KR101351399B1 - Apparatus and method of processing substrate - Google Patents
Apparatus and method of processing substrate Download PDFInfo
- Publication number
- KR101351399B1 KR101351399B1 KR1020120065731A KR20120065731A KR101351399B1 KR 101351399 B1 KR101351399 B1 KR 101351399B1 KR 1020120065731 A KR1020120065731 A KR 1020120065731A KR 20120065731 A KR20120065731 A KR 20120065731A KR 101351399 B1 KR101351399 B1 KR 101351399B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- plasma
- electrode
- substrate
- gas injection
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 139
- 238000000034 method Methods 0.000 title claims abstract description 60
- 238000012545 processing Methods 0.000 title claims abstract description 28
- 238000003672 processing method Methods 0.000 claims abstract description 8
- 238000002347 injection Methods 0.000 claims description 111
- 239000007924 injection Substances 0.000 claims description 111
- 238000009826 distribution Methods 0.000 claims description 28
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000005507 spraying Methods 0.000 claims description 6
- 238000009792 diffusion process Methods 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 abstract description 307
- 239000007921 spray Substances 0.000 abstract description 6
- 230000006866 deterioration Effects 0.000 abstract 1
- 239000010409 thin film Substances 0.000 description 22
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 230000002159 abnormal effect Effects 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000003028 elevating effect Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 240000006829 Ficus sundaica Species 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000000427 thin-film deposition Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Plasma Technology (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
본 발명은 플라즈마 방전이 기판까지 전달되는 것을 방지하여 플라즈마 방전에 의한 기판이 손상과 막질 저하를 최소화할 수 있도록 한 기판 처리 장치 및 기판 처리 방법에 관한 것으로, 본 발명에 따른 기판 처리 장치는 반응 공간을 제공하는 공정 챔버; 상기 공정 챔버의 내부에 배치되어 기판을 지지하는 기판 지지부; 상기 기판 지지부와 마주보도록 상기 공정 챔버의 상부에 설치된 챔버 리드; 및 상기 챔버 리드의 하면에 설치되며, 제 1 및 제 2 가스가 분리되어 공급되도록 공간적으로 분리된 제 1 및 제 2 가스 버퍼 공간을 포함하여 이루어져 상기 제 2 가스를 활성화시켜 상기 기판에 분사하는 가스 분사 모듈을 포함하여 구성되고, 상기 가스 분사 모듈은 상기 제 1 가스 버퍼 공간으로부터 공급되는 제 1 가스를 이용하여 상기 기판의 상면으로부터 이격된 플라즈마 방전 공간에 플라즈마를 형성하고, 상기 제 2 가스 버퍼 공간으로부터 공급되는 제 2 가스를 상기 플라즈마 방전 공간에 분사하여 활성화시키는 것을 특징으로 한다.The present invention relates to a substrate processing apparatus and a substrate processing method for preventing a plasma discharge from being transferred to a substrate, thereby minimizing damage and deterioration of film quality due to the plasma discharge. A process chamber providing a; A substrate support part disposed in the process chamber to support a substrate; A chamber lead disposed above the process chamber so as to face the substrate support; And first and second gas buffer spaces spaced apart from each other and installed on the lower surface of the chamber lid to separate and supply the first and second gases, and activate the second gas to inject the gas onto the substrate. And a spray module, wherein the gas spray module forms a plasma in a plasma discharge space spaced apart from an upper surface of the substrate using a first gas supplied from the first gas buffer space, and the second gas buffer space. Injecting the second gas from the plasma discharge space characterized in that it is activated.
Description
본 발명은 기판 처리 장치에 관한 것으로, 보다 구체적으로, 기판에 증착되는 박막의 증착 균일도를 증가시킬 수 있도록 한 기판 처리 장치 및 기판 처리 방법에 관한 것이다.The present invention relates to a substrate processing apparatus, and more particularly, to a substrate processing apparatus and a substrate processing method for increasing the deposition uniformity of a thin film deposited on a substrate.
일반적으로, 태양전지(Solar Cell), 반도체 소자, 평판 디스플레이 등을 제조하기 위해서는 기판 표면에 소정의 박막층, 박막 회로 패턴, 또는 광학적 패턴을 형성하여야 하며, 이를 위해서는 기판에 특정 물질의 박막을 증착하는 박막 증착 공정, 감광성 물질을 사용하여 박막을 선택적으로 노출시키는 포토 공정, 선택적으로 노출된 부분의 박막을 제거하여 패턴을 형성하는 식각 공정 등의 반도체 제조 공정을 수행하게 된다.Generally, in order to manufacture a solar cell, a semiconductor device, a flat panel display, etc., a predetermined thin film layer, a thin film circuit pattern, or an optical pattern must be formed on the surface of the substrate. For this purpose, A semiconductor manufacturing process such as a thin film deposition process, a photolithography process for selectively exposing a thin film using a photosensitive material, and an etching process for forming a pattern by selectively removing a thin film of an exposed portion are performed.
이러한 반도체 제조 공정은 해당 공정을 위해 최적의 환경으로 설계된 기판 처리 장치의 내부에서 진행되며, 최근에는 플라즈마를 이용하여 증착 또는 식각 공정을 수행하는 기판 처리 장치가 많이 사용되고 있다.Such a semiconductor manufacturing process is performed inside a substrate processing apparatus designed for an optimum environment for the process, and recently, a substrate processing apparatus for performing a deposition or etching process using plasma is widely used.
플라즈마를 이용한 기판 처리 장치에는 플라즈마를 이용하여 박막을 형성하는 PECVD(Plasma Enhanced Chemical Vapor Deposition) 장치, 박막을 식각하여 패터닝하는 플라즈마 식각장치 등이 있다.The substrate processing apparatus using plasma includes a plasma enhanced chemical vapor deposition (PECVD) apparatus for forming a thin film using plasma, a plasma etching apparatus for etching and patterning a thin film.
도 1은 종래의 기판 처리 장치를 개략적으로 설명하기 위한 도면이다.1 is a schematic view for explaining a conventional substrate processing apparatus.
도 1을 참조하면, 일반적인 기판 처리 장치는 챔버(10), 플라즈마 전극(20), 서셉터(30), 및 가스 분사 수단(40)을 구비한다.Referring to FIG. 1, a general substrate processing apparatus includes a
챔버(10)는 기판 처리 공정을 위한 반응 공간을 제공한다. 이때, 챔버(10)의 일측 바닥면은 반응 공간을 배기시키기 위한 배기구(12)에 연통된다.The
플라즈마 전극(20)은 반응 공간을 밀폐하도록 챔버(10)의 상부에 설치된다.The
플라즈마 전극(20)의 일측은 정합 부재(22)를 통해 RF(Radio Frequency) 전원(24)에 전기적으로 접속된다. 이때, RF 전원(24)은 RF 전력을 생성하여 플라즈마 전극(20)에 공급한다.One side of the
또한, 플라즈마 전극(20)의 중앙 부분은 기판 처리 공정을 위한 공정 가스를 공급하는 가스 공급관(26)에 연통된다.In addition, the central portion of the
정합 부재(22)는 플라즈마 전극(20)과 RF 전원(24) 간에 접속되어 RF 전원(24)으로부터 플라즈마 전극(20)에 공급되는 RF 전력의 부하 임피던스와 소스 임피던스를 정합시킨다.The matching
서셉터(30)는 챔버(10)의 내부에 설치되어 외부로부터 로딩되는 복수의 기판(S)을 지지한다. 이러한 서셉터(30)는 플라즈마 전극(20)에 대향되는 대향 전극으로써, 서셉터(30)를 지지하는 지지축(32)을 통해 전기적으로 접지된다. 이때, 지지축(32)은 지지축(32)과 챔버(10)의 하면을 밀봉하는 벨로우즈(34)에 의해 감싸여진다.The
가스 분사 수단(40)은 서셉터(30)에 대향되도록 플라즈마 전극(20)의 하부에 설치된다. 상기 가스 분사 수단(40)과 플라즈마 전극(20) 사이에는 플라즈마 전극(20)을 관통하는 가스 공급관(26)으로부터 공급되는 공정 가스가 공급되는 가스 버퍼 공간(42)이 형성된다. 이때, 공정 가스는 기판(S) 상에 소정의 박막을 형성하기 위한 소스 가스와 반응 가스가 혼합된 형태로 이루어져 상기 가스 버퍼 공간(42)에 공급된다. 이러한, 가스 분사 수단(40)은 가스 버퍼 공간(42)에 연통된 복수의 가스 분사 홀(44)을 통해 공정 가스를 반응 공간에 분사한다.The gas injection means 40 is installed below the
이와 같은, 일반적인 기판 처리 장치는 기판(S)을 서셉터(30)에 로딩시킨 다음, 챔버(10)의 반응 공간에 소정의 공정 가스를 분사하면서 플라즈마 전극(20)에 RF 전력을 공급하여 가스 분사 수단(40)과 서셉터(30) 사이에 플라즈마 방전(P)을 형성함으로써 플라즈마 방전(P)에 의해 이온화되는 공정 가스의 분자들을 기판(S)에 증착시켜 기판(S) 상에 소정의 박막을 형성한다.In such a general substrate processing apparatus, the substrate S is loaded into the
그러나, 종래의 기판 처리 장치는 상기 공정 가스가 분사되는 공간과 상기 플라즈마 방전(P)이 형성되는 공간이 동일하기 때문에, 플라즈마 방전(P)이 기판(S) 위에서 이루어지고, 그에 따라, 플라즈마 방전(P)에 의해서 기판(S)이 손상되고 막질이 떨어지는 문제점이 있다. 또한, 종래의 기판 처리 장치는 플라즈마 방전(P)에 의해 이온화된 공정 가스가 가스 분사 홀(44)의 주변에 증착되어 파우더 성분의 이상 박막이 형성되고, 상기 이상 박막이 기판에 떨어지는 파티클을 유발시키는 문제점이 있다.However, in the conventional substrate processing apparatus, since the space where the process gas is injected and the space where the plasma discharge P is formed are the same, the plasma discharge P is made on the substrate S, and accordingly, the plasma discharge There is a problem that the substrate S is damaged and the film quality is degraded by (P). In addition, in the conventional substrate processing apparatus, the process gas ionized by the plasma discharge P is deposited around the
본 발명은 전술한 문제점을 해결하기 위한 것으로서, 플라즈마 방전이 기판까지 전달되는 것을 방지하여 플라즈마 방전에 의한 기판이 손상과 막질 저하를 최소화할 수 있도록 한 기판 처리 장치 및 기판 처리 방법을 제공하는 것을 목적으로 한다.Disclosure of Invention The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a substrate processing apparatus and a substrate processing method which prevent the plasma discharge from being transferred to the substrate, thereby minimizing damage and degradation of the substrate due to the plasma discharge. It is done.
전술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 처리 장치는 반응 공간을 제공하는 공정 챔버; 상기 공정 챔버의 내부에 배치되어 기판을 지지하는 기판 지지부; 상기 기판 지지부와 마주보도록 상기 공정 챔버의 상부에 설치된 챔버 리드; 및 상기 챔버 리드의 하면에 설치되며, 제 1 및 제 2 가스가 분리되어 공급되도록 공간적으로 분리된 제 1 및 제 2 가스 버퍼 공간을 포함하여 이루어져 상기 제 2 가스를 활성화시켜 상기 기판에 분사하는 가스 분사 모듈을 포함하여 구성되고, 상기 가스 분사 모듈은 상기 제 1 가스 버퍼 공간으로부터 공급되는 제 1 가스를 이용하여 상기 기판의 상면으로부터 이격된 플라즈마 방전 공간에 플라즈마를 형성하고, 상기 제 2 가스 버퍼 공간으로부터 공급되는 제 2 가스를 상기 플라즈마 방전 공간에 분사하여 활성화시키는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a substrate processing apparatus comprising: a process chamber for providing a reaction space; A substrate support part disposed in the process chamber to support a substrate; A chamber lead disposed above the process chamber so as to face the substrate support; And first and second gas buffer spaces spaced apart from each other and installed on the lower surface of the chamber lid to separate and supply the first and second gases, and activate the second gas to inject the gas onto the substrate. And a spray module, wherein the gas spray module forms a plasma in a plasma discharge space spaced apart from an upper surface of the substrate using a first gas supplied from the first gas buffer space, and the second gas buffer space. Injecting the second gas from the plasma discharge space characterized in that it is activated.
상기 가스 분사 모듈은 상기 기판의 상면으로부터 이격되면서 서로 나란하도록 교대로 배치된 접지 전극과 플라즈마 전극을 포함하여 구성되고, 상기 플라즈마 방전 공간은 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 한다.The gas injection module may include a ground electrode and a plasma electrode that are alternately arranged to be parallel to each other while being spaced apart from an upper surface of the substrate, and the plasma discharge space is between an end of each of the ground electrode and the plasma electrode. It is done.
상기 플라즈마 전극과 상기 접지 전극은 소정의 높이 차를 가지도록 단차진 것을 특징으로 한다.The plasma electrode and the ground electrode may be stepped to have a predetermined height difference.
상기 제 1 가스 버퍼 공간에 공급되는 상기 제 1 가스는 제 1 가스 분사 부재를 통해 상기 접지 전극과 상기 플라즈마 전극 사이에 마련된 가스 분사 공간에 분사되고, 상기 제 2 가스 버퍼 공간에 공급되는 상기 제 2 가스는 상기 플라즈마 전극의 내부에 형성된 제 2 가스 분사 부재를 통해 상기 플라즈마 방전 공간에 분사되는 것을 특징으로 한다.The first gas supplied to the first gas buffer space is injected into the gas injection space provided between the ground electrode and the plasma electrode through a first gas injection member, and the second gas is supplied to the second gas buffer space. The gas is injected into the plasma discharge space through the second gas injection member formed inside the plasma electrode.
상기 제 1 가스 분사 부재는 제 1 직경을 가지도록 형성되어 상기 제 1 가스 버퍼 공간에 연통된 제 1 가스 공급 홀; 및 상기 제 1 직경보다 작은 제 2 직경을 가지도록 형성되어 상기 제 1 가스 공급 홀에 연통되면서 상기 가스 분사 공간에 연통된 제 1 가스 분사 홀을 포함하여 이루어지는 것을 특징으로 한다.A first gas supply hole formed to have a first diameter and communicating with the first gas buffer space; And a first gas injection hole formed to have a second diameter smaller than the first diameter and communicating with the first gas supply hole while communicating with the gas injection space.
상기 가스 분사 부재는 상기 제 2 가스 버퍼 공간에 연통되도록 상기 플라즈마 전극의 내부에 수직하게 형성된 제 2 가스 공급 홀; 상기 제 2 가스 공급 홀에 연통되도록 상기 플라즈마 전극의 길이 방향을 따라 상기 플라즈마 전극의 하부 내부에 형성된 제 2 가스 분배 홀; 및 상기 제 2 가스 분배 홀에 연통되도록 상기 플라즈마 전극의 하부에 형성되어 상기 제 2 가스를 하부 및 양측부 방향으로 분사하는 제 2 가스 분사 홀을 포함하여 구성되는 것을 특징으로 한다.The gas injection member may include a second gas supply hole vertically formed inside the plasma electrode to communicate with the second gas buffer space; A second gas distribution hole formed in the lower portion of the plasma electrode along a length direction of the plasma electrode to communicate with the second gas supply hole; And a second gas injection hole which is formed under the plasma electrode to communicate with the second gas distribution hole and injects the second gas in the lower and both side directions.
상기 제 2 가스 분사 홀은 상기 제 2 가스 분배 홀에 연통되도록 상기 플라즈마 전극의 하면 중앙부에 형성되어 상기 제 2 가스를 하부 방향으로 분사하는 중앙 홀; 및 상기 제 2 가스 분배 홀에 연통되도록 상기 중앙 홀을 기준으로 상기 플라즈마 전극의 하면 양측면 각각에 형성되어 상기 제 2 가스를 양측부 방향으로 분사하는 한 쌍의 측면 홀을 포함하여 구성되는 것을 특징으로 한다.The second gas injection hole is formed in the central portion of the lower surface of the plasma electrode so as to communicate with the second gas distribution hole to inject the second gas in the downward direction; And a pair of side holes formed at each of both side surfaces of the lower surface of the plasma electrode with respect to the center hole so as to communicate with the second gas distribution hole, and spraying the second gas in both side directions. do.
상기 가스 분사 모듈은 상기 기판의 상면으로부터 이격되면서 일정한 간격을 가지도록 나란하게 돌출된 복수의 접지 전극을 가지는 하부 프레임; 상기 제 1 가스 버퍼 공간이 마련되도록 상기 하부 프레임의 상면에 결합되고, 상기 제 2 가스 버퍼 공간이 마련되도록 상기 챔버 리드의 하면에 결합된 상부 프레임; 상기 제 1 가스 버퍼 공간에 연통되도록 상기 하부 프레임에 형성되어 상기 접지 전극과 상기 플라즈마 전극 사이의 가스 분사 공간에 상기 제 1 가스를 분사하는 복수의 제 1 가스 분사 홀; 상기 기판의 상면으로부터 이격되면서 상기 접지 전극들 사이에 배치되도록 상기 하부 프레임의 하면에 수직하게 설치된 복수의 플라즈마 전극; 상기 상부 프레임의 하면에 설치되어 플라즈마 전원을 분배하여 상기 플라즈마 전극에 공급하는 플라즈마 전원 분배 부재; 및 상기 제 2 가스 버퍼 공간에 연통되도록 상기 복수의 플라즈마 전극 각각의 내부에 형성되어 상기 제 2 가스를 상기 플라즈마 방전 공간에 분사하는 복수의 제 2 가스 분사 홀을 포함하여 구성되는 것을 특징으로 한다.The gas injection module may include: a lower frame having a plurality of ground electrodes projecting side by side to have a predetermined distance while being spaced apart from an upper surface of the substrate; An upper frame coupled to an upper surface of the lower frame to provide the first gas buffer space, and coupled to a lower surface of the chamber lead to provide the second gas buffer space; A plurality of first gas injection holes formed in the lower frame so as to communicate with the first gas buffer space to inject the first gas into a gas injection space between the ground electrode and the plasma electrode; A plurality of plasma electrodes disposed perpendicular to a lower surface of the lower frame to be disposed between the ground electrodes while being spaced apart from an upper surface of the substrate; A plasma power distribution member disposed on a lower surface of the upper frame to distribute plasma power and supply the plasma power to the plasma electrode; And a plurality of second gas injection holes which are formed inside each of the plurality of plasma electrodes to communicate with the second gas buffer space and inject the second gas into the plasma discharge space.
상기 플라즈마 방전 공간은 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 한다.The plasma discharge space is characterized in that between the ground electrode and the termination of each of the plasma electrode.
상기 가스 분사 모듈은 상기 상부 프레임의 하면에 설치되어 상기 제 1 가스 버퍼 공간에 공급되는 상기 제 1 가스를 상기 제 1 가스 버퍼 공간의 내부로 확산시키는 가스 확산 부재를 더 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.The gas injection module may further include a gas diffusion member installed on a lower surface of the upper frame to diffuse the first gas supplied to the first gas buffer space into the first gas buffer space. Substrate processing apparatus.
전술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 처리 방법은 공정 챔버의 내부에 설치된 기판 지지부 상에 적어도 하나의 기판을 안착시키는 단계; 상기 기판 지지부 상에 설치된 가스 분사 모듈의 제 1 가스 버퍼 공간에 공급되는 제 1 가스를 이용하여 상기 기판의 상면으로부터 이격된 플라즈마 방전 공간에 플라즈마를 형성하는 단계; 및 상기 제 1 가스 버퍼 공간과 공간적으로 분리된 상기 가스 분사 모듈의 제 2 가스 버퍼 공간에 공급되는 제 2 가스를 상기 플라즈마 방전 공간에 분사하여 상기 플라즈마를 통해 상기 제 2 가스를 활성화시켜 상기 기판의 상면에 증착시키는 단계를 포함하여 이루어지는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a substrate processing method including: mounting at least one substrate on a substrate support installed in a process chamber; Forming a plasma in a plasma discharge space spaced from an upper surface of the substrate by using a first gas supplied to a first gas buffer space of a gas injection module provided on the substrate support; And injecting a second gas supplied to a second gas buffer space of the gas injection module spatially separated from the first gas buffer space into the plasma discharge space to activate the second gas through the plasma to activate the second gas. It characterized in that it comprises a step of depositing on the upper surface.
상기 가스 분사 모듈은 상기 기판의 상면으로부터 이격되면서 서로 나란하도록 교대로 배치된 접지 전극과 플라즈마 전극을 더 포함하여 이루어지고, 상기 플라즈마 방전 공간은 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 한다.The gas injection module may further include a ground electrode and a plasma electrode that are alternately arranged to be parallel to each other while being spaced apart from an upper surface of the substrate, wherein the plasma discharge space is between an end of each of the ground electrode and the plasma electrode. It features.
상기 가스 분사 모듈은 상기 기판의 상면으로부터 이격되면서 서로 나란하도록 교대로 배치된 접지 전극과 플라즈마 전극을 더 포함하여 이루어지고, 상기 플라즈마 방전 공간은 소정의 높이 차를 가지도록 단차진 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 한다.The gas injection module may further include a ground electrode and a plasma electrode that are alternately arranged to be parallel to each other while being spaced apart from an upper surface of the substrate, and the plasma discharge space is stepped to have a predetermined height difference with the ground electrode. It is characterized in that between the termination of each of the plasma electrodes.
상기 제 1 가스 버퍼 공간에 공급되는 상기 제 1 가스는 상기 접지 전극과 상기 플라즈마 전극 사이에 마련된 가스 분사 공간에 분사되고, 상기 제 2 가스 버퍼 공간에 공급되는 상기 제 2 가스는 상기 플라즈마 전극의 내부에 형성된 제 2 가스 분사 홀을 통해 상기 플라즈마 방전 공간에 분사되는 것을 특징으로 한다.The first gas supplied to the first gas buffer space is injected into a gas injection space provided between the ground electrode and the plasma electrode, and the second gas supplied to the second gas buffer space is inside the plasma electrode. It is characterized in that the injection through the second gas injection hole formed in the plasma discharge space.
상기 제 2 가스는 제 2 가스 분사 홀에 의해 상기 플라즈마 전극의 하부 및 양측부 방향으로 분사되는 것을 특징으로 한다.The second gas may be injected in the direction of the lower side and both sides of the plasma electrode by the second gas injection hole.
상기 과제의 해결 수단에 의하면, 본 발명에 따른 기판 처리 장치 및 기판 처리 방법은 다음과 같은 효과가 있다.According to the solution of the said subject, the substrate processing apparatus and substrate processing method which concern on this invention have the following effects.
첫째, 공간적으로 분리된 제 1 및 제 2 가스 버퍼 공간을 통해 제 1 및 제 2 가스를 분리하고, 기판의 상면으로부터 이격된 플라즈마 방전 공간에 플라즈마를 형성함으로써 플라즈마 방전이 기판까지 전달되는 것을 방지하여 플라즈마 방전에 의한 기판이 손상과 막질 저하를 최소화할 수 있다.First, by separating the first and second gas through the spatially separated first and second gas buffer space, and forming a plasma in the plasma discharge space spaced from the upper surface of the substrate to prevent the plasma discharge from being transferred to the substrate Substrate damage and film quality degradation due to plasma discharge can be minimized.
둘째, 제 1 가스와 제 2 가스를 분리하여 분사함으로써 접지 전극과 플라즈마 전극의 내벽에 이상 박막이 증착되는 것을 최소화할 수 있다.Second, by separating and spraying the first gas and the second gas, it is possible to minimize the deposition of the abnormal thin film on the inner wall of the ground electrode and the plasma electrode.
도 1은 종래의 기판 처리 장치를 개략적으로 설명하기 위한 도면이다.
도 2는 본 발명의 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 3은 도 2에 도시된 챔버 리드와 가스 분사 모듈을 개략적으로 나타내는 분해 사시도이다.
도 4는 도 3에 도시된 가스 분사 모듈을 개략적으로 나타내는 분해 사시도이다.
도 5는 도 3에 도시된 I-I' 선의 단면을 개략적으로 나타내는 단면도이다.
도 6은 도 3에 도시된 Ⅱ-Ⅱ' 선의 단면을 개략적으로 나타내는 단면도이다.
도 7은 본 발명에 있어서, 기판 위에 교대로 배치된 접지 전극과 플라즈마 전극을 개념적으로 나타내는 평면도이다.1 is a schematic view for explaining a conventional substrate processing apparatus.
2 is a schematic view of a substrate processing apparatus according to an embodiment of the present invention.
3 is an exploded perspective view schematically illustrating the chamber lid and the gas injection module illustrated in FIG. 2.
4 is an exploded perspective view schematically illustrating the gas injection module illustrated in FIG. 3.
FIG. 5 is a cross-sectional view schematically illustrating a cross section of the II ′ line illustrated in FIG. 3.
FIG. 6 is a cross-sectional view schematically illustrating a cross section of the II-II ′ line illustrated in FIG. 3.
7 is a plan view conceptually showing ground electrodes and plasma electrodes alternately arranged on a substrate in the present invention.
이하, 도면을 참조로 본 발명에 따른 바람직한 실시 예에 대해서 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
도 2는 본 발명의 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이고, 도 3은 도 2에 도시된 챔버 리드와 가스 분사 모듈을 개략적으로 나타내는 분해 사시도이고, 도 4는 도 3에 도시된 가스 분사 모듈을 개략적으로 나타내는 분해 사시도이고, 도 5는 도 3에 도시된 I-I' 선의 단면을 개략적으로 나타내는 단면도이며, 도 6은 도 3에 도시된 Ⅱ-Ⅱ' 선의 단면을 개략적으로 나타내는 단면도이다.2 is a schematic view of a substrate processing apparatus according to an embodiment of the present invention, FIG. 3 is an exploded perspective view schematically illustrating the chamber lid and the gas injection module illustrated in FIG. 2, and FIG. 4 is illustrated in FIG. 3. 5 is a cross-sectional view schematically illustrating a gas injection module, and FIG. 5 is a cross-sectional view schematically illustrating a cross section of the II 'line shown in FIG. 3, and FIG. 6 is a cross-sectional view schematically showing a cross section of the II-II' line shown in FIG. 3. .
도 2 내지 도 6을 참조하면, 본 발명의 실시 예에 따른 기판 처리 장치는 반응 공간을 제공하는 공정 챔버(110), 공정 챔버(110)의 내부에 배치되어 기판(S)을 지지하는 기판 지지부(120), 기판 지지부(120)와 마주보도록 공정 챔버(110)의 상부에 설치된 챔버 리드(130), 및 챔버 리드(130)의 하면에 설치되고 기판(S)의 상면에 중첩되지 않는 플라즈마 전극(PE)과 접지 전극(GE) 사이의 플라즈마 방전 공간(PDS)에서 플라즈마(P)를 형성해 공정 가스(PG)를 활성화시켜 기판(S) 상에 분사하는 가스 분사 모듈(140)을 포함하여 구성된다.2 to 6, a substrate processing apparatus according to an embodiment of the present invention may include a
공정 챔버(110)는 기판 처리 공정(예를 들어, 박막 증착 공정)을 위한 반응 공간을 제공한다. 상기의 공정 챔버(110)의 바닥면 및/또는 측면은 반응 공간의 가스 등을 배기시키기 위한 배기관(112)에 연통될 수 있다.The
기판 지지부(120)는 공정 챔버(110) 내부에 설치되며, 복수의 기판(S) 또는 하나의 대면적 기판(S)을 지지한다. 이때, 복수의 기판(S) 각각의 면적은 상기 하나의 대면적 기판(S)에 1/4 면적을 가질 수 있다.The
상기 기판 지지부(120)는 전기적으로 플로팅(Floating)될 수도 있고 접지(ground)될 수도 있다. 상기 기판 지지부(120)는 공정 챔버(110)의 중앙 바닥면을 관통하는 지지축(122)에 의해 지지된다. 이때, 공정 챔버(110)의 하면 외부로 노출되는 상기의 지지축(122)은 공정 챔버(110)의 하면에 설치되는 벨로우즈(124)에 의해 밀폐된다.The
상기 기판 지지부(120)는 기판 처리 공정의 공정 조건에 대한 승강될 수도 있다. 이 경우, 상기 기판 지지부(120)의 지지축(122)은 승강 장치(128)의 승강축(126)에 지지된다. 이에 따라, 기판 지지부(120)의 상면은, 승강 장치(128)의 구동에 따른 승강축(126)의 승강에 의해, 상기 공정 조건 범위 내에서 가스 분사 모듈(140)의 하면에 상대적으로 가깝게 위치하거나 상대적으로 멀게 위치하게 된다.The
챔버 리드(130)는 공정 챔버(110)의 상부를 덮도록 설치되어 반응 공간을 밀폐한다. 그리고, 챔버 리드(130)는 가스 분사 모듈(140)을 지지한다. 이를 위해, 챔버 리드(130)의 하면에는 가스 분사 모듈(140)이 삽입되어 결합되는 모듈 결합 홈이 마련되어 있다.The
상기 챔버 리드(130)의 상면에는 가스 분사 모듈(140)에 공정 가스(PG), 즉 제 1 및 제 2 가스(G1, G2)를 개별적으로 분리하여 공급하기 위한 제 1 및 제 2 가스 공급부(150, 160)가 설치되고, 가스 분사 모듈(140)의 플라즈마 전극(PE)에 플라즈마 전원을 공급하기 위한 플라즈마 전원 공급부(170)가 설치된다.On the upper surface of the
제 1 가스 공급부(150)는 플라즈마 전극(PE)과 접지 전극(GE) 사이의 공간에서 플라즈마(P)를 형성하기 위한 제 1 가스(G1)를 생성하여 가스 분사 모듈(140)에 공급한다. 제 2 가스 공급부(160)는 기판(S) 상에 증착될 박막의 재질을 포함하는 제 2 가스(G2)를 생성하여 가스 분사 모듈(140)에 공급한다. 여기서, 상기 제 1 가스(G1)는 상기 제 2 가스(G2)와 반응하여 상기 박막을 형성하는 반응 가스로 이루어질 수도 있고, 미증착 제 2 가스(G2)를 퍼지(또는 세정)시키기 위한 퍼지 가스(또는 세정 가스)로 이루어질 수도 있다. 예를 들어, 기판(S)에 실리콘 박막을 형성할 경우에, 상기 제 1 가스(G1)는 수소(H2)일 수 있으며, 상기 제 2 가스(G2)는 실란(SiH4)일 수 있다.The first
플라즈마 전원 공급부(170)는 플라즈마 전극(PE)과 접지 전극(GE) 사이의 공간에서 플라즈마(P)를 형성하기 위한 플라즈마 전원을 생성하여 상기 플라즈마 전극(PE)에 공급한다. 이때, 상기 플라즈마 전원은 고주파 전력 또는 RF(Radio Frequency) 전력, 예를 들어, LF(Low Frequency) 전력, MF(Middle Frequency), HF(High Frequency) 전력, 또는 VHF(Very High Frequency) 전력이 될 수 있다. 이때, LF 전력은 3㎑ ~ 300㎑ 범위의 주파수를 가지고, MF 전력은 300㎑ ~ 3㎒ 범위의 주파수를 가지고, HF 전력은 3㎒ ~ 30㎒ 범위의 주파수를 가지며, VHF 전력은 30㎒ ~ 300㎒ 범위의 주파수를 가질 수 있다.The plasma
상기 플라즈마 전원 공급부(170)는 플라즈마 전극(PE)에 공급되는 플라즈마 전원의 부하 임피던스와 소스 임피던스를 정합시키기 위한 임피던스 매칭 회로(미도시)를 포함하여 이루어질 수 있다. 상기 임피던스 매칭 회로는 가변 커패시터 및 가변 인덕터 중 적어도 하나로 구성되는 적어도 2개의 임피던스 소자(미도시)를 포함하여 이루어질 수 있다.The plasma
가스 분사 모듈(140)은 서로 마주보는 접지 전극(GE)과 플라즈마 전극(PE)을 포함하여 이루어져 챔버 리드(130)의 하면에 마련된 모듈 결합 홈에 삽입 결합된다. 이러한 가스 분사 모듈(140)은 플라즈마 전극(PE)과 접지 전극(GE) 각각의 종단부 사이의 플라즈마 방전 공간(PDS)에 플라즈마(P)를 형성해 공정 가스(PG), 즉 제 2 가스(G2)를 활성화시켜 기판(S) 상에 분사한다. 즉, 가스 분사 모듈(140)은 서로 나란하도록 교대로 배치된 접지 전극(GE)과 플라즈마 전극(PE) 사이에 마련되는 가스 분사 공간에 제 1 가스(G1)를 분사하면서 플라즈마 전극(PE)에 플라즈마 전원을 인가하여 상기 플라즈마 방전 공간(PDS)에 플라즈마(P)를 형성하고, 상기 플라즈마 전극(PE)의 내부를 통해 플라즈마 방전 공간(PDS)에 제 2 가스(G2)를 분사함으로써 플라즈마(P)를 통해 제 2 가스(G2)를 활성화시켜 기판(S) 상에 분사한다. 이를 위해, 가스 분사 모듈(140)은 하부 프레임(210), 지지 프레임(220), 상부 프레임(230), 플라즈마 전원 분배 부재(240), 및 복수의 플라즈마 전극(PE)을 포함하여 이루어진다.The
하부 프레임(210)은 접지 플레이트(211), 접지 측벽(213), 복수의 접지 전극(GE), 복수의 전극 접속 부재(215), 복수의 관 관통 홀(217), 및 복수의 제 1 가스 분사 부재(219)를 포함하여 구성된다.The
접지 플레이트(211)는 평판 형태로 형성되어 기판 지지부(120)에 대향된다.The
접지 측벽(213)은 접지 플레이트(211)의 가장자리 부분을 따라 소정 높이를 가지도록 돌출된다. 이러한, 접지 측벽(213)은 상부 프레임(230)의 하면 가장자리 부분에 결합됨으로써 접지 플레이트(211)의 상면과 상부 프레임(230)의 하면을 소정의 높이 차로 이격시킨다. 이에 따라, 상기 하부 프레임(210)의 상면과 상부 프레임(230)의 하면 사이에는 제 1 가스 버퍼 공간(142)이 마련된다.The
복수의 접지 전극(GE)은 접지 플레이트(211)의 하면으로부터 제 1 높이를 가지도록 돌출되고, 접지 플레이트(211)의 하면에 일정한 간격을 가지도록 서로 나란하게 배치된다. 이에 따라, 나란한 복수의 접지 전극(GE) 사이사이에는 제 1 가스 분사 공간(GSS)이 마련된다.The plurality of ground electrodes GE protrude from the lower surface of the
복수의 전극 접속 부재(215) 각각은 접지 플레이트(211)의 상면에 설치되어 복수의 플라즈마 전극(PE)과 전기적으로 접속된다. 이때, 복수의 전극 접속 부재(215) 각각은 절연체(미도시)에 의해 접지 플레이트(211)와 전기적으로 절연되도록 접지 플레이트(211)의 상면에 설치된다. 이러한 복수의 전극 접속 부재(215) 각각은 복수의 플라즈마 전원 분배 부재(240)에 전기적으로 접속되어 복수의 플라즈마 전원 분배 부재(240)와 복수의 플라즈마 전극(PE) 각각을 전기적으로 접속시킨다.Each of the plurality of
복수의 관 관통 홀(217) 각각은 접지 플레이트(211)를 관통하도록 형성되어 복수의 플라즈마 전극(PE) 각각에 중첩된다. 이때, 하나의 플라즈마 전극(PE)에 중첩되는 접지 플레이트(211)에는 3개의 제 1 관통 홀(217)이 일정한 간격으로 형성될 수 있다.Each of the plurality of pipe through
복수의 제 1 가스 분사 부재(219) 각각은 접지 플레이트(211)를 관통하도록 형성되어 상기 제 1 가스 버퍼 공간(142)과 상기 제 1 가스 분사 공간(GSS)에 연통된다. 이러한 복수의 제 1 가스 분사 부재(219) 각각은 상기 제 1 가스 버퍼 공간(142)으로부터 유입되는 제 1 가스(G1)를 상기 제 1 가스 분사 공간(GSS)에 소정 압력으로 분사한다. 이를 위해, 상기 복수의 제 1 가스 분사 부재(219) 각각은, 도 5에 도시된 바와 같이, 제 1 가스 유입 홀(219a), 및 제 1 가스 분사 홀(219b)을 포함하여 구성된다.Each of the plurality of first
제 1 가스 유입 홀(219a)은 상기 제 1 가스 버퍼 공간(142)에 연통되도록 접지 플레이트(211)의 상면으로부터 제 1 직경을 가지도록 형성된다.The first
제 1 가스 분사 홀(219b)은 상기 제 1 가스 공급 홀(219a)에 연통되면서 가스 분사 공간(GSS)에 연통되도록 제 1 가스 분사 홀(219b)의 하부로부터 접지 플레이트(211)를 관통하여 형성된다. 이때, 제 1 가스 분사 홀(219b)은 제 1 가스(G1)를 소정 압력으로 분사하기 위해 제 1 가스 유입 홀(219a)의 제 1 직경보다 작은 제 2 직경을 가지도록 형성된다. 그리고, 제 1 가스 유입 홀(219a)의 높이는 상기 제 1 가스(G1)의 원활한 유입을 위해 제 1 가스 분사 홀(219b)의 높이보다 높을 수 있다.The first
상기 제 1 가스 분사 홀(219b)은 상기 가스 분사 공간(GSS) 각각의 길이 방향을 따라 일정한 간격을 가지도록 2열로 형성된다.The first gas injection holes 219b are formed in two rows to have a predetermined interval along the length direction of each of the gas injection spaces GSS.
도 5에서는 상기 제 1 가스 분사 홀(219b)의 직경이 수직하게 형성되는 것으로 도시하였지만, 이에 한정되지 않고, 상기 제 1 가스 분사 홀(219b)의 직경은 제 1 가스 유입 홀(219a)로부터 가스 분사 공간(GSS) 쪽으로 갈수록 증가할 수 있다. 즉, 제 1 가스 분사 홀(219b)은 제 1 가스 유입 홀(219a)에 연통되면서 상기 제 2 직경을 가지는 입구, 가스 분사 공간(GSS)에 연통되면 상기 제 1 또는 제 2 직경보다 큰 제 3 직경을 가지는 출구, 및 입구와 출구 사이에 경사면을 가질 수 있다.In FIG. 5, the diameter of the first
지지 프레임(220)은, 도 2 및 도 5에 도시된 바와 같이, 공정 챔버(110)의 챔버 벽에 안착되어 챔버 리드(130)의 모듈 결합 홈의 하측 내벽을 지지하면서 하부 프레임(210)의 하면 가장자리 부분을 지지한다. 이러한 지지 프레임(220)은 금속 재질로 이루어져 하부 프레임(210)과 챔버 리드(130)를 전기적으로 연결시킴으로써 하부 프레임(210)을 전기적으로 접지시킨다.As shown in FIGS. 2 and 5, the
상부 프레임(230)은 상부 플레이트(231), 상부 측벽(233), 복수의 전원 공급 봉(235), 제 1 관 결합 홀(237), 및 복수의 관 삽입 홀(239)을 포함하여 구성된다.The
상부 플레이트(231)는 평판 형태로 형성되어 하부 프레임(210)의 상면에 결합된다. 이에 따라, 상부 플레이트(231)의 하면과 하부 프레임(210)의 상면 사이에는 상기 제 1 가스 버퍼 공간(142)이 마련된다.The
상부 측벽(233)은 상부 플레이트(231)의 가장자리 부분을 따라 소정 높이를 가지도록 돌출된다. 이러한, 상부 측벽(233)은 챔버 리드(130)의 하면 가장자리 부분에 결합됨으로써 상부 플레이트(231)의 상면과 챔버 리드(130)의 하면을 소정의 높이 차로 이격시킨다. 이에 따라, 상기 상부 프레임(230)의 상면과 챔버 리드(130)의 하면 사이에는 제 2 가스 버퍼 공간(144)이 마련된다.The
복수의 전원 공급 봉(235)은 절연체에 둘러싸이도록 형성되어 상부 플레이트(231)를 관통하도록 설치됨으로써 플라즈마 전원 분배 부재(240)에 전기적으로 접속된다. 또한, 상기 복수의 전원 공급 봉(235)은 챔버 리드(130)에 형성된 봉 관통 홀(131)에 삽입되어 전술한 플라즈마 전원 공급부(170)에 전기적으로 접속된다. 이러한 복수의 전원 공급 봉(235)은 플라즈마 전원 공급부(170)로부터 공급되는 플라즈마 전원을 플라즈마 전원 분배 부재(240)에 전달한다.The plurality of
관 결합 홀(237)은 제 1 가스 버퍼 공간(142)에 연통되도록 상부 플레이트(231)를 관통하여 형성된다. 이러한 관 결합 홀(237)에는 제 1 가스 공급부(150)에 연결되어 챔버 리드(130)를 관통하는 제 1 가스 공급관(238)이 결합된다. 이에 따라, 관 결합 홀(237)에는 제 1 가스 공급부(150)로부터 제 1 가스 공급관(238)을 통해 제 1 가스(G1)가 공급된다.The
상기 관 결합 홀(237)에 공급되는 제 1 가스(G1)는 상기 제 1 가스 버퍼 공간(142)에 공급되어 상기 제 1 가스 버퍼 공간(142)의 내부에서 확산됨으로써 전술한 하부 프레임(210)에 형성된 복수의 제 1 가스 분사 부재(219)를 통해 가스 분사 공간(GSS)에 분사된다.The first gas G1 supplied to the
한편, 가스 분사 모듈(140)은 상기 제 1 가스 버퍼 공간(142)에 공급되는 제 1 가스(G1)를 제 1 가스 버퍼 공간(142)의 내부 전영역으로 확산시키기 위한 가스 확산 부재(250)를 더 포함하여 구성될 수도 있다.On the other hand, the
상기 가스 확산 부재(250)는, 도 5에 도시된 바와 같이, 상기 관 결합 홀(237)의 하부에 중첩되도록 상부 프레임(230)의 하면에 설치되어 관 결합 홀(237)을 통해 공급되는 제 1 가스(G1)를 제 1 가스 버퍼 공간(142)의 내부 전영역으로 확산시킨다. 상기 가스 확산 부재(250)에 중첩되는 상부 프레임(230)의 하면은 오목하게 형성될 수 있다.As shown in FIG. 5, the
복수의 관 삽입 홀(239) 각각은 상부 플레이트(231)를 관통하도록 일정한 간격으로 형성되어 상기 제 2 가스 버퍼 공간(144)에 연통된다. 이러한 복수의 관 결합 홀(237) 각각은 하부 프레임(210)에 형성된 복수의 관 관통 홀(217) 각각에 중첩된다.Each of the plurality of tube insertion holes 239 is formed at regular intervals to penetrate the
상기 제 2 가스 버퍼 공간(144)에는 챔버 리드(130)에 형성된 복수의 제 2 가스 공급 라인(133)을 통해 제 2 가스 공급부(160)로부터 제 2 가스(G2)가 공급된다.The second
플라즈마 전원 분배 부재(240)는 상부 프레임(230)의 하면에 삽입 설치되어 상기 복수의 전원 공급 봉(235)에 전기적으로 접속되어 복수의 전원 공급 봉(235)으로부터 전달되는 플라즈마 전원을 복수의 플라즈마 전극(PE)에 공급한다. 이를 위해, 플라즈마 전원 분배 부재(240)는 라인 절연 부재(242), 및 전원 공급 라인(244)을 포함하여 구성된다.Plasma
라인 절연 부재(242)는 절연 물질로 이루어져 전원 공급 라인(244)을 전기적으로 절연시킨다. 즉, 라인 절연 부재(242)는 하부 프레임(210)과 전원 공급 라인(244) 사이를 전기적으로 절연시킨다.The
전원 공급 라인(244)은 라인 절연 부재(242) 상에 설치되어 복수의 전원 공급 봉(235) 각각에 전기적으로 접속된다. 그리고, 상기 전원 공급 라인(244)은 상기 라인 절연 부재(242)를 관통하는 복수의 전극 접속 부재(215) 각각에 전기적으로 접속된다. 이러한 전원 공급 라인(244)은 복수의 전원 공급 봉(235) 각각으로부터 공급되는 플라즈마 전원을 복수의 전극 접속 부재(215) 각각에 전달한다.The
상기 전원 공급 라인(244)은 복수의 플라즈마 전극(PE)의 배치 위치에 상관 없이 각 플라즈마 전극(PE)에 균일한 플라즈마 전원이 공급되도록 한다. 이를 위해, 전원 공급 라인(244)은 복수의 전원 공급 봉(235) 각각과 각 플라즈마 전극(PE)의 거리에 따른 라인 저항이 보상되도록 단층 또는 복층 구조로 이루어질 수 있다.The
복수의 플라즈마 전극(PE) 각각은 하부 프레임(210)의 접지 전극(GE)과 소정 간격으로 나란하도록 가스 분사 공간(GSS)의 내부에 삽입 설치된다. 이러한 복수의 플라즈마 전극(PE) 각각은 플라즈마 전원 공급부(170)로부터 공급되는 플라즈마 전원에 따라 플라즈마 방전 공간(PDS)에 플라즈마(P)를 형성하고 제 2 가스 버퍼 공간(144)으로부터 공급되는 제 2 가스(G2)를 플라즈마 방전 공간(PDS)에 분사하여 제 2 가스(G2)를 활성화시킨다. 이를 위해, 복수의 플라즈마 전극(PE) 각각은, 도 2 내지 도 5에 도시된 바와 같이, 전극 프레임(251), 복수의 제 2 가스 공급 관(253), 제 2 가스 분사 부재(255), 및 복수의 전원 접속부(257)를 포함하여 구성된다.Each of the plurality of plasma electrodes PE is inserted into the gas injection space GSS so as to be parallel to the ground electrode GE of the
전극 프레임(251)은 소정 길이를 가지는 직사각 형태의 단면을 가지도록 형성되어 접지 전극(GE)에 의해 마련되는 가스 분사 공간(GSS)의 내부에 삽입 배치된다. 상기 전극 프레임(251)의 양 측면은 접지 전극(GE)에 대향되고, 상기 전극 프레임(251)의 하면은 반원 형태의 단면을 가지도록 형성되고, 기판 지지부(120)의 상면으로부터 소정 거리로 이격되어 대향된다. 이러한 상기 전극 프레임(251)은 금속 재질로 이루어져 플라즈마 전원 공급부(170)로부터 공급되는 플라즈마 전원에 따라 플라즈마 방전 공간(PDS)에 플라즈마(P)를 발생시키는 역할을 한다.The
본 발명에 따른 상기 플라즈마 방전 공간(PDS)은, 종래와 같이 플라즈마 전극과 기판 사이의 영역에 형성되는 것이 아니라, 서로 마주하는 플라즈마 전극(PE)과 접지 전극(GE) 사이에서 형성된다. 따라서, 본 발명에 따르면, 플라즈마 방전 공간(PDS)이 상기 기판 지지부(120)에 의해 지지되는 기판(S) 및/또는 기판(S)에 형성되는 박막과 중첩되지 않기 때문에, 플라즈마 방전에 의해서 기판(S)이 손상되고 기판(S) 상에 증착되는 막질이 떨어지는 문제가 해소될 수 있다.The plasma discharge space PDS according to the present invention is not formed in a region between the plasma electrode and the substrate as in the prior art, but is formed between the plasma electrode PE and the ground electrode GE facing each other. Therefore, according to the present invention, since the plasma discharge space PDS does not overlap with the substrate S supported by the
특히, 도 2의 확대도에서 알 수 있듯이, 본 발명의 실시 예에 따르면, 플라즈마 전극(PE)과 접지 전극(GE) 사이의 거리보다 플라즈마 전극(EP)과 기판(S) 사이의 거리(d)가 더 크도록 함으로써 상기 플라즈마 방전에 의한 문제를 해결할 수 있다. 만약, 플라즈마 전극(PE)과 접지 전극(GE) 사이의 거리보다 플라즈마 전극(PE)과 기판(S) 사이의 거리(d)를 작게 할 경우, 플라즈마 전극(PE)과 기판(S)을 지지하는 기판 지지부(120) 사이에도 플라즈마 방전이 생길 수 있어 플라즈마 방전에 의해서 기판(S)에 악영향을 미칠 수 있다.In particular, as can be seen in the enlarged view of FIG. 2, according to an embodiment of the present invention, the distance d between the plasma electrode EP and the substrate S is greater than the distance between the plasma electrode PE and the ground electrode GE. ) Can be solved by solving the plasma discharge. If the distance d between the plasma electrode PE and the substrate S is smaller than the distance between the plasma electrode PE and the ground electrode GE, the plasma electrode PE and the substrate S are supported. Plasma discharge may also occur between the
또한, 본 발명의 일 실시예에 따르면, 플라즈마 전극(PE)과 접지 전극(GE)이 기판(S)의 상면에 대해 수직 방향으로 돌출되어 있기 때문에, 플라즈마 방전에 의해서 생성되는 양이온 또는 전자가 기판(S) 면으로 이동하지 않고, 기판(S)의 상면에 평행한 방향인 플라즈마 전극(PE) 또는 접지 전극(GE) 방향으로 이동하고, 따라서 플라즈마 방전에 의한 기판(S) 영향을 최소화할 수 있다.In addition, according to an embodiment of the present invention, since the plasma electrode PE and the ground electrode GE protrude in a direction perpendicular to the upper surface of the substrate S, the cations or electrons generated by the plasma discharge are generated. It does not move to the (S) plane, but moves in the direction of the plasma electrode PE or the ground electrode GE, which is parallel to the upper surface of the substrate S, thus minimizing the influence of the substrate S due to the plasma discharge. have.
플라즈마 전극(PE), 즉 전극 프레임(251)의 하면과 접지 전극(GE)은 소정의 높이 차(h)를 가지도록 단차지게 배치된다. 즉, 전극 프레임(251)의 하면은 접지 전극(GE)의 하면보다 소정 높이(h)를 가지도록 기판(S) 쪽으로 돌출된다. 이렇게, 전극 프레임(251)의 하면과 접지 전극(GE)을 단차지도록 형성함으로써 서로 마주보는 전극 프레임(251)과 접지 전극(GE) 각각의 내측면 사이에 플라즈마 방전 공간(PDS)을 형성하지 않고, 단차진 전극 프레임(251)과 접지 전극(GE) 각각의 종단부 사이에 플라즈마 방전 공간(PDS)을 형성할 수 있다. 이에 따라, 전극 프레임(251)과 접지 전극(GE) 각각의 내측면 사이에 형성되는 플라즈마로 인해 이상 박막이 전극 프레임(251)과 접지 전극(GE) 각각의 내측면에 증착되는 것을 방지할 수 있다.The lower surface of the plasma electrode PE, that is, the
복수의 제 2 가스 공급 관(253)은 전극 프레임(251)의 상면에 수직하게 형성되어 하부 프레임(210)에 형성된 관 관통 홀(217)에 삽입됨으로써 전극 프레임(251)이 하부 프레임(210)의 하면에 수직하게 설치되도록 한다. 이때, 전극 프레임(251)의 상면에는 일정한 간격을 가지는 3개의 제 2 가스 공급 관(253)이 형성될 수 있다.The plurality of second
상기 복수의 제 2 가스 공급 관(253) 각각은 전극 프레임(251)에 형성되기 때문에 전극 프레임(251)과 전기적으로 접속되게 된다. 이에 따라, 접지 상태인 하부 프레임(210)과 상기 제 2 가스 공급 관(253)을 전기적으로 절연시키기 위해, 상기 복수의 제 2 가스 공급 관(253) 각각은 하부 프레임(210)의 하면에 설치되는 전극 절연 부재(260)를 관통하여 상기 관 관통 홀(217)에 삽입됨으로써 상기 전극 절연 부재(260)에 의해 하부 프레임(210)과 전기적으로 절연된다.Each of the plurality of second
상기 복수의 제 2 가스 공급 관(253) 각각은 상기 관 관통 홀(217)에 삽입 결합되는 제 2 가스 전달 관(270)을 통해 제 2 가스 버퍼 공간(144)에 연통된다.Each of the plurality of second
상기 제 2 가스 전달 관(270)은 절연체에 의해 둘러싸이도록 형성되어 상기 관 관통 홀(217)에 수직하게 삽입되어 제 2 가스 공급 관(253)에 결합되고, 제 1 가스 버퍼 공간(142)을 관통하여 상부 프레임(230)에 형성된 관 삽입 홀(239)에 삽입되어 제 2 가스 버퍼 공간(144)에 연통된다. 이에 따라, 상기 제 2 가스 공급 관(253)은 상기 제 2 가스 전달 관(270)을 통해 제 2 가스 버퍼 공간(144)에 연통됨으로써 제 2 가스 공급부(160)로부터 제 2 가스 버퍼 공간(144)에 공급되는 제 2 가스(G2)는 상기 제 2 가스 전달 관(270)과 제 2 가스 공급 관(253)을 통해 전극 프레임(251)의 내부로 공급된다.The second
제 2 가스 공급 관(253)과 상기 제 2 가스 전달 관(270) 사이는 오-링(O-Ring) 등과 같은 밀봉 부재에 의해 밀봉될 수 있으며, 상기 제 2 가스 전달 관(270)과 관 삽입 홀(239) 사이는 상기 밀봉 부재에 의해 밀봉될 수 있다.Between the second
제 2 가스 분사 부재(255)는 전극 프레임(251)에 형성되어 상기 제 2 가스 공급 관(253)을 통해 공급되는 제 2 가스(G2)를 플라즈마 방전 공간(PDS)에 분사한다. 이를 위해, 제 2 가스 분사 부재(255)는 복수의 제 2 가스 공급 홀(255a), 제 2 가스 분배 홀(255b), 및 복수의 제 2 가스 분사 홀(255c)을 포함하여 구성된다.The second
복수의 제 2 가스 공급 홀(255a) 각각은 복수의 제 2 가스 공급 관(253) 각각에 연통되도록 전극 프레임(251)의 내부에 수직하게 형성된다. 이에 따라, 복수의 제 2 가스 공급 홀(255a) 각각은 제 2 가스 공급 관(253)과 상기 제 2 가스 전달 관(270)을 통해 제 2 가스 버퍼 공간(144)에 연통됨으로써 제 2 가스 버퍼 공간(144)으로부터 제 2 가스(G2)를 공급 받는다.Each of the plurality of second
제 2 가스 분배 홀(255b)은 전극 프레임(251)의 길이 방향을 따라 전극 프레임(251)의 하면 내부에 형성되어 상기 복수의 제 2 가스 공급 홀(255a) 각각에 연통된다. 이러한 제 2 가스 분배 홀(255b)에는 제 2 가스 공급 홀(255a)을 통해 공급되는 제 2 가스(G2)가 공급된다.The second
복수의 제 2 가스 분사 홀(255c) 각각은 상기 제 2 가스 분배 홀(255b)에 연통되도록 전극 프레임(251)의 하면을 관통하여 일정한 간격으로 형성된다. 이러한 복수의 제 2 가스 분사 홀(255c)은 제 2 가스 분배 홀(255b)에 의해 분배되는 제 2 가스(G2)를 하부 및 양측부 방향으로 분사한다. 이를 위해, 상기 제 2 가스 분사 홀(255c)는 중앙 홀(CH), 및 한 쌍의 측면 홀(SH1, SH2)을 포함하여 구성된다.Each of the plurality of second
중앙 홀(CH)은 전극 프레임(251)의 하면 중앙부를 관통하여 상기 제 2 가스 분배 홀(255b)에 연통됨으로써 상기 제 2 가스 분배 홀(255b)을 통해 공급되는 제 2 가스(G2)를 기판 지지부(120)에 수직한 하부 방향으로 분사한다. 상기 중앙 홀(CH)을 통해 분사되는 제 2 가스(G2)는 전술한 전극 프레임(251)의 하부에 형성되는 플라즈마 방전 공간(PDS)의 일부 영역에 분사됨으로써 플라즈마 방전 공간(PDS)에 형성되는 플라즈마(P)에 의해 활성화되어 기판(S) 상에 분사된다.The center hole CH passes through the center of the lower surface of the
한 쌍의 측면 홀(SH1, SH2) 각각은 중앙 홀(CH)을 기준으로 전극 프레임(251)의 하부 양측면 각각을 관통하여 상기 제 2 가스 분배 홀(255b)에 연통됨으로써 상기 제 2 가스 분배 홀(255b)을 통해 공급되는 제 2 가스(G2)를 인접한 접지 전극(GE)의 종단부 쪽으로 분사한다. 이때, 한 쌍의 측면 홀(SH1, SH2) 각각은 접지 전극(GE)의 하면에 마주보도록 형성된다.Each of the pair of side holes SH1 and SH2 communicates with the second
상기 한 쌍의 측면 홀(SH1, SH2) 각각을 통해 분사되는 제 2 가스(G2)는 접지 전극(GE)의 하면 쪽으로 분사됨으로써 전술한 전극 프레임(251)과 접지 전극(GE) 각각의 종단부 사이에 형성되는 플라즈마 방전 공간(PDS)에 형성되는 플라즈마(P)에 의해 활성화되어 기판(S) 상에 분사된다. 이에 따라, 접지 전극(GE)과 플라즈마 전극(PE) 사이의 가스 분사 공간에 분사되는 제 1 가스(G1)가 접지 전극(GE)의 하면과 하측면에서 정체 또는 와류되는 것을 방지함으로써 접지 전극(GE)의 하부 영역에 이상 박막이 증착되는 것을 방지할 수 있다.The second gas G2 injected through each of the pair of side holes SH1 and SH2 is injected toward the bottom surface of the ground electrode GE, thereby terminating the respective ends of the
복수의 전원 접속부(257) 각각은 전극 프레임(251)의 상면에 수직하게 형성되어 하부 프레임(210)에 형성된 전극 접속 부재(215)에 삽입 결합되어 전기적으로 접속된다. 이러한 복수의 전원 접속부(257) 각각은 전극 프레임(251)을 지지함과 아울러 전극 프레임(251)에 플라즈마 전원을 공급하는 역할을 한다. 즉, 복수의 전원 접속부(257) 각각은, 도 6에 도시된 바와 같이, 하부 프레임(210)에 형성된 전극 접속 부재(215)에 삽입 결합되어 상기 전극 접속 부재(215)를 통해 플라즈마 전원 분배 부재(240)에 전기적으로 접속됨으로써 플라즈마 전원 분배 부재(240)로부터 분배되어 공급되는 플라즈마 전원을 전극 프레임(251)에 인가되도록 한다.Each of the plurality of
상기 복수의 전원 접속부(257) 각각과 전극 접속 부재(215) 사이는 오-링(O-Ring) 등과 같은 밀봉 부재에 의해 밀봉될 수 있으며, 상기 전극 접속 부재(215)와 하부 프레임(210) 사이는 상기 밀봉 부재에 의해 밀봉될 수 있다.The plurality of
전술한 바와 같은 가스 분사 모듈(140)은 접지 전극(GE)과 플라즈마 전극(PE) 사이에 마련되는 가스 분사 공간에 제 1 가스(G1)를 분사하면서 플라즈마 전극(PE)에 플라즈마 전원을 인가하여 접지 전극(GE)과 플라즈마 전극(PE) 각각의 종단부 사이의 플라즈마 방전 공간(PDS)에 플라즈마(P)를 형성하고, 상기 플라즈마 전극(PE)의 제 2 가스 분사 홀(255)을 통해 플라즈마 방전 공간(PDS)에 제 2 가스(G2)를 분사함으로써 플라즈마 방전 공간(PDS)의 플라즈마(P)에 의해 활성화되는 제 2 가스(G2)를 기판(S) 상에 분사한다. 이에 따라, 기판(S) 상에는 활성화된 제 2 가스(G2)에 의해 소정의 박막이 증착되게 된다. 이때, 기판(S) 위에는, 도 7에 도시된 바와 같이, 접지 전극(GE)과 플라즈마 전극(PE)들이 교대로 나란하게 배치되기 때문에 활성화된 제 2 가스(G2)는 기판(S)의 상면 전영역에 걸쳐 분사되고 이로 인해 기판(S)의 상면 전영역에 걸쳐 균일한 두께의 박막이 형성되게 된다.The
전술한 본 발명의 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하면 다음과 같다.The substrate processing method using the substrate processing apparatus according to the embodiment of the present invention described above is as follows.
먼저, 복수의 기판(S) 또는 하나의 대면적 기판(S)을 기판 지지부(120)에 로딩하여 안착시킨다.First, a plurality of substrates S or one large-area substrate S is loaded on the
그런 다음, 제 1 가스 공급부(150)를 통해 제 1 가스(G1)를 가스 분사 모듈(140)의 제 1 가스 버퍼 공간(142)에 공급함으로써 제 1 가스 버퍼 공간(142)에 공급되는 제 1 가스(G1)를 하부 프레임(210)의 제 1 가스 분사 홀(219)을 통해 접지 전극(GE)과 플라즈마 전극(PE) 사이의 가스 분사 공간에 분사한다. 이와 같이 제 1 가스(G1)의 분사하면서, 플라즈마 전원 공급부(170)를 통해 플라즈마 전원을 플라즈마 전극(PE)에 공급한다. 이에 따라, 접지 상태인 접지 전극(GE)과 플라즈마 전원이 공급되는 플라즈마 전극(PE)에 의해 접지 전극(GE)과 플라즈마 전극(PE) 각각의 종단부 사이의 플라즈마 방전 공간(PDS)에 전기장이 형성되어 상기 플라즈마 방전 공간(PDS)에 플라즈마(P)가 형성된다.Then, the first gas supplied to the first
상기 플라즈마(P)의 형성과 동시에 제 2 가스 공급부(160)를 통해 제 2 가스 버퍼 공간(144)에 제 2 가스(G2)를 공급하고, 제 2 가스 버퍼 공간(144)을 통해 플라즈마 전극(PE)의 제 2 가스 분사 홀(255)에 제 2 가스(G2)를 공급함으로써 제 2 가스 분사 홀(255)을 통해 플라즈마 방전 공간(PDS)에 제 2 가스(G2)를 분사한다. 이에 따라, 상기 제 2 가스(G2)는 플라즈마 방전 공간(PDS)에 형성되는 플라즈마(P)에 의해 활성화되어 기판(S) 상에 분사됨으로써 기판(S)의 상면에 증착되어 소정의 박막을 형성한다.Simultaneously with the formation of the plasma P, the second gas G2 is supplied to the second
이상과 같은, 본 발명의 실시 예에 따른 기판 처리 장치 및 이용한 기판 처리 방법은 가스 분사 모듈(140)에 공간적으로 분리된 제 1 및 제 2 가스 버퍼 공간을 마련하고, 제 1 가스 버퍼 공간에 공급되는 제 1 가스(G1)를 이용하여 기판(S)의 상면으로부터 이격된 플라즈마 방전 공간(PDS)에 플라즈마(P)를 형성하고, 제 2 가스 버퍼 공간에 공급되는 제 2 가스(G)를 플라즈마 방전 공간(PDS)에 분사하여 플라즈마(P)에 따라 제 2 가스(G2)를 활성화시켜 기판(S)에 분사함으로써 기판(S)의 상면 전영역에 걸쳐 균일한 두께의 박막을 형성할 수 있다. 이에 따라, 본 발명은 플라즈마 방전이 기판까지 전달되는 것을 방지하여 플라즈마 방전에 의한 기판이 손상과 막질 저하를 최소화할 수 있으며, 제 1 및 제 2 가스(G1, G2)의 분리를 통해 접지 전극과 플라즈마 전극의 내벽에 이상 박막이 증착되는 것을 최소화할 수 있다.As described above, the substrate processing apparatus and the substrate processing method according to the embodiment of the present invention provide the first and second gas buffer spaces spatially separated in the
본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It will be understood by those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the appended claims rather than the detailed description and all changes or modifications derived from the meaning and scope of the claims and their equivalents are to be construed as being included within the scope of the present invention do.
110: 공정 챔버 120: 기판 지지부
130: 챔버 리드 140: 가스 분사 모듈
150: 제 1 가스 공급부 160: 제 2 가스 공급부
170: 플라즈마 전원 공급부 210: 하부 프레임
220: 지지 프레임 230: 상부 프레임
GE: 접지 전극 PE: 플라즈마 전극110: process chamber 120: substrate support
130: chamber lid 140: gas injection module
150: first gas supply unit 160: second gas supply unit
170: plasma power supply 210: lower frame
220: support frame 230: upper frame
GE: ground electrode PE: plasma electrode
Claims (15)
상기 공정 챔버의 내부에 배치되어 기판을 지지하는 기판 지지부;
상기 기판 지지부와 마주보도록 상기 공정 챔버의 상부에 설치된 챔버 리드; 및
상기 챔버 리드의 하면에 설치되어 제 1 및 제 2 가스가 분리되어 공급되며, 상기 제 1 가스를 분사하여 상기 기판의 상면으로부터 이격된 플라즈마 방전 공간에 플라즈마를 형성하면서 상기 플라즈마 방전 공간에 상기 제 2 가스를 분사하여 상기 플라즈마에 의해 활성화되는 제 2 가스를 상기 기판 상에 분사하는 가스 분사 모듈을 포함하여 구성되고,
상기 가스 분사 모듈은 상기 기판의 상면으로부터 이격되면서 서로 나란하도록 교대로 배치된 접지 전극과 플라즈마 전극을 포함하여 구성되고,
상기 플라즈마 방전 공간은 상기 접지 전극과 상기 플라즈마 전극 사이인 것을 특징으로 하는 기판 처리 장치.A process chamber providing a reaction space;
A substrate support part disposed in the process chamber to support a substrate;
A chamber lead disposed above the process chamber so as to face the substrate support; And
A first gas and a second gas, which are installed on a lower surface of the chamber lid, are supplied separately, and inject the first gas to form a plasma in a plasma discharge space spaced from an upper surface of the substrate, and to form a plasma in the second plasma discharge space. And a gas injection module for injecting a gas to inject a second gas activated by the plasma onto the substrate,
The gas injection module is configured to include a ground electrode and a plasma electrode alternately arranged to be parallel to each other while being spaced apart from the upper surface of the substrate,
And the plasma discharge space is between the ground electrode and the plasma electrode.
상기 플라즈마 전극과 상기 접지 전극은 높이 차를 가지도록 단차진 것을 특징으로 하는 기판 처리 장치.The method of claim 1,
And the plasma electrode and the ground electrode are stepped to have a height difference.
상기 제 1 가스는 제 1 가스 분사 부재를 통해 상기 접지 전극과 상기 플라즈마 전극 사이에 마련된 가스 분사 공간에 분사되고,
상기 제 2 가스는 상기 플라즈마 전극의 내부에 형성된 제 2 가스 분사 부재를 통해 상기 플라즈마 방전 공간에 분사되는 것을 특징으로 하는 기판 처리 장치.The method of claim 1,
The first gas is injected into the gas injection space provided between the ground electrode and the plasma electrode through a first gas injection member,
And the second gas is injected into the plasma discharge space through a second gas injection member formed inside the plasma electrode.
상기 제 1 가스 분사 부재는,
제 1 직경을 가지도록 형성되어 상기 제 1 가스가 공급되는 제 1 가스 공급 홀; 및
상기 제 1 직경보다 작은 제 2 직경을 가지도록 형성되어 상기 제 1 가스 공급 홀에 연통되면서 상기 가스 분사 공간에 연통된 제 1 가스 분사 홀을 포함하여 이루어지는 것을 특징으로 하는 기판 처리 장치.5. The method of claim 4,
The first gas injection member,
A first gas supply hole formed to have a first diameter and to which the first gas is supplied; And
And a first gas injection hole formed to have a second diameter smaller than the first diameter and in communication with the first gas supply hole, the first gas injection hole communicating with the gas injection space.
상기 가스 분사 부재는,
상기 플라즈마 전극의 내부에 수직하게 형성되어 상기 제 2 가스가 공급되는 제 2 가스 공급 홀;
상기 제 2 가스 공급 홀에 연통되도록 상기 플라즈마 전극의 길이 방향을 따라 상기 플라즈마 전극의 하부 내부에 형성된 제 2 가스 분배 홀; 및
상기 제 2 가스 분배 홀에 연통되도록 상기 플라즈마 전극의 하부에 형성되어 상기 제 2 가스를 하부 및 양측부 방향으로 분사하는 제 2 가스 분사 홀을 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.5. The method of claim 4,
Wherein the gas injection member
A second gas supply hole formed perpendicular to the inside of the plasma electrode to supply the second gas;
A second gas distribution hole formed in the lower portion of the plasma electrode along a length direction of the plasma electrode to communicate with the second gas supply hole; And
And a second gas injection hole formed below the plasma electrode so as to communicate with the second gas distribution hole and injecting the second gas in the lower and both side directions.
상기 제 2 가스 분사 홀은,
상기 제 2 가스 분배 홀에 연통되도록 상기 플라즈마 전극의 하면 중앙부에 형성되어 상기 제 2 가스를 하부 방향으로 분사하는 중앙 홀; 및
상기 제 2 가스 분배 홀에 연통되도록 상기 중앙 홀을 기준으로 상기 플라즈마 전극의 하면 양측면 각각에 형성되어 상기 제 2 가스를 양측부 방향으로 분사하는 한 쌍의 측면 홀을 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.The method according to claim 6,
The second gas injection hole,
A central hole formed in a central portion of a lower surface of the plasma electrode so as to communicate with the second gas distribution hole and injecting the second gas downward; And
And a pair of side holes formed on each of both side surfaces of the lower surface of the plasma electrode with respect to the center hole so as to communicate with the second gas distribution hole, and spraying the second gas in both side directions. Substrate processing apparatus.
상기 가스 분사 모듈은,
상기 접지 전극과 상기 플라즈마 전극이 상기 기판의 상면으로부터 이격되면서 서로 나란하도록 교대로 수직하게 돌출되어 있는 하부 프레임;
상기 제 1 가스가 공급되는 제 1 가스 버퍼 공간이 마련되도록 상기 하부 프레임의 상면에 결합되고, 상기 제 1 가스 버퍼 공간과 공간적으로 분리되면서 상기 제 2 가스가 공급되는 제 2 가스 버퍼 공간이 마련되도록 상기 챔버 리드의 하면에 결합된 상부 프레임;
상기 상부 프레임의 하면에 설치되어 플라즈마 전원을 분배하여 상기 플라즈마 전극에 공급하는 플라즈마 전원 분배 부재;
상기 제 1 가스 버퍼 공간에 연통되도록 상기 하부 프레임에 형성되어 상기 접지 전극과 상기 플라즈마 전극 사이의 가스 분사 공간에 상기 제 1 가스를 분사하는 복수의 제 1 가스 분사 홀; 및
상기 제 2 가스 버퍼 공간에 연통되도록 상기 복수의 플라즈마 전극 각각의 내부에 형성되어 상기 제 2 가스를 상기 플라즈마 방전 공간에 분사하는 복수의 제 2 가스 분사 홀을 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.The method of claim 1,
The gas injection module,
A lower frame in which the ground electrode and the plasma electrode protrude alternately vertically to be parallel to each other while being spaced apart from an upper surface of the substrate;
Coupled to an upper surface of the lower frame to provide a first gas buffer space through which the first gas is supplied, and a second gas buffer space through which the second gas is supplied while being spatially separated from the first gas buffer space; An upper frame coupled to a lower surface of the chamber lid;
A plasma power distribution member installed on a lower surface of the upper frame to distribute plasma power and supply the plasma power to the plasma electrode;
A plurality of first gas injection holes formed in the lower frame so as to communicate with the first gas buffer space to inject the first gas into a gas injection space between the ground electrode and the plasma electrode; And
And a plurality of second gas injection holes which are formed inside each of the plurality of plasma electrodes to communicate with the second gas buffer space and inject the second gas into the plasma discharge space. Device.
상기 플라즈마 방전 공간은 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 하는 기판 처리 장치.The method of claim 8,
And the plasma discharge space is between the ground electrode and an end of each of the plasma electrodes.
상기 가스 분사 모듈은 상기 상부 프레임의 하면에 설치되어 상기 제 1 가스 버퍼 공간에 공급되는 상기 제 1 가스를 상기 제 1 가스 버퍼 공간의 내부로 확산시키는 가스 확산 부재를 더 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.The method of claim 8,
The gas injection module may further include a gas diffusion member installed on a lower surface of the upper frame to diffuse the first gas supplied to the first gas buffer space into the first gas buffer space. Substrate processing apparatus.
상기 기판 지지부에 마주보도록 공정 챔버의 내부에 설치된 가스 분사 모듈에 공급되는 제 1 가스를 분사하여 상기 기판의 상면으로부터 이격되면서 서로 나란하도록 교대로 배치된 접지 전극과 플라즈마 전극 사이인 플라즈마 방전 공간에 플라즈마를 형성하는 단계; 및
상기 제 1 가스와 공간적으로 분리되어 상기 가스 분사 모듈에 공급되는 제 2 가스를 상기 플라즈마 방전 공간에 분사하여 상기 플라즈마에 의해 활성화되는 제 2 가스를 상기 기판의 상면에 분사하는 단계를 포함하여 이루어지는 것을 특징으로 하는 기판 처리 방법.Mounting at least one substrate on a substrate support installed inside the process chamber;
Plasma is injected into a plasma discharge space between a ground electrode and a plasma electrode which are alternately arranged to be parallel to each other while being spaced apart from an upper surface of the substrate by injecting a first gas supplied to a gas injection module installed inside the process chamber so as to face the substrate support. Forming a; And
And injecting a second gas, which is spatially separated from the first gas, to be supplied to the gas ejection module into the plasma discharge space, to inject a second gas activated by the plasma onto the upper surface of the substrate. A substrate processing method characterized by the above-mentioned.
상기 플라즈마 방전 공간은 상기 접지 전극과 상기 플라즈마 전극 각각의 종단부 사이인 것을 특징으로 하는 기판 처리 방법.The method of claim 11,
And the plasma discharge space is between the ground electrode and an end of each of the plasma electrodes.
상기 접지 전극과 상기 플라즈마 전극은 높이 차를 가지도록 단차진 것을 특징으로 하는 기판 처리 방법.13. The method of claim 12,
And the ground electrode and the plasma electrode are stepped to have a height difference.
상기 제 1 가스는 상기 접지 전극과 상기 플라즈마 전극 사이에 마련된 가스 분사 공간에 분사되고,
상기 제 2 가스는 상기 플라즈마 전극의 내부에 형성된 제 2 가스 분사 홀을 통해 상기 플라즈마 방전 공간에 분사되는 것을 특징으로 하는 기판 처리 방법.The method of claim 11,
The first gas is injected into the gas injection space provided between the ground electrode and the plasma electrode,
And the second gas is injected into the plasma discharge space through a second gas injection hole formed in the plasma electrode.
상기 제 2 가스는 상기 제 2 가스 분사 홀에 의해 상기 플라즈마 전극의 하부 및 양측부 방향으로 분사되는 것을 특징으로 하는 기판 처리 방법.15. The method of claim 14,
And the second gas is injected into the lower side and both side directions of the plasma electrode by the second gas injection hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120065731A KR101351399B1 (en) | 2012-06-19 | 2012-06-19 | Apparatus and method of processing substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120065731A KR101351399B1 (en) | 2012-06-19 | 2012-06-19 | Apparatus and method of processing substrate |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130087988A Division KR101844325B1 (en) | 2013-07-25 | 2013-07-25 | Apparatus and method of processing substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130142480A KR20130142480A (en) | 2013-12-30 |
KR101351399B1 true KR101351399B1 (en) | 2014-01-15 |
Family
ID=49986062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120065731A KR101351399B1 (en) | 2012-06-19 | 2012-06-19 | Apparatus and method of processing substrate |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101351399B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190117230A (en) * | 2018-04-06 | 2019-10-16 | 주식회사 원익아이피에스 | Substrate processing apparatus |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102278074B1 (en) * | 2014-06-30 | 2021-07-19 | 세메스 주식회사 | Apparatus and method for treating substrate |
KR102126948B1 (en) * | 2019-05-16 | 2020-06-25 | 주식회사 메디플 | Plasma generating substrate and plasma generator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100423954B1 (en) * | 2001-03-19 | 2004-03-24 | 디지웨이브 테크놀러지스 주식회사 | Chemical Vapor Deposition Method |
KR20110008537A (en) * | 2009-07-20 | 2011-01-27 | 세메스 주식회사 | Organometallic Chemical Vapor Deposition Equipment with Remote Plasma Source |
KR20120053003A (en) * | 2009-07-22 | 2012-05-24 | 어플라이드 머티어리얼스, 인코포레이티드 | Hollow cathode showerhead |
-
2012
- 2012-06-19 KR KR1020120065731A patent/KR101351399B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100423954B1 (en) * | 2001-03-19 | 2004-03-24 | 디지웨이브 테크놀러지스 주식회사 | Chemical Vapor Deposition Method |
KR20110008537A (en) * | 2009-07-20 | 2011-01-27 | 세메스 주식회사 | Organometallic Chemical Vapor Deposition Equipment with Remote Plasma Source |
KR20120053003A (en) * | 2009-07-22 | 2012-05-24 | 어플라이드 머티어리얼스, 인코포레이티드 | Hollow cathode showerhead |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190117230A (en) * | 2018-04-06 | 2019-10-16 | 주식회사 원익아이피에스 | Substrate processing apparatus |
KR102408386B1 (en) * | 2018-04-06 | 2022-06-14 | 주식회사 원익아이피에스 | Substrate processing apparatus |
Also Published As
Publication number | Publication date |
---|---|
KR20130142480A (en) | 2013-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102061749B1 (en) | Apparatus for processing substrate | |
KR102002042B1 (en) | Substrate processing apparatus and substrate processing method | |
KR101397162B1 (en) | Apparatus and method of processing substrate | |
KR101844325B1 (en) | Apparatus and method of processing substrate | |
KR101503512B1 (en) | Substrate processing apparatus and substrate processing method | |
KR102180119B1 (en) | Apparatus For Processing Substrate | |
KR101690971B1 (en) | Substrate processing apparatus | |
KR101351399B1 (en) | Apparatus and method of processing substrate | |
KR101954758B1 (en) | Substrate processing apparatus and substrate processing method | |
KR101587053B1 (en) | Appratus for treating substrate | |
KR101929481B1 (en) | Substrate processing apparatus and substrate processing method | |
KR101561675B1 (en) | Substrate processing apparatus | |
KR102254808B1 (en) | Apparatus for processing substrate | |
KR102076512B1 (en) | Substrate processing method | |
KR102046391B1 (en) | Substrate processing apparatus and substrate processing method | |
KR101995717B1 (en) | Apparatus for processing substrate | |
KR101158289B1 (en) | Plasma treatment apparatus and method | |
KR102361069B1 (en) | Apparatus for processing substrate | |
KR102143146B1 (en) | Apparatus for processing substrate | |
KR20130141409A (en) | Substrate processing apparatus and substrate processing method | |
KR101895838B1 (en) | Apparatus for processing substrate | |
KR102362305B1 (en) | Apparatus for processing substrate | |
KR102029952B1 (en) | Apparatus and Method of processing substrate | |
CN220317951U (en) | Chamber belt cleaning device | |
KR20170016221A (en) | Substrate processing apparatus andsubstrate processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20120619 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20130529 Patent event code: PE09021S01D |
|
A107 | Divisional application of patent | ||
PA0107 | Divisional application |
Comment text: Divisional Application of Patent Patent event date: 20130725 Patent event code: PA01071R01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20131119 |
|
PG1501 | Laying open of application | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20140108 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20140109 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20161122 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20161122 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20171120 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20171120 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20201123 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20211119 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20230109 Start annual number: 10 End annual number: 10 |