위해 60℃로 예열한 후, 75℃의 연신롤을 통과시켜 3배로 종연신하였다.(T m ) of 150 ° C and a glass transition temperature (T g ) of 8% by weight, a content of D-lactide prepared by mixing PLA chips 4032D and 4060D (Natureworks LLC, USA) ) At 55 DEG C was processed into a pellet form and dissolved at an extrusion temperature of 240 DEG C and then adhered to a cooling roll at 20 DEG C to obtain a sheet. Thereafter, the film was preheated at 60 캜 for longitudinal stretching, passed through a stretching roll at 75 캜, and longitudinally stretched three times.

연신된 필름을, 초기, 중기 및 말기의 온도가 각각 85℃, 80℃ 및 75℃인 예열 구간에서 예열한 다음, 초기 및 말기의 온도가 각각 75℃ 및 80℃인 연신 구간 내에서 4배로 횡연신하였다.The stretched film was preheated in a preheating section at the initial, middle, and late temperatures of 85 ° C, 80 ° C and 75 ° C, respectively, and then stretched four times in the stretching section at the initial and final temperatures of 75 ° C and 80 ° C, Lt; / RTI >

상기의 시트를 1구간 내지 4구간의 온도가 모두 120℃인 텐터의 열고정 구간 내에서 열고정하여 지방족 폴리에스테르인 폴리락트산 이축 연신 필름을 제조하였으며, 이때 열고정 구간의 길이는 전체 텐터 길이의 37%이었다.The sheet was heat set in a heat-setting zone of a tenter having a temperature range of 1 to 4, both of which were 120 ° C, to produce a polylactic acid biaxially stretched film which was an aliphatic polyester. The length of the heat fixing zone was 37 %.

필름의 특성을 측정하여 하기 표 1 에 나타내었으며, 실시예 1에 비해 더 낮은 온도에서 열고정하여 열수축률이 더 높아졌으며, 종연신비가 3배로 크고, 종연신비와 횡연신비의 비율이 1:1.33으로 작아져 종방향 배향 정도가 심해 인열성에 있어서 불량한 상태를 나타내었다.The properties of the film were measured and shown in Table 1 below. The heat shrinkage rate was increased by heating at a lower temperature than that of Example 1, and the ratio of longitudinal extension ratio and transverse extension ratio was 1: 1.33 And a poor state was observed in the heat resistance in which the degree of longitudinal orientation was deep.

비교예 2Comparative Example 2

PLA 칩 4032D 및 4060D (Natureworks LLC, 미국)를 2:8의 비율로 혼합하여 제조된, D-락타이드의 함량이 10 중량%, 용융온도 (Tm)가 150℃, 유리전이온도 (Tg)가 55℃인 폴리락트산 중합체를 펠렛 형태로 가공하여 압출온도 260℃로 녹인 다음, 25℃의 냉각롤에 밀착시켜 시트를 얻었다. 그 후, 종방향 연신을 위해 65℃로 예열한 후, 75℃의 연신롤을 통과시켜 3.5배로 종연신하였다.Chip PLA 4032D and 4060D (Natureworks LLC, USA) 2: manufactured by mixing in a ratio of 8, 10% by weight content of D- lactide, a 150 ℃ melting temperature (T m), a glass transition temperature (T g ) At 55 캜 was processed into a pellet form and melted at an extrusion temperature of 260 캜 and then adhered to a cooling roll at 25 캜 to obtain a sheet. Thereafter, the film was preheated at 65 ° C for longitudinal drawing, passed through a drawing roll at 75 ° C, and longitudinally drawn 3.5 times.

연신된 필름을, 초기, 중기 및 말기의 온도가 각각 90℃, 85℃ 및 80℃인 예열 구간에서 예열한 다음, 초기 및 말기의 온도가 각각 100℃ 및 105℃인 연신 구간 내에서 4.5배로 횡연신하였다.The stretched film was preheated in a preheating section having initial, middle, and late temperatures of 90 DEG C, 85 DEG C, and 80 DEG C, respectively, and then stretched 4.5 times in the stretching section in which the initial and late temperatures were 100 DEG C and 105 DEG C, Lt; / RTI >

상기의 시트를 1구간 및 4구간의 온도가 110℃이고 2구간 및 3구간의 온도가 115℃인 텐터의 열고정 구간 내에서 열고정하여 지방족 폴리에스테르인 폴리락트산 이축 연신 필름을 제조하였으며, 이때 열고정 구간의 길이는 전체 텐터 길이의 35% 이었다.The sheet was heat set in a heat-setting zone of a tenter having a temperature of 110 ° C for one section and four sections and a temperature of 115 ° C for two sections and three sections to prepare a polylactic acid biaxially stretched film which is an aliphatic polyester, The length of the fixed section was 35% of the total tenter length.

필름의 특성을 측정하여 하기 표 1 에 나타내었으며, 실시예 1에 비해 더 낮은 온도에서 열고정하여 열수축률이 더 높아졌으며, 종연신비와 횡연신비가 각각 3.5배 및 4.5배로 커짐에 따라 종연신비와 횡연신비의 비율이 1:1.28로 작아져 종방향 배향정도가 심해 인열성에 있어서 불량한 상태를 나타내었다.The properties of the film were measured and the results are shown in Table 1. The heat shrinkage rate was increased by heating at a lower temperature than in Example 1. As the longitudinal mystery ratio and the transverse stretching ratio were increased to 3.5 times and 4.5 times, The ratio of the stretching ratio was as small as 1: 1.28, indicating a poor state in heat resistance in which the degree of longitudinal orientation was deep.

비교예 3Comparative Example 3

D-락타이드와 L-락타이드를 자체 중합하여 제조된, D-락타이드의 함량이 15 중량%, 유리전이온도 (Tg)가 55℃인 비정질의 폴리락트산 중합체 (4060D, Natureworks LLC, 미국)를 이용하여 압출온도 240℃로 녹인 다음, 20℃의 냉각롤에 밀착시켜 시트를 뽑았지만, 연신이 불가능하여 필름을 제조하지 못하였다.Of D- lactide and the amorphous prepared by self-polymerization of the L- lactide, 15% by weight content of D- lactide, a glass transition temperature (T g) is 55 ℃ polylactic acid polymer (4060D, Natureworks LLC, USA ) At 240 캜 for extrusion, and then the sheet was brought into close contact with a cooling roll at 20 캜, but the film could not be stretched because stretching was impossible.

비교예 4Comparative Example 4

종연신비를 3.2배로 하고 횡연신비를 4.3배로 한 것을 제외하고는 실시예 1과 동일한 방법으로 필름을 제조하였으며, 필름의 특성을 하기 표 1에 나타내었다.The film was prepared in the same manner as in Example 1, except that the stretching ratio was 3.2 times and the lateral stretching ratio was 4.3 times. The properties of the film are shown in Table 1 below.

Figure 112007016163457-pat00005
Figure 112007016163457-pat00005

상기 표 1에 나타나 있는 바와 같이, 본 발명에 따른 실시예 1 및 2의 폴리에스테르 필름은 비교예 1 내지 4의 필름들에 비해 생분해율이 우수하면서도 인열성 및 기계적 특성이 매우 우수함을 알 수 있다.As shown in Table 1, the polyester films of Examples 1 and 2 according to the present invention are superior in terms of biodegradation rate to pyrolysis and mechanical properties, as compared with the films of Comparative Examples 1 to 4 .

본 발명에 따른 지방족 폴리에스테르계 필름은 생분해율뿐 아니라 종방향 신도, 종방향 강도, 결정화도, 수축률, 선팽창계수, 열평형온도 및 인열성 등의 기계적 특성이 매우 우수하여 친환경성 포장재로 사용될 수 있다. 특히, 본 발명에 따른 필름은 이인열성이 우수하여 노치 가공 없이도 완제품의 절단이 용이하므로 이개봉성 포장용 및 점착테이프용 필름으로도 사용될 수 있다.The aliphatic polyester film according to the present invention has excellent biodegradation rate as well as mechanical properties such as longitudinal elongation, longitudinal strength, crystallinity, shrinkage, linear expansion coefficient, thermal equilibrium temperature and tearing property and can be used as an environmentally friendly packaging material . In particular, the film according to the present invention is excellent in heat resistance and can be used as a film for packaging for barrier ribbons and a film for pressure-sensitive adhesive tapes, because it is easy to cut the finished product without a notch.

Claims (10)

삭제delete 삭제delete 삭제delete 삭제delete 140℃ 이상의 용융온도 (Tm)를 갖는 폴리락트산계 공중합 수지를 용융 압출한 후, 용융 압출된 시트를 1.2 내지 2.5배의 연신비로 종연신하고 3 내지 5배의 연신비로 횡연신한 다음, 열고정하는 것을 포함하며, Extruding a polylactic acid copolymer resin having a melting temperature ( Tm ) of 140 DEG C or higher, longitudinally stretching the melt-extruded sheet at a stretching ratio of 1.2 to 2.5 times, transversely stretching at a stretching ratio of 3 to 5 times, Including, 상기 종연신비와 횡연신비의 비율이 1:2 이상이고,The ratio of the longitudinal extension ratio to the transverse stretching ratio is 1: 2 or more, 상기 횡연신이, 종연신된 시트를, 3단계로 하여 초기에는 폴리락트산계 수지의 유리전이온도(Tg)+30℃ 내지 Tg+50℃의 온도에서, 중기는 초기온도 보다 5℃ 낮은 온도에서, 말기에는 중기온도보다 5℃ 낮은 온도에서 예열한 후; 2단계로 하여 초기에는 Tg+20℃ 내지 Tg+50℃의 온도에서, 말기에는 Tg+30℃ 내지 Tg+80℃의 온도에서 횡연신함으로써 수행되는 것을 특징으로 하는, 이개봉성 생분해성 지방족 폴리에스테르계 필름의 제조방법.Wherein the transverse stretching, the longitudinal stretching of the sheet, and a third step in the early polylactic acid resin with a glass transition temperature (T g) + 30 ℃ to T the temperature of the g + 50 ℃, the medium is 5 ℃ lower than the initial temperature After preheating at a temperature of 5 [deg.] C below the mid-term temperature at the end; Characterized in that it is carried out in two stages by transversely stretching at a temperature of T g + 20 ° C to T g + 50 ° C at the beginning and at a temperature of T g + 30 ° C to T g + 80 ° C at the end. Wherein the aliphatic polyester film is a polyester film. 제 5 항에 있어서,6. The method of claim 5, 상기 용융 압출된 시트를 종연신하기 전에 폴리락트산계 수지의 유리전이온도(Tg)+20℃ 내지 Tg+50℃의 온도에서 예열한 후 이보다 10℃ 높은 온도에서 종연신하는 것을 특징으로 하는, 이개봉성 생분해성 지방족 폴리에스테르계 필름의 제조방법.Extruded sheet is longitudinally stretched at a temperature higher than the glass transition temperature (T g ) of the polylactic acid resin at a temperature of + 20 ° C. to T g + 50 ° C. before the longitudinal stretching, , A method for producing a biodegradable biodegradable polyester film. 삭제delete 140℃ 이상의 용융온도 (Tm)를 갖는 폴리락트산계 공중합 수지를 용융 압출한 후, 용융 압출된 시트를 1.2 내지 2.5배의 연신비로 종연신하고 3 내지 5배의 연신비로 횡연신한 다음, 열고정하는 것을 포함하며, Extruding a polylactic acid copolymer resin having a melting temperature ( Tm ) of 140 DEG C or higher, longitudinally stretching the melt-extruded sheet at a stretching ratio of 1.2 to 2.5 times, transversely stretching at a stretching ratio of 3 to 5 times, Including, 상기 종연신비와 횡연신비의 비율이 1:2 이상이고,The ratio of the longitudinal extension ratio to the transverse stretching ratio is 1: 2 or more, 상기 열고정이, 횡연신된 시트를, 4구간으로 하여 1구간 및 4구간에서는 Tm-50℃ 내지 Tm-10℃의 온도에서, 2구간 및 3구간에서는 Tm-20℃ 내지 Tm-10℃의 온도에서 열고정함으로써 수행되는 것을 특징으로 하는, 이개봉성 생분해성 지방족 폴리에스테르계 필름의 제조방법.The heat-set transversely stretched sheet is divided into four sections at a temperature of T m -50 ° C to T m -10 ° C for one section and four sections, at a temperature of T m -20 ° C to T m- Wherein the heat treatment is carried out by heat setting at a temperature of < RTI ID = 0.0 > 10 C < / RTI > 삭제delete 삭제delete
KR1020070018595A 2007-02-23 2007-02-23 Disclosed is a biodegradable aliphatic polyester film which is easy to open and a method for producing the same. KR101414241B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070018595A KR101414241B1 (en) 2007-02-23 2007-02-23 Disclosed is a biodegradable aliphatic polyester film which is easy to open and a method for producing the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070018595A KR101414241B1 (en) 2007-02-23 2007-02-23 Disclosed is a biodegradable aliphatic polyester film which is easy to open and a method for producing the same.

Publications (2)

Publication Number Publication Date
KR20080078446A KR20080078446A (en) 2008-08-27
KR101414241B1 true KR101414241B1 (en) 2014-07-02

Family

ID=39880631

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070018595A KR101414241B1 (en) 2007-02-23 2007-02-23 Disclosed is a biodegradable aliphatic polyester film which is easy to open and a method for producing the same.

Country Status (1)

Country Link
KR (1) KR101414241B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101414240B1 (en) * 2007-02-23 2014-07-02 에스케이씨 주식회사 Biodegradable aliphatic polyester film and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281984A (en) 1999-03-31 2000-10-10 Toyobo Co Ltd Adhesive tape
JP2003136592A (en) 2001-11-02 2003-05-14 Asahi Kasei Corp Biodegradable biaxially stretched film
KR20050040851A (en) * 2001-11-01 2005-05-03 아사히 가세이 라이프 앤드 리빙 가부시키가이샤 Biaxially oriented polylactic acid-based resin films
KR100625378B1 (en) * 2005-05-16 2006-09-15 에스케이씨 주식회사 Biodegradable Aliphatic Polyester Film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281984A (en) 1999-03-31 2000-10-10 Toyobo Co Ltd Adhesive tape
KR20050040851A (en) * 2001-11-01 2005-05-03 아사히 가세이 라이프 앤드 리빙 가부시키가이샤 Biaxially oriented polylactic acid-based resin films
JP2003136592A (en) 2001-11-02 2003-05-14 Asahi Kasei Corp Biodegradable biaxially stretched film
KR100625378B1 (en) * 2005-05-16 2006-09-15 에스케이씨 주식회사 Biodegradable Aliphatic Polyester Film

Also Published As

Publication number Publication date
KR20080078446A (en) 2008-08-27

Similar Documents

Publication Publication Date Title
EP1449867B1 (en) Window of polylactic acid based resin films
DE60029248T2 (en) BIAXIAL EXTRACTED BIOABBAUBARER FILM
US6821612B1 (en) Methods for preparing soft and elastic biodegradable polyhydroxyalkanoate copolymer compositions and polymer products comprising such compositions
CN100379800C (en) Biodegradable resin film or sheet and manufacturing method thereof
US6794023B1 (en) Polymer products comprising soft and elastic biodegradable polyhydroxyalkanoate copolymer compositions and methods of preparing such polymer products
JP2003191425A (en) Flexible polylactic acid resin stretched film and production method thereof
KR100985438B1 (en) Biodegradable Flexible Film
US20060258833A1 (en) Aqueous Dispersion Of Biodegradable Polyester and Process For Preparing The Same
JPH07205278A (en) Production of stretched film of polylactic acid polymer
JPH08198955A (en) Oriented polylactic acid film and sheet and their production
JP4846110B2 (en) Aliphatic polyester film
KR100793447B1 (en) Biodegradable Aliphatic Polyester Film
KR101414241B1 (en) Disclosed is a biodegradable aliphatic polyester film which is easy to open and a method for producing the same.
JP2003513131A (en) Flexible elastic biodegradable polyhydroxyalkanoate copolymer compositions and methods of making polymer articles containing such compositions
CA2387073C (en) Polymer products comprising soft and elastic biodegradable polyhydroxyalkanoate copolymer compositions and methods of preparing such polymer products
JPH09272794A (en) Biodegradable film
JP3739311B2 (en) Biodegradable film
JP3718636B2 (en) Heat-shrinkable film
KR100904144B1 (en) Biodegradable Biaxially Laminated Film
JP3664969B2 (en) Heat-shrinkable polylactic acid polymer film
KR101414240B1 (en) Biodegradable aliphatic polyester film and manufacturing method thereof
JP3167595B2 (en) Packaging bag made of polylactic acid polymer
KR100625378B1 (en) Biodegradable Aliphatic Polyester Film
JP3330273B2 (en) Heat-shrinkable polylactic acid-based film and method for producing the same
JP2008266369A (en) Polylactic acid film

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20070223

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20120213

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20070223

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20130719

Patent event code: PE09021S01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20140128

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20140520

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20140625

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20140626

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20170329

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20180329

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20190325

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20190325

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20200403

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20230323

Start annual number: 10

End annual number: 10