KR101408456B1 - 다중-구역 종료점 검출기 - Google Patents
다중-구역 종료점 검출기 Download PDFInfo
- Publication number
- KR101408456B1 KR101408456B1 KR1020120063083A KR20120063083A KR101408456B1 KR 101408456 B1 KR101408456 B1 KR 101408456B1 KR 1020120063083 A KR1020120063083 A KR 1020120063083A KR 20120063083 A KR20120063083 A KR 20120063083A KR 101408456 B1 KR101408456 B1 KR 101408456B1
- Authority
- KR
- South Korea
- Prior art keywords
- processing chamber
- zone
- endpoint
- zones
- etch
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 116
- 230000008569 process Effects 0.000 claims abstract description 85
- 238000005530 etching Methods 0.000 claims abstract description 57
- 238000001514 detection method Methods 0.000 claims abstract description 53
- 239000000523 sample Substances 0.000 claims abstract description 51
- 239000004065 semiconductor Substances 0.000 claims abstract description 38
- 238000004886 process control Methods 0.000 claims abstract description 17
- 239000007789 gas Substances 0.000 claims description 67
- 230000003595 spectral effect Effects 0.000 claims description 12
- 239000000110 cooling liquid Substances 0.000 claims description 8
- 230000000977 initiatory effect Effects 0.000 claims description 3
- 235000012431 wafers Nutrition 0.000 description 44
- 238000010586 diagram Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/32935—Monitoring and controlling tubes by information coming from the object and/or discharge
- H01J37/32963—End-point detection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32917—Plasma diagnostics
- H01J37/3299—Feedback systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Drying Of Semiconductors (AREA)
Abstract
본원 발명은 다중-구역 종료점 검출 시스템을 구비하는 반도체 본체 에칭 장치에 관한 것이다. 일부 실시예에서, 다중-구역 종료점 검출 시스템은 에칭 프로세스에 따라서 에칭되는 가공물을 수용하는 프로세싱 챔버를 가진다. 복수의 종료점 검출기(EPD) 프로브가 프로세싱 챔버 내에 위치된다. 각각의 EPD 프로브가 프로세싱 챔버 내의 다른 구역들 내에 위치되고, 그에 따라 프로세싱 챔버 내의 복수의 구역으로부터 종료점 신호의 검출을 인에이블링한다. 검출된 종료점 신호들이 복수의 EPD 프로브로부터 고급 프로세스 제어(APC) 유닛으로 제공된다. APC 유닛은 검출된 종료점 신호를 기초로 에칭 프로세스 파라미터에 대한 하나 또는 둘 이상의 튜닝 노브 조정을 이룰 수 있도록 그에 따라 에칭 불균일성을 제거할 수 있도록 구성된다.
Description
본 발명은 다중-구역 종료점 검출기에 대한 것이다.
오늘날의 집적 칩들은 반도체 본체 상에서 복잡한 제조 프로세스를 실행함으로써 형성된다. 복잡한 제조 프로세스는 반도체 본체 내로 도펀트를 주입하는 단계, 그리고 이어서 반도체 본체 내에 소자를 형성하고 그리고 상기 소자 위에 메탈라이제이션(metallization) 층을 형성하기 위해서 다른 프로세싱 층의 상부에 하나의 프로세싱 층을 구축하는 단계를 주로 포함한다. 원하는 위치에 프로세싱 층들을 선택적으로 형성하기 위해서, 프로세싱 층들이 종종 증착되고, 마스킹되며(masked), 이어서 건식 또는 플라즈마 에칭을 이용하여 마스킹되지 않은 영역 내에서 에칭된다.
양호한 에칭 결과를 달성하기 위해서, 종료점 검출기가 에칭 프로세싱 챔버 내에 위치된다. 종료점 검출기는 프로세싱 층이 반도체 본체로부터 완전히 제거되는 때를 결정하도록 구성된다. 이는, 하부의 프로세싱 층에 손상을 입히지 않고 하나의 프로세싱 층을 완전히 제거할 수 있게 허용한다.
반도체 제조업자들은 프로세싱 용량을 개선하기 위해서 그리고 집적 칩의 유닛 당 비용을 절감하기 위해서 반도체 가공물/웨이퍼의 크기를 계속적으로 증대시켜 왔다. 반도체 웨이퍼의 크기가 증대됨에 따라, 가공물을 에칭하기 위해서 사용되는 프로세싱 챔버의 크기가 또한 증대된다. 반도체 가공물 및 프로세싱 챔버의 크기 증가는 프로세싱 챔버 내에 단일 사이트 종료점 검출기를 가지는 종료점 검출(EPD) 시스템에 문제를 초래한다. 이는, 단일 사이트(site) 종료점 검출기가 프로세스 챔버 내의 상이한 위치들에서 종료점들의 편차를 정확하게 검출할 수 없기 때문이다. 에칭 불균일성은 가공물에 걸쳐서 그리고 가공물들 간의 에칭 속도를 변동시키고, 결과적으로 웨이퍼 로딩 효과(loading effect)를 초래한다.
본 발명은 반도체 본체 에칭 장치를 제공하며, 이 장치는 에칭 프로세스에 따라서 에칭되는 프로세싱 층을 구비하는 반도체 가공물을 수용하도록 구성된 프로세싱 챔버; 상기 프로세싱 챔버 내의 상이한 위치들에서, 프로세싱 층이 제거되는 때를 나타내는 종료점 신호를 검출하도록 구성된 다중-구역 종료점 검출 시스템; 및 상기 다중-구역 종료점 검출 시스템으로 연결되고, 상기 프로세싱 챔버 내의 상이한 위치들에서 검출된 종료점 신호를 기초로 에칭 프로세스 파라미터의 튜닝 노브 조정을 이루도록 구성되는 고급 프로세스 제어 유닛을 포함한다.
본 발명은 종료점 검출(EPD: end point detection) 시스템을 제공하며, 이 시스템은 서로 공간적으로 구분되는 복수의 구역을 포함하는 프로세싱 챔버; 및 복수의 종료점 검출 프로브를 포함하고, 상기 복수의 종료점 검출 프로브들 중 하나 또는 둘 이상의 프로브가 상기 복수의 구역들 중 각각의 구역 내에 위치되고, 상기 구역 내의 에칭 프로세스에 대응하는 종료점 신호를 생성하도록 구성되어, 종료점 신호들의 편차를 기초로 상이한 구역들 내에서 에칭 프로세스에서의 불균일성이 검출될 수 있다.
본 발명은 에칭 균일성을 개선하기 위한 방법을 제공하며, 이 방법은 프로세싱 챔버 내에서 에칭 플라즈마를 형성하기 위해서 에칭 프로세스 레시피(recipe)를 개시하는 단계; 상기 프로세싱 챔버 내의 복수의 상이한 구역들로부터 종료점 신호 데이터를 수집하는 단계; 및 상기 수집된 종료점 신호 데이터를 기초로 에칭 프로세스 파라미터의 하나 이상의 튜닝 노브 조정을 수행하는 단계를 포함한다.
도 1은 고급(advanced) 프로세스 제어 유닛에 연결된 다중-구역 종료점 검출 시스템을 포함하는 반도체 본체 에칭 장치의 일부 실시예의 블록도이다.
도 2는 고급 프로세스 제어 유닛에 연결된 다중-구역 플라즈마 에칭 시스템을 포함하는 플라즈마 에칭 시스템의 일부 실시예를 도시한 평면도이다.
도 3a는 3개의 종료점 검출 시스템을 위한 종료점 검출 프로브(probes)의 예시적인 위치를 도시한 프로세싱 챔버의 일부 실시예의 평면도이다.
도 3b는 도 3a에 도시된 프로세싱 챔버의 일부 실시예의 3차원적인 도면이다.
도 4는 에칭 균일성을 개선하기 위해서 에칭 프로세스 파라미터를 조정하기 위한 방법의 일부 실시예를 도시한 흐름도이다.
도 5는 광학적 방출 스펙트로미터(spectrometer)를 포함하는 단일 종료점 검출 프로브를 구비하는 종료점 검출 시스템의 스펙트럼 세기를 도시한 예시적인 그래프를 도시한 도면이다.
도 6은 수집된 종료점 검출 데이터를 기초로 정전기 척의 온도를 조정하기 위한 방법의 일부 실시예를 도시한 흐름도이다.
도 7은 고급 프로세스 제어 유닛에 의해서 이루어지는 조정에 앞서서 다중-구역 종료점 검출 시스템에 의해서 측정된 스펙트럼 세기를 보여주는 예시적인 그래프를 도시한 도면이다.
도 8은 고급 프로세스 제어 유닛에 의해서 이루어진 조정 후에 다중-구역 종료점 검출 시스템에 의해서 측정된 스펙트럼 세기를 보여주는 예시적인 그래프를 도시한 도면이다.
도 9는 수집된 종료점 신호 데이터를 기초로 에칭제 가스 비율을 조정하기 위한 방법의 일부 실시예를 도시한 흐름도이다.
도 10은 수집된 종료점 신호 데이터를 기초로 튜닝 가스 유동을 조정하기 위한 방법의 일부 실시예를 도시한 흐름도이다.
도 2는 고급 프로세스 제어 유닛에 연결된 다중-구역 플라즈마 에칭 시스템을 포함하는 플라즈마 에칭 시스템의 일부 실시예를 도시한 평면도이다.
도 3a는 3개의 종료점 검출 시스템을 위한 종료점 검출 프로브(probes)의 예시적인 위치를 도시한 프로세싱 챔버의 일부 실시예의 평면도이다.
도 3b는 도 3a에 도시된 프로세싱 챔버의 일부 실시예의 3차원적인 도면이다.
도 4는 에칭 균일성을 개선하기 위해서 에칭 프로세스 파라미터를 조정하기 위한 방법의 일부 실시예를 도시한 흐름도이다.
도 5는 광학적 방출 스펙트로미터(spectrometer)를 포함하는 단일 종료점 검출 프로브를 구비하는 종료점 검출 시스템의 스펙트럼 세기를 도시한 예시적인 그래프를 도시한 도면이다.
도 6은 수집된 종료점 검출 데이터를 기초로 정전기 척의 온도를 조정하기 위한 방법의 일부 실시예를 도시한 흐름도이다.
도 7은 고급 프로세스 제어 유닛에 의해서 이루어지는 조정에 앞서서 다중-구역 종료점 검출 시스템에 의해서 측정된 스펙트럼 세기를 보여주는 예시적인 그래프를 도시한 도면이다.
도 8은 고급 프로세스 제어 유닛에 의해서 이루어진 조정 후에 다중-구역 종료점 검출 시스템에 의해서 측정된 스펙트럼 세기를 보여주는 예시적인 그래프를 도시한 도면이다.
도 9는 수집된 종료점 신호 데이터를 기초로 에칭제 가스 비율을 조정하기 위한 방법의 일부 실시예를 도시한 흐름도이다.
도 10은 수집된 종료점 신호 데이터를 기초로 튜닝 가스 유동을 조정하기 위한 방법의 일부 실시예를 도시한 흐름도이다.
여기에서의 설명은 첨부 도면을 참조하여 이루어진 것으로서, 일반적으로 유사한 참조 부호를 이용하여 유사한 구성요소를 표시하였으며, 여기에서 다양한 구조들이 반드시 실척으로 도시된 것은 아니다. 이하의 설명에서, 설명을 위해서, 수치적인 특정의 상세사항들은 이해를 돕기 위해서 기술한 것이다. 그러나, 본원에 기재된 하나 또는 둘 이상의 양태들이 이러한 특정의 상세사항들 보다 덜한 정도로(a lesser degree) 실시될 수 있다는 것을 소위 당업자는 명확히 이해할 수 있을 것이다. 다른 경우에, 이해를 돕기 위해서 공지된 구조 및 장치들을 블록도에 도시하였다.
반도체 제조업자들은 프로세싱 용량을 개선하기 위해서 그리고 집적 칩의 유닛 당 비용을 절감하기 위해서 반도체 가공물/웨이퍼의 크기를 계속적으로 증대시켜 왔다. 반도체 웨이퍼의 크기가 증대됨에 따라, 가공물을 에칭하기 위해서 사용되는 프로세싱 챔버의 크기가 또한 증대된다. 반도체 가공물 및 프로세싱 챔버의 크기 증가는 프로세싱 챔버 내에 단일 사이트 종료점 검출기를 가지는 종료점 검출(EPD) 시스템에 문제를 초래한다. 예를 들어, 그러한 종료점 검출 시스템은, 특히 450 mm 크기에서, 에칭 프로세스 중에 에칭 속도 불균일성을 검출할 수 없게 된다. 이는, 단일 사이트(site) 종료점 검출기가 프로세스 챔버 내의 상이한 위치들에서 종료점들의 편차를 정확하게 검출할 수 없기 때문이다. 에칭 불균일성은 가공물에 걸쳐서 그리고 가공물들 간의 에칭 속도를 변동시키고, 결과적으로 웨이퍼 로딩 효과(loading effect)를 초래한다.
따라서, 본원 발명은 다중-구역 종료점 검출 시스템을 가지는 반도체 본체 에칭 장치에 관한 것이다. 일부 실시예에서, 다중-구역 종료점 검출 시스템은 에칭 프로세스에 따라서 에칭된 가공물을 수용하도록 구성된 프로세싱 챔버를 포함한다. 복수의 종료점 검출기(EPD) 프로브는 프로세싱 챔버 내에 포함된다. 각각의 EPD 프로브가 프로세싱 챔버 내의 상이한 구역들 내에 위치되고, 그에 따라 프로세싱 챔버 내의 복수의 구역으로부터 종료점 신호의 검출을 인에이블링(enabling)한다. 검출된 종료점 신호들이 복수의 EPD 프로브로부터 고급 프로세스 제어(APC) 유닛으로 제공된다. APC 유닛은 검출된 종료점 신호를 기초로 에칭 프로세스 파라미터에 대한 하나 또는 둘 이상의 튜닝 노브(tuning knob) 조정을 이룰 수 있도록 그에 따라 에칭 불균일성을 제거할 수 있도록(account for) 구성된다.
도 1은 다중-구역 종료점 검출 시스템(110)을 포함하는 반도체 본체 에칭 장치(100)의 일부 실시예의 블록도이다.
반도체 본체 에칭 장치(100)는 에칭하고자 하는 반도체 가공물(106)을 유지하도록 구성된 웨이퍼 척(104)을 가지는 프로세싱 챔버를 포함한다. 통상적으로, 프로세싱 챔버(102)는 에칭 중에 저압 진공으로 유지된다. 일부 실시예에서, 프로세싱 챔버(102)는 예를 들어 약 10 mTorr 내지 약 100 mTorr 범위의 압력으로 유지된다. 작동 중에, 에칭 플라즈마(108)가 프로세싱 챔버(102) 내에서 발생된다. 에칭 플라즈마(108)는 반도체 가공물(106)의 마스킹되지 않은 영역을 에칭하도록 구성된다.
다중-구역 종료점 검출 시스템(110)은 프로세싱 챔버(102)에 연결된다. 종료점 검출 시스템(110)은 종료점 신호를 생성하도록 구성되고, 그러한 종료점 신호는, 프로세싱 챔버(102) 내의 상이한 위치들에 대응하여, 프로세싱 층이 반도체 가공물(106)로부터 제거되는 때를 나타낸다. 여러 실시예에서, 종료점 검출 시스템(110)은, 예를 들어, 프로세싱 층의 두께를 측정함으로써, 반도체 가공물(106)로부터 반사된 빛의 광학적 성질을 측정함으로써(예를 들어, 프로세싱 층이 제거되었을 때, 다른 물질 표면으로부터 빛이 반사되어 표면의 광학적 성질의 변화를 유발한다), 또는 에칭 플라즈마(108)의 스펙트럼 색채를 관찰함으로써(예를 들어, 플라즈마 내로 가져갔을 때, 서로 다른 화학적 물질들은 서로 다른 파장을 방출한다), 종료점 신호를 생성하도록 작동될 수 있을 것이다.
다중-구역 종료점 검출 시스템(110)은 프로세싱 챔버(102) 내의 다른 위치들에 위치된 복수의 종료점(EPD) 검출 프로브(114a-114n)를 포함한다. 각각의 EPD 프로브(114a-114n)는 프로세싱 챔버(102)의 대응 구역(116a-116n) 내에서 에칭을 모니터링하도록 그리고 대응 구역(116a-116n) 내에서 에칭과 관련된 종료점 신호를 생성하도록 구성된다. 여러 실시예에서, 프로세싱 챔버(102)는 임의 수의 공간적으로 분리된 구역들로 나누어질 수 있고, 이때 각각의 구역은 하나 이상의 EPD 프로브(114)를 포함한다. EPD 프로브(114a-114n)는 프로세싱 유닛(120)에 연결된다. 복수의 EPD 프로브(114a-114n)의 이용에 의해서, 프로세싱 유닛(120)이 서로 다른 구역들에서 측정된 종료점 신호의 편차를 기초로 에칭 프로세스에서의 불균일성을 정확하게 탐지할 수 있게 된다.
일부 실시예에서, 프로세싱 유닛(120)은 고급 프로세스 제어(APC) 유닛(112)을 포함한다. 그러한 실시예에서, 반도체 본체 에칭 장치(100)는 피드백(feedback) 경로를 가지며, 여기에서 APC 유닛(112)은 프로세싱 챔버(102) 내에서 실시되는 에칭 프로세스(에칭 프로세스 파라미터)와 관련된 프로세스 파라미터를 제어하도록 구성된다. EPD 프로브(114a-114n)는 다른 구역(116a-116n)으로부터 APC 유닛(112)으로 종료점 신호를 제공하도록 구성된다. 에칭 프로세스를 조정하여 프로세싱 챔버(102) 내의 에칭 불균일성을 제거하기 위해서, APC 유닛(112)은 상이한 구역(116a-116n)들로부터의 종료점 신호를 이용한다. 예를 들어, 일부 실시예에서, APC 유닛(112)은 튜닝 노브 부재(118)의 작동을 제어하도록 구성된다. 튜닝 노브 부재(118)는 다른 구역(116a-116n)들 내의 검출된 종료점 신호를 기초로 에칭 프로세스에서 사용되는 하나 또는 둘 이상의 에칭 프로세스 파라미터를 조정하도록 구성된다. 하나 또는 둘 이상의 에칭 프로세스 파라미터는 에칭제 가스 비율, 웨이퍼 척 온도, 및 튜닝 가스 유동을 포함할 수 있으나, 이러한 것으로 제한되는 것은 아니다.
예를 들어, 제 1 종료점 검출 프로브(114a) 및 제 3 종료점 검출 프로브(114c)가 제 1 구역(116a)과 제 3 구역(116c)에서 서로 다른 에칭 속도(rates)를 나타내는 종료점 신호들을 생성한다면, APC 유닛(112)이 튜닝 노브 부재(118)를 작동시켜 프로세싱 챔버(102) 내의 하나 또는 둘 이상의 에칭 프로세스 파라미터를 조정할 수 있을 것이다. 하나 또는 둘 이상의 에칭 프로세스 파라미터의 조정은 제 1 구역(116a)과 제 3 구역(116c)에서 에칭 속도들이 실질적으로 동일한 에칭 속도로 수렴(converge)하게 한다.
그에 따라, 반도체 본체 에칭 장치(100)는 프로세싱 챔버(102)의 다중 구역(116a-116n)에 대해서 종료점 신호들이 생성될 수 있게 허용하고 그리고 생성된 종료점 신호를 기초로 에칭 프로세스에 대한 조정이 이루어질 수 있게 허용한다.
도 2는 고급 프로세스 제어(APC) 유닛(112)과 링크된 다중-구역 종료점 검출 시스템을 포함하는 유도 결합 플라즈마 에칭 장치(200)의 일부 실시예의 블록도를 도시한다. 도 2가 유도 결합 플라즈마 에칭 장치를 도시하지만, 개시된 방법 및 장치가, 예를 들어 용량 결합 플라즈마 에칭 장치, 전자 사이클로트론 공진 플라즈마 에칭 장치 등과 같은, 임의의 플라즈마 에칭 장치에도 적용될 수 있다는 것을 이해할 수 있을 것이다.
도 2에 도시된 바와 같이, 유도 결합 플라즈마 에칭 장치(200)는 정전기 웨이퍼 척(202)을 구비하는 프로세싱 챔버(102)를 포함한다. 정전기 웨이퍼 척(202)은 에칭되는 반도체 가공물(106)을 유지하도록 구성된다. 일부 실시예에서, 정전기 웨이퍼 척(202)은 450mm 반도체 가공물을 포함하는 반도체 가공물(106)을 유지하도록 구성된다. RF 바이어스 공급원(204)이 매치박스(matchbox; 206)에 연결되고, 그러한 RF 바이어스 공급원은 반도체 가공물(106)로 RF 바이어스를 인가하도록 구성된다. RF 전력 공급원(208)이 안테나 코일(210)에 연결되고 그리고 RF 신호를 안테나 코일(210)로 제공하도록 구성된다. RF 신호는 안테나 코일(210)이 유도 결합 에너지를 프로세싱 챔버(102) 내의 에칭 플라즈마로 제공하도록 만든다. 일부 실시예에서, RF 바이어스는 약 100 V 내지 약 500 V 범위인 한편, RF 전력은 약 100 W 내지 약 2500 W 범위이다.
프로세싱 챔버(102)는 3개의 구역(116a-116c)으로 분할된다. 각 구역(116a-116c)은 EPD 프로브(114a-114c)를 포함한다. 일부 실시예에서, EPD 프로브(114a-114c)는 프로세싱 챔버(102) 내의 에칭 플라즈마의 방출 스펙트럼을 모니터링하도록 구성된 광학적 스펙트로미터를 구비하는 광학적 방출 스펙트로스코피 부재들을 포함한다. 예를 들어 산화물 또는 금속 층과 같은, 프로세싱 층이 에칭으로 제거되었을 때, 에칭 플라즈마의 방출 스펙트럼 및 조성이 변화된다.
에칭제 가스 공급원(212)은 하나 또는 둘 이상의 에칭제 가스를 프로세싱 챔버(102)로 제공하도록 구성된 복수의 에칭제 가스 도관에 의해서 프로세싱 챔버(102)와 소통된다. 일부 실시예에서, 제 1 에칭제 가스 도관은 제 1 구역(116a)으로 에칭제 가스를 제공하도록 구성되고, 제 2 에칭제 가스 도관은 제 2 구역(116b)으로 에칭제 가스를 제공하도록 구성되고, 그리고 제 3 에칭제 가스 도관은 제 3 구역(116c)으로 에칭제 가스를 제공하도록 구성된다. 프로세싱 챔버(102)로 제공되는 에칭제 가스는 에칭되는 물질에 따라서 달라질 수 있을 것이다. 일부 실시예에서, 에칭되는 물질에는 산화물 물질이 포함되고, 에칭제 가스는 예를 들어 C2 및/또는 F6 를 포함할 수 있을 것이다.
튜닝 가스 공급원(214)은 또한 프로세싱 챔버(102)로 하나 또는 둘 이상의 튜닝 가스를 제공하도록 구성된 복수의 튜닝 가스 도관에 의해서 프로세싱 챔버(102)와 소통한다. 일부 실시예에서, 제 1 튜닝 가스 도관은 튜닝 가스를 제 1 구역(116a)으로 제공하도록 구성되고, 제 2 튜닝 가스 도관은 튜닝 가스를 제 2 구역(116b)으로 제공하도록 구성되고, 제 3 튜닝 가스 도관은 튜닝 가스를 제 3 구역(116c)으로 제공하도록 구성된다. 튜닝 가스는 에칭 프로세스 에칭 속도의 튜닝을 위해서 제공되도록 구성된다. 일부 실시예에서, 튜닝 가스가 예를 들어 O2 를 포함할 수 있을 것이다.
냉각 액체를 정전기 웨이퍼 척(202)으로 제공하도록 냉각 액체 공급원(216)이 구성된다. 냉각 액체는 정전기 웨이퍼 척(202) 내의 채널(218)을 통해서 순환되어 다른 구역(116a-116c)들 내에서 정전기 웨이퍼 척(202)의 온도를 조절한다. 정전기 웨이퍼 척(202)이 반도체 가공물(106)과 접촉하기 때문에, 정전기 웨이퍼 척(202)의 온도는 반도체 가공물(106)의 온도에 영향을 미치고 그에 따라 다른 구역(116a-116c)들 내의 에칭 속도에 영향을 미친다. 일부 실시예에서, 냉각 액체가 예를 들어 물을 포함할 수 있을 것이다.
APC 유닛(112)은 상이한 구역(116a-116c) 내에 위치된 EPD 프로브(114a-114c)로부터 종료점 신호를 수신하도록 구성된다. APC 유닛(112)은 에칭 프로세스 파라미터를 조정하여 구역들 사이의 에칭 불균일성을 제거하기 위해서 수신된 종료점 신호를 이용한다. 예를 들어, 일부 실시예에서, APC 유닛(112)은 튜닝 가스 공급원(214)으로부터 프로세싱 챔버(102)의 하나 또는 둘 이상의 구역으로 제공되는 튜닝 가스의 유동 속도를 조정하도록 구성된다. 일부 실시예에서, APC 유닛(112)은 에칭제 가스 공급원(212)으로부터 프로세싱 챔버(102) 내의 하나 또는 둘 이상의 구역으로 제공되는 에칭제 가스의 에칭제 가스 비율을 조정하도록 구성된다. 일부 실시예에서, APC 유닛(112)은 하나 또는 둘 이상의 구역 내의 정전기 웨이퍼 적(202)으로 제공되는 냉각 액체의 온도를 조정하도록 구성된다. 프로세싱 챔버(102)의 상이한 구역들 내에서 에칭 불균일성을 경감시키기 위해서, 튜닝 가스 유동 속도(유량), 에칭제 가스 비율, 및/또는 냉각 액체의 온도 중 하나 또는 둘 이상을 조정하도록 APC 유닛(112)이 구성될 수 있다는 것을 이해할 수 있을 것이다.
도 3a, 3b는 다중-구역 종료점 검출 시스템을 위한 종료점 검출(EPD) 프로브의 예시적인 위치들을 보여 주는 프로세싱 체임버(302)의 일시예의 상이한 도면들을 도시한다.
도 3a는 프로세싱 챔버(302)의 일부 실시예의 평면도(300)를 도시한다. 프로세싱 챔버(302)는 3개의 구역 즉: 중심 구역(304), 중간 구역(306), 및 웨이퍼 엣지 구역(308)으로 분할된다. 각각의 구역은 구역 내의 프로세싱 층의 에칭을 모니터링하도록 구성된 하나 또는 둘 이상의 EPD 프로브를 포함한다. 예를 들어, 중심 구역(304)은 프로세싱 챔버(302)의 중심에 위치되고 그리고 중심 구역(304) 내의 에칭을 모니터링하도록 구성된 단일 EPD 프로브(310)(삼각형으로 도시됨)를 포함한다. 중간 구역(306)은 중간 구역(306) 내의 대칭적 위치들에 배치되고 그리고 중간 구역(306) 내의 에칭을 모니터링하도록 구성된 복수의 EPD 프로브(312)(원으로 도시됨)를 포함한다. 웨이퍼 엣지 구역(308)은 또한 웨이퍼 엣지 구역(308) 내의 대칭적 위치들에 배치되고 그리고 웨이퍼 엣지 구역(308) 내의 에칭을 모니터링하도록 구성된 복수의 EPD 프로브(314)(정사각형으로 도시됨)를 포함한다.
도 3b는 프로세싱 챔버(302)의 일부 실시예의 3차원적인 도면(314)이다. 프로세싱 챔버(302)의 3차원적인 도면(314)에 도시된 바와 같이, EPD 프로브(310)가 중심 구역(도 3a의 구역(304))의 중간에서 프로세싱 챔버(302)의 상부에 장착된다. 복수의 EPD 프로브(312a-312d)가 중간 구역(도 3a에서 구역(306)) 내에서 프로세싱 챔버의 상부에 장착된다. 복수의 EPD 프로브(314a-314d)가 웨이퍼 엣지 구역(도 3a의 구역(308)) 내에서 프로세싱 챔버(302)의 측벽 상에 장착된다.
도 4는 에칭 균일성을 개선하기 위해서 에칭 불균일성을 검출하고 그리고 프로세싱 챔버 내의 에칭 프로세스 파라미터를 조정하기 위한 방법(400)의 일부 실시예의 흐름도를 도시한다. 본원에 기재된 그러한 방법(예를 들어, 방법(400, 600, 900, 및 1000))이 일련의 작용(acts) 또는 이벤트(events)로서 도시되고 설명되지만, 그러한 작용 또는 이벤트의 도시된 순서는 제한적인 의미로 해석되지 않아야 한다는 것을 이해할 수 있을 것이다. 예를 들어, 일부 작용은 다른 순서로 이루어질 수 있고 및/또는 본원에서 설명된 및/또는 도시된 것 이외의 작용 또는 이벤트와 동시에 이루어질 수 있을 것이다. 또한, 본원에 기재된 하나 또는 둘 이상의 양태 또는 실시예를 실시하기 위해서 도시된 모든 작용이 필요한 것은 아니다. 또한, 본원에 설명된 하나 또는 둘 이상의 작용이 하나 또는 둘 이상의 독립된 작용 및/또는 양상(phases)으로 실시될 수 있을 것이다.
단계(402)에서, 프로세싱 챔버 내에서 에칭 플라즈마를 형성하기 위해서 프로세스 레시피(recipe)가 개시된다. 프로세싱 레시피는 프로세싱 챔버의 압력 및 온도, 에칭 가스 조성 및 비율, 튜닝 가스 및 유동, 웨이퍼 척 온도 등을 포함하는 에칭 프로세스 파라미터를 포함할 수 있을 것이다.
단계(404)에서, 프로세싱 챔버 내의 복수의 상이한 구역들에 대해서 종료점 신호 데이터가 수집된다. 도 5는 광학적 방출 스펙트로미터를 포함하는 3개의 EPD 프로브를 가지는 종료점 검출 시스템의 스펙트럼 세기의 예시적인 그래프(500)를 도시한다. EPD 프로브에 의해서 검출된 플라즈마 방출의 스펙트럼 세기는 y-축 상에 표시되어 있고 그리고 시간은 x-축에 표시되어 있다. 제 1 구역 내에 위치된 하나 또는 둘 이상의 EPD 프로브에 의해서 취해진 종료점 신호 데이터가 추세선(trend line; 502)으로 도시되어 있고, 그러한 추세선은 시간(TZ1)에서 스펙트럼 세기 피크를 가진다. 제 2 구역 내에 위치된 하나 또는 둘 이상의 EPD 프로브에 의해서 취해진 종료점 신호 데이터가 추세선(504)으로 도시되어 있고, 그러한 추세선은 시간(TZ2)에서 피크를 가진다. 제 3 구역 내에 위치된 하나 또는 둘 이상의 EPD 프로브에 의해서 취해진 종료점 신호 데이터가 추세선(506)으로 도시되어 있고, 그러한 추세선은 시간(TZ3)에서 피크를 가진다. 다른 종료점 신호 데이터 피크들의 다른 시간들은 프로세싱 챔버의 다른 구역들 사이의 에칭 속도의 편차를 나타낸다.
단계(406)에서, 하나 또는 둘 이상의 튜닝 노브 에칭 프로세스 파라미터가 다른 구역들로부터의 종료점 신호를 기초로 조정된다. 예를 들어, 그래프(500)에 도시된 바와 같이, 추세선(502)이 추세선(504) 및 추세선(506)(각각 시간(TZ1) 및 시간(TZ2)) 보다 더 이른 시간(TZ3)에 피크를 가지기 때문에, 제 3 구역 내의 에칭 속도가 제 1 및 제 2 구역 내의 에칭 속도 보다 더 빠르다. 에칭 속도의 불균일성을 제거하기 위해서, 하나 또는 둘 이상의 에칭 프로세스 파라미터를 조정하여 제 3 구역에서 에칭 프로세스의 속도를 늦추거나 및/또는 제 1 및 제 2 구역에서 에칭 프로세스의 속도를 높일 수 있고, 그에 따라 에칭 프로세스가 3개의 구역을 통해서 균일해지도록 할 수 있다.
일부 실시예에서, 수집된 종료점 신호 데이터와 소정(所定) 값(TC)의 비교를 기초로 하나 또는 둘 이상의 파라미터가 조정된다. 만약 구역으로부터 수집된 종료점 신호 데이터가 한계치(TH) 초과의 양 만큼 소정 값(TC)으로부터 차이가 벌어지게 되면(diverge), 해당 구역 내의 에칭 프로세스가 조정될 수 있다. 수집된 종료점 신호 데이터를 소정 값(TC)에 비교함으로써, 다른 구역들 내의 에칭 프로세스들 사이의 균일성이 개선될 수 있다. 일부 실시예에서, (예를 들어, 실험적 관찰, 에칭 레시피 등을 기초로) 소정 값(TC)이 사용자에 의해서 셋팅(설정)될 수 있다. 일부 실시예에서, 소정 값(TC)이 하나 또는 둘 이상의 다른 구역들로부터 수신된 종료점 신호를 기초로 계산될 수 있을 것이다.
단계(408-418)는 예시적인 프로세스를 기술하고 있으며, 그러한 프로세스에 의해서 종료점 신호 데이터가 소정 값(TC)에 대해서 비교된다. 단계(408-418)에 기재된 예시적인 프로세스는 프로세스 파라미터를 조정하기 위한 프로세스의 하나의 예이고 그리고 이는 본원 발명의 범위를 제한하기 위한 의도는 가지지 않는다는 것을 이해할 수 있을 것이다.
단계(408)에서, 제 1 구역으로부터의 종료점 신호의 피크와 소정 값 사이의 시간 편차가 결정된다. 시간 편차는 제 1 구역(TZ1)에서 측정된 종료점 신호의 피크와 소정 값(TC) 사이의 편차의 절대 값을 계산함으로써 결정된다. 만약 절대 값이 한계치(TH) 보다 작다면(즉, ABS(TZ1-TC)<TH), 에칭 프로세스 파라미터에 대한 조정은 이루어지지 않는다. 그러나, 만약 절대 값이 한계치(TH)와 같거나 그 보다 크다면(즉, ABS(TZ1-TC)≥TH), 에칭 프로세스 파라미터에 대한 제 1 튜닝 노브 조정이 단계(410) 중에 이루어져서, 제 1 구역 내의 에칭 속도가 한계치(TH) 이내가 되게 한다.
단계(412)에서, 제 2 구역으로부터의 종료점 신호의 피크와 소정 값 사이의 시간 편차가 결정된다. 시간 편차는 제 2 구역에서 측정된 종료점 신호의 피크와 소정 값(TC) 사이의 편차의 절대 값을 계산함으로써 결정된다. 만약 절대 값이 한계치(TH) 보다 작다면, 에칭 프로세스 파라미터에 대한 조정은 이루어지지 않는다. 그러나, 만약 절대 값이 한계치(TH)와 같거나 그 보다 크다면, 에칭 프로세스 파라미터에 대한 제 2 튜닝 노브 조정이 단계(414) 중에 이루어져서, 제 2 구역 내의 에칭 속도가 한계치(TH) 이내가 되게 한다.
단계(416)에서, 제 3 구역으로부터의 종료점 신호의 피크와 소정 값 사이의 시간 편차가 결정된다. 시간 편차는 제 3 구역에서 측정된 종료점 신호의 피크와 소정 값(TC) 사이의 편차의 절대 값을 계산함으로써 결정된다. 만약 절대 값이 한계치(TH) 보다 작다면, 에칭 프로세스 파라미터에 대한 조정은 이루어지지 않는다. 그러나, 만약 절대 값이 한계치(TH)와 같거나 그 보다 크다면, 에칭 프로세스 파라미터에 대한 제 3 튜닝 노브 조정이 단계(418) 중에 이루어져서, 제 3 구역 내의 에칭 속도가 한계치(TH) 이내가 되게 한다.
단계(420)에서, 다음 웨이퍼가 에칭 시스템 내로 제공된다. 다음 웨이퍼는 단계(406)에서 조정된 파라미터를 이용하여 새로운 에칭 프로세스를 거치게 된다.
그에 따라, 방법(400)은 프로세싱 챔버의 다른 구역들 내에서 검출된 종료점 신호의 편차를 기초로 프로세스 파라미터가 조정될 수 있게 한다.
도 6-8은 방법(400)을 특정 에칭 프로세스에 적용하는 것을 도시하며, 여기에서 조정은 웨이퍼 척 온도를 포함하는 프로세스 파라미터에 대해서 이루어진다. 프로세싱 파라미터 및 프로세싱 파라미터에 대해 이루어진 조정은 단지 예이고 그리고 도 6-8에 도시된 적용은 독자들이 본원에서 개시된 방법을 이해하는데 도움을 주기 위한 것으로서 비제한적인 적용이라는 것을 이해할 수 있을 것이다.
도 6은 프로세싱 챔버 내의 복수의 EPD 프로브로부터 수집된 데이터를 기초로 정전기 웨이퍼 척의 온도를 포함하는 프로세스 파라미터를 조정하는 방법(600)의 일부 실시예의 흐름도를 도시한다. 방법(600)에서, 58초의 소정 값(TC) 및 1.5 초의 한계치(TH)가 이용되었다.
단계(602)에서, 프로세싱 챔버 내에서 에칭 플라즈마를 형성하기 위해서 프로세스 레시피가 개시된다. 일부 실시예에서, 프로세싱 레시피는 산화물 층을 포함하는 프로세싱 층을 에칭하는 에칭 플라즈마를 형성하도록 구성된다. 프로세스는 프로세싱 챔버 내에서 실시되며, 그러한 프로세싱 챔버는 3개의 구역 즉: 중심 구역, 중간 구역, 및 웨이퍼 엣지 구역으로 분할된다. 프로세싱 챔버는 약 40 mTorr의 평균 압력으로 유지된다. 프로세스는 웨이퍼에 인가된 약 400 W의 RF 바이어스 및 약 2000 W의 RF 전력으로 실행된다. 에칭제 가스 화학물질은 불화 탄소(CXFX), 아르곤(Ar), 및 산소(OX)의 혼합물을 포함하고, 그리고 약 70/600/40의 유동 비율로 프로세싱 챔버로 제공된다. 에칭 화학물질은 프로세스 챔버의 중심 및 엣지 사이에서 30:70 의 가스 비율로 분배된다(즉, 에칭제 가스 유량의 30%가 중심 구역 내에 있고 그리고 에칭제 가스 유량의 70%가 엣지 구역에 있게 된다). O2 의 엣지 튜닝 가스가 분당 1.5 표준 입방 센티미터(sccm)의 유량으로 엣지 구역으로 제공된다. 정전기 척이 각 구역 내에서 25 ℃의 온도에서 유지된다.
단계(604)에서, 프로세싱 챔버 내의 복수의 상이한 구역들로부터 종료점 신호 데이터가 수집된다. 도 7은 광학적 방출 스펙트로미터를 포함하는 3개의 EPD 프로브를 가지는 종료점 검출 시스템의 스펙트럼 세기를 나타내는 그래프(700)를 도시한다. 제 1 구역 내에 위치된 하나 또는 둘 이상의 EPD 프로브에 의해서 취해진 데이터가 추세선(702)으로 도시되어 있고, 그러한 추세선은 시간(TZ1) = 58.1 초에서 피크를 가진다. 제 2 구역 내에 위치된 하나 또는 둘 이상의 EPD 프로브에 의해서 취해진 데이터가 추세선(704)으로 도시되어 있고, 그러한 추세선은 시간(TZ2) = 57.7 초에서 피크를 가진다. 제 3 구역 내에 위치된 하나 또는 둘 이상의 EPD 프로브에 의해서 취해진 데이터가 추세선(706)으로 도시되어 있고, 그러한 추세선은 시간(TZ3) = 56.4 초에서 피크를 가진다.
단계(606)에서, 제 1 구역으로부터의 종료점 신호의 피크와 소정 값 사이의 시간 편차는 피크 TZ1 와 TC 사이의 편차의 절대 값을 계산함으로써 결정된다. 제 1 구역에서 검출된 종료점 신호의 피크가 시간에서 TZ1 = 58.1 및 TC = 58 초이기 때문에, 편차의 절대 값이 0.1 초가 되며, 이는 한계치 TH = 1.5 초 보다 작고(즉, ABS(TZ1-TC) = 0.4"<1.5") 그리고 단계(608)에서 튜닝 노브 조정이 이루어지 않게 된다.
단계(610)에서, 제 2 구역으로부터의 종료점 신호의 피크와 소정 값 사이의 시간 편차는 피크 TZ2 와 TC 사이의 편차의 절대 값을 계산함으로써 결정된다. 제 2 구역에서 검출된 종료점 신호의 피크가 시간에서 TZ1 = 57.7 및 TC = 58 초이기 때문에, 편차의 절대 값이 0.3 초가 되며, 이는 한계치 TH = 1.5 초 보다 작고(즉, ABS(TZ2-TC) = 0.3"<0.5") 그리고 단계(612)에서 튜닝 노브 조정이 이루어지지 않게 된다.
단계(614)에서, 제 3 구역으로부터의 종료점 신호의 피크와 소정 값 사이의 시간 편차는 피크 TZ1 와 TC 사이의 편차의 절대 값을 계산함으로써 결정된다. 제 2 구역에서 검출된 종료점 신호의 피크가 시간에서 TZ3 = 56.4 및 TC = 58.0 초이기 때문에, 편차의 절대 값이 한계치 TH = 1.5 초 보다 크고(즉, ABS(TZ3-TC) = 1.6"<1.5") 그리고 단계(616)에서 웨이퍼 척의 온도에 대한 조정이 이루어진다.
제 3 구역에서의 종료점 신호의 피크가 소정 상수(TC) 보다 빠른 시간이 되기 때문에, 제 3 구역에 대해서 제공되는 냉각수의 온도를 25 ℃로부터 24.5 ℃로 낮추기 위해서 조정이 이루어진다. 이러한 온도 감소는 제 3 구역에서의 에칭 속도를 낮춘다. 일부 실시예에서, 부가적인 에칭 프로세스 파라미터가 또한 조정될 수 있을 것이다. 예를 들어, 제 1 구역에서의 에칭 속도를 높이기 위해서, 제 1 구역으로 제공되는 냉각수의 온도가 또한 25 ℃로부터 25.5 ℃로 증가될 수 있다. 또한, 제 1 구역에서의 에칭 속도를 높임에 의해서, 제 1 구역과 제 3 구역 사이의 에칭 속도가 수렴하게 된다.
단계(618)에서 다음 웨이퍼가 에칭된다. 다음 웨이퍼는 조정된 프로세스 파라미터에 따라서 에칭되고, 웨이퍼 척의 온도는 제 1 구역에서 24.5 ℃이고, 제 2 구역에서 25 ℃이며, 그리고 제 3 구역에서 25.5 ℃이다.
도 8은 광학적 방출 스펙트로미터를 포함하는 복수의 EPD 프로브를 가지는 종료점 검출 시스템을 구비하는 프로세스 챔버에서 에칭되는(단계; 618) 제 2 웨이퍼의 스펙트럼 세기를 보여주는 그래프(800)를 도시한다. 결과적인 스펙트럼 데이터는 다른 구역들 사이의 피크 시간의 수렴을 보여주며, 에칭 속도의 불균일성이 감소된 것을 나타낸다. 예를 들어, 제 1 구역 내에 위치된 하나 또는 둘 이상의 EPD 프로브에 의해서 취해진 데이터가 추세선(802)으로 도시되어 있고, 그러한 추세선은 시간 TZ1 = 57.4 초에서 피크를 가진다. 제 2 구역 내에 위치된 하나 또는 둘 이상의 EPD 프로브에 의해서 취해진 데이터가 추세선(804)에 의해 도시되어 있고, 그러한 추세선은 시간 TZ2 = 57.2 초에서 피크를 가진다. 제 3 구역 내에 위치된 하나 또는 둘 이상의 EPD 프로브에 의해서 취해진 데이터가 추세선(806)에 의해 도시되어 있고, 그러한 추세선은 시간 TZ3 = 56.9 초에서 피크를 가진다.
도 9는 수집된 EPD 데이터를 기초로 에칭제 가스 비율을 포함하는 프로세스 파라미터를 조정하기 위한 방법(900)의 일부 다른 실시예의 흐름도를 도시한다.
단계(602)에서 개시된 프로세스 레시피는 단계(906) 및 단계(910)에서 한계치를 이탈하지 않는 피크를 가지는 종료점 신호 데이터를 초래한다. 그러나, 단계(914)에서, 제 3 구역에서 검출된 종료점 신호의 피크 TZ3 = 56.6 초와 소정 상수 TC = 58 초 사이의 편차의 절대값이 소정 상수 C = 1.5 초보다 크다. 그에 따라, 단계(916)에서 에칭제 가스 비율에 대한 조정이 이루어진다.
제 3 구역에서 종료점 신호의 피크가 소정 상수(TC) 보다 더 이른 시간이 되기 때문에, 중심 대 엣지 가스 비율을 30:70 으로부터 40:60으로 높이기 위한 조정이 이루어진다. 가스 비율에 대한 조정은 프로세스 챔버의 중심 및 엣지에서의 가스 유동 속도의 비율을 변화시키며, 그에 따라 에칭제 가스의 증대된 양이 중심으로 제공되고 그리고 에칭제 가스의 감소된 양이 엣지로 제공된다. 예를 들어, 40:60 가스 비율의 경우에, 70 CXFX/600 Ar/40 O2 가스 유동 속도의 40%가 중심에 있을 것이고 그리고 가스 유동 속도의 60%가 엣지에 있을 것이다. 중심 가스 비율을 증가시킴으로써 그리고 엣지 가스 비율을 감소시킴으로써, 제 3 구역 내의 에칭 시간이 감소되는 한편, 제 1 구역 내의 에칭 시간이 증가된다. 그에 따라, 조정은 다른 구역들 내의 에칭 속도가 수렴되게 한다.
단계(918)에서, 다음 웨이퍼가 에칭된다. 다음 웨이퍼는 조정된 프로세스 파라미터에 따라서 에칭되고, 에칭제 유동 비율은 40:60이 된다.
도 10은 수집된 EPD 데이터를 기초로 튜닝 가스 유동 속도를 포함하는 프로세스 파라미터를 조정하기 위한 방법(1000)의 일부 실시예의 흐름도를 도시한다.
단계(602)에서 개시된 프로세스 레시피는 단계(1006) 및 단계(1010)에서 소정 상수를 이탈하지 않는 피크를 가지는 종료점 신호 데이터를 초래한다. 그러나, 단계(1014)에서, 제 3 구역에서 검출된 종료점 신호의 피크 TZ3 = 56.6 초와 소정 상수 TC = 58 초 사이의 편차의 절대값이 소정 상수 C = 1.5 초보다 크다. 그에 따라, 단계(1016)에서 튜닝 가스 유동에 대한 조정이 이루어진다.
제 3 구역에서의 종료점 신호의 피크가 소정 상수(TC) 보다 더 이른 시간이기 때문에, 웨이퍼 엣지 구역으로부터 중심 구역까지의 튜닝 가스의 주입을 변화시키기 위해서 조정이 이루어진다. 웨이퍼 엣지 구역에서의 1.5 sccm 및 중심 구역에서의 0 sccm의 유동으로부터 웨이퍼 엣지 구역에서의 0 sccm 및 중심 구역에서의 1.5 sccm의 유동으로 튜닝 가스를 이동시킴으로써, 제 3 구역에서의 에칭 시간이 감소되는 한편, 제 1 구역에서의 에칭 시간이 증대된다. 그에 따라, 조정은 다른 구역들에서의 에칭 속도를 수렴시킨다.
단계(1018)에서, 다음 웨이퍼가 에칭된다. 다음 웨이퍼는 조정된 프로세스 파라미터에 따라서 에칭되고, 튜닝 가스는 웨이퍼 엣지 구역에서 0 sccm의 유동을 가지고 그리고 중심 구역에서 1.5 sccm의 유동을 가진다.
방법(600, 900, 및 1000)이 독립적으로 실시될 수 있고 또는 서로 조합되어 실시될 수 있다는 것을 이해할 수 있을 것이다. 예를 들어, 일부 실시예에서, APC 유닛이 방법(600)을 실행하도록, 이어서 방법(900)을 실행하도록, 이어서 방법(1000)을 실행하도록 구성될 수 있고, 그에 따라 에칭 프로세스에서 불균일성을 감소시킬 수 있을 것이다.
본원 명세서 및 첨부 도면들을 읽고 및/또는 이해하는 것을 기초로 소위 당업자는 본원 발명을 균등하게 변경 및/또는 변형할 수 있다는 것을 이해할 수 있을 것이다. 본원에 기재된 발명은 그러한 모든 변경 및 변형을 포함하고 그리고 일반적으로 그에 의해서 제한하려는 의도를 가지지 않는다. 또한, 특별한 특징 또는 양태가 몇몇 실시들 중 하나에 대해서만 설명되었지만, 희망하는 바에 따라서, 그러한 특징 및 양태가 다른 실시의 하나 또는 둘 이상의 다른 특징 및/또는 양태와 조합될 수 있을 것이다. 또한, "포함", "가지는", "구비하는"("includes", "having", "has", "with") 및/또는 그 변형의 용어가 본원에서 사용된 범위에서, 그러한 용어는 유사한 "포함하는(comprising)"을 포괄하는 것으로 의도된 것이다. 또한, "예시적인"은 최적이 아니라 단지 예를 의미하는 것이다. 또한, 본원에서 설명된 특징들, 층들 및/또는 요소들은 단순함을 위해서 그리고 용이한 이해를 위해서 서로에 대한 특별한 치수 및/또는 배향으로 설명된 것임을 이해할 수 있을 것이고, 그리고 실제 치수 및/또는 배향은 본원에서 설명된 것과는 상당히 상이할 수 있다는 것을 이해할 수 있을 것이다.
그에 따라, 본원 발명은 튜닝 노브 프로세싱 파라미터의 제어를 위해서 고급 프로세스 제어 시스템에 링크된 다중-구역 종료점 검출 시스템을 구비하는 에칭 시스템에 관한 것이다.
일부 실시예에서, 본원 발명은 반도체 본체 에칭 장치에 관한 것이다. 그러한 장치는 에칭 프로세스에 따라서 에칭되는 프로세싱 층을 가지는 반도체 가공물을 수용하도록 구성된 프로세싱 챔버를 포함한다. 프로세싱 챔버 내의 상이한 위치들에서 종료점 신호를 검출하도록 다중-구역 종료점 검출 시스템이 구성되고, 그러한 신호는 프로세싱 층이 제거되어야 할 때를 나타낸다. 고급 프로세스 제어 유닛이 다중-구역 종료점 검출 시스템으로 연결되고 그리고 프로세싱 챔버 내의 상이한 위치들에서 검출된 종료점 신호를 기초로 에칭 프로세스 파라미터의 튜닝 노브 조정을 이루도록 구성된다.
다른 실시예에서, 본원 발명은 종료점 검출(EPD) 시스템에 관한 것이다. EPD 시스템은 서로 공간적으로 구분되는 복수의 구역들을 포함하는 프로세싱 챔버를 포함한다. EPD 시스템은 복수의 종료점 검출 프로브를 더 포함하고, 상기 복수의 종료점 검출 프로브 중 하나 또는 둘 이상은 복수의 구역들 중 각각의 구역 내에 위치되고 그리고 구역 내의 에칭 속도에 대응하는 종료점 신호를 생성하도록 구성되고, 그에 따라 에칭 프로세스 내의 불균일성이 종료점 신호의 편차를 기초로 다른 구역들에서 검출될 수 있을 것이다.
다른 실시예에서, 본원 발명은 에칭 균일성을 개선하기 위한 방법에 관한 것이다. 그러한 방법은 프로세싱 챔버 내에서 에칭 플라즈마를 형성하기 위해서 에칭 프로세스 레시피를 개시하는 단계를 포함한다. 종료점 신호 데이터는 프로세싱 챔버 내의 복수의 상이한 구역들로부터 수집된다. 상이한 구역들로부터 수집된 종료점 신호들이 비교되고 그리고 종료점 신호의 편차를 기초로 하나 또는 둘 이상의 튜닝 노브 프로세스 파라미터 조정이 이루어진다.
104: 웨이퍼 척 112: APC 유닛
118: 튜닝 노브 부재 120: 프로세싱 유닛
202: 정전기 웨이퍼 척 206: 매치 박스
212: 에칭제 가스 214: 튜닝 가스
216: 냉각 액체 공급원
118: 튜닝 노브 부재 120: 프로세싱 유닛
202: 정전기 웨이퍼 척 206: 매치 박스
212: 에칭제 가스 214: 튜닝 가스
216: 냉각 액체 공급원
Claims (10)
- 반도체 본체 에칭 장치에 있어서,
에칭 프로세스에 따라서 에칭되는 프로세싱 층을 구비하는 반도체 가공물(workpiece)을 수용하도록 구성된 프로세싱 챔버;
상기 프로세싱 챔버 내의 상이한 위치들에서, 프로세싱 층이 제거되는 때를 나타내는 종료점 신호들을 검출하도록 구성된 다중-구역 종료점 검출 시스템; 및
상기 다중-구역 종료점 검출 시스템에 연결되고, 상기 프로세싱 챔버 내의 상이한 위치들에서 검출된 종료점 신호들을 기초로 에칭 프로세스 파라미터의 튜닝 노브(tuning knob)를 조정하도록 구성되는 고급 프로세스 제어 유닛
을 포함하고,
상기 고급 프로세스 제어 유닛은, 복수의 구역들 중 하나의 구역에서 검출된 종료점 신호들의 스펙트럼 세기 피크(spectral intensity peak)와 미리 결정된 값 간의 시간 편차의 절대값을 계산하고, 상기 시간 편차의 상기 절대값을 임계치와 비교하고, 상기 시간 편차의 상기 절대값이 상기 임계치보다 크거나 동일한 경우 에칭 프로세스 파라미터의 상기 튜닝 노브를 조정하도록 구성되는 것인, 반도체 본체 에칭 장치. - 제 1 항에 있어서,
상기 다중-구역 종료점 검출 시스템은 상기 프로세싱 챔버 내에 위치된 복수의 종료점 검출 프로브들을 포함하는 것인, 반도체 본체 에칭 장치. - 제 2 항에 있어서,
상기 프로세싱 챔버는 서로 공간적으로 구분되는 복수의 구역들을 포함하고,
상기 복수의 구역들 중 각각의 구역은, 구역 내의 에칭을 모니터링하도록 구성된 상기 복수의 종료점 검출 프로브들 중 하나 이상의 종료점 검출 프로브를 포함하는 것인, 반도체 본체 에칭 장치. - 제 3 항에 있어서,
복수의 에칭제(etchant) 가스 도관에 의해서 상기 프로세싱 챔버에 연결되는 에칭제 가스 공급원을 더 포함하고,
상기 고급 프로세스 제어 유닛은 상기 프로세싱 챔버 내의 상이한 위치들에서 검출된 종료점 신호들을 기초로 상기 에칭제 가스 공급원으로부터 상기 복수의 구역들 중 각각의 구역으로 제공되는 에칭제 가스들의 비율을 제어하도록 구성되는 것인, 반도체 본체 에칭 장치. - 제 3 항에 있어서,
복수의 튜닝 가스 도관에 의해서 상기 프로세싱 챔버에 연결되는 튜닝 가스 공급원을 더 포함하고;
상기 고급 프로세스 제어 유닛은 상기 프로세싱 챔버 내의 상이한 위치들에서 검출된 종료점 신호들을 기초로 상기 튜닝 가스 공급원으로부터 상기 복수의 구역들 중 각각의 구역으로 제공되는 튜닝 가스의 유동을 제어하도록 구성되는 것인, 반도체 본체 에칭 장치. - 제 3 항에 있어서,
정전기 웨이퍼 척(chuck)의 온도를 조절하기 위해서 상기 정전기 웨이퍼 척 내에서 냉각 액체를 순환시키도록 구성된 복수의 채널을 포함하는 상기 정전기 웨이퍼 척을 더 포함하고,
상기 고급 프로세스 제어 유닛은 상기 프로세싱 챔버 내의 상이한 위치들에서 검출된 종료점 신호들을 기초로 상기 복수의 구역들 중 각각의 구역 내의 냉각 액체의 온도를 제어하도록 구성되는 것인, 반도체 본체 에칭 장치. - 다중-구역 종료점 검출(EPD: end point detection) 시스템에 있어서,
서로 공간적으로 구분되는 복수의 구역들을 포함하는 프로세싱 챔버; 및
복수의 종료점 검출 프로브들
을 포함하고,
상기 복수의 종료점 검출 프로브들 중 하나 이상의 프로브는 상기 복수의 구역들 중 각각의 구역 내에 위치되고, 상기 구역 내의 에칭 프로세스에 대응하는 종료점 신호를 생성하도록 구성되어, 종료점 신호들의 편차를 기초로 상이한 구역들 내에서 에칭 프로세스에서의 불균일성이 검출될 수 있는 것인, 다중-구역 종료점 검출(EPD) 시스템. - 제 7 항에 있어서,
상기 복수의 종료점 검출 프로브들에 연결되고, 상이한 구역들에서 생성된 종료점 신호들을 기초로 하나 이상의 에칭 프로세스 파라미터들에 대한 튜닝 노브를 조정하도록 구성되는 고급 프로세스 제어(APC) 유닛을 더 포함하는, 다중-구역 종료점 검출(EPD) 시스템. - 반도체 본체를 에칭하기 위한 방법에 있어서,
프로세싱 챔버 내에서 에칭 플라즈마를 형성하기 위해서 에칭 프로세스 레시피(recipe)를 개시하는 단계;
상기 프로세싱 챔버 내의 복수의 상이한 구역들로부터 종료점 신호 데이터를 수집하는 단계; 및
상기 수집된 종료점 신호 데이터를 기초로 에칭 프로세스 파라미터들의 하나 이상의 튜닝 노브 조정을 수행하는 단계
를 포함하고,
상기 하나 이상의 튜닝 노브 조정을 수행하는 단계는, 복수의 상이한 구역들 중 하나의 구역에서 검출된 종료점 신호들의 스펙트럼 세기 피크(spectral intensity peak)와 미리 결정된 값 간의 시간 편차의 절대값을 계산하는 단계, 상기 시간 편차의 상기 절대값을 임계치와 비교하는 단계, 및 상기 시간 편차의 상기 절대값이 상기 임계치보다 크거나 동일한 경우 에칭 프로세스 파라미터의 튜닝 노브 조정을 수행하는 단계를 포함하는 것인, 반도체 본체를 에칭하기 위한 방법. - 제 9 항에 있어서,
조정된 에칭 프로세스 파라미터들을 기초로 다음 웨이퍼를 에칭하는 단계를 더 포함하는, 반도체 본체를 에칭하기 위한 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/328,172 US9887071B2 (en) | 2011-12-16 | 2011-12-16 | Multi-zone EPD detectors |
US13/328,172 | 2011-12-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130069313A KR20130069313A (ko) | 2013-06-26 |
KR101408456B1 true KR101408456B1 (ko) | 2014-06-17 |
Family
ID=48610513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120063083A KR101408456B1 (ko) | 2011-12-16 | 2012-06-13 | 다중-구역 종료점 검출기 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9887071B2 (ko) |
KR (1) | KR101408456B1 (ko) |
TW (1) | TWI488232B (ko) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10515813B2 (en) * | 2013-12-10 | 2019-12-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | Mechanisms for etching apparatus and etching-detection method |
US9640371B2 (en) * | 2014-10-20 | 2017-05-02 | Lam Research Corporation | System and method for detecting a process point in multi-mode pulse processes |
CN106298636B (zh) * | 2015-05-22 | 2019-05-14 | 中芯国际集成电路制造(上海)有限公司 | 一种超低k介质材料刻蚀深度的控制方法 |
JP6650258B2 (ja) * | 2015-12-17 | 2020-02-19 | 株式会社日立ハイテクノロジーズ | プラズマ処理装置及びプラズマ処理装置の運転方法 |
US10032681B2 (en) * | 2016-03-02 | 2018-07-24 | Lam Research Corporation | Etch metric sensitivity for endpoint detection |
US9972478B2 (en) * | 2016-09-16 | 2018-05-15 | Lam Research Corporation | Method and process of implementing machine learning in complex multivariate wafer processing equipment |
US11022877B2 (en) | 2017-03-13 | 2021-06-01 | Applied Materials, Inc. | Etch processing system having reflective endpoint detection |
JP6837886B2 (ja) * | 2017-03-21 | 2021-03-03 | 株式会社日立ハイテク | プラズマ処理装置およびプラズマ処理方法 |
US11029359B2 (en) * | 2018-03-09 | 2021-06-08 | Pdf Solutions, Inc. | Failure detection and classsification using sensor data and/or measurement data |
US10572697B2 (en) | 2018-04-06 | 2020-02-25 | Lam Research Corporation | Method of etch model calibration using optical scatterometry |
US11624981B2 (en) | 2018-04-10 | 2023-04-11 | Lam Research Corporation | Resist and etch modeling |
US11921433B2 (en) | 2018-04-10 | 2024-03-05 | Lam Research Corporation | Optical metrology in machine learning to characterize features |
US11668602B2 (en) * | 2021-04-20 | 2023-06-06 | Applied Materials, Inc. | Spatial optical emission spectroscopy for etch uniformity |
US11619594B2 (en) * | 2021-04-28 | 2023-04-04 | Applied Materials, Inc. | Multiple reflectometry for measuring etch parameters |
US11955322B2 (en) * | 2021-06-25 | 2024-04-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Device for adjusting position of chamber and plasma process chamber including the same for semiconductor manufacturing |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070027875A (ko) * | 2005-08-30 | 2007-03-12 | 삼성전자주식회사 | 식각 종료시점 결정장치 및 결정방법 |
KR100932574B1 (ko) * | 2006-10-30 | 2009-12-17 | 어플라이드 머티어리얼스, 인코포레이티드 | 포토마스크 에칭을 위한 엔드포인트 검출 |
KR20110132486A (ko) * | 2006-07-28 | 2011-12-07 | 스미토모 세이미츠 고교 가부시키가이샤 | 종점 검출이 가능한 플라즈마 에칭 방법 및 플라즈마 에칭 장치 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0945624A (ja) * | 1995-07-27 | 1997-02-14 | Tokyo Electron Ltd | 枚葉式の熱処理装置 |
AU2001251216A1 (en) * | 2000-03-30 | 2001-10-15 | Tokyo Electron Limited | Optical monitoring and control system and method for plasma reactors |
KR101001508B1 (ko) * | 2004-02-06 | 2010-12-14 | 주식회사 케이티 | 비동기식 전송 모드 초고속 통신망에서의 수동 경로재설정 방법 |
JP4522783B2 (ja) * | 2004-08-03 | 2010-08-11 | 株式会社日立ハイテクノロジーズ | プラズマ処理装置及びプラズマ処理方法 |
US8440049B2 (en) * | 2006-05-03 | 2013-05-14 | Applied Materials, Inc. | Apparatus for etching high aspect ratio features |
US8002946B2 (en) * | 2006-10-30 | 2011-08-23 | Applied Materials, Inc. | Mask etch plasma reactor with cathode providing a uniform distribution of etch rate |
US9218944B2 (en) * | 2006-10-30 | 2015-12-22 | Applied Materials, Inc. | Mask etch plasma reactor having an array of optical sensors viewing the workpiece backside and a tunable element controlled in response to the optical sensors |
US20080099435A1 (en) * | 2006-10-30 | 2008-05-01 | Michael Grimbergen | Endpoint detection for photomask etching |
-
2011
- 2011-12-16 US US13/328,172 patent/US9887071B2/en active Active
-
2012
- 2012-06-13 KR KR1020120063083A patent/KR101408456B1/ko active IP Right Grant
- 2012-09-27 TW TW101135484A patent/TWI488232B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070027875A (ko) * | 2005-08-30 | 2007-03-12 | 삼성전자주식회사 | 식각 종료시점 결정장치 및 결정방법 |
KR20110132486A (ko) * | 2006-07-28 | 2011-12-07 | 스미토모 세이미츠 고교 가부시키가이샤 | 종점 검출이 가능한 플라즈마 에칭 방법 및 플라즈마 에칭 장치 |
KR100932574B1 (ko) * | 2006-10-30 | 2009-12-17 | 어플라이드 머티어리얼스, 인코포레이티드 | 포토마스크 에칭을 위한 엔드포인트 검출 |
Also Published As
Publication number | Publication date |
---|---|
TWI488232B (zh) | 2015-06-11 |
US9887071B2 (en) | 2018-02-06 |
KR20130069313A (ko) | 2013-06-26 |
TW201327659A (zh) | 2013-07-01 |
US20130157387A1 (en) | 2013-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101408456B1 (ko) | 다중-구역 종료점 검출기 | |
KR101990331B1 (ko) | 에칭 방법 및 플라스마 처리 장치 | |
US6916396B2 (en) | Etching system and etching method | |
US20170162368A1 (en) | Impedance matching circuit for operation with a kilohertz rf generator and a megahertz rf generator to control plasma processes | |
JP5584388B2 (ja) | 裏面光学センサ及びエッチング分布の多周波数制御を備えたマスクエッチングプラズマリアクタ | |
WO2004030050A2 (en) | Apparatus and method for controlling etch depth | |
US11217454B2 (en) | Plasma processing method and etching apparatus | |
Thomas III et al. | Monitoring InP and GaAs etched in Cl2/Ar using optical emission spectroscopy and mass spectrometry | |
KR100768580B1 (ko) | 식각 공정 툴에 의해 반도체 웨이퍼를 식각하는 방법 및 시스템과 이에 사용되는 프로그램 저장 장치 | |
KR102356777B1 (ko) | 가스 공급 방법 및 반도체 제조 장치 | |
US10971411B2 (en) | Hybrid corrective processing system and method | |
US8017526B2 (en) | Gate profile control through effective frequency of dual HF/VHF sources in a plasma etch process | |
US10153217B2 (en) | Plasma processing apparatus and plasma processing method | |
US20090156011A1 (en) | Method of controlling CD bias and CD microloading by changing the ceiling-to-wafer gap in a plasma reactor | |
Chang et al. | Real-time control of ion density and ion energy in chlorine inductively coupled plasma etch processing | |
KR101274526B1 (ko) | 플라즈마처리장치 및 플라즈마처리방법 | |
KR100813592B1 (ko) | 플라즈마 에칭장치 및 플라즈마 에칭방법 | |
JP3946467B2 (ja) | ドライエッチング方法 | |
US20240047222A1 (en) | Etching method | |
KR101066972B1 (ko) | 플라즈마처리장치 및 플라즈마처리방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170530 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180528 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190530 Year of fee payment: 6 |