[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101382530B1 - Catalyst comprising Pd supported on polymer-halloysite nanocomposite and method for preparing biaryl compounds using the catalyst - Google Patents

Catalyst comprising Pd supported on polymer-halloysite nanocomposite and method for preparing biaryl compounds using the catalyst Download PDF

Info

Publication number
KR101382530B1
KR101382530B1 KR1020120061034A KR20120061034A KR101382530B1 KR 101382530 B1 KR101382530 B1 KR 101382530B1 KR 1020120061034 A KR1020120061034 A KR 1020120061034A KR 20120061034 A KR20120061034 A KR 20120061034A KR 101382530 B1 KR101382530 B1 KR 101382530B1
Authority
KR
South Korea
Prior art keywords
catalyst
reaction
polymer
supported
present
Prior art date
Application number
KR1020120061034A
Other languages
Korean (ko)
Other versions
KR20140011494A (en
Inventor
이학준
홍명찬
이용우
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to KR1020120061034A priority Critical patent/KR101382530B1/en
Publication of KR20140011494A publication Critical patent/KR20140011494A/en
Application granted granted Critical
Publication of KR101382530B1 publication Critical patent/KR101382530B1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 N-이소프로필아크릴아미드와 할로이사이트(halloysite: HNT)를 반응시켜 제조한 고분자 복합체에 팔라듐(Pd) 나노입자가 담지되어 있는 것을 특징으로 하는 유기화학 반응 촉매 및 이를 이용하여 스즈키(suzuki)-미우라(Miyaura) 커플링 반응을 통해 바이아릴 화합물을 제조하는 방법에 관한 것으로서, 반응 수율이 높고 재생가능하며, 재생 촉매를 사용하여도 반응성이 유지됨으로써 경제적이고, 친환경적이다. The present invention is an organic chemical reaction catalyst and palladium (Pd) nanoparticles are supported on a polymer composite prepared by reacting N-isopropylacrylamide with halloysite (HNT), and suzuki using the same. The present invention relates to a method for preparing a biaryl compound through a) -Miyaura coupling reaction, which is economical and environmentally friendly due to high reaction yield and regeneration, and reactivity maintained even with a regeneration catalyst.

Description

팔라듐이 담지된 유기화학 반응 촉매 및 이를 이용하여 바이아릴 화합물을 제조하는 방법 {Catalyst comprising Pd supported on polymer-halloysite nanocomposite and method for preparing biaryl compounds using the catalyst}Palladium-supported organic chemical reaction catalyst and method for preparing a biaryl compound using the same {Catalyst comprising Pd supported on polymer-halloysite nanocomposite and method for preparing biaryl compounds using the catalyst}

본 발명은 금속 담지 촉매 및 이를 이용한 화합물의 제조 방법에 관한 것으로서, 보다 상세하게는 온도감응성 고분자에 팔라듐이 담지된 유기화학 반응 촉매 및 이를 이용하여 바이아릴(biaryl) 화합물을 제조하는 방법에 관한 것이다. The present invention relates to a metal supported catalyst and a method for preparing a compound using the same, and more particularly, to an organic chemical reaction catalyst having palladium supported on a temperature sensitive polymer and a method for preparing a biaryl compound using the same. .

단일(Homogeneous) 촉매는 지난 수십 년 동안 화학에서 가장 중요한 발전과제 중의 하나였다. 지금까지 수 천 개의 리간드와 전이금속의 착물이 보고되었고, C-H, C-C, C-O, C-N의 합성에 매우 효과적이라고 알려져 있다. 그러나 매우 적은 수의 촉매만이 산업적으로 적용되었다. 그 이유는 값비싼 전이금속을 사용하는 단일 촉매의 재사용과 분리에 문제점이 있기 때문이다. 그러한 문제점을 극복하기 위한 방법으로 반응 혼합물에서 촉매의 분리를 쉽게 하기 위해 불용성 고분자 지지체에 공유결합을 통해 촉매를 고정시키는 방법이 최근에 각광을 받고 있다. 이와 같은 담체로 많이 사용되고 있는 것이 폴리스타이렌 기반의 담체이다. 그러나 이렇게 만들어진 촉매를 사용하는데 있어서 많은 경우 유기용매를 사용하고 있다. 유기용매에 대한 규제의 강화와 함께 무해한 대체물을 발전시키는 것이 대단히 중요하게 되었으며, 최근에는 지속가능하고 환경 친화적인 방법이 요구되고 있는 실정이다. 그러나 이러한 요구에 충족하는 연구들은 많이 진행되고 있지 않다. Homogeneous catalysts have been one of the most important advances in chemistry for decades. To date, thousands of ligands and complexes of transition metals have been reported and are known to be very effective in the synthesis of C-H, C-C, C-O, and C-N. However, very few catalysts have been applied industrially. This is because there is a problem in the reuse and separation of single catalysts using expensive transition metals. In order to overcome such a problem, a method of fixing the catalyst through covalent bonding to an insoluble polymer support has recently been in the spotlight in order to facilitate separation of the catalyst from the reaction mixture. The polystyrene-based carrier is widely used as such a carrier. However, in many cases, organic solvents are used in using the catalyst thus made. With the tightening of regulations on organic solvents, the development of harmless substitutes has become very important, and in recent years, sustainable and environmentally friendly methods are required. However, there are not many studies that meet these needs.

지속가능하고 환경친화적인 방법 중의 하나로 물속에서의 반응이 요구되고 있다. 물은 첫째 어떠한 유기용매보다 싸다는 장점이 있고, 둘째 실험실에서 사용하고 있는 가연성이 있고, 폭발하기 쉽고, 발암성 물질인 어떤 용매보다 안전하다는 것이다. 셋째는 환경적인 관심 때문이다. 화학 산업은 환경오염의 주요한 원인이다. 그러나 용매로서 물의 사용은 위에서 언급되었던 그러한 장점들이 합성 효율적인 측면에 있어서는 좋은 결과를 얻을 수 없었다. Reaction in water is required as one of the sustainable and environmentally friendly methods. Water has the advantage of being first cheaper than any organic solvent and secondly safer than any flammable, explosive, carcinogenic solvent used in laboratories. Third is due to environmental concerns. The chemical industry is a major source of environmental pollution. However, the use of water as a solvent did not yield good results in terms of synthesis efficiency as those advantages mentioned above.

한편 스즈키(Suzuki) 반응은 아릴-아릴(aryl-aryl) 결합을 만드는 방법 중 가장 유용한 방법 중의 하나이다. 이 반응은 Pd을 촉매로 하여 아릴 할라이드와 아릴보론산을 사용하여 수중에서 반응을 할 수 있으며, 무해한 부생성물을 쉽게 분리를 할 수 있다는 장점을 가지고 있다. 스즈키(Suzuki) 반응은 보통 Pd 촉매와 리간드로서 인(phosphorous) 유도체와 무기염기를 사용하여 물과 유기용매의 혼합 용매에서 주로 반응을 한다. 그러나 산업적으로 적용하기 위해서는 값비싼 Pd 촉매를 회수하여 재활용하는 것이 경제적인 측면이나 환경적인 측면에서 유용하다고 볼 수 있다. 한편 단일(homogeneous) 촉매의 경우에는 반응 후 유해한 Pd 촉매의 분리와 값비싼 리간드를 회수하고 다시 재사용하기 어렵다는 문제점이 있다. 따라서 이종(heterogeneous) 촉매의 개발이 요구되고 있다. 그러한 노력의 일환으로 이온성 액체, 고분자, 그라핀 옥사이드나 그 유도체 등을 사용하여 Pd를 담지하고 안정화시키는 방법들이 개발되어 왔다. 그러나 현재까지 개발된 이종 촉매는 여전히 단일 촉매 보다 반응성 면에서 효율적이지 못한 문제점이 있다. 그럼에도 불구하고 대규모의 스즈키 반응을 위해서는 물에서 반응이 가능한 지속가능하고 친환경적이며, 경제적이고 효율이 높은 이종 촉매의 개발이 요구되고 있다. Suzuki reaction is one of the most useful methods of making aryl-aryl bonds. This reaction can be carried out in water using aryl halide and aryl boronic acid using Pd as a catalyst, and has the advantage of easily separating harmless by-products. The Suzuki reaction usually reacts with a mixture of water and an organic solvent using phosphorus derivatives and inorganic bases as Pd catalysts and ligands. However, in order to be industrially applicable, it is useful to recover and recycle costly Pd catalyst in terms of economy and environment. On the other hand, in the case of a homogeneous catalyst, it is difficult to separate the harmful Pd catalyst after the reaction and recover the expensive ligand and reuse it again. Therefore, development of a heterogeneous catalyst is required. As part of such efforts, methods have been developed in which Pd is supported and stabilized by using an ionic liquid, a polymer, graphene oxide or a derivative thereof. However, the heterogeneous catalysts developed so far still have problems in that they are less efficient than single catalysts in terms of reactivity. Nevertheless, large-scale Suzuki reactions require the development of sustainable, environmentally friendly, economical and efficient heterogeneous catalysts that can be reacted in water.

한국특허등록 10-0846876 (2008.07.10. 등록)Korean Patent Registration 10-0846876 (Registered on July 10, 2008) 한국특허공개 10-2005-31706 (2005.04.06 공개)Korean Patent Publication No. 10-2005-31706 (published Apr. 26, 2005)

Chem. Mater. 2005, 17, 656-660 (2005.01.08. 공개)Chem. Mater. 2005, 17, 656-660 (published on January 8, 2005)

본 발명의 목적은 온도감응성 고분자에 팔라듐 금속을 담지시킨 화학 반응 촉매로서, 재생이 가능하고, 재생 촉매를 사용할 경우에도 반응성이 높게 유지되는 친환경적인 팔라듐 담지 촉매와 이를 이용한 화학 반응 방법을 제공하는 것이다. An object of the present invention is to provide an environmentally friendly palladium-supported catalyst in which a palladium metal is supported on a thermosensitive polymer and can be regenerated and reacted even when a regenerated catalyst is used, and a chemical reaction method using the same .

상기 기술적 과제를 해결하기 위해, 본 발명은 N-이소프로필아크릴아미드와 할로이사이트(halloysite: HNT)를 반응시켜 제조한 고분자 복합체에 팔라듐(Pd) 나노입자가 담지되어 있는 것을 특징으로 하는 유기화학 반응 촉매를 제공한다. In order to solve the above technical problem, the present invention is an organic chemical reaction characterized in that the palladium (Pd) nanoparticles are supported on a polymer composite prepared by reacting N-isopropylacrylamide and halloysite (HNT) To provide a catalyst.

본 발명의 일실시예에 의하면, 상기 할로이사이트의 함량은 1 ~ 30 중량%인 것이 바람직하다. According to one embodiment of the present invention, the content of the halosite is preferably 1 to 30% by weight.

또한 본 발명은 고분자 복합체에 팔라듐(Pd) 나노입자가 담지되어 있는 촉매의 제조 방법으로서, 1) N-이소프로필아크릴아미드 모노머와 할로이사이트를 포함하는 용액에 개시제를 첨가하여 중합반응을 시키고, 여과한 후 건조시켜 고분자를 합성하는 단계; 2) 상기 고분자에 Pd(OAc)2 용액을 첨가하여 교반함으로써 Pd(II)을 담지시키는 단계; 및 3) 환원제를 첨가하여 Pd(0)으로 환원시키는 단계를 포함하는 유기화학 반응 촉매의 제조 방법을 제공한다. In addition, the present invention is a method for producing a catalyst in which the palladium (Pd) nanoparticles are supported on the polymer composite, 1) adding an initiator to the solution containing the N-isopropylacrylamide monomer and halosite to perform a polymerization reaction, and filtration And then drying to synthesize the polymer; 2) supporting Pd (II) by adding and stirring Pd (OAc) 2 solution to the polymer; And 3) adding a reducing agent to reduce Pd (0) to provide an organic chemical reaction catalyst.

본 발명에서 사용가능한 환원제로는 THF, NaBH4, N2H4, PPh3 등을 들 수 있으나, 이에 제한되는 것은 아니다. Reducing agents usable in the present invention include, but are not limited to, THF, NaBH 4 , N 2 H 4 , PPh 3 , and the like.

또한 본 발명은 상기 고분자 복합체에 팔라듐 나노입자가 담지된 유기화학 반응 촉매를 이용하여 스즈키(suzuki)-미우라(Miyaura) 커플링 반응을 통해 바이아릴(biaryl) 화합물을 제조하는 방법을 제공한다. In another aspect, the present invention provides a method for producing a biaryl compound through a Suzuki-Miyaura coupling reaction using an organic chemical reaction catalyst in which palladium nanoparticles are supported on the polymer composite.

예를 들어, 상기 반응의 출발 물질은 4-브로모아세토페논과 페닐보론산 또는 브로모벤젠과 4-메틸페닐보론산 등이 선택될 수 있으나 이에 제한되는 것은 아니며, 반응 온도는 60 ~ 70 ℃ 범위에서 수행되는 것이 바람직하다.
For example, the starting material of the reaction may be selected from 4-bromoacetophenone and phenylboronic acid or bromobenzene and 4-methylphenylboronic acid, but is not limited thereto, the reaction temperature is in the range of 60 ~ 70 ℃ Preference is given to performing at.

본 발명에 따른 N-이소프로필아크릴아미드와 할로이사이트(HNT)를 반응시켜 제조된 고분자 복합체에 팔라듐(Pd) 나노입자가 담지되어 있는 것을 특징으로 하는 유기화학 반응 촉매를 이용하여 스즈키(suzuki)- 미우라(Miyaura) 커플링 반응을 수행하면 반응 수율이 높고, 고가의 촉매를 재생할 수 있으며, 또한 재생 촉매를 여러 번 사용하여도 반응성이 유지됨으로써 경제적이고, 친환경적이라는 장점이 있다. Suzuki- using an organic chemical reaction catalyst characterized in that palladium (Pd) nanoparticles are supported on a polymer composite prepared by reacting N-isopropylacrylamide and halosite (HNT) according to the present invention. Performing the Miura coupling reaction has the advantage of high reaction yield, expensive catalyst regeneration, and reactivity is maintained even after using multiple regeneration catalysts, which is economical and environmentally friendly.

도 1은 본 발명의 실시예에 따른 팔라듐 담지 촉매의 EDX 분석 결과이다.
도 2는 본 발명의 실시예에 따라 Pd이 담지된 공중합체의 TEM 사진이다.
도 3은 본 발명의 실시예에 따라 Pd이 담지된 공중합체를 촉매로 이용하여 다양한 종류의 물질과의 결합 반응을 수행한 결과를 보여주는 도면이다.
도 4는 실시예의 화학 반응 결과 합성된 4-아세틸바이페닐의 NMR 분석결과이다.
도 5는 실시예의 화학 반응 결과 합성된 4-메틸바이페닐의 NMR 분석결과이다.
1 is an EDX analysis result of a palladium supported catalyst according to an embodiment of the present invention.
2 is a TEM photograph of a Pd-supported copolymer according to an embodiment of the present invention.
3 is a view showing a result of performing a coupling reaction with various kinds of materials using a Pd-supported copolymer as a catalyst according to an embodiment of the present invention.
4 is an NMR analysis result of 4-acetylbiphenyl synthesized as a result of the chemical reaction of the Example.
5 is an NMR analysis result of 4-methylbiphenyl synthesized as a result of the chemical reaction of the Example.

이하에서 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

폴리(N-이소프로필아크릴아미드)(NIPAM)는 온도감응성(thermo-responsible)을 갖는 마이크로겔 입자이다. 수중에서 poly(NIPAM)은 일정한 온도 아래에서는 물 분자가 마이크로겔 속으로 들어가서 스웰링(swelling)되고 일정한 온도이상에서는 물 분자가 밖으로 빠져 나와서 디스웰링(de-swelling)된다. 이와 같이 상태가 변하는 온도를 낮은 임계 용액 온도(LCST: lower critical solution temperature)라고 하는데, 순수한 poly(NIPAM)은 32 ℃에서 LCST의 거동을 보인다. 이러한 이유는 내부와 외부의 수소결합뿐만 아니라 이소프로필기 사이의 소수성 상호작용으로 인한 결과이다. Poly ( N -isopropylacrylamide) (NIPAM) is a thermo-responsive microgel particle. Poly (NIPAM) in water undergoes swelling of water molecules into microgels under a certain temperature, and water molecules are de-swelled out of the water at a certain temperature or above. The temperature at which the state changes is called the lower critical solution temperature (LCST). The pure poly (NIPAM) exhibits LCST behavior at 32 ° C. This is the result of hydrophobic interactions between isopropyl groups as well as internal and external hydrogen bonds.

또한 할로이사이트(Halloysite: HNT)는 금속을 담지시킬 수 있는 담지체로서의 역할을 할 수 있는 물질로 알려져 있다. 그래서 본 발명자는 이 두 가지 물질을 혼합하여 촉매를 개발하였다. Haloysite (Halloysite: HNT) is also known as a material that can serve as a support that can support the metal. Thus, the present inventors developed a catalyst by mixing the two materials.

본 발명에 따른 N-이소프로필아크릴아미드와 할로이사이트를 반응시켜 제조한 고분자 복합체에 팔라듐(Pd) 나노입자가 담지되어 있는 것을 특징으로 하는 유기화학 반응 촉매의 제조 과정은 하기 반응식으로 표현될 수 있다. A process for preparing an organic chemical reaction catalyst, characterized in that palladium (Pd) nanoparticles are supported on a polymer composite prepared by reacting N-isopropylacrylamide and halosite according to the present invention can be represented by the following scheme. .

[반응식 1-1][Reaction Scheme 1-1]

Figure 112012045392718-pat00001
Figure 112012045392718-pat00001

[반응식 1-2][Reaction Scheme 1-2]

Figure 112012045392718-pat00002

Figure 112012045392718-pat00002

본 발명에 있어서, 고분자 복합체 중 할로이사이트의 함량은 1 ~ 30 중량%인 것이 바람직하다. 할로이사이트의 함량이 30% 이상일 경우 반응 중에 촉매가 응집되어 반응이 진행되지 않을 수도 있다. In the present invention, the content of the halosite in the polymer composite is preferably 1 to 30% by weight. If the content of the halosite is 30% or more, the catalyst may aggregate during the reaction and the reaction may not proceed.

또한 본 발명에 따른 고분자 복합체에 팔라듐(Pd) 나노입자가 담지되어 있는 촉매의 제조 방법은 1) N-이소프로필아크릴아미드 모노머와 할로이사이트를 포함하는 용액에 개시제를 첨가하여 중합반응을 시키고, 여과한 후 건조시켜 고분자를 합성하는 단계; 2) 상기 고분자에 Pd(OAc)2 용액을 첨가하여 교반함으로써 Pd(II)을 담지시키는 단계; 및 3) 환원제를 첨가하여 Pd(0)으로 환원시키는 단계를 포함한다. In addition, the method for preparing a catalyst in which palladium (Pd) nanoparticles are supported in the polymer composite according to the present invention includes: 1) adding an initiator to a solution containing an N-isopropylacrylamide monomer and halosite and subjecting the polymerization reaction to filtration. And then drying to synthesize the polymer; 2) supporting Pd (II) by adding and stirring Pd (OAc) 2 solution to the polymer; And 3) reducing to Pd (0) by adding a reducing agent.

본 발명에서 사용가능한 환원제로는 THF, NaBH4, N2H4, PPh3 등을 들 수 있으나, 이에 제한되는 것은 아니다. Reducing agents usable in the present invention include, but are not limited to, THF, NaBH 4 , N 2 H 4 , PPh 3 , and the like.

또한 본 발명은 상기 고분자 복합체에 팔라듐 나노입자가 담지된 유기화학 반응 촉매를 이용하여 스즈키(suzuki)-미우라(Miyaura) 커플링 반응을 통해 바이아릴(biaryl) 화합물을 제조하는 방법을 제공한다. 예를 들어, 상기 반응의 출발 물질은 4-브로모아세토페논과 페닐보론산 또는 브로모벤젠과 4-메틸페닐보론산 등이 선택될 수 있으나 이에 제한되는 것은 아니며, 반응 온도는 60 ~ 70 ℃ 범위에서 수행되는 것이 바람직하다.
In another aspect, the present invention provides a method for producing a biaryl compound through a Suzuki-Miyaura coupling reaction using an organic chemical reaction catalyst in which palladium nanoparticles are supported on the polymer composite. For example, the starting material of the reaction may be selected from 4-bromoacetophenone and phenylboronic acid or bromobenzene and 4-methylphenylboronic acid, but is not limited thereto, the reaction temperature is in the range of 60 ~ 70 ℃ Preference is given to performing at.

이하 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나 하기 실시예는 발명의 이해를 돕기 위해 예시적으로 제시되는 것으로서, 본 발명의 범위가 이에 한정되는 것은 아니다.
The present invention will be described in more detail with reference to the following examples. However, the following examples are provided for illustrative purposes only, and the scope of the present invention is not limited thereto.

실시예Example 1: 촉매의 제조의 합성 1: Synthesis of Preparation of Catalyst

N-이소프로필아크릴아미드 (NIPAM) 모노머1.00g(8.57 mmol, 94 mol%)를 메탄올 2 ml에 녹이고 N,N-메틸렌비스아크릴아미드(MBAAm) 0.085g(0.55 mmol, 6 mol%)를 메탄올에 녹여 100 ml 플라스크에 넣는다. 할로이사이트(HNT) 0.05g을 톨루엔 16 ml에 분산시킨 것을 플라스크에 넣고 상온에서 24 시간 교반한 후 개시제인 아조비스이소부티로니트릴 (AIBN)(0.045 g, 0.27 mmol, 3 mol%)를 넣고 80 ℃에서 4시간 동안 교반한 후 생성된 고체 고분자를 여과한 후 20 ℃에서 24시간 건조한다. 이렇게 만들어진 고분자에 메탄올에 용해시킨 Pd(OAc)2를 넣고 24시간 교반하여 Pd(Ⅱ)를 담지하였다. 그 다음에 Pd(Ⅱ)를 Pd(0)로 환원하기 위하여 THF 용액에서 NaBH4로 환원시켰다.
Dissolve 1.00 g (8.57 mmol, 94 mol%) of N-isopropylacrylamide (NIPAM) monomer in 2 ml of methanol and 0.085 g (0.55 mmol, 6 mol%) of N, N-methylenebisacrylamide (MBAAm) in methanol. Dissolve and place in a 100 ml flask. Dissolve 0.05 g of halosite (HNT) in 16 ml of toluene, place in a flask and stir at room temperature for 24 hours, add azobisisobutyronitrile (AIBN) (0.045 g, 0.27 mmol, 3 mol%) as an initiator. After stirring for 4 hours at ℃, the resulting solid polymer is filtered and dried at 20 ℃ 24 hours. Pd (OAc) 2 dissolved in methanol was added to the polymer thus prepared, and stirred for 24 hours to support Pd (II). Pd (II) was then reduced to NaBH 4 in THF solution to reduce to Pd (0).

이와 같이 제조된 팔라듐 담지 촉매는 도 1의 EDX 분석 결과 및 도 2의 TEM 사진을 통해 고분자에 Pd이 잘 담지 되어 있음을 확인할 수 있었다. 또한 ICP-AES를 통해서 HNT 5%가 첨가된 촉매의 경우는 Pd이 0.494 mmol/g 함유되어 있고, HNT 15%가 첨가되어진 촉매는 Pd이 0.484 mmmol/g이 함유되어 있음을 확인하였다.
The prepared palladium supported catalyst was confirmed that Pd is well supported in the polymer through the EDX analysis result of FIG. 1 and the TEM photograph of FIG. 2. It was also confirmed that Pd contained 0.494 mmol / g in the case of HNT 5% added through ICP-AES and 0.484 mmmol / g in Pd containing 15% HNT.

실시예Example 2: 촉매 적합성 테스트 2: catalytic conformance test

실시예 1과 같은 방법으로, HNT를 각각 5%, 15%를 넣어 촉매를 제조한 다음 어느 범위의 몰비와 온도가 촉매로서 가장 적합한지 테스트하였다. 4-브로모아세토페논(1 mmol)과 페닐보론산(1.5 mmol), K2CO3(3 mmol)을 사용하여 물속에서 스즈키 미우라 커플링(Suzuki-Miyaura cross coupling) 반응을 시도하였다. 촉매의 사용량은 5mol%를 사용하였고 온도는 60 ℃에서 반응한 결과 HNT의 함량이 많을수록 반응시간이 길어지고 30%인 경우는 반응이 완결되지 않았다. In the same manner as in Example 1, 5% and 15% of HNT were added, respectively, to prepare a catalyst, and then a range of molar ratios and temperatures were tested as the most suitable catalysts. Suzuki-Miyaura cross coupling reaction was attempted in water using 4-bromoacetophenone (1 mmol), phenylboronic acid (1.5 mmol) and K 2 CO 3 (3 mmol). The catalyst used was 5 mol%, and the reaction temperature was 60 ° C. As a result, the more the HNT content was, the longer the reaction time was and the reaction was not completed at 30%.

따라서 HNT의 함량이 5%인 촉매가 최적의 촉매임을 확인할 수 있었다. 또한 온도가 50 ℃로 낮추어서 실험을 한 결과 반응시간이 0.5 시간 길어졌고 70 ℃도 높여서 반응을 한 경우는 0.5 시간 짧아짐을 확인하였다. 또한 온도는 70 ℃에서 촉매의 양이 2.5 mol%, 1 mol%로 줄인 결과 0.8 시간, 1 시간에 반응이 완결됨을 확인하였다. 이에 따라 촉매의 양이 1 mol%이고 온도가 70 ℃인 경우가 최적의 조건임을 알 수 있었다. Therefore, it was confirmed that the catalyst having an HNT content of 5% was the optimal catalyst. In addition, when the experiment was conducted by lowering the temperature to 50 ° C, the reaction time was increased by 0.5 hours, and when the reaction was increased by 70 ° C, the reaction time was shortened by 0.5 hour. In addition, the temperature was reduced to 2.5 mol%, 1 mol% catalyst at 70 ℃ as a result it was confirmed that the reaction was completed in 0.8 hours, 1 hour. Accordingly, it can be seen that the optimum condition is when the amount of catalyst is 1 mol% and the temperature is 70 ° C.

[반응식 2]  [Reaction Scheme 2]

Figure 112012045392718-pat00003
Figure 112012045392718-pat00003

Figure 112012045392718-pat00004
Figure 112012045392718-pat00004

실시예Example 3: 스즈키-미우라 커플링 반응을 통한  3: through Suzuki-Miura coupling reaction 바이아릴Biaryl 화합물의 제조 Preparation of compounds

10 ml 둥근바닥 플라스크에 4-브로모아세토페논(1 mmol), 페닐보론산(1.5 mmol), K2CO3(3 mmol) 및 H2O(2 ml)을 넣었다. 그리고 상기 실시예에서 준비된 촉매(1 mol%)를 넣고 반응시켰다. TLC로 모니터링 하고, 반응 종료 후 상온으로 온도를 내린 다음 촉매를 여과하고 H2O와 E.A 10 ml로 세척하였다. 유기층은 분리하고 물층은 E.A 30 ml씩으로 3번 추출한 후, 유기층은 MgSO4로 건조시켜 컬럼 크로마토그래피를 통해 분리 및 정제하여 생성물을 얻었다. 다양한 종류의 물질과의 결합 반응의 결과는 도 3에 나타나있다.
4-bromoacetophenone (1 mmol), phenylboronic acid (1.5 mmol), K 2 CO 3 (3 mmol) and H 2 O (2 ml) were placed in a 10 ml round bottom flask. And the catalyst (1 mol%) prepared in the above Example was added and reacted. After monitoring by TLC, the reaction temperature was lowered to room temperature, the catalyst was filtered and washed with 10 ml of H 2 O and EA. The organic layer was separated, the water layer was extracted three times with 30 ml of EA, and the organic layer was dried over MgSO 4 , separated and purified through column chromatography to obtain a product. The results of the coupling reaction with various kinds of materials are shown in FIG. 3.

실시예Example 4: 촉매 재생 및 이를 이용한 화학 반응 테스트 4: catalyst regeneration and chemical reaction test using the same

본 발명에 따른 팔라듐 담지 촉매의 연속적인 반응성을 확인하기 위해 4-브로모아세토페논과 페닐보론산을 이용하여 5회까지 재생 실험을 하였다. 4-브로모아세토페논(1 mmol), 페닐보론산(1.5 mmol, 1.5 eq.), K2CO3 (3 mmol, 3 eq.), H2O (2 mL), 1 mmol% (20 mg) Pd 촉매를 이용하여 40분간 반응시켰다. 그 결과 하기 [표 2]의 결과와 같이 높은 수율을 확인할 수 있었다.
Regeneration experiments were carried out up to 5 times using 4-bromoacetophenone and phenylboronic acid to confirm the continuous reactivity of the palladium supported catalyst according to the present invention. 4-bromoacetophenone (1 mmol), phenylboronic acid (1.5 mmol, 1.5 eq.), K 2 CO 3 (3 mmol, 3 eq.), H 2 O (2 mL), 1 mmol% (20 mg ) Was reacted for 40 minutes using a Pd catalyst. As a result, high yields were confirmed as shown in the following [Table 2].

[반응식 3]  [Reaction Scheme 3]

Figure 112012045392718-pat00005
Figure 112012045392718-pat00005

4-아세틸바이페닐 1H NMR (500 MHz, CDCl3): δ 8.04 (d, J = 8.1Hz, 2H); 7.69 (d, J = 9.0Hz, 2H); 7.63 (d, J = 7.8Hz, 2H); 7.43 (m, 3H); 2.64 (s, 3H).4-acetylbiphenyl 1 H NMR (500 MHz, CDCl 3 ): δ 8.04 (d, J = 8.1 Hz, 2H); 7.69 (d, J = 9.0 Hz, 2H); 7.63 (d, J = 7.8 Hz, 2H); 7.43 (m, 3 H); 2.64 (s, 3 H).

Figure 112012045392718-pat00006
Figure 112012045392718-pat00006

그 후 브로모벤젠과 4-메틸페닐보론산을 출발물질로 하여 5번 더 재생 실험을 수행하였다. 하기 [반응식 4]에 따라 브로모벤젠(1 mmol), 4-메틸페닐보론산(1.5 mmol, 1.5 eq.), K2CO3 (3 mmol, 3 eq.), H2O (2 mL), 1 mmol% (20 mg) Pd 촉매를 이용하여 30분간 반응시켰다.
Thereafter, a further regeneration experiment was carried out 5 times using bromobenzene and 4-methylphenylboronic acid as starting materials. Bromobenzene (1 mmol), 4-methylphenylboronic acid (1.5 mmol, 1.5 eq.), K 2 CO 3 (3 mmol, 3 eq.), H 2 O (2 mL), according to Scheme 4 below, The reaction was carried out for 30 minutes using 1 mmol% (20 mg) Pd catalyst.

[반응식 4][Reaction Scheme 4]

Figure 112012045392718-pat00007
Figure 112012045392718-pat00007

4-메틸바이페닐 1H NMR (400 MHz, CDCl3):δ 7.58 (d, J = 6.60Hz, 2H); 7.49 (d, J = 8.40Hz, 2H); 7.42 (t, J = 7.40Hz, 2H); 7.33 (m, 1H); 7.25 (d, J = 7.8Hz, 2H); 2.39 (s, 3H).4-methylbiphenyl 1 H NMR (400 MHz, CDCl 3 ): δ 7.58 (d, J = 6.60 Hz, 2H); 7.49 (d, J = 8.40 Hz, 2H); 7.42 (t, J = 7.40 Hz, 2 H); 7.33 (m, 1 H); 7.25 (d, J = 7.8 Hz, 2H); 2.39 (s, 3 H).

Figure 112012045392718-pat00008
Figure 112012045392718-pat00008

이 실험에서도 [표 3]의 결과와 같이 높은 수율로 생성물을 얻을 수 있었다. 따라서 10회를 재사용하여도 본 발명에 따른 촉매의 반응성에 변화가 없음을 확인하였다. 또한 재생 실험 중 Pd(0)의 리칭(leaching)은 반응 종결 후 물층을 ICP-AES로 측정하여 1 ppm 이하로 확인을 하였다. In this experiment as well, the product was obtained in high yield as shown in [Table 3]. Therefore, it was confirmed that there is no change in the reactivity of the catalyst according to the present invention even when reused 10 times. In addition, the leaching (leaching) of Pd (0) during the regeneration experiment was confirmed to be 1 ppm or less by measuring the water layer by ICP-AES after the completion of the reaction.

Claims (7)

삭제delete 삭제delete 고분자 복합체에 팔라듐(Pd) 나노입자가 담지되어 있는 촉매의 제조 방법으로서,
1) N-이소프로필아크릴아미드 모노머와 할로이사이트를 포함하는 용액에 개시제를 첨가하여 중합반응을 시키고, 여과한 후 건조시켜 고분자를 합성하는 단계;
2) 상기 고분자에 Pd(OAc)2 용액을 첨가하여 교반함으로써 Pd(II)을 담지시키는 단계; 및
3) 환원제를 첨가하여 Pd(0)으로 환원시키는 단계를 포함하는 유기화학 반응 촉매의 제조 방법.
A method for producing a catalyst in which palladium (Pd) nanoparticles are supported on a polymer composite,
1) adding an initiator to a solution containing an N-isopropylacrylamide monomer and halosite to polymerize, filter and dry to synthesize a polymer;
2) supporting Pd (II) by adding and stirring Pd (OAc) 2 solution to the polymer; And
3) A method for preparing an organic chemical reaction catalyst comprising the step of adding a reducing agent to reduce to Pd (0).
제3항에 있어서,
상기 환원제는 THF와 NaBH4인 것을 특징으로 하는 유기화학 반응 촉매의 제조 방법.
The method of claim 3,
The reducing agent is a method of producing an organic chemical reaction catalyst, characterized in that THF and NaBH 4 .
제3항의 제조방법에 따라 제조된 유기화학 반응 촉매를 이용하여 스즈키(suzuki)-미우라(Miyaura) 커플링 반응을 통해 바이아릴(biaryl) 화합물을 제조하는 방법. A method of preparing a biaryl compound through a Suzuki-Miyaura coupling reaction using an organic chemical reaction catalyst prepared according to claim 3. 제5항에 있어서,
상기 반응의 출발 물질은 4-브로모아세토페논과 페닐보론산 또는 브로모벤젠과 4-메틸페닐보론산 중에서 선택되는 것을 특징으로 하는 바이아릴 화합물을 제조하는 방법.
6. The method of claim 5,
The starting material of the reaction is a method for producing a biaryl compound, characterized in that selected from 4-bromoacetophenone and phenylboronic acid or bromobenzene and 4-methylphenylboronic acid.
제5항에 있어서,
상기 반응이 60 ~ 70 ℃ 범위에서 수행되는 것을 특징으로 하는 바이아릴 화합물을 제조하는 방법.
6. The method of claim 5,
Method for producing a biaryl compound, characterized in that the reaction is carried out in the range of 60 ~ 70 ℃.
KR1020120061034A 2012-06-07 2012-06-07 Catalyst comprising Pd supported on polymer-halloysite nanocomposite and method for preparing biaryl compounds using the catalyst KR101382530B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120061034A KR101382530B1 (en) 2012-06-07 2012-06-07 Catalyst comprising Pd supported on polymer-halloysite nanocomposite and method for preparing biaryl compounds using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120061034A KR101382530B1 (en) 2012-06-07 2012-06-07 Catalyst comprising Pd supported on polymer-halloysite nanocomposite and method for preparing biaryl compounds using the catalyst

Publications (2)

Publication Number Publication Date
KR20140011494A KR20140011494A (en) 2014-01-29
KR101382530B1 true KR101382530B1 (en) 2014-04-07

Family

ID=50143647

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120061034A KR101382530B1 (en) 2012-06-07 2012-06-07 Catalyst comprising Pd supported on polymer-halloysite nanocomposite and method for preparing biaryl compounds using the catalyst

Country Status (1)

Country Link
KR (1) KR101382530B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681620B1 (en) * 2015-02-16 2016-12-01 한양대학교 에리카산학협력단 Catalyst accommodated palladium on reverse-phased silica gel support, preparation method thereof and preparation method of biaryl compounds using the same
CN117138837B (en) * 2023-08-30 2024-05-28 淮安中顺环保科技有限公司 Modified halloysite composite material, halloysite-based three-phase interface catalytic membrane, and preparation methods and applications thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137334A1 (en) * 1999-11-05 2005-06-23 Bio Merieux Composite nanospheres and their conjugates with biomolecules

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137334A1 (en) * 1999-11-05 2005-06-23 Bio Merieux Composite nanospheres and their conjugates with biomolecules

Also Published As

Publication number Publication date
KR20140011494A (en) 2014-01-29

Similar Documents

Publication Publication Date Title
Zhong et al. Facile-prepared sulfonated water-soluble PEPPSI-Pd-NHC catalysts for aerobic aqueous Suzuki–Miyaura cross-coupling reactions
Shang et al. Graphene oxide supported N-heterocyclic carbene-palladium as a novel catalyst for the Suzuki–Miyaura reaction
Martínez et al. Heterogenization of Pd–NHC complexes onto a silica support and their application in Suzuki–Miyaura coupling under batch and continuous flow conditions
Kumbhar et al. Palladium supported hybrid cellulose–aluminum oxide composite for Suzuki–Miyaura cross coupling reaction
Jadhav et al. A Merrifield resin supported Pd–NHC complex with a spacer (Pd–NHC@ SP–PS) for the Sonogashira coupling reaction under copper-and solvent-free conditions
JP5684755B2 (en) Polyimidazolium salts and poly-NHC-metal complexes
Gholinejad et al. A novel polymer containing phosphorus–nitrogen ligands for stabilization of palladium nanoparticles: an efficient and recyclable catalyst for Suzuki and Sonogashira reactions in neat water
Bergbreiter et al. Polyisobutylene-supported N-heterocyclic carbene palladium catalysts
Phan et al. Supported phosphine-free palladium catalysts for the Suzuki–Miyaura reaction in aqueous media
Zhao et al. MCM-41-supported bidentate phosphine palladium (0) complex as an efficient catalyst for the heterogeneous Stille reaction
Cai et al. MCM-41-supported bidentate phosphine palladium (0) complex as an efficient catalyst for the heterogeneous Suzuki reaction
Khalafi-Nezhad et al. Immobilized palladium nanoparticles on silica–starch substrate (PNP–SSS): As a stable and efficient heterogeneous catalyst for synthesis of p-teraryls using Suzuki reaction
Nasrollahzadeh et al. A heterogeneous and reusable nanopolymer-supported palladium catalyst for the copper-and phosphine-free Sonogashira coupling reaction under aerobic conditions in water
Zhao et al. MCM-41-immobilized Schiff base-pyridine bidentate copper (I) complex as a highly efficient and recyclable catalyst for the Sonogashira reaction
You et al. A phosphine-free, heterogeneous palladium-catalyzed atom-efficient carbonylative cross-coupling of triorganoindiums with aryl halides leading to unsymmetrical ketones
KR101382530B1 (en) Catalyst comprising Pd supported on polymer-halloysite nanocomposite and method for preparing biaryl compounds using the catalyst
Hajipour et al. Iron‐catalyzed cross‐coupling reaction: Heterogeneous palladium and copper‐free Heck and Sonogashira cross‐coupling reactions catalyzed by a reusable Fe (III) complex
Hosseinzadeh et al. Synthesis and characterization of nano-cellulose immobilized phenanthroline-copper (I) complex as a recyclable and efficient catalyst for preparation of diaryl ethers, N-aryl amides and N-aryl heterocycles
Cai et al. Heterogeneous Suzuki reaction catalyzed by MCM-41-supported sulfur palladium (0) complex
Wu et al. Immobilization of copper (II) in organic-inorganic hybrid materials: A highly efficient and reusable catalyst for the classic Ullmann reaction
KR101429584B1 (en) Pd nanoparticles on thermoresponsive hydrogels and method for preparing biaryl compounds using the nanoparticles
JP5628827B2 (en) Palladium catalyst and method for producing bisaryl compound using the same
Chen et al. Triphenylphosphine-containing thermo-responsive copolymers: synthesis, characterization and catalysis application
Li et al. Water‐Soluble and Recyclable Cyclopalladated Ferrocenylimine for Suzuki Coupling Reaction
Priya et al. Immobilized copper (II)-containing imidazolium functionalized ionic liquid: A highly active, effective and ecological heterogeneous catalyst for the Suzuki-Miyaura reaction

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee