[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101401749B1 - Diagnostic Methods and Kits for Colorectal Cancer - Google Patents

Diagnostic Methods and Kits for Colorectal Cancer Download PDF

Info

Publication number
KR101401749B1
KR101401749B1 KR1020060061741A KR20060061741A KR101401749B1 KR 101401749 B1 KR101401749 B1 KR 101401749B1 KR 1020060061741 A KR1020060061741 A KR 1020060061741A KR 20060061741 A KR20060061741 A KR 20060061741A KR 101401749 B1 KR101401749 B1 KR 101401749B1
Authority
KR
South Korea
Prior art keywords
rar
cancer
colorectal cancer
gene
camta1
Prior art date
Application number
KR1020060061741A
Other languages
Korean (ko)
Other versions
KR20080003472A (en
Inventor
정연준
Original Assignee
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가톨릭대학교 산학협력단 filed Critical 가톨릭대학교 산학협력단
Priority to KR1020060061741A priority Critical patent/KR101401749B1/en
Priority to US11/824,896 priority patent/US7939255B2/en
Priority to JP2007175132A priority patent/JP2008011860A/en
Publication of KR20080003472A publication Critical patent/KR20080003472A/en
Application granted granted Critical
Publication of KR101401749B1 publication Critical patent/KR101401749B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57419Specifically defined cancers of colon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 새로운 암 진단 방법 및 진단 키트에 관한 것으로서, 보다 상세하게는 (1) 염색체 상의 재현되는 게놈 변화 영역 (recurrently altered genomic region; RAR)을 관찰하고; 및/또는 (2) 상기 RAR 영역의 유전자 발현 변화를 측정하는; 과정으로 대장암 (colorectal cancer; CRC)의 예후를 판정하는 진단 방법 및 진단 키트 그리고 대장암의 진단에 사용될 수 있는 새로운 암 억제 유전자들 (tumor suppressor genes)에 관한 것이다. 본 발명의 진단 방법은 상기 RAR 영역 상에서 통계적으로 유의한 암 억제 유전자를 선택하고 그의 발현 변화를 정확히 관찰 및 측정하므로, 대장암을 포함한 각종 암 및 종양의 예후 판단 뿐만 아니라 조기 진단 등을 가능하게 한다.The present invention relates to a novel cancer diagnosis method and a diagnostic kit, and more particularly, to (1) observing a recurrently altered genomic region (RAR) on a chromosome; And / or (2) measuring a change in gene expression in the RAR region; Diagnostic methods and diagnostic kits for determining the prognosis of colorectal cancer (CRC), and new tumor suppressor genes that can be used to diagnose colorectal cancer. The diagnostic method of the present invention allows statistically significant cancer-suppressing genes to be selected on the RAR region and precisely observes and measures changes in expression thereof, thereby enabling early diagnosis as well as prognosis of various cancers and tumors including colorectal cancer .

재현되는 게놈 변화 영역 (RAR), 대장암 (colorectal cancer; CRC)의 예후 판정, 암 억제 유전자 (tumor suppressor gene) (RAR), colorectal cancer (CRC) prognosis, tumor suppressor genes,

Description

대장암 진단 방법 및 진단키트{Diagnostic Methods and Kits for Colorectal Cancer}{Diagnostic Methods and Kits for Colorectal Cancer}

도 1 은 대장암 환자의 게놈을 분석한 결과이다.Fig. 1 shows the result of analyzing the genome of a colon cancer patient.

A: 대장암 환자의 게놈 프로파일들; B: 염색체 상의 획득 및 소실의 빈도들A: genomic profiles of patients with colorectal cancer; B: Frequency of acquisition and disappearance of chromosome images

도 2 는 어레이 CGH 를 이용하여 복제수 프로파일을 분석한 결과이다.FIG. 2 shows the result of analyzing the copy number profile using the array CGH.

A: 정상 조직; B: CCRC80 종양 조직; C:종양 조직 대 정상 조직;A: Normal tissue; B: CCRC80 tumor tissue; C: tumor tissue versus normal tissue;

도 3 은 재현되는 게놈 변화 영역 (RAR)과 생존율의 상관성을 분석한 결과이다.Fig. 3 shows the result of analyzing the correlation between the reproduced genome change region (RAR) and the survival rate.

A: 단계; B: 염색체 1q36 상의 RAR-L1; C: 염색체 1p31 상의 RAR-L4; D: 염색체 21q22 상의 RAR-L20 A: step; B: RAR-L1 on chromosome 1q36; C: RAR-L4 on chromosome 1p31; D: RAR-L20 on chromosome 21q22

도 4 는 본 발명의 암 억제 유전자의 발현 프로파일을 분석한 결과이다. FIG. 4 shows the results of analysis of the expression profile of the cancer suppressor gene of the present invention.

A: 종양/정상 강도의 비율; B: 카프란-메이어 생존율 곡선; C: 미스센스 돌연변이.A: ratio of tumor / normal intensity; B: Capran-Meyer Survival Curve; C: Missense mutation.

본 발명은 새로운 대장암 진단 방법 및 진단 키트에 관한 것으로서, 보다 상세하게는 (1) 염색체 상의 재현되는 게놈 변화 영역 (RAR)을 관찰하고; 및/또는 (2) 상기 RAR 영역의 유전자 발현 변화를 측정하는; 과정으로 대장암 (colorectal cancer; CRC)의 예후를 판정하는 진단 방법 및 진단 키트 그리고 대장암의 진단에 사용될 수 있는 새로운 암 억제 유전자들 (tumor suppressor genes)에 관한 것이다. The present invention relates to a novel diagnostic method and diagnostic kit for colon cancer, and more particularly, to (1) a genomic change region (RAR) to be reproduced on a chromosome; And / or (2) measuring a change in gene expression in the RAR region; Diagnostic methods and diagnostic kits for determining the prognosis of colorectal cancer (CRC), and new tumor suppressor genes that can be used to diagnose colorectal cancer.

대장암 (CRC)은 2002년에 대략 전세계적으로 100만명의 환자들 (세계 전체의 9.4%)이 발생한 것으로 추산되고 있다. 대장암은 발생율에 있어서 남성에서는 4위 여성에서는 3위를 차지한다. 또한 유병율 (prevalence)은 전세계적으로 유방암 다음으로 높고 치사율은 대략 발생율의 절반 (2002년 대략 529,000명 사망)에 이르며, 2.8백만 명의 환자들이 대장암으로 5년 이내에 진단을 받고 생존하고 있는 것으로 추산된다. 전세계적으로 대장암의 발생에 있어서 적어도 25배 정도의 다양성이 존재하고 있다. 이러한 대장암은 발병률이 선진국에서 가장 높은 반면, 아프리카 및 아시아에서 낮은 경향이 있다. 한국에서 대장암은 2004년에 암 사망 원인 중에서 4위가 되었으며, 이는 남성 및 여성 모두에서 나이를 기준으로 하는 대장암의 발병률이 세계 평균보다 더 높은 것이다. 이러한 지리적 차이는 대장암이 다인성 질환 (multifactoral disease)이기 때문에 아마도 환경 요인들 뿐만 아니라 유전적 배경에 의한 것으로 판단된다.Colorectal cancer (CRC) is estimated to account for one million patients worldwide (9.4% of the global total) in 2002. Colorectal cancer is the third most common cause of cancer among men in terms of incidence. It is estimated that prevalence is second only to breast cancer worldwide and mortality rate is approximately half of the incidence (approximately 529,000 deaths in 2002), 2.8 million patients diagnosed with colon cancer within five years and surviving . There is at least a 25-fold variability in the incidence of colorectal cancer worldwide. These colon cancer incidence is highest in developed countries, while it tends to be low in Africa and Asia. In Korea, colorectal cancer ranked 4th among cancer deaths in 2004, which is higher than the global average in both men and women, by age. These geographical differences are likely due to genetic background as well as environmental factors, since colon cancer is a multifactoral disease.

대장암의 발병화 과정에서 다양한 돌연변이들 (multiple mutations)이 축적되는 것은 잘 알려져 있다. 대장암에서 유전적 불안정성은 두 가지 주요 형태, 미세부수체 불안정성 (MIN; microsatellite instability) 및 염색체 불안정성 (CIN)로 구분되어 왔다. 대략 13%의 대장암에서 미스매치 복구가 결핍되어 미세부수체 불안정성이 유발되는 반면, 나머지 87%에서 염색체 불안정성이 유전물질의 획득과 소실을 가져오는 것으로 여겨진다. 따라서, 염색체 불안정성에 대한 연구는 잠재적인 암 유전자 (oncogenes) 및 /또는 종양 억제 유전자들을 확인하고 더 나아가 대장암의 발병 과정을 밝히도록 도와줄 수 있다. It is well known that various mutations accumulate in the pathogenesis of colorectal cancer. Genetic instability in colorectal cancer has been divided into two main types: microsatellite instability (MIN) and chromosomal instability (CIN). Approximately 13% of colorectal cancers are characterized by a lack of mismatch repair resulting in microsatisfactory instability, whereas in the remaining 87%, chromosomal instability is thought to result in genetic material acquisition and loss. Thus, studies of chromosomal instability can help identify potential oncogenes and / or tumor suppressor genes and further elucidate the pathogenesis of colorectal cancer.

이와 같은 염색체 불안정성을 연구하기 위하여, 기존의 비교 게놈 하이브리디제이션 (comparative genomic hybridization; 이하,"CGH"라고 약칭함)이 단일 실험으로부터 나온 시료에서 다중 염색체 불균형을 조사하는 데 사용되어 왔다. 그러나 기존의 CGH 방법은 현미경적 변화 이외의 미세한 변화를 정확하게 확인하기에는 그 해상도가 부족하였다. 모인 실험 증거들이 게놈 양의 변화가 암과 연관된 유전자의 발현 정도를 변화시키어 종양화를 유발하는 것을 제시하기 때문에, 높은 해상도를 가진 좀 더 상세한 분석이 필요하다. 최근 들어, 기존의 CGH 방법과 마이크로어레이 기술을 조합하여 게놈 전체 DNA 복제수의 분석을 높은 정확도로 실시할 수 있게 되었다. 어레이 CGH 는 암 유전자 또는 종양억제 유전자가 존재하는 지 여부의 게놈 이상을 탐지하는 유용한 도구로 각광받고 있다. 또한, 어레이 CGH 는 몇 가지 게놈 이상이 종양에서 예후 마커로 제시되었기 때문에 종양을 분자적으로 분류하는 데 사용될 수 있고 또는 치료 또는 예방을 위한 타겟 유전자를 확인하는 데 사용될 수 있다. In order to study such chromosomal instability, conventional comparative genomic hybridization (hereinafter abbreviated as "CGH") has been used to examine multiple chromosomal imbalances in samples from a single experiment. However, the conventional CGH method lacks the resolution to accurately identify microscopic changes other than microscopic changes. Experimental evidence gathered suggests that changes in the amount of genomes alter the degree of expression of genes associated with cancer, leading to tumorigenesis, so a more detailed analysis with higher resolution is needed. In recent years, the combination of the existing CGH method and the microarray technology has made it possible to analyze the genome-wide DNA replication number with high accuracy. The array CGH is seen as a useful tool for detecting genomic abnormalities in the presence of cancer genes or tumor suppressor genes. In addition, the array CGH can be used to molecularly classify tumors or to identify target genes for treatment or prophylaxis, since several genomes or more have been presented as prognostic markers in tumors.

본 발명자들은 대장암에서 게놈 변화 및 그의 임상병리학적 의미를 조사하기 위하여, 59명의 대장암 환자들의 미세하게 자른 조직들로부터 추출된 게놈 DNAs 를 사용하여 게놈 규모의 어레이 CGH 를 수행하였다. 그 결과, 대장암과 연관된 게놈 복제수의 다양한 변화가 새로운 재현되는 변화 영역 (recurrently altered region; 이하,"RAR"이라고 약칭함)와 함께 관찰되었고, 어레이 CGH 에 의해 발견되는 유전적 변화와 임상병리학적 변수들 간의 연관성을 조사할 수 있었다. The present inventors performed genome-wide array CGH using genomic DNAs extracted from finely cut tissues of 59 colon cancer patients to investigate genome changes and their clinicopathological significance in colorectal cancer. As a result, various changes in genome replication numbers associated with colorectal cancer were observed with a new recurrently altered region (hereinafter abbreviated as "RAR ") and genetic changes found by array CGH and clinical pathology We can investigate the relationship between the variables.

이에 본 발명자들은 새로운 대장암 진단법을 개발하기 위하여 노력을 계속한 결과, 대장암에서 재현되는 변화 영역 (RAR) 27개를 확인하고 이로부터 얻은 대장암과 관련된 유전자들의 발현 정도를 측정하여 부정적인 예후를 나타내는 두 가지 유전자 RAR-L1 및 RAR-L20 그리고 상기 RAR-L1으로부터 종양 억제인자 (tumor suppressor)로 작용하는 CAMTA1 유전자를 분리하여 이를 이용한 대장암 진단 방법 및 진단 키트를 제공함으로써 본 발명을 성공적으로 완성하였다.As a result of continuing efforts to develop a new method for diagnosing colorectal cancer, the inventors of the present invention confirmed the 27 regions of change (RAR) reproduced in colorectal cancer and measured the expression level of the genes related to the colon cancer obtained therefrom, (RAR-L1) and RAR-L20, and CAMTA1 gene which acts as a tumor suppressor from the RAR-L1, and using the same to diagnose and diagnose colon cancer, the present invention has been successfully completed Respectively.

본 발명은 새로운 대장암 예후를 판정하는 진단 방법 및 진단 키트 그리고 이에 사용되는 암 억제 유전자를 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a diagnostic method and a diagnostic kit for determining a new colorectal cancer prognosis and a cancer suppressor gene used therefor.

상기 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object,

(1) 염색체 상의 재현되는 게놈 변화 영역 (RAR)을 관찰하고; 및/또는(1) observing the genomic change region (RAR) reproduced on the chromosome; And / or

(2) 상기 RAR 상에서 특정 유전자의 발현 변화를 측정하는; 과정으로 대장암 (CRC)의 예후를 판정하는 진단 방법을 제공한다.(2) measuring the expression of a specific gene on the RAR; (CRC) is a diagnostic method that determines the prognosis of colorectal cancer (CRC).

또한, 본 발명은 In addition,

(1) 염색체 상의 재현되는 게놈 변화 영역 (RAR)을 관찰하는 도구; 및/또는 (2) 상기 RAR 상에 위치하는 특정 유전자의 발현 변화를 측정하는 도구;를 포함하는 대장암 (CRC)의 예후를 판정하는 진단 키트를 제공한다.(1) a tool for observing a genomic change region (RAR) reproduced on a chromosome; And / or (2) a tool for measuring a change in the expression of a specific gene located on the RAR. The present invention also provides a diagnostic kit for determining the prognosis of a colorectal cancer (CRC).

또한, 본 발명은 대장암 진단에 사용될 수 있는 암 억제 유전자를 제공한다.The present invention also provides a cancer suppressor gene which can be used for the diagnosis of colon cancer.

이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 The present invention

(1) 염색체 상의 재현되는 게놈 변화 영역 (RAR)을 관찰하고; 및/또는(1) observing the genomic change region (RAR) reproduced on the chromosome; And / or

(2) 상기 RAR 상에서 특정 유전자의 발현 변화를 측정하는; 과정으로 대장암 (CRC)의 예후를 판정하는 진단 방법을 제공한다.(2) measuring the expression of a specific gene on the RAR; (CRC) is a diagnostic method that determines the prognosis of colorectal cancer (CRC).

상기 (1) 과정에서 재현되는 게놈 변화 영역 (RAR)은 RAR-L1 (염색체 1p36의 소실) 및 RAR-L20 (염색체 21q22의 소실) 중에서 선택된 하나 이상인 것이 바람직하다.The genome change region (RAR) reproduced in the above (1) is preferably at least one selected from RAR-L1 (loss of chromosome 1p36) and RAR-L20 (loss of chromosome 21q22).

또한, 상기 (2) 과정에서 특정 유전자는 상기 RAR 상에 위치하는 암 억제 유전자인 것이 바람직하고, 상기 RAR 상에 위치하는 암 억제 유전자 CAMTA1 인 것은 더욱 바람직하다. In addition, in the step (2), the specific gene is preferably a cancer suppressor gene located on the RAR, more preferably a cancer suppressor gene CAMTA1 located on the RAR.

상기 암 억제 유전자 CAMTA1 는 유전자 발현이 감소될 때 대장암을 포함하는 각종 암의 부정적인 예후를 나타내고, 유전자 발현이 증가될 때 대장암을 포함하는 각종 암의 긍정적인 예후를 나타내게 된다. The cancer suppressor gene CAMTA1 shows a negative prognosis of various cancers including colorectal cancer when the gene expression is decreased and shows a positive prognosis of various cancers including colon cancer when gene expression is increased.

또한, 본 발명은 In addition,

(1) 염색체 상의 재현되는 게놈 변화 영역 (RAR)을 관찰하는 도구; 및 (1) a tool for observing a genomic change region (RAR) reproduced on a chromosome; And

(2) 상기 RAR 상에 위치하는 특정 유전자의 발현 변화를 측정하는 도구; 등을 포함하는 대장암 (CRC)의 예후를 판정하는 진단 키트를 제공한다.(2) a tool for measuring a change in expression of a specific gene located on the RAR; The present invention provides a diagnostic kit for determining the prognosis of colorectal cancer (CRC).

상기 (1)에서 상기 재현되는 게놈 변화 영역 (RAR)은 RAR-L1 (염색체 1p36의 소실) 및 RAR-L20 (염색체 21q22의 소실) 중에서 선택된 하나 이상인 것이 바람직하다. In the above (1), the genome change region (RAR) to be reproduced is preferably at least one selected from RAR-L1 (deletion of chromosome 1p36) and RAR-L20 (deletion of chromosome 21q22).

상기 (2)에서 상기 RAR 상에 위치하는 암 억제 유전자 CAMTA1 의 발현 감소를 측정하는 도구인 것이 바람직하다.It is preferable to measure the decrease in expression of the cancer suppressor gene CAMTA1 located on the RAR in (2) above.

또한, 본 발명은 대장암을 포함하여 각종 암의 진단에 사용될 수 있는 암 억제 유전자를 제공한다.The present invention also provides a cancer suppressor gene which can be used for diagnosis of various cancers including colon cancer.

상기 암 억제 유전자는 CAMTA1 유전자를 포함하는 것이 바람직하다.The cancer suppressor gene preferably includes the CAMTA1 gene.

이하, 실시예에 의하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

실시예Example 1. 대장암에서 게놈 변화의 특징 조사 1. Characterization of genomic changes in colorectal cancer

(1) 대장암 환자 및 세포 시료의 수집(1) Collection of colon cancer patients and cell samples

본 발명에서는 1995년 및 1997년 기간 중 단국대학교 병원 (천안, 한국)에서 외과 수술을 받은 59명의 대장암 (CRC) 환자의 시료를 수집하여 강남 성모병원 연구진의 승인 하에 사용하였다. 각 환자로부터 얻은 종양 및 인근 정상 조직은 외과적으로 적출되어 냉동고에 얼려서 보관되었다. 각 조직은 크리오톰 (cryotom)을 사용하여 젤라틴이 코팅된 슬라이드 상에 준비되었다. 이 조직은 H & E 염색을 한 후에 종양 세포가 많은 영역 (60% 이상) 및 정상세포 영역은 현미경 하에서 선별되고 수작업으로 해부되었다. 미세 해부된 (microdissected) 조직은 세포용해 완충용액 (1% 프로테아제 K를 녹인 TE 완충용액)에 담가 50℃에서 12시간 동안 반응시키어 게놈 DNA 를 추출하였다. 어레이 CGH 의 대조군으로 정상조직으로부터 얻은 DNA 가 사용되었다. 분리된 DNA 는 DNA 분리 키트 (DNA purification kit; Solgent, 한국 대전)를 사용하여 순수 정제되고, NanoDrop ND-1000 스펙트로포토미터 (NanoDrop Technologies; 델라웨어, 미국)를 사용하여 정량되었다. 종양의 조직병리학적 소견은 암 가이드라인에 관한 미국 학회의 표준 TNM 분류에 따라 훈련된 병리학자에 의해 이루어졌다. In the present invention, samples of 59 CRC patients who underwent surgery at Dankook University Hospital (Cheonan, Korea) during 1995 and 1997 were collected and used under approval of researchers at Kangnam St. Mary's Hospital. Tumors and nearby normal tissues from each patient were surgically removed and frozen and stored in the freezer. Each tissue was prepared on gelatin-coated slides using cryotom. After H & E staining, the tissue was screened and manually dissected under microscope in areas where the tumor cells were large (over 60%) and normal cells. Microdissected tissues were immersed in a cell lysis buffer (TE buffer solution containing 1% protease K) and reacted at 50 ° C for 12 hours to extract genomic DNA. DNA from normal tissue was used as a control for array CGH. The separated DNA was purified pure using a DNA purification kit (Solgent, Daejeon, Korea) and quantified using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Delaware, USA). Histopathological findings of the tumors were made by a pathologist trained according to the American Society of Clinical Oncology classification for cancer guidelines.

(2) 어레이 비교 게놈 (2) array comparison genome 하이브리디제이션Hybridization 및 데이터 프로세싱 And data processing

생거 연구소 마이크로어레이 연구진이 만든 전체 게놈에서 1 Mb 해상도를 가지는 인간 클론 어레이를 사용하였다. DNA 라벨링, 전하이브리디제이션, 하이브리디제이션 및 후하이브리디제이션은 하기와 같이 수행하였다. 암 조직으로부터 얻은 게놈 DNA 는 Cy3-dCTP 로 라벨링하고, 종양조직으로부터 얻은 DNA 는 Cy5-dCTP 로 라벨링하였다. 오픈-웰 하이브리디제이션은 기존의 방법에 따라 수행되었다. 어레이는 GenePix 4100A 스캐너 (엑손 인스트루먼트사, 미국)를 사용하여 스캔되고, 이미지는 GenePix Pro 6.0을 사용하여 프로세싱 되었다. 어레이 CGH 데이터는 웹 상의 어레이 CGH 분석 인터페이스 ArrayCyGHt 를 사용하여 정상화 (print-tip loss normalization) 되고 재배열 되었다. 크기가 긴 삽입 클론은 Ensembl 및 UCSC 게놈 브라우저 상의 게놈 위치에 따라 맵핑 되었다. 전체적으로 2,981 BAC 클론이 처음 3,014 클론으로부터 프로세싱 되었다. 전체 클론 세트에 대한 정보는 Ensembl 인간 게놈 브라우저를 통해 얻을 수 있다.A human clone array with 1 Mb resolution was used in the entire genome of the Sanger Research Institute microarray researchers. DNA labeling, pre-hybridization, hybridization and post-hybridization were performed as follows. Genomic DNA from cancer tissue was labeled with Cy3-dCTP, and DNA from tumor tissue was labeled with Cy5-dCTP. Open-well hybridization was performed according to conventional methods. The array was scanned using a GenePix 4100A scanner (Exxon Instruments, USA), and the image was processed using GenePix Pro 6.0. The array CGH data was normalized (print-tip loss normalized) and rearranged using the array CGH analysis interface ArrayCyGHt on the web. Longer inserted clones were mapped according to genomic location on Ensembl and UCSC genome browsers. Overall, 2,981 BAC clones were first processed from 3,014 clones. Information about the entire clone set is available from the Ensembl human genome browser.

(3) 염색체 변화에 대한 데이터 분석(3) Analysis of data on chromosome changes

각 클론에서 염색체 변화에 대한 컷-오프 값을 설정하기 위하여, 4가지의 정상 하이브리디제이션을 별도 시리즈로 수행하였다. 대조군의 하이브리디제이션 결과에 기초하여, 복제수 이상에 대한 컷-오프 값은 각 개인의 데이터에서 표준 오차의 3배 내외인 것으로 설정하였다. 영역 상의 복제수 변화는 2 이상의 BAC 클론들에 이어지는 DNA 복제수 변화로 정의하고 전체 염색체를 대상으로 하지는 않았다. 각 클론에서 높은 정도의 증폭은 강도가 로그 2 의 값이 1.0 이상 또한 상동 소실에서는 그 반대로 정의하였다. 복제수 변화의 범위는 이웃 클론 들 간의 절반 정도로 정하였다. RAR 은 적어도 10개의 종양 시료에서 나타나는 영역 상의 복제수 변화로 정의하였다. To establish the cut-off values for chromosomal changes in each clone, four normal hybridization were performed in separate series. Based on the hybridization results of the control group, the cut-off value for the number of replications was set to be about three times the standard error in each individual's data. Changes in the number of copies in the region were defined as changes in the number of DNA copies following two or more BAC clones and were not targeted to the entire chromosome. A high degree of amplification in each clone was defined as a logarithmic value of greater than 1.0 for the logarithmic intensity and the opposite for homologous deletion. The range of change in the number of replications was determined to be about half of that of neighboring clones. The RAR was defined as the number of replicates on the area of at least 10 tumor samples.

(4) 게놈 변화 조사(4) genome change investigation

모두 59명의 대장암 환자의 임상병리학적 데이터는 하기 표 1 에 나타난 바와 같다. 39명의 남자 환자들과 20명의 여자 환자들을 선발하고 수술 시 환자의 평균 연령은 58.7세 (23세부터 81세까지)인 것으로 조사되었다. 59명의 환자들 중에서, 41명의 환자들 (69.5%)은 직장암 (rectosigmoid cancer)이었고 36명의 환자들 (61.0%)은 초기 단계의 종양으로 분류 진단되었다. 실험 진행 시 23명의 환자들은 사망하였다. Clinical pathological data of all 59 colorectal cancer patients are shown in Table 1 below. 39 male patients and 20 female patients were selected and the average age of the patients was 58.7 years (23 to 81 years). Of the 59 patients, 41 patients (69.5%) were rectosigmoid cancer and 36 patients (61.0%) were classified as early stage tumors. During the experiment, 23 patients died.

Figure 112006047491500-pat00001
Figure 112006047491500-pat00001

상기 59명의 대장암 환자들에서 발견되는 게놈 변화 모두는 도 1 에 나타내었다. 염색체 변화의 빈도를 조사한 결과 이들 모두 무작위로 분포하는 것으로 조사되었지만, 전체 게놈을 통해 몇 가지 중요한 영역 (hot regions)은 집중되어 있었다. 59명의 환자들에서 어레이 CGH 의 신호 강도 비율 (로그2 단위)에 관한 데이타는 웹사이트로부터 다운로드 받을 수 있다.All of the genomic changes found in the 59 colorectal cancer patients are shown in FIG. The frequencies of chromosomal changes were all randomly distributed, but there were some hot regions concentrated throughout the entire genome. Data on the signal intensity ratio (log 2 units) of array CGH in 59 patients can be downloaded from the website.

각 환자마다 변화된 클론은 평균적으로 전체 2,981개 클론들 중 764.8개(58개 내지 1,540개)인 것으로 측정되었다. 변화된 클론의 숫자는 남자들, 증상이 악화된 그룹 및 직장암에서 유의하게 더 높은 것으로 나타났다. 전체 염색체 중에서 가장 빈번한 변화는 13q (31/59, 52.5%), 20q (30/59, 50.8%), 20p (21/59, 35.6%), 7p (20/59, 33.9%)및 8q (29/59, 49.2%) 상의 획득 그리고 18q (29/59, 49.2%), 18p (27/59, 45.8%)및 17p (26/59, 44.1%) 상의 소실인 것으로 확인되었다. On average, the changed clones for each patient were measured to be 764.8 (58 to 1,540) out of a total of 2,981 clones. The number of altered clones was significantly higher in men, in worsening symptoms, and in rectal cancer. The most frequent changes among the whole chromosomes were 13q (31/59, 52.5%), 20q (30/59, 50.8%), 20p (21/59, 35.6%), 7p / 59, 49.2%) and loss of 18q (29/59, 49.2%), 18p (27/59, 45.8%) and 17p (26/59, 44.1%

실시예Example 2.  2. 복제수Number of copies 변화의 확인 Confirmation of Change

본 발명은 복제수 변화를 조사하기 위하여, 다중 라이게이션 의존성 프로브 증폭 분석 (multiplex ligation-dependent probe amplification analysis; 이하, "MLPA"라고 약칭함)을 MLPA-Aneuploidy 테스트 키트 P095 를 사용하여 (MRC, 네덜란드) 다음과 같이 수행하였다. 상기 250 ng 의 게놈 DNA 를 98℃에서 10분 동안 디네이처 시키고 완충용액을 포함하는 프로브 혼합액 3㎕ 를 첨가하였다. 그 다음 반응 혼합액을 95℃에서 1분 동안 가열하고 60℃에서 16시간 동안 반응시켰다. 라이게이션 반응은 열에 안정한 라이게이즈 65를 사용하여 54℃에서 15분 동안 반응시켰다. 10㎕의 반응용액은 40㎕의 범용 프라이머가 포함된 PCR 반응 혼합액과 혼합하였다. 하나의 프라이머는 그대로 두고 나머지 프라이머만 FAM [N-(3-플루안틸)말레이미드]로 라벨링 하였다. 열 반응은 95℃에서 1분, 이어서 95℃에서 30초 동안 35회 반복하고, 60℃에서 30초 그리고 72℃에서 60초 과정으로 진행되었다. 증폭된 조각은 ABI PRISM 3730 XL DNA 분석기 (어플라이드 바이오시스템, 미국)를 사용하고 ROX-500 을 크기 마커로 사용하여 분석되었다. PCR 산물의 피크 영역은 Genotyper 소프트웨어로 산정되고 데이터는 Coffalyser macro 로부터 얻은 단순화된 분석법을 사용하여 분석되었다.In order to investigate the change in the number of copies, the present invention was carried out by using MLPA-Aneuploidy test kit P095 (MRC, Netherlands), using multiplex-ligation- dependent probe amplification analysis ) Was performed as follows. 250 ng of the genomic DNA was denatured at 98 DEG C for 10 minutes and 3 mu l of the probe mixture solution containing the buffer solution was added. The reaction mixture was then heated at 95 ° C for 1 minute and allowed to react at 60 ° C for 16 hours. The ligation reaction was carried out at 54 캜 for 15 minutes using heat-stable Ligationase 65. 10 μl of the reaction solution was mixed with a PCR reaction mixture containing 40 μl of the universal primer. One primer was left alone, and only the remaining primers were labeled with FAM [N- (3-fluorenyl) maleimide]. The thermal reaction was repeated 35 times at 95 ° C for 1 minute followed by 95 ° C for 30 seconds, at 60 ° C for 30 seconds and at 72 ° C for 60 seconds. Amplified fragments were analyzed using an ABI PRISM 3730 XL DNA analyzer (Applied Biosystems, USA) and using ROX-500 as size marker. The peak region of the PCR product was estimated by Genotyper software and the data were analyzed using a simplified method from Coffalyser macro.

실제로 어레이 CGH 에 의해 복제수를 조사하기 위하여, 복제수 이상을 보이는 13명의 초기 대장암 환자들을 대상으로 MLPA 분석을 수행하였다. 어레이 CGH 에 의해 확인된 복제수 이상은 MLPA 결과와 대략적으로 일치하였다. 도 2 는 MLPA 확인 결과를 설명하고 있으며, 번호가 매겨진 12개의 피크는 각각 13번, 18번, 21번 및 X 염색체의 복제수 이상을 보여주는 것이다. In order to investigate the number of clones by array CGH, MLPA analysis was performed on 13 patients with early colorectal cancer who showed more than the number of clones. The number of clones identified by the array CGH was roughly in agreement with the MLPA results. FIG. 2 illustrates the results of MLPA confirmation, in which the twelve numbered peaks show more than the number of copies of chromosome 13, 18, 21 and X, respectively.

실시예Example 3. 재현되는 변화 영역의 확인 3. Identification of the area of change being reproduced

전체 염색체 변화와 더불어, 많은 영역 상의 복제수 변화가 관찰되었다. 이러한 재현되는 변화 영역 (recurrently altered regions) 중에서, 적어도 10 환자들에서 염색체의 재현되는 변화 영역은 RAR 인 것으로 명명하였으며, 구체적으로는 7개의 RAR 획득 (RAR-G) 및 20개의 RAR 소실 (RAR-L)이 관찰되었다. 하기 표 2 에 27개 RARs 의 맵 상 위치, 크기 및 암 관련 유전자들을 나열하여 나타내고 있다. 이들 중 5개의 RARs는 40% 이상의 환자에서 관찰되었다: RAR-G4 (28/59, 47.5%), RAR-L2 (27/59, 45.8%), RAR-L5 (25/59, 42.2%), RAR-L14 (28/59, 47.5%) 및 RAR-L17 (28/59, 47.5%).Along with the entire chromosomal change, the number of replications on many areas was observed. Of these recurrently altered regions, at least 10 patients were identified as being RARs that were reproducible in the chromosomes. Specifically, seven RAR acquisitions (RAR-G) and 20 RAR deletions (RAR- L) was observed. Table 2 lists the location, size, and cancer-associated genes on the map of 27 RARs. Five of these RARs were found in over 40% of patients: RAR-G4 (28/59, 47.5%), RAR-L2 (27/59, 45.8%), RAR- RAR-L14 (28/59, 47.5%) and RAR-L17 (28/59, 47.5%).

Figure 112006047491500-pat00002
Figure 112006047491500-pat00002

상기 RARs 에는 몇 가지 암 관련된 유전자들이 포함된다. 예를 들어, BLC11A, PLD1, ECT2, AGR2, TWIST1BIRC4 와 같은 암 유전자 (oncogenes) 뿐만 아니라 MYCREL과 같은 기존의 암유전자가 상기 RAR-Gs 에 포함된다. 또한, CAMTA1, FAF1, CTH, PTGER3, TEC, CLDN22, ING2, IRF2, ACSL5, ANXA2, RORASCO1와 같은 많은 암 억제 유전자가 상기 RAR-Ls 에 위치하고 있다. The RARs include several cancer-associated genes. For example, BLC11A , PLD1 , ECT2 , AGR2 , TWIST1, and BIRC4 , As well as existing cancer genes such as MYC and REL are included in the RAR-Gs. Many cancer suppressor genes such as CAMTA1 , FAF1 , CTH , PTGER3 , TEC , CLDN22 , ING2 , IRF2 , ACSL5 , ANXA2 , RORA and SCO1 are located in the RAR-Ls.

실시예Example 4. 높은  4. High 복제수로의Replica 변화 change

RARs 에 위치하는 암 관련된 유전자들과 함께 높은 정도의 증폭 및 상동 삭제 (homozygous deletion)를 표 3에 정리하여 나타내었다. Table 3 summarizes the high degree of amplification and homozygous deletion along with the cancer-associated genes located in RARs.

Figure 112006047491500-pat00003
Figure 112006047491500-pat00003

증폭된 11개의 게놈 분절과 2개의 동종 삭제는 적어도 1명의 환자에서 확인되었다. 가장 높은 복제수 변화는 1명의 환자에서 관찰되었지만, 17q12, 20q11 및 20q13 상의 증폭은 2명 이상의 환자에서 관찰되었다. 상기 증폭 영역에서는 EGFR, CCND2, ERBB2MYBL2 와 같은 기지의 암 유전자들이 위치하고, 또한 몇 가지 암과 연관된 유전자 높은 복제수의 변화 영역에 포함되어 있었다 (표 3 참조)Eleven genomic segments amplified and two allele deletions were identified in at least one patient. The highest number of replication changes was observed in one patient, but amplification of the 17q12, 20q11 and 20q13 phases was observed in two or more patients. In the amplification region, known cancer genes such as EGFR , CCND2 , ERBB2 and MYBL2 are located and included in the region of high replication number of genes associated with several cancers (see Table 3)

실시예Example 5. 게놈 변화들 간의 상관성 조사 5. Correlation between genomic changes

RARs 간의 연관성 분석이 이들 상호 발생율의 유의성을 조사하여 수행되었다. 서로 다른 염색체 영역 상의 모든 가능한 RARs 간의 쌍들 (pairs)이 고려되었다. RARs 간의 5가지 쌍들이 다중 테스트 (multiple testing)로 최적화시킨 결과 서로 유의하게 연관된 것으로 조사되었다. 구체적으로 염색체 4p15 상의 RAR-L5 는 염색체 1p33 상의 RAR-L2 및 염색체 Xq24 상의 RAR-G7 와 상호 연관되고, 염색체 17p13 상의 RAR-L17 는 염색체 4p15 상의 RAR-L5 및 염색체 14q32 상의 RAR-L14 와 상호 연관되는 것으로 나타났다. 또한 염색체 4p12 상의 RAR-L6 는 염색체 1p33 상의 RAR-L2와 상호 연관되었다. The association analysis between RARs was performed by examining the significance of these mutual incidence rates. Pairs between all possible RARs on different chromosome regions have been considered. Five pairs of RARs were found to be significantly related to each other as a result of optimization with multiple testing. Specifically, RAR-L5 on chromosome 4p15 is correlated with RAR-L2 on chromosome 1p33 and RAR-G7 on chromosome Xq24, and RAR-L17 on chromosome 17p13 correlates with RAR-L5 on chromosome 4p15 and RAR-L14 on chromosome 14q32 . Furthermore, RAR-L6 on chromosome 4p12 was correlated with RAR-L2 on chromosome 1p33.

또한, 유의하게 상호 연관된 RARs 가 기능적으로 연관된 유전자를 공유하는지 여부를 유전자 데이터베이스 (Gene Ontology; GO)를 사용하여 조사하였다. 또한 동일한 기능적 표시를 가지지만, 2개의 연관된 RARs 상에 별도로 위치하는 유전자를 선별하였다. 또한, 3개의 RAR 쌍들이 12개의 표시를 따라 기능적으로 연관된 유전자를 공유하는 것으로 확인되었다 (표 4 참조).We also investigated whether the significantly correlated RARs share functionally related genes using the gene database (Gene Ontology; GO). We also screened genes that have the same functional label but are located separately on the two associated RARs. In addition, three RAR pairs were identified to share functionally related genes along the twelve indications (see Table 4).

Figure 112006047491500-pat00004
Figure 112006047491500-pat00004

실시예Example 6. 임상병리학적 변수에 따른 유전적 변화의 차별화된 분포 조사 6. Differentiated distribution of genetic changes according to clinicopathological variables

4가지 종류의 임상적 변수들 (연령, 단계, 성별, 종양 위치)이 미리 확인된 게놈 변화와의 상호 연관성을 조사하기 위하여 분석되었다. RAR-G7, RAR-L11, RAR-L12, RAR-L13, RAR-L16, RAR-L17 및 RAR-L18, 염색체 8q, 19p 및 X 의 획득 그리고 14q, 15q, Xq 및 Y 의 소실이 성별과 연관되어 있었다. RAR-G3, RAR-L1, RAR-L2, RAR-L5, RAR-L6 및 RAR-L20 그리고 염색체 1p 및 4p 의 획득이 암 진행 단계와 연관되는 것으로 조사되었다. RAR-G7, RAR-L4, RAR-L9, RAR-L11 및 RAR-L12, 염색체 13q, 20p 및 20q 의 획득 그리고 18p 및 18q 의 소실이 직장암 부위와 연관되어 있었다.Four types of clinical variables (age, stage, sex, and tumor location) were analyzed to investigate the correlation with previously identified genomic changes. Acquisition of chromosomes 8q, 19p and X and loss of 14q, 15q, Xq and Y are associated with gender, as are RAR-G7, RAR-L11, RAR-L12, RAR-L13, RAR-L16, RAR-L17 and RAR- . RAR-G3, RAR-L1, RAR-L2, RAR-L5, RAR-L6 and RAR-L20 and the acquisition of chromosome 1p and 4p were associated with cancer progression. Acquisition of chromosomes 13q, 20p and 20q and loss of 18p and 18q were associated with rectal cancer sites, with RAR-G7, RAR-L4, RAR-L9, RAR-L11 and RAR-L12.

실시예Example 7. 게놈 변화에 따른 생존율 분석 7. Analysis of survival rate according to genome change

임상병리학적 변수 및 RARs 의 예후 진단 가치를 평가하기 위하여 생존율 분석이 수행되었다. 암 진행 단계, RAR-L1, RAR-L4 및 RAR-L20 은 낮은 생존율과 유의하게 관련되어 있었다 (도 3 참조). 특히 RAR-L1의 존재는 통계적으로 가장 높은 유의성을 가지는 것으로 관찰되었다.Survival analysis was performed to assess the value of the prognostic value of clinicopathologic variables and RARs. Cancer progression stages, RAR-L1, RAR-L4 and RAR-L20 were significantly associated with low survival rates (see FIG. 3). In particular, the presence of RAR-L1 was observed to have the highest statistical significance.

상기 분석에서 조사된 유의한 게놈 변화와 함께 연령, 성별 및 종양 진행 단계와 같은 임상적 변수들을 사용하여 2개의 RARs (RAR-L1 및 RAR-L20), 연령 및 단계가 대장암이 나쁜 예후를 보여주는 독립적인 예측인자가 될 수 있는 것을 확인시켜 주었다 (표 5 참조). 도 3은 환자 생존율과 유의하게 연관된 2개의 RARs 를 나타내고 있다. Two RARs (RAR-L1 and RAR-L20), age and stage were analyzed using clinical variables such as age, sex, and tumor progression with significant genomic changes investigated in the above analysis, Confirming that it could be an independent predictor (see Table 5). Figure 3 shows two RARs significantly associated with patient survival.

Figure 112006047491500-pat00005
Figure 112006047491500-pat00005

실시예Example 8. 생존율과 연관된  8. Associated with survival rate RARs 에서From RARs 암 유전자의 발현 조사 Expression of cancer genes

(1) 실시간 정량적 중합효소 연쇄반응 분석(1) Real-time quantitative polymerase chain reaction analysis

한 가닥의 cDNA 가 44쌍의 암/정상 조직 및 3가지 세포주 (RKO, HT29 및 HCT116)에서 얻은 전체 RNA 로부터 M-MLV 역전사효소 (Invitrogen, 캐나다)를 사용하여 합성되었다. 본 발명의 CAMTA1 유전자의 발현 프로파일을 분석하기 위하여, 실시간 정량적 PCR 이 Mx3000P qPCR 시스템 및 MxPro 버전 3.0 소프트웨어(Stratagene, 미국)를 사용하여 수행되었다. 20 ㎕의 실시간 PCR 반응 혼합액은 10 ng cDNA, 1X SYBR Green Tbr 폴리머라제 조합 (FINNZYMES, 필란드), 05X ROX 및 20 pmole 프라이머들을 포함하도록 구성되었다. GAPDH 유전자는 각 실험 과정에서 내부 대조군으로 사용되었다. 열 반응은 95℃에서 10분, 이어서 94℃에서 10초 동안 40회 반복하고, 54℃에서 30초 그리고 72℃에서 30초 과정으로 진행되었다. 특정 부위의 증폭을 확인하기 위하여, 녹는점 분석이 55 내지 95℃에서 0.5℃/초로 수행되었다. 비교 정량은 △△CT 방법으로 수행되었고 안 조직에서 CAMTA1 유전자의 발현이 40% 감소되면 낮은 발현이라고 보았다. 모든 실험은 2번 반복되었고 표준 오차 내 강도의 평균값이 각 환자에 대하여 측정되었다. 이 때 사용한 CAMTA1 유전자의 프라이머는 서열번호 1 및 서열번호 2의 염기 서열을 각각 포함하도록 제작되었다.One strand of cDNA was synthesized from total RNA from 44 pairs of cancer / normal tissues and three cell lines (RKO, HT29 and HCT116) using M-MLV reverse transcriptase (Invitrogen, Canada). To analyze the expression profiles of the CAMTA1 gene of the present invention, real-time quantitative PCR was performed using the Mx3000P qPCR system and MxPro version 3.0 software (Stratagene, USA). 20 [mu] l of the real time PCR reaction mixture was constructed to contain 10 ng cDNA, 1X SYBR Green Tbr polymerase combination (FINNZYMES, Finland), 05X ROX and 20 pmole primers. The GAPDH gene was used as an internal control in each experiment. The heat reaction was repeated 40 times at 95 ° C for 10 minutes and then at 94 ° C for 10 seconds, followed by 30 seconds at 54 ° C and 30 seconds at 72 ° C. To confirm amplification of a particular site, melting point analysis was performed at 55 ° C to 95 ° C at 0.5 ° C / sec. The comparative quantification was performed by the △ ΔCT method and the expression of CAMTA1 gene was decreased by 40% in the eye tissue. All experiments were repeated twice and the mean value of the intensity within the standard error was measured for each patient. The primers of the CAMTA1 gene used here were prepared so as to include the nucleotide sequences of SEQ ID NO: 1 and SEQ ID NO: 2, respectively.

(2) (2) CAMTA1CAMTA1 유전자의 돌연변이 분석 Mutation analysis of genes

CAMTA1 유전자의 체세포 돌연변이는 PCR-direct 염기서열 결정법에 따라 검새되었다. 특정한 엑손의 증폭에 대한 프라이머 세트는 약간 변형시킨 기존의 방법과 동일하게 제작되었다. 프라이머 서열에 대한 상세한 정보는 하기 표 6에 나타난 바와 같다. 모든 증폭 과정에서 Phusion High-Fidelity DNA 폴리머라제 (FINNZYMES, 핀란드)를 사용하여 수행되고, PCR 산물은 MEGA-spin 젤 추출 키트(iNtRON, 한국)를 사용하여 순수 분리되었다. The somatic mutation of the CAMTA1 gene was screened by PCR-direct sequencing. The primer set for amplification of a particular exon was constructed in the same manner as the conventional method with a slight modification. Detailed information on the primer sequences is shown in Table 6 below. All amplification procedures were performed using Phusion High-Fidelity DNA polymerase (FINNZYMES, Finland), and the PCR products were purified using a MEGA-spin gel extraction kit (iNtRON, Korea).

Figure 112006047491500-pat00006
Figure 112006047491500-pat00006

그 결과 상기 RAR-l1 및 RAR-20 유전자의 코딩 영역 중에서, CAMTA1 유전자는 신경성 종양에서 종양 억제 유전자로 제시된 바 있었다. 따라서 3개의 대장암 세포주 및 44쌍의 초기 대장암에서 이 유전자의 발현 프로파일을 실시간 정량적 PCR (real-time quantitative PCR)을 수행하여 조사하였다. 유전자 발현 수치 간의 비율 (암 대 정상)이 측정되었다. 모두 3개의 세포주 및 44개 중 26개의 대장암이 정상 조직과 비교하여 CAMTA1 유전자의 낮은 발현을 보여주었다 (도 4 참조). 특히 CAMTA1 유전자의 낮은 발현은 정상 CAMTA1 유전자와 비교하여 낮은 생존율과 유의하게 연관되어 있었다. Cox 회귀 분석에 의하여 연령, 성별 및 단계에 따라 최적화시킨 후에 CAMTA1 유전자의 낮은 발현이 독립적인 예측인자로서 낮은 생존율과 더욱 유의하게 연관되는 것을 알 수 있었다 (표 7 참조). As a result, among the coding regions of the RAR-11 and RAR-20 genes, CAMTA1 The gene has been shown to be a tumor suppressor gene in neurogenic tumors. Therefore, the expression profiles of this gene in three colorectal cancer cell lines and 44 pairs of early colorectal cancer were examined by real-time quantitative PCR. The ratio between gene expression levels (cancer vs. normal) was measured. All three cell lines and 26 of 44 colon cancer showed low expression of the CAMTA1 gene compared to normal tissues (see FIG. 4). Specifically, CAMTA1 The low expression of the gene was significantly associated with a lower survival rate compared with the normal CAMTA1 gene. After optimization by age, sex, and stage by Cox regression analysis, low expression of CAMTA1 gene was found to be significantly associated with low survival rate as an independent predictor (see Table 7).

Figure 112006047491500-pat00007
Figure 112006047491500-pat00007

또한, CAMTA1 유전자의 낮은 발현은 RAR-L1이 없는 경우 (70%, 7/10) 보다 RAR-L1 을 가진 대장암 (55.9%, 19/34)에서 더욱 빈번히 관찰되었고, 또한 발현 수준도 RAR-L1 을 가진 대장암에서 더 낮은 것으로 유의성은 없지만 확인되었다. 또한, CAMTA1 유전자의 낮은 발현의 기작을 조사하기 위하여, 체세포 돌연변이 (26개 대장암) 및 메틸화 정도 (38개 대장암)가 검색되었다. 1개의 미스센스 돌연변이가 초기 대장암 (CCRC71)에서 발견되어, 이로 인해 RAR-L1 이 없는 CAMTA1 유전자의 낮은 발현이 유발되는 것을 알 수 있었다 (도 4 참조). 그러나 CAMTA1 유전자의 프로모터 영역에서 과메틸화 (hypermethylation)가 관찰되지는 않았다.In addition, low expression of CAMTA1 gene was more frequently observed in RAR-L1-positive colon cancer (55.9%, 19/34) than in the absence of RAR-L1 (70%, 7/10) L1 in colorectal cancers, but not significantly. In addition, somatic mutations (26 colon cancer) and degree of methylation (38 colon cancer) were searched to investigate the mechanism of low expression of CAMTA1 gene. One mismatch mutation was found in early colorectal cancer (CCRC71), which resulted in low expression of the CAMTA1 gene without RAR-L1 (see FIG. 4). However, hypermethylation was not observed in the promoter region of the CAMTA1 gene.

상술한 바와 같이, 본 발명은 (1) 염색체 상의 재현되는 게놈 변화 영역 (RAR)을 관찰하고; 및/또는 (2) 상기 RAR 영역의 유전자 발현 변화를 측정하는; 과정으로 대장암 (colorectal cancer; CRC)의 예후를 판정하는 진단 방법 및 진단 키트 그리고 대장암의 진단 등에 사용될 수 있는 새로운 암 억제 유전자들 (tumor suppressor genes)에 관한 것이다. 본 발명의 진단 방법은 상기 RAR 영역 상에서 통계적으로 유의한 암 억제 유전자를 선택하고 그의 발현 변화를 정확히 관찰 및 측정하므로, 대장암을 포함한 각종 암 및 종양의 예후 판단뿐만 아니라 조기 진단 등이 효과적으로 이루어지게 돕는다.As described above, the present invention relates to (1) observing a reproduced genome change region (RAR) on a chromosome; And / or (2) measuring a change in gene expression in the RAR region; A diagnostic method and a diagnostic kit for determining the prognosis of colorectal cancer (CRC), and a novel tumor suppressor gene that can be used for diagnosis of colorectal cancer. The diagnostic method of the present invention selects a statistically significant cancer suppressor gene in the RAR region and accurately observes and measures the change in its expression. Therefore, not only the prognosis of various cancers and tumors including colorectal cancer but also the early diagnosis, Help.

[참고문헌] [references]

1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108. 1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108.

2. National Statistical Office, Korea. Korean Statistical Information System. 2006. Available from: URL: http://www.ncc.re.kr.2. National Statistical Office, Korea. Korean Statistical Information System. 2006. Available from: URL: http://www.ncc.re.kr.

3. Shin HR, Won YJ, Jung KW, Kong HJ, Yim SH, Lee JK, Noh HI, Lee JK, Park JG. Nationwide Cancer Incidence in Korea, 1999-2001; First result using the National Cancer Incidence Database. Cancer Res Treat 2006;37:in press. 3. Shin HR, Won YJ, Jung KW, Kong HJ, Yim SH, Lee JK, Noh HI, Lee JK, Park JG. Nationwide Cancer Incidence in Korea, 1999-2001; First result using the National Cancer Incidence Database. Cancer Res Treat 2006; 37: in press.

4. Michor F, Iwasa Y, Lengauer C, Nowak MA. Dynamics of colorectal cancer. Semin Cancer Biol 2005;15:484-493. 4. Michor F, Iwasa Y, Lengauer C, Nowak MA. Dynamics of colorectal cancer. Semin Cancer Biol 2005; 15: 484-493.

5. Yim SH, Chung YJ. Current Status and Future Clinical Applications of Array based Comparative Genomic Hybridization. Genomics & Informatics 2004;2:113-120. 5. Yim SH, Chung YJ. Current Status and Future Clinical Applications of Array based Comparative Genomic Hybridization. Genomics & Informatics 2004; 2: 113-120.

6. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson DG. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998;20:207-211. 6. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson DG. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998; 20: 207-211.

7. Fiegler H, Carr P, Douglas EJ, Burford DC, Hunt S, Scott CE, Smith J, Vetrie D, Gorman P, Tomlinson IP, Carter NP. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosomes Cancer 2003;36:361-374. 7. Fiegler H, Carr P, Douglas EJ, Burford DC, Hunt S, Scott CE, Smith J, Vetrie D, Gorman P, Tomlinson IP, Carter NP. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosomes Cancer 2003; 36: 361-374.

8. Kim TM, Yim SH, Lee JS, Kwon MS, Ryu JW, Kang HM, Fiegler H, Carter NP, Kwon MS, Ryu JW, Kang HM, Fiegler H, Carter NP,

Chung YJ. Genome-wide screening of genomic alterations and their clinicopathologic implications in non-small cell lung cancers. Clin Cancer Res 2005;11:8235-8242. Chung YJ. Genome-wide screening of genomic alterations and their clinicopathologic implications in non-small cell lung cancers. Clin Cancer Res 2005; 11: 8235-8242.

9. Chung YJ, Jonkers J, Kitson H, Fiegler H, Humphray S, Scott C, Hunt S, Yu Y, Nishijima I, Velds A, Holstege H, Carter N, Bradley A. A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization. Genome Res 2004;14:188-196. 9. Chung YJ, Jonkers J, Kitson H, Fiegler H, Humphrey S, Scott C, Hunt S, Yu Y, Nishijima I, Veldse A, Holstege H, Carter N. Bradley A. A whole-genome mouse BAC microarray with 1 -Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization. Genome Res 2004; 14: 188-196.

10. Kim SY, Nam SW, Lee SH, Park WS, Yoo NJ, Lee JY, Chung YJ. ArrayCyGHt: a web application for analysis and visualization of array-CGH data. Bioinformatics 2005;21:2554-2555. 10. Kim, SY, Nam SW, Lee SH, Park WS, Yoo NJ, Lee JY, Chung YJ. ArrayCyGHt: a web application for analysis and visualization of array-CGH data. Bioinformatics 2005; 21: 2554-2555.

11. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25: 402-408. 11. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-Delta Delta C (T) Method. Methods 2001; 25: 402-408.

12. Henrich KO, Fischer M, Mertens D, Benner A, Wiedemeyer R, Brors B, Oberthuer A, Berthold F, Wei JS, Khan J, Schwab M, Westermann F. Reduced expression of CAMTA1 correlates with adverse outcome in neuroblastoma patients. Clin Cancer Res 2006;12:131-138. 12. Henrich KO, Fischer M, Mertens D, Benner A, Wiedemeyer R, Brors B, Oberthuer A, Berthold F, Wei JS, Khan J, Schwab M, Westermann F. Reduced expression of CAMTA 1 correlates with adverse outcome in neuroblastoma patients. Clin Cancer Res 2006; 12: 131-138.

13. Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M. Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res 2005;11:1119-1128. 13. Barbashina V, Salazar P, Holland EC, Rosenblum MK, Ladanyi M. Allelic losses at 1p36 and 19q13 in gliomas: correlation with histologic classification, definition of a 150-kb minimal deleted region on 1p36, and evaluation of CAMTA1 as a candidate tumor suppressor gene. Clin Cancer Res 2005; 11: 1119-1128.

14. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002;30:e57. 14. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002; 30: e57.

15. He QJ, Zeng WF, Sham JS, Xie D, Yang XW, Lin HL, Zhan WH, Lin F, Zeng SD, Nie D, Ma LF, Li CJ, Lu S, Guan XY. Recurrent genetic alterations in 26 colorectal carcinomas and 21 adenomas from Chinese patients. Cancer Genet Cytogenet 2003; 144:112-118. 15. He QJ, Zeng WF, Sham JS, Xie D, Yang XW, Lin HL, Zhan WH, Lin F, Zeng SD, Nie D, Ma LF, Li CJ, Lu S, Guan XY. Recurrent genetic alterations in 26 colorectal carcinomas and 21 adenomas from Chinese patients. Cancer Genet Cytogenet 2003; 144: 112-118.

16. Poeaim S, Rerkamnuaychoke B, Jesdapatarakul S, Campiranon A. Chromosome 16. Poeaim S, Rerkamnuaychoke B, Jesdapatarakul S, Campiranon A. Chromosome

alterations in colorectal cancer in Thai patients. Cancer Genet Cytogenet 2005; 160:152-159. Alterations in colorectal cancer in Thai patients. Cancer Genet Cytogenet 2005; 160: 152-159.

17. Ried T, Knutzen R, Steinbeck R, Blegen H, Schrock E, Heselmeyer K, du Manoir S, Auer G. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer 1996;15:234-245. 17. Ried T, Knutzen R, Steinbeck R, Blegen H, Schrock E, Heselmeyer K, Du Manoir S, Auer G. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer 1996; 15: 234-245.

18. Nakao K, Mehta KR, Fridlyand J, Moore DH, Jain AN, Lafuente A, Wiencke JW, Terdiman JP, Waldman FM. High-resolution analysis of DNA copy number 18. Nakao K, Mehta KR, Fridlyand J, Moore DH, Jain AN, Lafuentee, Wiencke JW, Terdiman JP, Waldman FM. High-resolution analysis of DNA copy number

alterations in colorectal cancer by array-based comparative genomic hybridization. Carcinogenesis 2004;25:1345-1357. alterations in colorectal cancer by array-based comparative genomic hybridization. Carcinogenesis 2004; 25: 1345-1357.

19. Knosel T, Petersen S, Schwabe H, Schluns K, Stein U, Schlag PM, Dietel M, Petersen I. Incidence of chromosomal imbalances in advanced colorectal carcinomas and their metastases. Virchows Arch 2002;440:187-194. 19. Knosel T, Petersen S, Schwabe H, Schluns K, Stein U, Schlag PM, Dietel M, Petersen I. Incidence of chromosomal imbalances in advanced colorectal carcinomas and their metastases. Virchows Arch 2002; 440: 187-194.

20. Jones AM, Douglas EJ, Halford SE, Fiegler H, Gorman PA, Roylance RR, Carter NP, Tomlinson IP. Array-CGH analysis of microsatellite-stable, near-diploid bowel cancers and comparison with other types of colorectal carcinoma. Oncogene 2005;24:118-129. 20. Jones AM, Douglas EJ, Halford SE, Fiegler H, Gorman PA, Roylance RR, Carter NP, Tomlinson IP. Array-CGH analysis of microsatellite-stable, near-diploid bowel cancers and comparison with other types of colorectal carcinoma. Oncogene 2005; 24: 118-129.

21. Knosel T, Schluns K, Stein U, Schwabe H, Schlag PM, Dietel M, Petersen I. Genetic imbalances with impact on survival in colorectal cancer patients. Histopathology 2003;43:323-331. 21. Knosel T, Schluns K, Stein U, Schwabe H, Schlag PM, Dietel M, Petersen I. Genetic imbalances with impact on survival in colorectal cancer patients. Histopathology 2003; 43: 323-331.

22. Aragane H, Sakakura C, Nakanishi M, Yasuoka R, Fujita Y, Taniguchi H, Hagiwara A, Yamaguchi T, Abe T, Inazawa J, Yamagishi H. Chromosomal aberrations in colorectal cancers and liver metastases analyzed by comparative genomic hybridization. Int J Cancer 2001;94:623-629. 22. Aragane H, Sakakura C, Nakanishi M, Yasuoka R, Fujita Y, Taniguchi H, Hagiwara A, Yamaguchi T, Abe T, Inazawa J, Yamagishi H. Chromosomal aberrations in colorectal cancers and liver metastases analyzed by comparative genomic hybridization. Int J Cancer 2001; 94: 623-629.

23. Douglas EJ, Fiegler H, Rowan A, Halford S, Bicknell DC, Bodmer W, Tomlinson IP, Carter NP. Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res 2004;64:4817-4825. 23. Douglas EJ, Fiegler H, Rowan A, Halford S, Bicknell DC, Bodmer W, Tomlinson IP, Carter NP. Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res 2004; 64: 4817-4825.

24. De Angelis PM, Clausen OP, Schjolberg A, Stokke T. Chromosomal gains and losses in primary colorectal carcinomas detected by CGH and their associations with tumour DNA ploidy, genotypes and phenotypes. Br J Cancer 1999;80:526-535. 24. De Angelis PM, Clausen OP, Schjolberg A, Stokke T. Chromosomal gains and losses in primary colorectal carcinomas detected by CGH and their associations with tumor DNA ploidy, genotypes and phenotypes. Br J Cancer 1999; 80: 526-535.

25. Shivapurkar N, Maitra A, Milchgrub S, Gazdar AF. Deletions of chromosome 4 occur early during the pathogenesis of colorectal carcinoma. Hum Pathol 2001;32:169-177. 25. Shivapurkar N, Maitraa, Milchgrub S, Gazdar AF. Deletions of chromosome 4 occurred early during the pathogenesis of colorectal carcinoma. Hum Pathol 2001; 32: 169-177.

26. Finch R, Moore HG, Lindor N, Jalal SM, Markowitz A, Suresh J, Offit K, Guillem JG. Familial adenomatous polyposis and mental retardation caused by a de novo chromosomal deletion at 5q15-q22: report of a case. Dis Colon Rectum 2005;48:2148-2152. 26. Finch R, Moore HG, Lindor N, Jalal SM, Markowitza, Suresh J, Offit K, Guillem JG. Familial adenomatous polyposis and mental retardation caused by de novo chromosomal deletion at 5q15-q22: report of a case. Dis Colon Rectum 2005; 48: 2148-2152.

27. Flanagan JM, Healey S, Young J, Whitehall V, Trott DA, Newbold RF, Chenevix-Trench G. Mapping of a candidate colorectal cancer tumor-suppressor gene to a 900-kilobase region on the short arm of chromosome 8. Genes Chromosomes Cancer 2004;40:247-260. 27. Flanagan JM, Healey S, Young J, Whitehall V, Trott DA, Newbold RF, Chenevix-Trench G. Mapping of a candidate colorectal cancer tumor-suppressor gene to a 900-kilobase region on the short arm of chromosome 8. Genes Chromosomes Cancer 2004; 40: 247-260.

28. Frayling IM, Bodmer WF, Tomlinson IP. Allele loss in colorectal cancer at the Cowden disease/juvenile polyposis locus on 10q. Cancer Genet Cytogenet 1997;97:64-69. 28. Frayling IM, Bodmer WF, Tomlinson IP. Allele loss in colorectal cancer at the Cowden disease / juvenile polyposis locus on 10q. Cancer Genet Cytogenet 1997; 97: 64-69.

29. Bando T, Kato Y, Ihara Y, Yamagishi F, Tsukada K, Isobe M. Loss of heterozygosity of 14q32 in colorectal carcinoma. Cancer Genet Cytogenet 1999;111:161-165. 29. Bando T, Kato Y, Ihara Y, Yamagishi F, Tsukada K, Isobe M. Loss of heterozygosity of 14q32 in colorectal carcinoma. Cancer Genet Cytogenet 1999; 111: 161-165.

30. Park WS, Park JY, Oh RR, Yoo NJ, Lee SH, Shin MS, Lee HK, Han S, Yoon SK, Kim SY, Choi C, Kim PJ, Oh ST, Lee JY. A distinct tumor suppressor gene locus on chromosome 15q21.1 in sporadic form of colorectal cancer. Cancer Res 2000;60:70-73. Park, JY, Oh RR, Yoo NJ, Lee SH, Shin MS, Lee HK, Han S, Yoon SK, Kim SY, A distinct tumor suppressor gene locus on chromosome 15q21.1 in sporadic form of colorectal cancer. Cancer Res 2000; 60: 70-73.

31. Risio M, Casorzo L, Chiecchio L, De Rosa G, Rossini FP. Deletions of 17p are associated with transition from early to advanced colorectal cancer. Cancer Genet Cytogenet 2003;147:44-49. 31. Risio M, Casorzo L, Chiecchio L, De Rosa G, Rossini FP. Deletions of 17p are associated with transition from early to advanced colorectal cancer. Cancer Genet Cytogenet 2003; 147: 44-49.

32. Knosel T, Petersen S, Schwabe H, Schluns K, Stein U, Schlag PM, Dietel M, Petersen I. Incidence of chromosomal imbalances in advanced colorectal carcinomas and their metastases. Virchows Arch 2002;440:187-194. 32. Knosel T, Petersen S, Schwabe H, Schluns K, Stein U, Schlag PM, Dietel M, Petersen I. Incidence of chromosomal imbalances in advanced colorectal carcinomas and their metastases. Virchows Arch 2002; 440: 187-194.

33. Donzelli M, Bernardi R, Negri C, Prosperi E, Padovan L, Lavialle C, Brison O, Scovassi AI. Apoptosis-prone phenotype of human colon carcinoma cells with a high level amplification of the c-myc gene. Oncogene 1999;18:439-448. 33. Donzelli M, Bernardi R, Negri C, Prosperi E, Padovan L, Lavialle C, Brison O, Scovassi AI. Apoptosis-prone phenotype of human colon carcinoma cells with a high level amplification of the c-myc gene. Oncogene 1999; 18: 439-448.

34. Lakshman M, Subramaniam V, Rubenthiran U, Jothy S. CD44 promotes resistance to apoptosis in human colon cancer cells. Exp Mol Pathol 2004;77:18-25. 34. Lakshman M, Subramaniam V, Rubenthiranu, Jothy S. CD44 promotes resistance to apoptosis in human colon cancer cells. Exp Mol Pathol 2004; 77: 18-25.

35. Cummins JM, Kohli M, Rago C, Kinzler KW, Vogelstein B, Bunz F. X-linked 35. Cummins JM, Kohli M, Rago C, Kinzler KW, Vogelstein B, Bunz F. X-linked

inhibitor of apoptosis protein (XIAP) is a nonredundant modulator of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human cancer cells. Cancer Res 2004;64:3006-3008. inhibitor of apoptosis protein (XIAP) is a nonredundant modulator of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -mediated apoptosis in human cancer cells. Cancer Res 2004; 64: 3006-3008.

36. Satterwhite E, Sonoki T, Willis TG, Harder L, Nowak R, Arriola EL, Liu H, Price HP, Gesk S, Steinemann D, Schlegelberger B, Oscier DG, Siebert R, Tucker PW, Dyer MJ. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 2001;98:3413-3420. 36. Satterwhite E, Sonoki T, Willis TG, Harder L, Nowak R, Arriola EL, Liu H, Price HP, Gesk S, Steinemann D, Schlegelberger B, Oscier DG, Siebert R, Tucker PW, Dyer MJ. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 2001; 98: 3413-3420.

37. Ahn BH, Kim SY, Kim EH, Choi KS, Kwon TK, Lee YH, Chang JS, Kim MS, Jo YH, Min DS. Transmodulation between phospholipase D and c-Src enhances cell 37. Ahn BH, Kim SY, Kim EH, Choi KS, Kwon TK, Lee YH, Chang JS, Kim MS, Jo YH, Min DS. Transmodulation between phospholipase D and c-Src enhances cell

proliferation. Mol Cell Biol 2003;23:3103-3115. proliferation. Mol Cell Biol 2003; 23: 3103-3115.

38. Zhang JS, Gong A, Cheville JC, Smith DI, Young CY. AGR2, an androgen-inducible secretory protein overexpressed in prostate cancer. Genes Chromosomes Cancer 2005;43:249-259. 38. Zhang JS, Gong A, Cheville JC, Smith DI, Young CY. AGR2, an androgen-inducible secretory protein overexpressed in prostate cancer. Genes Chromosomes Cancer 2005; 43: 249-259.

39. Shoji Y, Takahashi M, Kitamura T, Watanabe K, Kawamori T, Maruyama T, 39. Shoji Y, Takahashi M, Kitamura T, Watanabe K, Kawamori T, Maruyama T,

Sugimoto Y, Negishi M, Narumiya S, Sugimura T, Wakabayashi K. Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut 2004;53:1151-1158. Sugimoto Y, Negishi M, Narumiya S, Sugimura T, Wakabayashi K. Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. Gut 2004; 53: 1151-1158.

40. Bjorling-Poulsen M, Seitz G, Guerra B, Issinger OG. The pro-apoptotic FAS-associated factor 1 is specifically reduced in human gastric carcinomas. Int J Oncol 2003;23:1015-1023. 40. Bjorling-Poulsen M, Seitz G, Guerra B, Issinger OG. The pro-apoptotic FAS-associated factor 1 is specifically reduced in human gastric carcinomas. Int J Oncol 2003; 23: 1015-1023.

41. Dunn JR, Risk JM, Langan JE, Marlee D, Ellis A, Campbell F, Watson AJ, Field JK. Physical and transcript map of the minimally deleted region III on 17p implicated in the early development of Barrett's oesophageal adenocarcinoma. Oncogene 2003;22:4134-4142. 41. Dunn JR, Risk JM, Langan JE, Marlee D, Ellis A, Campbell F, Watson AJ, Field JK. Physical and transcripts of Barrett's oesophageal adenocarcinoma in the early development of 17p. Oncogene 2003; 22: 4134-4142.

42. Kuo T, Fisher GA. Current status of small-molecule tyrosine kinase inhibitors targeting epidermal growth factor receptor in colorectal cancer. Clin Colorectal Cancer 2005;Suppl 2:S62-70. 42. Kuo T, Fisher GA. Current status of small-molecule tyrosine kinase inhibitors targeting epidermal growth factor receptor in colorectal cancer. Clin Colorectal Cancer 2005; Suppl 2: S62-70.

43. Gunther K, Leier J, Henning G, Dimmler A, Weissbach R, Hohenberger W, Forster R. Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7. Int J Cancer 2005;116:726-733. 43. Gunther K, Leier J, Henning G, Dimmler A, Weissbach R, Hohenberger W, Forster R. Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7. Int J Cancer 2005; 116: 726-733.

44. Aligayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE. Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer 2002;94:344-351. 44. Aligayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE. Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer 2002; 94: 344-351.

45. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, Adams JM, Strasser A. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003;302:1036-1038. 45. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, Adams JM, Strasser A. P53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003; 302: 1036-1038.

46. Ogunbiyi OA, Goodfellow PJ, Gagliardi G, Swanson PE, Birnbaum EH, Fleshman JW, Kodner IJ, Moley JF. Prognostic value of chromosome 1p allelic loss in colon cancer. Gastroenterology 1997;113:761-766. 46. Ogunbiyi OA, Goodfellow PJ, Gagliardi G, Swanson PE, Birnbaum EH, Fleshman JW, Kodner IJ, Moley JF. Prognostic value of chromosome 1p allelic loss in colon cancer. Gastroenterology 1997; 113: 761-766.

47. Ray R, Cabal-Manzano R, Moser AR, Waldman T, Zipper LM, Aigner A, Byers SW, Riegel AT, Wellstein A. Up-regulation of fibroblast growth factor-binding protein, by beta-catenin during colon carcinogenesis. Cancer Res 2003;63:8085-8089. 47. Ray R, Cabal-Manzano R, Moser AR, Waldman T, Zipper LM, Aignera, Byers SW, Riegel AT, Wellstein A. Up-regulation of fibroblast growth factor-binding protein, by beta-catenin during colon carcinogenesis. Cancer Res 2003; 63: 8085-8089.

Claims (8)

대장암 진단 또는 예후 판정에 필요한 정보를 제공하기 위한 방법으로서,A method for providing information necessary for colon cancer diagnosis or prognosis determination, (1) 환자의 시료로부터 하기 표에서 정의된 RAR(Recurrently altered genomic region)-L1을 검출하는 단계; 및(1) detecting a Recurrently altered genomic region (RAR) -L1 defined in the following table from a sample of a patient; And (2) 상기 검출된 RAR-L1에 속하는 암 억제 유전자 CAMTA1의 발현 정도를 측정하는 단계를 포함하는, 정보 제공 방법.(2) measuring the degree of expression of the cancer suppressor gene CAMTA1 belonging to the detected RAR-L1. RARRAR 클론Clone 크기
(Mb)
size
(Mb)
사이토밴드a
(Cytoband)
Saito band a
(Cytoband)
암 관련 유전자Cancer-related genes
L1L1 RP3-438L4-RP11-338N10RP3-438L4-RP11-338N10 1.901.90 1p36.31-p36.231p36.31-p36.23 CAMTA1CAMTA1
a사이토 밴드는 UCSC 게놈 브라우저에 따른다(2004(NCBI35/hg17)버전). a The cyto-band follows the UCSC genome browser (2004 (NCBI35 / hg17) version).
삭제delete 삭제delete 삭제delete 하기 표에서 정의된 RAR(Recurrently altered genomic region)-L1에 속하는 유전자 CAMTA1을 암호화하는 뉴클레오티드, 이들의 cDNA 또는 이들에 상보적인 서열을 갖는 뉴클레오티드를 플레이트 위에 고착화시켜 제조된 대장암 진단용 DNA 칩.A DNA chip for colon cancer diagnosis prepared by immobilizing a nucleotide encoding a gene CAMTA1 belonging to Recurrently altered genomic region (RAR) -L1 defined in the following table, a cDNA thereof, or a nucleotide having a complementary sequence thereto. RARRAR 클론Clone 크기
(Mb)
size
(Mb)
사이토밴드a
(Cytoband)
Saito band a
(Cytoband)
암 관련 유전자Cancer-related genes
L1L1 RP3-438L4-RP11-338N10RP3-438L4-RP11-338N10 1.901.90 1p36.31-p36.231p36.31-p36.23 CAMTA1CAMTA1
a사이토 밴드는 UCSC 게놈 브라우저에 따른다(2004(NCBI35/hg17)버전). a The cyto-band follows the UCSC genome browser (2004 (NCBI35 / hg17) version).
제5항의 DNA 칩을 포함하는 것을 특징으로 하는 대장암 진단 키트.A colon cancer diagnostic kit comprising the DNA chip of claim 5. 삭제delete 삭제delete
KR1020060061741A 2006-07-03 2006-07-03 Diagnostic Methods and Kits for Colorectal Cancer KR101401749B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020060061741A KR101401749B1 (en) 2006-07-03 2006-07-03 Diagnostic Methods and Kits for Colorectal Cancer
US11/824,896 US7939255B2 (en) 2006-07-03 2007-07-03 Diagnostic methods for colorectal cancer
JP2007175132A JP2008011860A (en) 2006-07-03 2007-07-03 Method for diagnosing colorectal cancer and diagnostic kit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060061741A KR101401749B1 (en) 2006-07-03 2006-07-03 Diagnostic Methods and Kits for Colorectal Cancer

Publications (2)

Publication Number Publication Date
KR20080003472A KR20080003472A (en) 2008-01-08
KR101401749B1 true KR101401749B1 (en) 2014-05-30

Family

ID=39069514

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060061741A KR101401749B1 (en) 2006-07-03 2006-07-03 Diagnostic Methods and Kits for Colorectal Cancer

Country Status (2)

Country Link
JP (1) JP2008011860A (en)
KR (1) KR101401749B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100976218B1 (en) 2008-05-26 2010-08-17 한국표준과학연구원 Disease Diagnosis Method, Marker Screening Method and Marker Using TOF-SIMS
JP5754792B2 (en) * 2009-09-25 2015-07-29 国立大学法人山口大学 Prognosis prediction method for colorectal cancer

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Clin Cancer Res Vol. 11, pages 1119-1128. Published online February 11, (2005) *
Clin Cancer Res Vol. 11, pages 1119-1128. Published online February 11, (2005)*
Gastroenterology, Vol. 113, pages 761-766 (1997) *
Gastroenterology, Vol. 113, pages 761-766 (1997)*
Genes, Chromosomes & Cancer, Vol. 37, pages 369-380 (2003) *
Genes, Chromosomes & Cancer, Vol. 37, pages 369-380 (2003)*

Also Published As

Publication number Publication date
KR20080003472A (en) 2008-01-08
JP2008011860A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
Kim et al. Recurrent genomic alterations with impact on survival in colorectal cancer identified by genome-wide array comparative genomic hybridization
Kang et al. Gain at chromosomal region 5p15. 33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer
US7034144B2 (en) Molecular detection of chromosome aberrations
CA3152533C (en) Diagnostic gene marker panel for colorectal cancer
Jehan et al. In-situ hybridization as a molecular tool in cancer diagnosis and treatment
Konopka et al. Molecular genetic defects in endometrial carcinomas: microsatellite instability, PTEN and beta-catenin (CTNNB1) genes mutations
WO2010121380A1 (en) Methods and compositions for lung cancer prognosis
US7939255B2 (en) Diagnostic methods for colorectal cancer
Ji et al. Molecular inversion probe analysis of gene copy alterations reveals distinct categories of colorectal carcinoma
Wiech et al. Genome-wide analysis of genetic alterations in Barrett's adenocarcinoma using single nucleotide polymorphism arrays
WO2014127267A1 (en) Methods and tools for the diagnosis and prognosis of urogenital cancers
Kang et al. Genetic alterations in primary gastric carcinomas correlated with clinicopathological variables by array comparative genomic hybridization
US20080274909A1 (en) Kits and Reagents for Use in Diagnosis and Prognosis of Genomic Disorders
KR101401749B1 (en) Diagnostic Methods and Kits for Colorectal Cancer
WO2009094312A2 (en) Detection of gstp1 hypermethylation in prostate cancer
EP3625370A1 (en) Composite epigenetic biomarkers for accurate screening, diagnosis and prognosis of colorectal cancer
JP5865241B2 (en) Prognostic molecular signature of sarcoma and its use
KR101723207B1 (en) Dumbbell-shaped oligonucleotides and method for detecting gene mutation using the same
Liang et al. The utility and limitation of single nucleotide polymorphism analysis on whole genome amplified mesenchymal tumour DNA in formalin fixed tumour samples
CN102851368A (en) PIK3CA gene mutation fluorescence quantitative PCR genotype detection kit and detection method
KR20030069752A (en) Minisequencing type oligonucleotide chip for detecting methylation of promoter CpG islands of multiple genes, method for preparing thereof and method for detecting cancer using the same
Cho Array-based comparative genomic hybridization and its application to cancer genomes and human genetics
WO2008101170A1 (en) Methods of detecting methylation patterns within a cpg island
US20040048258A1 (en) Multiple-gene diagnostic probes and assay kits and method for the assessment of multiple markers for breast cancer prognosis
KR20230007095A (en) A Method for preparing Nucleic Acid Molecules for Detecting DNA Methylation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee