KR101407506B1 - Pretreatment method of carbon raw material for activated carbon production - Google Patents
Pretreatment method of carbon raw material for activated carbon production Download PDFInfo
- Publication number
- KR101407506B1 KR101407506B1 KR1020070135791A KR20070135791A KR101407506B1 KR 101407506 B1 KR101407506 B1 KR 101407506B1 KR 1020070135791 A KR1020070135791 A KR 1020070135791A KR 20070135791 A KR20070135791 A KR 20070135791A KR 101407506 B1 KR101407506 B1 KR 101407506B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- raw material
- activated carbon
- carbon
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 103
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 31
- 239000002994 raw material Substances 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title abstract description 9
- 238000002203 pretreatment Methods 0.000 title description 4
- 239000000203 mixture Substances 0.000 claims abstract description 31
- 150000001447 alkali salts Chemical class 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims description 13
- 239000003245 coal Substances 0.000 claims description 3
- 239000003208 petroleum Substances 0.000 claims description 3
- 239000002023 wood Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 17
- 230000004913 activation Effects 0.000 abstract description 6
- 230000003213 activating effect Effects 0.000 abstract description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 90
- 230000000052 comparative effect Effects 0.000 description 18
- 238000007796 conventional method Methods 0.000 description 11
- 239000011300 coal pitch Substances 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 239000003575 carbonaceous material Substances 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 239000011335 coal coke Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
Abstract
본 발명은 활성탄 제조방법에 관한 것으로서, 보다 상세하게는 탄소원료 100중량부에 대하여 알칼리염 100중량부 내지 200중량부를 첨가하는 단계; 상기 혼합물을 300℃ 내지 500℃ 열처리하는 단계; 및 상기의 열처리 혼합물 100중량부에 대하여 알칼리염 100중량부 내지 400중량부를 추가하여 활성화하는 단계;를 포함하는 활성탄 제조를 위한 탄소원료의 전처리 방법에 관한 것이다.The present invention relates to a method for producing activated carbon, and more particularly, to a method for producing activated carbon, which comprises adding 100 parts by weight to 200 parts by weight of an alkali salt to 100 parts by weight of a carbon raw material. Subjecting the mixture to a heat treatment at 300 ° C to 500 ° C; And 100 parts by weight to 400 parts by weight of an alkali salt with respect to 100 parts by weight of the heat-treated mixture, thereby activating carbon.
활성탄, 탄소원료, 알칼리염, 열처리, 활성화 Activated carbon, carbon raw material, alkali salt, heat treatment, activation
Description
본 발명은 활성탄 제조방법에 관한 것으로서, 보다 상세하게는 탄소원료 100중량부에 대하여 알칼리염을 100중량부 내지 200중량부 첨가하여 300℃ 내지 500℃ 열처리한 후, 알칼리염 100중량부 내지 400중량부를 추가하여 활성화함으로써, 높은 수율 및 커패시턴스를 갖는 활성탄을 제조하는 방법에 관한 것이다.More particularly, the present invention relates to a method for producing activated carbon, and more particularly, to a method for producing activated carbon, which comprises adding 100 to 200 parts by weight of an alkali salt to 100 parts by weight of a carbon raw material, To a method for producing activated carbon having a high yield and a high capacitance.
커패시터의 정전용량은 전극의 표면적, 단위 면적당의 전극 저항 등에 의해 주로 지배되므로, 실용면에서는 단위 체적당의 정전용량을 높게 하고, 전기 이중층 커패시터의 체적을 적게 하기 위해서는, 전극 자체의 밀도를 높이는 것이 중요하다.Since the capacitance of the capacitor is mainly controlled by the surface area of the electrode and the electrode resistance per unit area, it is important to increase the density of the electrode itself in order to increase the capacitance per unit volume and reduce the volume of the electric double layer capacitor Do.
종래 커패시터용으로 사용되는 활성탄은 석탄, 석탄 코크스, 목재, 야자껍질, 피치 등의 원료물질을 수증기, 가스 등의 산성 조건하에서 활성화하거나, 또는 수산화칼륨과 같은 강산화력을 갖는 약품에 의해 활성화시켜 제조하고 있다.Activated carbon used for conventional capacitors can be produced by activating raw materials such as coal, coal coke, wood, coconut shell, and pitch under acidic conditions such as water vapor and gas or by activating them with a strong oxidizing agent such as potassium hydroxide .
전처리와 관련하여, 체적당 고정전용량 활성탄의 제조, 1A06, 제 30회 탄소 재료학회 년회 요지집(2003년, 일본탄소학회)에는 탄소원료를 800℃로 전처리한 후, 700∼900℃로 활성화하여 높은 정전용량을 갖는 활성탄을 제조하는 방법에 대하여 보고하고 있다.In relation to the pretreatment, preparation of fixed total capacity activated carbon per volume, 1A06, 30th Annual Meeting of the Society of Carbon Materials (2003, Japan Carbon Society), the carbon raw material was pretreated at 800 ° C and activated at 700-900 ° C A method of producing activated carbon having a high electrostatic capacity has been reported.
그러나, 이 제조방법으로 사전 열처리를 할 경우에는, 탄소원료와 알칼리염과의 불균일한 혼합에 의하여 사용되는 고가의 알칼리염이 충분히 발휘되지 못하는 단점이 있다.However, in the case of performing the preheating treatment by this production method, there is a disadvantage that the expensive alkaline salt used by the non-uniform mixing of the carbon raw material and the alkali salt can not be sufficiently exhibited.
이에 본 발명에서는, 이러한 문제점을 해결하기 위하여, 탄소원료를 일정량의 알칼리염과 혼합시킨 후 사전 열처리를 통하여 균일 혼합을 유도하고, 추가적인 알칼리염을 첨가하여 열처리함으로써 정전용량이 높은 활성탄 원료의 전처리 방법을 제공하는데 그 목적이 있다. Therefore, in order to solve such a problem, the present invention provides a method for pretreating a carbonaceous raw material having a high electrostatic capacity by mixing a carbonaceous raw material with a certain amount of an alkali salt, inducing homogeneous mixing through a preheating treatment, adding an additional alkali salt, The purpose is to provide.
상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object,
제1 견지로서, 탄소원료 100중량부에 대하여 알칼리염 100중량부 내지 200중량부를 첨가하는 단계;As a first aspect, there is provided a method for producing a carbonaceous material, which comprises adding 100 parts by weight to 200 parts by weight of an alkali salt to 100 parts by weight of a carbon raw material;
상기 혼합물을 300℃ 내지 500℃ 열처리하는 단계; 및Subjecting the mixture to a heat treatment at 300 ° C to 500 ° C; And
상기의 열처리 혼합물 100중량부에 대하여 알칼리염 100중량부 내지 400중량부를 첨가하여 활성화하는 단계;Adding 100 parts by weight to 400 parts by weight of an alkali salt to 100 parts by weight of the heat-treated mixture to activate the mixture;
를 포함하는 활성탄 제조를 위한 탄소원료의 전처리 방법을 제공하며,Wherein the method comprises the steps of:
제2 견지로서, 상기 탄소원료는 석탄계 또는 석유계 또는 목질계 탄소원료임을 특징으로 하는 활성탄 제조를 위한 탄소원료 전처리 방법을 제공한다.According to a second aspect, the present invention provides a carbon raw material pretreatment method for producing activated carbon, wherein the carbon raw material is a coal-based, petroleum-based, or wood-based carbon raw material.
상술한 바와 같이 본 발명의 방법에 따라, 활성탄 제조를 위하여 탄소원료를 전처리함으로써, 높은 수율 및 커패시턴스를 갖는 활성탄을 제조할 수 있다.As described above, according to the method of the present invention, activated carbon having a high yield and capacitance can be produced by pretreating a carbon raw material for producing activated carbon.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 활성탄 제조를 위한 탄소원료의 전처리 방법은 탄소원료에 알칼리염을 첨가하는 단계를 포함한다. The pretreatment method for the carbon raw material for the activated carbon production of the present invention includes the step of adding an alkali salt to the carbon raw material.
상기 탄소원료는 통상 사용되는 것을 사용할 수 있으며, 예를 들면, 특별히 한정하는 것은 아니나, 석탄계, 석유계 또는 목질계 탄소원료를 들 수 있다.The above-mentioned carbon raw materials may be those which are commonly used, and examples thereof include carbonaceous, petroleum-based or woody carbonaceous raw materials, though not particularly limited.
상기 탄소원료에 첨가되는 알칼리염은 탄소원료 100 중량부에 대하여, 100중량부 내지 200중량부의 함량으로 첨가된다. 100중량부 보다 적게 첨가하면 알칼리염이 탄소원료에 충분히 접촉할 수 없으며, 200중량부를 초과하여 첨가되면 150℃~300℃의 온도 영역에서 아래와 같은 반응에 의하여 탄소가 탄산염의 형태로 일부 전환되어 활성탄의 수율이 낮아지게 되므로 바람직하지 않다.The alkali salt added to the carbon raw material is added in an amount of 100 parts by weight to 200 parts by weight based on 100 parts by weight of the carbon raw material. If it is added in an amount of more than 200 parts by weight, the carbon may be partially converted into a carbonate form in the temperature range of 150 ° C to 300 ° C by the following reaction, The yield is lowered.
C + 2NaOH + H2O = 2H2 + Na2CO3 C + 2NaOH + H 2 O = 2H 2 + Na 2 CO 3
다음으로, 본 발명의 탄소원료 전처리 방법은 상기 탄소원료와 알칼리 수용액의 혼합물을 열처리하는 단계를 포함한다. Next, the carbon raw material pretreatment method of the present invention includes a step of heat-treating the mixture of the carbon raw material and the aqueous alkaline solution.
상기 열처리는 300℃ 내지 500℃의 온도범위에서 행하는 것이 바람직하다. 수산화나트륨은 약간의 수분 함유 여부에 따라 그 녹는점이 약 300℃-328℃이고, 수산화칼륨의 녹는점은 360℃이므로, 이러한 알칼리염을 용융시키기 위해서는 300℃ 이상에서 열처리하는 것이 바람직하다. 나아가, 용융된 알칼리염에 충분한 유동도를 부여하여 탄소원료와의 균일한 혼합을 가능하도록 하기 위해서는 500℃ 이하의 온도로 열처리하는 것이 바람직 하며, 500℃ 이상일 경우에는 그 추가 효과를 기대할 수 없으므로, 300 내지 500℃의 온도범위에서 열처리하는 것이 바람직하다.The heat treatment is preferably performed in a temperature range of 300 ° C to 500 ° C. Since sodium hydroxide has a melting point of about 300 ° C to 328 ° C depending on whether it contains a small amount of water and a melting point of potassium hydroxide is 360 ° C, it is preferable to perform the heat treatment at 300 ° C or more for melting the alkali salt. Further, in order to impart a sufficient degree of fluidity to the molten alkali salt to enable uniform mixing with the carbon raw material, it is preferable to carry out a heat treatment at a temperature of 500 ° C or lower. When the temperature is higher than 500 ° C, It is preferable to perform the heat treatment at a temperature range of 300 to 500 ° C.
나아가, 본 발명의 탄소원료 전처리 방법은 상기의 열처리된 탄소원료와 알칼리 수용액의 혼합물에 알칼리염을 추가로 첨가하여 활성화하는 단계를 포함한다.Further, the method for pretreating a carbonaceous material of the present invention includes the step of further adding an alkali salt to a mixture of the heat-treated carbonaceous material and an aqueous alkali solution to activate the mixture.
상기 활성화 방법은 탄소원료의 전처리를 위해 통상적으로 행해지는 방법으로 행할 수 있는 것으로서, 특별히 한정하지 않으며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 이러한 활성화 방법을 이해하여 행할 수 있을 것이다.The activation method is not particularly limited and can be carried out by a conventional method for the pretreatment of the carbon raw material. Those skilled in the art will understand the activation method.
상기 열처리된 탄소원료와 알칼리 수용액의 혼합물 100중량부에 대하여 알칼리염은 100중량부 내지 400중량부의 범위를 갖는 것이 바람직하다. 상기 알칼리염이 100중량부 미만으로 첨가될 경우에는 충분한 알칼리 활성화를 기대할 수 없으며, 400중량부를 초과하여 첨가될 경우에는 추가적 첨가에 의한 효과를 기대할 수 없을 뿐만 아니라, 활성탄의 수율이 저하하므로, 상기 범위 내에서 추가로 첨가하는 것이 바람직하다.The alkali salt preferably ranges from 100 parts by weight to 400 parts by weight based on 100 parts by weight of the mixture of the heat-treated carbon raw material and the alkali aqueous solution. When the alkali salt is added in an amount of less than 100 parts by weight, sufficient alkali activation can not be expected. When the alkali salt is added in an amount exceeding 400 parts by weight, the effect of addition can not be expected and the yield of activated carbon is lowered. It is preferable to further add in the range.
이와 같은 본 발명의 방법에 따른 탄소원료의 전처리 방법은 원료와 알칼리염을 균일하게 혼합함으로써, 탄소원료의 효율적인 활성화를 유도하여 우수한 정전용량을 갖는 활성탄을 제조할 수 있다. The method for pretreating a carbon source according to the method of the present invention can produce an activated carbon having an excellent electrostatic capacity by inducing efficient activation of a carbon source by uniformly mixing a raw material and an alkali salt.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 그러나, 하기 실시예에 의해 본 발명을 제한하는 것이 아님을 이해하기 바란다.Hereinafter, the present invention will be described more specifically by way of examples. However, it should be understood that the present invention is not limited by the following examples.
실시예Example
비교예Comparative Example 1 One
석탄계 핏치 100중량부에 NaOH의 첨가 및 열처리의 전처리단계를 거침이 없이, NaOH를 350중량부 첨가한 후, 통상적인 방법으로 900℃에서 활성화를 수행하여 활성탄을 제조하였다. 활성탄의 수율 및 정전용량을 측정하였으며, 그 결과는 다음 표 1과 같다.Activated carbon was prepared by adding 350 parts by weight of NaOH to 100 parts by weight of coal pitch, without adding NaOH and performing a pretreatment of heat treatment, followed by activation at 900 ° C by a conventional method. The yield and the electrostatic capacity of the activated carbon were measured. The results are shown in Table 1 below.
비교예Comparative Example 2 2
석탄계 핏치 100중량부에 NaOH를 50중량부 첨가하고 400℃로 가열하여 냉각시킨 후, 상기 열처리 혼합물에 추가적으로 NaOH를 300중량부 첨가하고, 통상적인 방법으로 900℃에서 활성화를 수행하여 활성탄을 제조하였다. 활성탄의 수율 및 정전용량을 측정하였으며, 그 결과는 다음 표 1과 같다.50 parts by weight of NaOH was added to 100 parts by weight of coal pitch, and the mixture was heated to 400 DEG C and cooled. 300 parts by weight of NaOH was further added to the heat-treated mixture and activated at 900 DEG C by a conventional method to produce activated carbon . The yield and the electrostatic capacity of the activated carbon were measured. The results are shown in Table 1 below.
실시예Example 1 One
석탄계 핏치 100중량부에 NaOH 100중량부를 첨가하고 400℃로 가열하고 냉각시킨 후, 상기 열처리 혼합물에 추가적으로 NaOH를 250중량부 첨가하고, 통상적인 방법으로 900℃에서 활성화를 수행하여 활성탄을 제조하였다. 활성탄의 수율 및 정전용량을 측정하였으며, 그 결과는 다음 표 1과 같다.100 parts by weight of NaOH was added to 100 parts by weight of coal pitch, and the mixture was heated to 400 DEG C and cooled. Then, 250 parts by weight of NaOH was further added to the heat treatment mixture and activated at 900 DEG C by a conventional method to produce activated carbon. The yield and the electrostatic capacity of the activated carbon were measured. The results are shown in Table 1 below.
실시예Example 2 2
석탄계 핏치 100중량부에 NaOH 200중량부를 첨가하고 400℃로 가열하고 냉각시킨 후, 상기 열처리 혼합물에 추가적으로 NaOH를 150중량부 첨가하고, 통상적인 방법으로 900℃에서 활성화를 수행하여 활성탄을 제조하였다. 활성탄의 수율 및 정전용량을 측정하였으며, 그 결과는 다음 표 1과 같다.200 parts by weight of NaOH was added to 100 parts by weight of coal pitch, and the mixture was heated to 400 DEG C and cooled. Then, 150 parts by weight of NaOH was further added to the heat treatment mixture and activated at 900 DEG C by a conventional method to produce activated carbon. The yield and the electrostatic capacity of the activated carbon were measured. The results are shown in Table 1 below.
비교예Comparative Example 3 3
석탄계 핏치 100중량부에 NaOH 250중량부를 첨가하고 400℃로 가열하고 냉각시킨 후, 상기 열처리 혼합물에 추가적으로 NaOH를 100중량부 첨가하고, 통상적인 방법으로 900℃에서 활성화를 수행하여 활성탄을 제조하였다. 활성탄의 수율 및 정전용량을 측정하였으며, 그 결과는 다음 표 1과 같다.250 parts by weight of NaOH was added to 100 parts by weight of coal pitch, and the mixture was heated to 400 DEG C and cooled. Then, 100 parts by weight of NaOH was further added to the heat treatment mixture and activated at 900 DEG C by a conventional method to produce activated carbon. The yield and the electrostatic capacity of the activated carbon were measured. The results are shown in Table 1 below.
추가 첨가량
(중량부)NaOH
Additional added amount
(Parts by weight)
(%)yield
(%)
(F/cc))Capacitance
(F / cc))
(중량부)NaOH addition amount
(Parts by weight)
(℃)Temperature
(° C)
상기 표에 보이는 바와 같이 전처리를 수행하지 않은 경우(비교예 1)에는 수율도 낮도 정전용량도 낮음을 알 수 있다. 전처리 NaOH 첨가량이 적은 경우(비교예 2)에는 수율은 높았으나, 정전용량이 충분하지 못함을 알 수 있고, NaOH 추가 첨가량이 너무 많은 경우(비교예 3)에는 정전용량은 충분하나 수율이 낮아짐을 알 수 있다. 반면, 본 발명의 방법에 따른 실시예 1 및 2의 경우에는 수율 및 정전용량 모두 우수한 결과를 나타내었다.As shown in the above table, when the preprocessing is not performed (Comparative Example 1), it can be seen that the electrostatic capacity is also low even at a low yield. When the pretreatment NaOH addition amount was small (Comparative Example 2), the yield was high, but the electrostatic capacity was not sufficient. When the addition amount of NaOH was too much (Comparative Example 3), the electrostatic capacity was sufficient but the yield was low Able to know. On the other hand, in Examples 1 and 2 according to the method of the present invention, both the yield and the electrostatic capacity showed excellent results.
비교예Comparative Example 4 4
석탄계 핏치 100중량부에 NaOH를 200중량부 첨가하고, 250℃로 가열하여 냉각시킨 후, 상기 열처리 혼합물에 추가적으로 NaOH를 150중량부 첨가하고, 통상적인 방법으로 900℃에서 활성화를 수행하여 활성탄을 제조하였다. 활성탄의 수율 및 정전용량을 측정하였으며, 그 결과는 다음 표 2와 같다.200 parts by weight of NaOH was added to 100 parts by weight of coal pitch and cooled by heating to 250 DEG C and 150 parts by weight of NaOH was further added to the heat treatment mixture and activated at 900 DEG C by a conventional method to produce activated carbon Respectively. The yield and the electrostatic capacity of the activated carbon were measured. The results are shown in Table 2 below.
실시예Example 3 3
석탄계 핏치 100중량부에 NaOH를 200중량부 첨가하고, 500℃로 가열하고 냉각시킨 후, 상기 열처리 혼합물에 추가적으로 NaOH를 150중량부 첨가하고, 통상적인 방법으로 900℃에서 활성화를 수행하여 활성탄을 제조하였다. 활성탄의 수율 및 정전용량을 측정하였으며, 그 결과는 다음 표 2와 같다.200 parts by weight of NaOH was added to 100 parts by weight of coal pitch, and the mixture was heated to 500 DEG C and cooled. Then, 150 parts by weight of NaOH was further added to the heat treatment mixture and activated at 900 DEG C by a conventional method to produce activated carbon Respectively. The yield and the electrostatic capacity of the activated carbon were measured. The results are shown in Table 2 below.
비교예Comparative Example 5 5
석탄계 핏치 100중량부에 NaOH를 200중량부 첨가하고, 550℃로 가열하고 냉각시킨 후, 상기 열처리 혼합물에 추가적으로 NaOH를 150중량부 첨가하고, 통상적인 방법으로 900℃에서 활성화를 수행하여 활성탄을 제조하였다. 활성탄의 수율 및 정전용량을 측정하였으며, 그 결과는 다음 표 2와 같다.200 parts by weight of NaOH was added to 100 parts by weight of coal pitch, and the mixture was heated to 550 DEG C and cooled. Then, 150 parts by weight of NaOH was further added to the heat treatment mixture and activated at 900 DEG C by a conventional method to produce activated carbon Respectively. The yield and the electrostatic capacity of the activated carbon were measured. The results are shown in Table 2 below.
추가 첨가량
(중량부)NaOH
Additional added amount
(Parts by weight)
(%)yield
(%)
(F/cc)Capacitance
(F / cc)
(중량부)NaOH
(Parts by weight)
(℃)Temperature
(° C)
200
200
150
150
상기 표 2에 나타낸 바와 같이, 전처리 온도가 낮은 경우(비교예 4)에는 수율은 높지만, 정전용량이 충분하지 못하며, 전처리 온도가 높은 경우(비교예 5)에는 수율 및 정전용량은 우수하다. 그러나 본 발명의 방법에 따른 실시예 3과 비교하여 볼때, 전처리 온도의 승온에 따른 추가적 효과가 없음을 알 수 있다.As shown in Table 2, when the pretreatment temperature was low (Comparative Example 4), the yield was high, but the electrostatic capacity was insufficient. When the pretreatment temperature was high (Comparative Example 5), the yield and the electrostatic capacity were excellent. However, in comparison with Example 3 according to the method of the present invention, it can be seen that there is no additional effect due to the increase in the temperature of the pretreatment temperature.
실시예Example 4 4
석탄계 핏치 100중량부에 NaOH를 100중량부 첨가하여 400℃로 가열하고 냉각시킨 후, 상기 열처리 혼합물에 추가적으로 NaOH를 400중량부 첨가하고, 통상적인 방법으로 900℃에서 활성화를 수행하여 활성탄을 제조하였다. 활성탄의 수율 및 정전용량을 측정하였으며, 그 결과는 다음 표 3과 같다.100 parts by weight of NaOH was added to 100 parts by weight of coal pitch, and the mixture was heated to 400 DEG C and cooled. Then, 400 parts by weight of NaOH was further added to the heat treatment mixture and activated at 900 DEG C by a conventional method to produce activated carbon . The yield and the electrostatic capacity of the activated carbon were measured. The results are shown in Table 3 below.
비교예Comparative Example 6 6
석탄계 핏치 100중량부에 NaOH를 100중량부 첨가하여 400℃로 가열하고 냉각시킨 후, 상기 열처리 혼합물에 추가적으로 NaOH를 500중량부 첨가하고, 통상적인 방법으로 900℃에서 활성화를 수행하여 활성탄을 제조하였다. 활성탄의 수율 및 정전용량을 측정하였으며, 그 결과는 다음 표 3과 같다.100 parts by weight of NaOH was added to 100 parts by weight of coal pitch, and the mixture was heated to 400 DEG C and cooled. Then, 500 parts by weight of NaOH was further added to the heat treatment mixture and activated at 900 DEG C by a conventional method to produce activated carbon . The yield and the electrostatic capacity of the activated carbon were measured. The results are shown in Table 3 below.
추가 첨가량
(중량부)NaOH
Additional added amount
(Parts by weight)
(%)yield
(%)
(F/cc)Capacitance
(F / cc)
(중량부)NaOH addition amount
(Parts by weight)
(℃)Temperature
(° C)
상기 표 3에 보이는 바와 같이, 후처리 NaOH의 첨가량이 400중량부보다 많은 경우(비교예 6)에는 수율이 감소하며, 정전용량에서의 추가 향상을 기대할 수 없다. 반면, 본 발명의 방법에 따른 실시예 4의 경우에는 수율 및 정전용량 모두 우수한 결과를 나타내었다.As shown in Table 3, when the amount of the post-treated NaOH added is more than 400 parts by weight (Comparative Example 6), the yield decreases and further improvement in the electrostatic capacity can not be expected. On the other hand, in Example 4 according to the method of the present invention, both the yield and the electrostatic capacity showed excellent results.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070135791A KR101407506B1 (en) | 2007-12-21 | 2007-12-21 | Pretreatment method of carbon raw material for activated carbon production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070135791A KR101407506B1 (en) | 2007-12-21 | 2007-12-21 | Pretreatment method of carbon raw material for activated carbon production |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090067953A KR20090067953A (en) | 2009-06-25 |
KR101407506B1 true KR101407506B1 (en) | 2014-06-17 |
Family
ID=40995614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070135791A KR101407506B1 (en) | 2007-12-21 | 2007-12-21 | Pretreatment method of carbon raw material for activated carbon production |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101407506B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200056846A (en) | 2018-11-15 | 2020-05-25 | 문성우 | Activated Carbon Pretreatment Apparatus and Method for Producing Anaerobic Bioactive Carbon Using the Same |
KR20240026323A (en) | 2022-08-18 | 2024-02-28 | 한국과학기술연구원 | Absorbent of odor substances using thermal oxidation and method for manufacturing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102023064B1 (en) * | 2012-12-20 | 2019-09-19 | 재단법인 포항산업과학연구원 | Method for manufacturing porous pelletized activated carbon from wood pellet and porous pelletized activated carbon manufactured therefrom |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004149399A (en) * | 2002-04-11 | 2004-05-27 | Showa Denko Kk | Activated carbon, its manufacturing method and its use |
JP2004175660A (en) | 2002-11-13 | 2004-06-24 | Showa Denko Kk | Activated carbon, method of manufacturing the same and polarizable electrode |
JP2007119342A (en) | 2005-09-29 | 2007-05-17 | Showa Denko Kk | Activated carbon and its manufacturing method and use |
JP2007153639A (en) * | 2005-12-01 | 2007-06-21 | Kuraray Co Ltd | Activated carbon precursor, activated carbon and method for producing the same, polarizable electrode and electric double layer capacitor |
-
2007
- 2007-12-21 KR KR1020070135791A patent/KR101407506B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004149399A (en) * | 2002-04-11 | 2004-05-27 | Showa Denko Kk | Activated carbon, its manufacturing method and its use |
JP2004175660A (en) | 2002-11-13 | 2004-06-24 | Showa Denko Kk | Activated carbon, method of manufacturing the same and polarizable electrode |
JP2007119342A (en) | 2005-09-29 | 2007-05-17 | Showa Denko Kk | Activated carbon and its manufacturing method and use |
JP2007153639A (en) * | 2005-12-01 | 2007-06-21 | Kuraray Co Ltd | Activated carbon precursor, activated carbon and method for producing the same, polarizable electrode and electric double layer capacitor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200056846A (en) | 2018-11-15 | 2020-05-25 | 문성우 | Activated Carbon Pretreatment Apparatus and Method for Producing Anaerobic Bioactive Carbon Using the Same |
KR20240026323A (en) | 2022-08-18 | 2024-02-28 | 한국과학기술연구원 | Absorbent of odor substances using thermal oxidation and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20090067953A (en) | 2009-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1076044C (en) | Needle coke for graphite electrode and process for producing the same | |
US20150110707A1 (en) | Process for making chemically activated carbon | |
KR101407506B1 (en) | Pretreatment method of carbon raw material for activated carbon production | |
CN108865195A (en) | A kind of method that biomass prepares high-strength carbon material | |
KR101157956B1 (en) | Method for manufacturing foamed glass from waste glass | |
CN104591183A (en) | Method for preparing waste circuit board activated carbon by vapor process | |
CN1880511A (en) | High-density semi-graphite cathode carbon block and method for producing same | |
CN101531939A (en) | Coke deterioration inhibitor and preparation method thereof | |
CN1101356C (en) | Carbonaceous refractory and process for production thereof | |
CN104229769B (en) | A kind of preparation method of porous carbon materials | |
KR101432598B1 (en) | A pretreatment method for a carbon raw material and a carbon material for a capacitor electrode manufactured using the same | |
CN101306815B (en) | Process for preparing high adsorbing active carbon by using petroleum coke as raw material | |
CN112158834A (en) | Method for preparing high-performance graphite from carbon black modified coal pitch | |
KR102167917B1 (en) | A method for reforming hot coal, a method for producing coke, and a method for producing pig iron | |
US20050085372A1 (en) | Carbon foam from metallic salts of lignosulfonates | |
KR100935133B1 (en) | Reduction method of nickel oxide and nickel manufactured of the same | |
KR20110107111A (en) | Granulated activated carbon made from vegetable biomass and its manufacturing method | |
CN103396085B (en) | Low-heat-conductivity light-weight heat-insulating material based on granite waste and preparation method thereof | |
CN111534043A (en) | Thermal insulation board with good thermal stability | |
KR102009835B1 (en) | Coke and method for manufacturing of the same | |
KR102203754B1 (en) | Method for preparation of reduced iron with high iron content and the reduced iron prepared by the same | |
KR20210035524A (en) | A composition for pellet having carbon and methods of fabricating pellet having carbon using the same | |
KR101429975B1 (en) | Post-treatment method of activated carbon for electrode manufacturing | |
KR100650618B1 (en) | Method for producing activated carbon with high specific surface area for capacitor electrodes | |
CN104072888A (en) | Ethylene propylene rubber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20071221 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20121101 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20071221 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20140117 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20140520 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20140609 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20140610 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20170605 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20170605 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20200610 Start annual number: 7 End annual number: 7 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20220320 |