KR101354721B1 - Search system and method of search service - Google Patents
Search system and method of search service Download PDFInfo
- Publication number
- KR101354721B1 KR101354721B1 KR1020120053800A KR20120053800A KR101354721B1 KR 101354721 B1 KR101354721 B1 KR 101354721B1 KR 1020120053800 A KR1020120053800 A KR 1020120053800A KR 20120053800 A KR20120053800 A KR 20120053800A KR 101354721 B1 KR101354721 B1 KR 101354721B1
- Authority
- KR
- South Korea
- Prior art keywords
- image
- tree
- images
- cluster
- search
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Processing Or Creating Images (AREA)
Abstract
본 발명에 따른 검색 시스템은 이미지의 메타 특징값 및 이미지 특징값을 기초로 이미지 군집을 생성하는 이미지 군집 생성부, 그리고 사용자 단말로부터 수신한 쿼리에 대하여 상기 이미지 군집을 기초로 검색 결과를 생성하여 제공하는 검색 처리부를 포함한다.The search system according to the present invention generates an image cluster generation unit for generating an image cluster based on the meta feature value of the image and the image feature value, and generates and provides a search result based on the image cluster for a query received from a user terminal. And a search processing unit.
Description
본 발명은 검색 시스템 및 검색 서비스 방법에 관한 것이다.The present invention relates to a search system and a search service method.
인터넷 사용자는 포털 사이트(portal site) 등에서 관심 있는 업체 등을 검색하고, 검색된 업체의 정보를 제공받을 수 있다. 이때 사용자의 검색은 관심 있는 업체와 관련된 쿼리를 다양하게 입력함으로써 수행될 수 있다. 즉, 사용자가 업체에 관련된 쿼리를 입력하면, 포털 사이트 등은 사용자가 입력한 쿼리와 관련된 검색 결과를 사용자에게 제공한다.Internet users can search for companies that they are interested in on a portal site or the like, and receive information on the searched companies. At this time, the user's search may be performed by variously inputting a query related to a company of interest. That is, when a user inputs a query related to a company, a portal site or the like provides the user with a search result related to the query input by the user.
이러한 검색 결과는 텍스트 데이터, 음악 데이터, 이미지 데이터 및 동영상 데이터 등 다양한 데이터를 포함한다. 검색 서비스 제공 사업자는 검색 서비스를 제공하기 위하여 검색 데이터를 획득하여 저장하며, 검색 데이터 중에서 검색 결과 정보를 선택하여 출력 한다.The search results include various data such as text data, music data, image data, and video data. The search service provider acquires and stores search data to provide a search service, and selects and outputs search result information from the search data.
한편, 검색 결과 중 이미지 데이터는 이미지 주변의 메타 정보, 예를 들어 이미지 제목, 이미지 생성일 및 이미지 사이즈 등을 활용하여 쿼리에 대한 검색 결과로 적절한지가 판단된다. 그러나 검색 결과로서 이미지 데이터는 제공자의 의도에 따라 정확한 메타 정보가 확보되지 않거나 중복된 이미지가 많아 검색 결과로서 적합성이 유지되지 않을 수 있다. 예를 들어 사용자가 특정 이미지를 홍보하기 위하여 실제로 기재한 메타 데이터와 맞지 않는 복수의 이미지를 자신의 블로그 등에 게재하는 경우, 이미지 데이터의 메타 정보만을 기초로 검색 결과를 선정하면 쿼리와 관련도가 낮은 이미지 데이터가 검색 결과로 노출되어 검색 품질이 낮아질 수 있다.Meanwhile, it is determined whether the image data among the search results is appropriate as a search result for the query by using meta information around the image, for example, an image title, an image generation date, and an image size. However, as the search result, the image data may not be secured as accurate as the meta information or the duplicated image may not be maintained according to the intention of the provider. For example, if a user posts a plurality of images on his or her blog that do not match the metadata actually written to promote a particular image, selecting a search result based only on the meta data of the image data may result in a less relevant query. Image data may be exposed as a search result, thereby reducing search quality.
본 발명이 이루고자 하는 기술적 과제는 이미지 데이터의 메타 정보뿐만 아니라 이미지 데이터 내용 기술 분석을 통하여 이미지 데이터를 군집화하고, 이를 기초로 쿼리에 대한 검색 결과를 선정함으로써 검색 서비스의 품질을 높이는 것이다.The technical problem to be achieved by the present invention is to improve the quality of the search service by clustering the image data through analysis of the image data content description as well as the meta information of the image data, and selecting a search result for the query based on the image data.
본 발명의 한 실시예에 따른 검색 시스템은 이미지의 메타 특징값 및 이미지 특징값을 기초로 이미지 군집을 생성하는 이미지 군집 생성부, 그리고 사용자 단말로부터 수신한 쿼리에 대하여 상기 이미지 군집을 기초로 검색 결과를 생성하여 제공하는 검색 처리부를 포함한다.According to an embodiment of the present invention, a search system includes an image cluster generation unit generating an image cluster based on meta image values and image feature values of an image, and a search result based on the image cluster with respect to a query received from a user terminal. It includes a search processing unit for generating and providing.
상기 이미지 군집 생성부는, 검색 대상이 되는 복수의 이미지를 수집하는 수집부, 상기 복수의 이미지 각각의 메타 특징값을 추출하는 메타 특징 추출부, 그리고 상기 메타 특징값의 유사도를 기초로 후보 군집을 생성하는 후보 군집 생성부를 포함할 수 있다.The image cluster generation unit may include a collection unit collecting a plurality of images to be searched, a meta feature extractor extracting meta feature values of the plurality of images, and a candidate cluster based on the similarity of the meta feature values. The candidate cluster generation unit may be included.
상기 후보 군집에 속하는 이미지 각각의 이미지 특징값을 추출하는 이미지 특징 추출부, 그리고 상기 이미지 특징값의 차이값이 기준 이하인 이미지들을 선으로 연결한 특징 연결도를 생성하는 특징 연결도 생성부를 포함할 수 있다.And an image feature extracting unit for extracting image feature values of each image belonging to the candidate cluster, and a feature connection diagram generating unit for generating a feature connection diagram connecting lines of images having a difference value of the image feature values below a reference. have.
상기 후보 군집에 속하는 이미지 중에서 동일한 문서에 포함된 이미지를 선으로 연결한 문서 연결도를 생성하는 문서 연결도 생성부를 더 포함할 수 있다.The apparatus may further include a document linkage generation unit configured to generate a document linkage diagram connecting lines of an image included in the same document among images belonging to the candidate cluster.
상기 특징 연결도와 상기 문서 연결도를 비교하여 중첩된 선을 제거하여 상기 이미지 군집을 생성하는 최종 군집 생성부를 더 포함할 수 있다.The apparatus may further include a final cluster generation unit configured to generate the image cluster by removing the overlapping lines by comparing the feature connection diagram and the document connection diagram.
상기 메타 특징값은 이미지가 포함된 문서의 제목, 본문, 이미지 생성일 및 이미지가 게재된 웹페이지의 카테고리 중 적어도 하나를 기초로 결정될 수 있다.The meta feature value may be determined based on at least one of a title, a text, an image generation date, and a category of a webpage on which an image is displayed.
상기 메타 특징값은 이미지가 포함된 문서의 제목 및 본문에 기재된 단어의 빈도수를 기초로 결정될 수 있다.The meta feature value may be determined based on the title of the document including the image and the frequency of words described in the text.
상기 이미지 특징값은 상기 이미지를 복수의 영역으로 나누어 각 영역에 대한 픽셀값의 변화를 수치화한 값을 포함할 수 있다.The image feature value may include a value obtained by dividing the image into a plurality of regions and digitizing a change in pixel value for each region.
상기 이미지 군집에서 대표 이미지를 선정하고, 상기 대표 이미지를 중심으로 나머지 이미지를 계층 분류하는 대표 이미지 트리를 생성하는 대표 이미지 트리 생성부를 더 포함할 수 있다.The representative image tree may further include a representative image tree generation unit for selecting a representative image from the image cluster and generating a representative image tree for hierarchically classifying the remaining images based on the representative image.
상기 대표 이미지 트리 생성부는 최소비용신장트리(minimum cost spanning tree)를 이용하여 생성된 복수의 트리 중에서 트리를 생성하기까지 비용이 가장 적은 트리를 상기 대표 이미지 트리로 결정할 수 있다.The representative image tree generation unit may determine, as the representative image tree, a tree having the lowest cost to generate a tree among a plurality of trees generated using a minimum cost spanning tree.
상기 대표 이미지 트리를 기초로 키워드 트리를 생성하는 키워드 트리 생성부를 더 포함할 수 있다.The apparatus may further include a keyword tree generator that generates a keyword tree based on the representative image tree.
상기 키워드 트리 생성부는 상기 대표 이미지에서 신장되는 연결선 중 동일한 연결선에 연결된 복수의 이미지를 군으로 묶고, 동일한 군에 속하는 이미지의 상기 메타 특징값을 이용하여 상기 키워드 트리를 생성할 수 있다.The keyword tree generating unit may group a plurality of images connected to the same connection line among the connection lines extending from the representative image into a group, and generate the keyword tree using the meta feature values of the images belonging to the same group.
상기 검색 처리부는, 상기 사용자 단말로부터 쿼리를 수신하는 쿼리 수신부, 상기 쿼리에 관련된 상기 대표 이미지 트리를 선택하는 대표 이미지 트리 선택부, 그리고 상기 대표 이미지 트리를 기초로 상기 검색 결과를 상기 사용자 단말에게 제공하는 제공부를 포함할 수 있다.The search processor may provide the search result to the user terminal based on a query receiver that receives a query from the user terminal, a representative image tree selector that selects the representative image tree related to the query, and the representative image tree. It may include a providing unit.
상기 제공부는, 상기 대표 이미지 트리에 포함된 복수의 이미지를 순차적으로 나열하여 제공할 수 있다.The providing unit may sequentially provide a plurality of images included in the representative image tree.
상기 제공부는, 상기 대표 이미지 트리를 상기 검색 결과로서 제공할 수 있다.The providing unit may provide the representative image tree as the search result.
상기 제공부는, 상기 쿼리에 관련된 상기 키워드 트리를 선택하는 키워드 트리 선택부를 더 포함하고, 상기 제공부는 상기 키워드 트리를 이용하여 연관 키워드를 제공할 수 있다.The providing unit may further include a keyword tree selecting unit selecting the keyword tree related to the query, and the providing unit may provide a related keyword using the keyword tree.
본 발명의 다른 실시예에 따른 검색 서비스 방법은 검색 시스템이 검색 서비스를 제공하는 방법으로서, 검색 결과의 대상이 되는 이미지를 수집하는 단계, 상기 수집한 이미지의 메타 특징값을 추출하는 단계, 상기 추출한 메타 특징값의 유사도를 기초로 상기 이미지를 배열하여 후보 군집을 생성하는 단계, 상기 후보 군집에 속하는 이미지에 대하여 이미지 특징값을 추출하는 단계, 상기 이미지 특징값의 차이값이 기준 이하인 이미지들을 선으로 연결하여 특징 연결도를 생성하는 단계, 상기 후보 군집에 속하는 이미지에 대하여 동일한 문서에 포함되어 있는 이미지들을 선으로 연결하여 문서 연결도를 생성하는 단계, 상기 특징 연결도와 상기 문서 연결도를 비교하여 중첩되는 선을 제거한 이미지 군집을 생성하는 단계, 그리고 상기 이미지 군집을 기초로 쿼리에 대한 검색 결과를 생성하는 단계를 포함한다.A search service method according to another embodiment of the present invention is a method for providing a search service by a search system, the method comprising: collecting an image of a search result; extracting a meta feature value of the collected image; Arranging the images based on the similarity of meta feature values to generate candidate clusters; extracting image feature values for images belonging to the candidate clusters; Generating a feature connection diagram by connecting, generating a document connection diagram by connecting images included in the same document with lines with respect to an image belonging to the candidate cluster, and comparing the feature connection diagram and the document connection diagram to overlap each other. Generating an image cluster from which the lines are removed; and Generating a search result for the query based on the result.
상기 이미지 군집에서 대표 이미지를 선정하고, 상기 대표 이미지를 중심으로 나머지 이미지를 계층 분류하여 대표 이미지 트리를 생성하는 단계를 더 포함할 수 있다.The method may further include selecting a representative image from the image cluster, and generating a representative image tree by classifying the remaining images based on the representative image.
상기 검색 결과를 생성하는 단계는, 상기 쿼리에 관련된 대표 이미지 트리를 선택하고 대표 이미지 트리에 포함된 이미지를 상기 사용자 단말에게 제공하는 단계를 포함할 수 있다.The generating of the search result may include selecting a representative image tree related to the query and providing an image included in the representative image tree to the user terminal.
상기 대표 이미지에서 신장되는 연결선 중 동일한 연결선에 연결된 복수의 이미지를 군으로 묶고, 동일한 군에 속하는 이미지의 상기 메타 특징값을 이용하여 키워드 트리를 생성할 수 있다.A plurality of images connected to the same connection line among the connection lines extending from the representative image may be bundled into a group, and a keyword tree may be generated using the meta feature values of the images belonging to the same group.
상기 키워드 트리를 이용하여 연관 키워드를 제공하는 단계를 더 포함할 수 있다.The method may further include providing a related keyword by using the keyword tree.
본 발명의 한 실시예에 따르면 이미지 데이터의 메타 정보뿐만 아니라 이미지 데이터 내용 기술 분석을 통하여 이미지 데이터를 군집화하고, 이를 기초로 쿼리에 대한 검색 결과를 선정할 수 있다.According to an embodiment of the present invention, image data may be clustered through image data content description analysis as well as meta information of image data, and a search result for a query may be selected based on the image data.
또한 검색 결과를 사용자가 직관적으로 인지가 편리하도록 제공하여 검색 서비스 품질을 향상시킬 수 있다.In addition, it is possible to improve the quality of the search service by providing the search results to the user intuitively.
도 1은 본 발명의 한 실시예에 따른 검색 시스템의 블록도이다.
도 2는 본 발명의 한 실시예에 따른 검색 시스템의 이미지 군집 생성부를 도시하는 블록도이다.
도 3은 본 발명의 한 실시예에 따른 이미지 군집 생성부의 동작을 설명하기 위한 도면이다.
도 4는 본 발명의 한 실시예에 따른 이미지 군집 생성부의 동작을 설명하기 위한 다른 도면이다.
도 5는 본 발명의 한 실시예에 따른 검색 시스템의 대표 이미지 트리 생성부의 동작을 설명하기 위한 다른 도면이다.
도 6은 본 발명의 한 실시예에 따른 검색 시스템의 키워드 트리 생성부의 동작을 설명하기 위한 다른 도면이다.
도 7은 본 발명의 한 실시예에 따른 검색 시스템의 키워드 트리 생성부의 동작을 설명하기 위한 다른 도면이다.
도 8은 본 발명의 한 실시예에 따른 검색 시스템의 검색 처리부를 도시하는 블록도이다.
도 9는 본 발명의 한 실시예에 따른 검색 처리부가 제공하는 화면의 예이다.
도 10은 본 발명의 한 실시예에 따른 검색 처리부가 제공하는 화면의 다른 예이다.
도 11은 본 발명의 한 실시예에 따른 검색 처리부가 제공하는 화면의 다른 예이다.
도 12는 본 발명의 다른 실시예에 따른 검색 서비스 방법을 도시하는 흐름도이다.1 is a block diagram of a search system in accordance with an embodiment of the present invention.
2 is a block diagram illustrating an image cluster generation unit of a search system according to an exemplary embodiment of the present invention.
3 is a view for explaining the operation of the image cluster generation unit according to an embodiment of the present invention.
4 is another diagram for describing an operation of an image cluster generation unit according to an exemplary embodiment of the present invention.
5 is another diagram for describing an operation of a representative image tree generator of a search system according to an exemplary embodiment of the present invention.
6 is another diagram for describing an operation of a keyword tree generator of a search system according to an exemplary embodiment of the present invention.
7 is another diagram for describing an operation of a keyword tree generation unit of a search system according to an exemplary embodiment of the present invention.
8 is a block diagram illustrating a search processing unit of a search system according to an embodiment of the present invention.
9 is an example of a screen provided by a search processor according to an exemplary embodiment.
10 is another example of a screen provided by a search processor according to an exemplary embodiment of the present invention.
11 is another example of a screen provided by a search processor according to an exemplary embodiment of the present invention.
12 is a flowchart illustrating a search service method according to another embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In order to clearly illustrate the present invention, parts not related to the description are omitted, and similar parts are denoted by like reference characters throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise. Also, the terms " part, "" module," and " module ", etc. in the specification mean a unit for processing at least one function or operation and may be implemented by hardware or software or a combination of hardware and software have.
도면을 참고하여 본 발명의 한 실시예에 따른 검색 시스템 및 검색 서비스 방법에 대하여 상세하게 설명한다.A search system and a search service method according to an embodiment of the present invention will be described in detail with reference to the drawings.
도 1은 본 발명의 한 실시예에 따른 검색 시스템의 블록도이다.1 is a block diagram of a search system in accordance with an embodiment of the present invention.
검색 시스템(100)은 사용자 단말(200)로부터 쿼리를 수신하여 쿼리에 대한 검색 결과를 생성하여 사용자 단말(200)에게 제공하는 서버로서, 특히 이미지 데이터의 메타 정보뿐만 아니라 이미지 특징값을 기초로 이미지 데이터를 군집화하고, 이미지의 동일 문서 포함 여부를 고려하여 쿼리에 대한 이미지 데이터를 검색 결과로서 제공한다.The
여기서 사용자 단말(200)은 광고를 제공받는 사용자가 네트워크를 통하여 검색 시스템(100)에 접속하고 통신하는 장치이며, 예를 들어 컴퓨터, 개인 휴대용 정보 단말기(Personal Digital Assistant, PDA), 이동 통신 단말기 및 텔레비전(television, TV)등 다양한 통신 장치가 사용될 수 있다.In this case, the
검색 시스템(100)은 이미지 군집 생성부(110), 대표 이미지 트리 생성부(120), 키워드 트리 생성부(130) 및 검색 처리부(140)를 포함한다.The
이미지 군집 생성부(110)는 이미지 데이터의 메타 정보, 이미지 데이터 특징 벡터 및 이미지가 포함된 문서 정보 등을 기초로 이미지 군집을 생성한다. 이에 대하여 도 2 내지 도 4를 참고하여 상세하게 설명한다.The image
도 2는 본 발명의 한 실시예에 따른 검색 시스템의 이미지 군집 생성부를 도시하는 블록도이며, 도 3은 본 발명의 한 실시예에 따른 이미지 군집 생성부의 동작을 설명하기 위한 도면이며, 도 4는 본 발명의 한 실시예에 따른 이미지 군집 생성부의 동작을 설명하기 위한 다른 도면이다.FIG. 2 is a block diagram illustrating an image cluster generation unit of a search system according to an embodiment of the present invention. FIG. 3 is a view for explaining an operation of an image cluster generation unit according to an embodiment of the present invention. Another diagram for describing an operation of an image cluster generation unit according to an exemplary embodiment of the present invention.
도 2를 참고하면, 이미지 군집 생성부(110)는 수집부(111), 메타 특징 추출부(112), 후보 군집 생성부(113), 이미지 특징 추출부(114), 특징 연결도 생성부(115), 문서 연결도 생성부(116) 및 최종 군집 생성부(117)를 포함한다.2, the
수집부(111)는 검색 결과의 대상이 되는 이미지를 수집하여 저장한다.The collecting
메타 특징 추출부(112)는 수집된 이미지와 관련된 메타 정보를 추출하고 각 이미지에 대한 메타 특징값을 생성한다. 여기서 메타 정보는 이미지가 포함된 문서의 제목, 본문, 이미지 생성일 및 문서가 게재된 웹페이지의 카테고리 등이 될 수 있다. 또한 메타 특징값은 이미지가 포함된 문서의 제목 및 문서의 본문에 기재된 단어의 빈도수를 기초로 결정될 수 있으며, 이미지의 생성일 및 문서가 게재된 웹페이지의 카테고리를 기초로 가중치를 부여할 수 있다.The
후보 군집 생성부(113)는 메타 특징 추출부(112)에서 생성한 메타 특징값에서 특정 단어의 빈도수가 유사한지 여부에 따라 이미지 군집이 될 수 있는 후보 군집을 생성한다.The candidate
이미지 특징 추출부(114)는 후보 군집 생성부(113)가 생성한 후보 군집에 포함된 이미지 각각에 대하여 이미지 특징값을 추출한다. 여기서 이미지 특징값은 이미지를 복수의 영역으로 나누어 각 영역에 대한 가로 및 세로 방향 픽셀 값의 변화 정도를 수치화한 값일 수 있다.The
특징 연결도 생성부(115)는 후보 군집 생성부(113)가 생성한 후보 군집 내의 이미지에 대하여 이미지 특징값의 거리차에 따라 기준 이하의 거리차인 이미지를 연결하여 특징 연결도를 생성한다. 이러한 특징 연결도가 도 3에 도시되어 있다. 도 3을 참고하면 복수의 이미지가 메타 특징값에 따라 후보 군집을 이루고 있으며, 이미지 특징값이 기준 이하인 이미지들 사이가 선으로 연결되어 있다.The feature
문서 연결도 생성부(116)는 후보 군집을 이루는 이미지들 중에서 동일한 문서에 포함된 이미지를 서로 선으로 연결한 문서 연결도를 생성한다. 이러한 문서 연결도가 도 4에 도시되어 있다. 도 4를 참고하면, 이미지(41, 42, 43, 44, 45)가 후보 군집에 존재하는 경우, 이미지(41, 42)는 문서 1에 포함되고, 이미지(43, 44, 45)는 문서 2에 포함되어 있다. 이 경우 이미지(41, 42)를 서로 연결하고, 이미지(43, 44, 45)를 서로 연결한 문서 연결도(40)가 생성된다.The document connection
최종 군집 생성부(117)는 특징 연결도 생성부(115)가 생성한 특징 연결도와 문서 연결도 생성부(116)가 생성한 문서 연결도를 비교하여 연결 선이 중첩하는 경우 연결선을 제거하여 최종적으로 이미지 군집을 생성한다. 즉, 이미지 군집은 메타 특징값이 유사하면서, 이미지 특징값이 유사한 이미지를 연결하고, 이중 동일한 문서에 포함되어 있는 이미지들의 연결을 제외한 것이다. 이로써, 사용자가 특정 이미지를 홍보하기 위하여 중복되는 이미지를 자신의 블로그 등에 반복하여 게재하여 검색 결과의 정확도를 낮추는 경우를 방지할 수 있다.The final
다시 도 1을 참고하면, 대표 이미지 트리 생성부(120)는 이미지 군집 생성부(110)가 생성한 이미지 군집에 대하여 대표 이미지를 중심으로 하는 트리를 생성한다. 이에 대하여 도 5를 참고하여 상세하게 설명한다.Referring back to FIG. 1, the representative
도 5는 본 발명의 한 실시예에 따른 검색 시스템의 대표 이미지 트리 생성부의 동작을 설명하기 위한 다른 도면이다.5 is another diagram for describing an operation of a representative image tree generator of a search system according to an exemplary embodiment of the present invention.
도 5를 참고하면, 이미지 군집(51)의 한 예가 도시되어 있다. 이러한 이미지 군집(51)은 앞서 설명한 바와 같이 메타 특징값의 유사도를 기초로 한 후보 군집에 따라 생성되었다. 따라서 이미지 군집(51)에 포함된 복수의 이미지는 메타 특징값의 유사도에 따라 분포되어 있으며 가장 중심에 있는 이미지(53)가 대표 이미지이다. 대표 이미지 트리 생성부(120) 이러한 이미지 군집에서 대표 이미지(53)를 선정하고 대표 이미지(53)를 중심으로 나머지 이미지를 계층 분류하는 대표 이미지 트리(52)를 생성한다. 대표 이미지 트리 생성부(120)는 최소비용신장트리(minimum cost spanning tree)를 통해 생성된 복수의 트리 중에서 트리를 생성하기까지 비용이 가장 적은 트리를 대표 이미지 트리(51)로 결정할 수 있다. 대표 이미지 트리(51)는 대표 이미지(53) 및 대표 이미지(53)에 연결된 복수의 이미지(54, 55, 56)를 포함한다.Referring to FIG. 5, an example of an image cluster 51 is shown. This image cluster 51 was generated according to the candidate clusters based on the similarity of the meta feature values as described above. Therefore, the plurality of images included in the image cluster 51 are distributed according to the similarity of the meta feature values, and the
다시 도 1을 참고하면, 키워드 트리 생성부(130)는 대표 이미지 트리 생성부(120)가 생성한 대표 이미지 트리를 기초로 키워드 트리를 생성한다. 이에 대하여 도 6 및 도 7을 참고하여 상세하게 설명한다.Referring again to FIG. 1, the
도 6 및 도 7은 각각 본 발명의 한 실시예에 따른 검색 시스템의 키워드 트리 생성부의 동작을 설명하기 위한 다른 도면이다.6 and 7 are different diagrams for describing an operation of a keyword tree generator of a search system according to an exemplary embodiment of the present invention, respectively.
도 6을 참고하면, 키워드 트리 생성부(130)는 대표 이미지 트리 생성부(120)에서 생성한 대표 이미지 트리에서 대표 이미지(53)을 제외한 나머지 이미지(54, 55, 56)를 복수의 군으로 묶을 수 있다. 즉 키워드 트리 생성부(130)는 대표 이미지(53)에서 신장되는 동일한 연결선에 연결된 복수의 이미지(54, 55, 56)를 각각 복수의 군으로 묶는다. 그런 후 키워드 트리 생성부(130)는 각 군(54, 55, 56)에 속한 이미지의 메타 특징값을 이용하여 빈번하게 나타나는 키워드를 추출하여 이를 기초로 키워드 트리를 생성한다. 대표 이미지의 키워드는 캡티바로 결정되었으며, 군(54)의 키워드는 캡티바 이미지로 결정되었으며, 군(55)의 키워드는 캡티바 주간사진으로 결정되었으며, 군(56)의 키워드는 캡티바 눈길 주행으로 결정되었다. 이에 따라 키워드 트리 생성부(130)도 7과 같은 키워드 트리를 생성할 수 있다.Referring to FIG. 6, the keyword
다시 도 1을 참고하면 검색 처리부(140)는 사용자 단말(200)로부터 쿼리를 수신하고 대표 이미지 트리 및 키워드 이미지 트리를 이용하여 쿼리에 대한 검색 결과를 사용자 단말(200)에게 제공한다. 이에 대하여 도 8을 참고하여 상세하게 설명한다.Referring back to FIG. 1, the
도 8은 본 발명의 한 실시예에 따른 검색 시스템의 검색 처리부를 도시하는 블록도이다.8 is a block diagram illustrating a search processing unit of a search system according to an embodiment of the present invention.
도 8을 참고하면, 검색 처리부(140)는 쿼리 수신부(141), 대표 이미지 트리 선택부(142), 키워드 트리 선택부(143) 및 제공부(144)를 포함한다.Referring to FIG. 8, the
쿼리 수신부(141)는 사용자 단말(200)로부터 검색 서비스를 위한 쿼리를 수신한다. 이때 쿼리는 텍스트 또는 이미지일 수 있다. 쿼리 수신부(141)는 쿼리가 텍스트인 경우, 형태소 분석을 수행하여 조사 또는 빈칸을 제거하고 동의어에 대해서는 단일 단어로 치환한 후 최종 쿼리를 생성할 수 있다. 또한 쿼리 수신부(141)는 쿼리가 이미지인 경우에는 이미지를 복수의 영역으로 나누고 각 영역에 대하여 가로 및 세로 방향 픽셀 값의 변화 정도를 수치화하여 이미지 특징값을 생성한다. 만일 쿼리가 텍스트 및 이미지의 혼용인 경우에는 각각에 대하여 앞서 설명한 과정을 수행할 수 있다.The
대표 이미지 트리 선택부(142)는 쿼리에 대하여 대표 이미지 트리를 선택한다. 만일 쿼리가 텍스트인 경우에는 복수의 대표 이미지 트리로부터 미리 추출된 메타 특징값을 통해 쿼리와 연관성이 있는 적어도 하나의 대표 이미지 트리를 선택한다. 쿼리가 이미지인 경우에는 대표 이미지 트리에서 미리 정의한 색인을 기초로 쿼리와 연관성이 있는 적어도 하나의 대표 이미지 트리를 선택한다.The representative
키워드 트리 선택부(143)는 키워드 트리를 기초로 쿼리와 관련된 키워드를 선택한다.The
제공부(144)는 대표 이미지 트리 선택부(142)가 선택한 대표 이미지 트리에 포함되어 있는 이미지를 쿼리에 대한 검색 결과로서 사용자 단말(200)에게 제공한다. 이에 대하여 도 9 및 도 10을 참고하여 상세하게 설명한다.The
도 9는 본 발명의 한 실시예에 따른 검색 처리부가 제공하는 화면의 예이며, 도 10은 본 발명의 한 실시예에 따른 검색 처리부가 제공하는 화면의 다른 예이다.9 is an example of a screen provided by a search processor according to an embodiment of the present invention, and FIG. 10 is another example of a screen provided by a search processor according to an embodiment of the present invention.
사용자 단말(200)이 쿼리로서 "신형에쿠스"를 입력한 경우, 제공부(144)는 "신형에쿠스"와 관련하여 선택된 대표 이미지 트리에 포함되어 있는 복수의 이미지를 도 9와 같이 순서대로 배열하여 사용자 단말(200)에게 제공할 수 있다.When the
이와는 달리 사용자 단말(200)이 쿼리로서 "쉐보레"를 입력한 경우, 제공부(144)는 도 10과 같이 "쉐보레"와 관련하여 선택된 대표 이미지 트리 자체를 검색 결과로서 사용자 단말(200)에게 제공할 수 있다. 이때, 사용자 단말(200)이 대표 이미지 트리에 포함된 어느 이미지를 선택하는 경우, 선택된 이미지를 중심으로 연장된 이미지 트리를 보여줄 수도 있다.On the contrary, when the
한편, 제공부(144)는 사용자 단말(200)이 입력한 쿼리에 대하여 키워드 트리 선택부(143)가 선택한 키워드 트리에 포함된 키워드를 사용자 단말(200)에게 제공한다. 이에 대하여 도 11을 참고하여 상세하게 설명한다.On the other hand, the
도 11은 본 발명의 한 실시예에 따른 검색 처리부가 제공하는 화면의 다른 예이다.11 is another example of a screen provided by a search processor according to an exemplary embodiment of the present invention.
도 11을 참고하면, 사용자 단말(200)이 쿼리로서 "쉐보레"를 입력한 경우, "쉐보레"에 관련된 키워드 트리가 선택되고, 제공부(144)는 선택된 키워드 트리에 포함된 키워드인 "캡티바 주간사진", "캡티바이미지" 및 "캡티바눈길주행"을 연관 키워드로서 사용자 단말(200)에게 제공할 수 있다.Referring to FIG. 11, when the
이와 같이 이미지 데이터의 메타 정보, 이미지 특징값 및 이미지가 속한 문서를 분석하여 이미지 데이터를 군집화하고, 이를 기초로 쿼리에 대한 검색 결과를 선정하면 웹상에서 동일한 문서에 반복되어 포함된 이미지를 제거하여 검색 결과의 정확도를 높일 수 있다. 또한 검색 결과를 사용자가 직관적으로 인지가 편리하도록 제공하여 검색 서비스 품질을 향상시킬 수 있으며, 관련 키워드를 효과적으로 선정하여 제공할 수 있다.In this way, image data is clustered by analyzing meta information of image data, image feature values, and the document to which the image belongs, and selecting a search result for a query based on this results by removing images repeatedly included in the same document on the web. You can increase the accuracy of the results. In addition, it is possible to improve the search service quality by providing the search results to the user intuitively, and can effectively select and provide related keywords.
이제 도 12를 참고하여 본 발명의 다른 실시예에 따른 검색 서비스 방법에 대하여 상세하게 설명한다.A search service method according to another embodiment of the present invention will now be described in detail with reference to FIG. 12.
도 12는 본 발명의 다른 실시예에 따른 검색 서비스 방법을 도시하는 흐름도이다.12 is a flowchart illustrating a search service method according to another embodiment of the present invention.
도 12를 참고하면, 검색 시스템(100)은 검색 결과의 대상이 되는 이미지를 수집한다(S111). 그런 후 검색 시스템(100)은 수집한 이미지의 메타 특징값을 추출하여(S112), 메타 특징값의 유사도를 기초로 복수의 이미지를 배열하여 후보 군집을 생성한다(S113).Referring to FIG. 12, the
또한 검색 시스템(100)은 후보 군집에 속한 이미지에 대하여 이미지 특징값을 추출하고(S114), 이미지 특징값의 차이값이 기준 이하인 이미지들을 연결하여 특징 연결도를 생성한다(S115).In addition, the
한편, 검색 시스템(100)은 후보 군집에 대하여 동일한 문서에 포함되어 있는 이미지를 연결하여 문서 연결도를 생성한다(S116).On the other hand, the
그런 후 검색 시스템(100)은 특징 연결도와 문서 연결도를 비교하여 중첩되는 연결선을 제거하여 최종적인 이미지 군집을 생성한다(S117).Thereafter, the
이어서 검색 시스템(100)은 생성된 이미지 군집을 기초로 대표 이미지 트리 및 키워드 트리를 생성한다(S118). 즉, 이미지 군집에서 대표 이미지를 선정하고 대표 이미지를 중심으로 나머지 이미지를 계층 분류하는 대표 이미지 트리를 생성한다. 또한 대표 이미지 트리에서 신장되는 동일한 연결선에 연결된 이미지를 각각 복수의 군으로 묶고, 각 군에 속하는 이미지의 메타 특징값을 이용하여 빈번하게 나타나는 키워드를 추출하여 이를 기초로 키워드 트리를 생성한다.Subsequently, the
그런 후 검색 시스템(100)은 사용자로부터 쿼리를 수신하고(S119), 쿼리에 대한 대표 이미지 트리 및 키워드 트리를 선택한다(S120). 이어서 검색 시스템(100)은 선택된 대표 이미지 트리를 검색 결과로서 사용자 단말(200)에게 제공하고, 또한 키워드 트리에 속한 키워드를 연관 키워드로 제공한다(S121).Then, the
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있다.The embodiments of the present invention described above are not implemented only by the apparatus and method, but may be implemented through a program for realizing the function corresponding to the configuration of the embodiment of the present invention or a recording medium on which the program is recorded.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, It belongs to the scope of right.
Claims (21)
사용자 단말로부터 수신한 쿼리에 대하여 상기 이미지 군집을 기초로 검색 결과를 생성하여 제공하는 검색 처리부
를 포함하고,
상기 이미지 군집 생성부는,
검색 대상이 되는 복수의 이미지를 수집하는 수집부,
상기 복수의 이미지 각각의 메타 특징값을 추출하는 메타 특징 추출부,
상기 메타 특징값의 유사도를 기초로 후보 군집을 생성하는 후보 군집 생성부,
상기 후보 군집에 속하는 이미지 각각의 이미지 특징값을 추출하는 이미지 특징 추출부, 그리고
상기 이미지 특징값의 차이값이 기준 이하인 이미지들을 선으로 연결한 특징 연결도를 생성하는 특징 연결도 생성부
를 포함하는 검색 시스템.An image cluster generator for generating an image cluster based on the meta feature value of the image and the image feature value, and
A search processor that generates and provides a search result based on the cluster of images with respect to a query received from a user terminal.
Lt; / RTI >
The image cluster generation unit,
Collecting unit for collecting a plurality of images to be searched,
A meta feature extractor for extracting meta feature values of each of the plurality of images;
A candidate cluster generation unit generating a candidate cluster based on the similarity of the meta feature values;
An image feature extraction unit for extracting an image feature value of each image belonging to the candidate cluster;
Feature connection diagram generation unit for generating a feature connection diagram connecting the images with a difference value of the image feature value is less than the reference line
≪ / RTI >
상기 후보 군집에 속하는 이미지 중에서 동일한 문서에 포함된 이미지를 선으로 연결한 문서 연결도를 생성하는 문서 연결도 생성부
를 더 포함하는 검색 시스템.In claim 1,
A document linkage generation unit for generating a document linkage diagram connecting lines of images included in the same document among images belonging to the candidate cluster.
Further comprising:
상기 특징 연결도와 상기 문서 연결도를 비교하여 중첩된 선을 제거하여 상기 이미지 군집을 생성하는 최종 군집 생성부
를 더 포함하는 검색 시스템.5. The method of claim 4,
The final cluster generation unit for generating the image cluster by removing the overlapping lines by comparing the feature connection diagram and the document connection diagram.
Further comprising:
상기 메타 특징값은 이미지가 포함된 문서의 제목, 본문, 이미지 생성일 및 이미지가 게재된 웹페이지의 카테고리 중 적어도 하나를 기초로 결정되는 검색 시스템.In claim 1,
The meta feature value is determined based on at least one of a title of a document including an image, a body, an image generation date, and a category of a webpage on which the image is displayed.
상기 메타 특징값은 이미지가 포함된 문서의 제목 및 본문에 기재된 단어의 빈도수를 기초로 결정되는 검색 시스템.In claim 1,
The meta feature value is determined based on the frequency of the words described in the title and body of the document containing the image.
상기 이미지 특징값은 상기 이미지를 복수의 영역으로 나누어 각 영역에 대한 픽셀값의 변화를 수치화한 값을 포함하는 검색 시스템.In claim 1,
And the image feature value includes a value obtained by dividing the image into a plurality of regions and quantifying a change in pixel value for each region.
상기 이미지 군집에서 대표 이미지를 선정하고, 상기 대표 이미지를 중심으로 나머지 이미지를 계층 분류하는 대표 이미지 트리를 생성하는 대표 이미지 트리 생성부
를 더 포함하는 검색 시스템.In claim 1,
Representative image tree generation unit for selecting a representative image from the image cluster, and generates a representative image tree for classifying the remaining images based on the representative image
Further comprising:
상기 대표 이미지 트리 생성부는 최소비용신장트리(minimum cost spanning tree)를 이용하여 생성된 복수의 트리 중에서 트리를 생성하기까지 비용이 가장 적은 트리를 상기 대표 이미지 트리로 결정하는 검색 시스템.The method of claim 9,
And the representative image tree generation unit determines, as the representative image tree, a tree having the least cost from generation of a tree among a plurality of trees generated using a minimum cost spanning tree.
상기 대표 이미지 트리를 기초로 키워드 트리를 생성하는 키워드 트리 생성부를 더 포함하는 검색 시스템.The method of claim 9,
And a keyword tree generator for generating a keyword tree based on the representative image tree.
상기 키워드 트리 생성부는 상기 대표 이미지에서 신장되는 연결선 중 동일한 연결선에 연결된 복수의 이미지를 군으로 묶고, 동일한 군에 속하는 이미지의 상기 메타 특징값을 이용하여 상기 키워드 트리를 생성하는 검색 시스템.12. The method of claim 11,
And the keyword tree generating unit bundles a plurality of images connected to the same connection line among the connection lines extending from the representative image into a group, and generates the keyword tree using the meta feature values of the images belonging to the same group.
상기 검색 처리부는,
상기 사용자 단말로부터 쿼리를 수신하는 쿼리 수신부,
상기 쿼리에 관련된 상기 대표 이미지 트리를 선택하는 대표 이미지 트리 선택부, 그리고
상기 대표 이미지 트리를 기초로 상기 검색 결과를 상기 사용자 단말에게 제공하는 제공부
를 포함하는 검색 시스템.12. The method of claim 11,
The search processing unit,
Query receiving unit for receiving a query from the user terminal,
A representative image tree selection unit for selecting the representative image tree related to the query, and
Providing unit for providing the search results to the user terminal based on the representative image tree
≪ / RTI >
상기 제공부는,
상기 대표 이미지 트리에 포함된 복수의 이미지를 순차적으로 나열하여 제공하는 검색 시스템.The method of claim 13,
Wherein the providing unit comprises:
And a search system for sequentially arranging a plurality of images included in the representative image tree.
상기 제공부는,
상기 대표 이미지 트리를 상기 검색 결과로서 제공하는 검색 시스템.The method of claim 14,
Wherein the providing unit comprises:
A search system for providing the representative image tree as the search result.
상기 제공부는,
상기 쿼리에 관련된 상기 키워드 트리를 선택하는 키워드 트리 선택부
를 더 포함하고,
상기 제공부는 상기 키워드 트리를 이용하여 연관 키워드를 제공하는 검색 시스템.The method of claim 13,
Wherein the providing unit comprises:
Keyword tree selection unit for selecting the keyword tree related to the query
Further comprising:
The providing unit provides a related keyword using the keyword tree.
검색 결과의 대상이 되는 이미지를 수집하는 단계,
상기 수집한 이미지의 메타 특징값을 추출하는 단계,
상기 추출한 메타 특징값의 유사도를 기초로 상기 이미지를 배열하여 후보 군집을 생성하는 단계,
상기 후보 군집에 속하는 이미지에 대하여 이미지 특징값을 추출하는 단계,
상기 이미지 특징값의 차이값이 기준 이하인 이미지들을 선으로 연결하여 특징 연결도를 생성하는 단계,
상기 후보 군집에 속하는 이미지에 대하여 동일한 문서에 포함되어 있는 이미지들을 선으로 연결하여 문서 연결도를 생성하는 단계,
상기 특징 연결도와 상기 문서 연결도를 비교하여 중첩되는 선을 제거한 이미지 군집을 생성하는 단계, 그리고
상기 이미지 군집을 기초로 쿼리에 대한 검색 결과를 생성하는 단계
를 포함하는 검색 서비스 방법.As a way for a search system to provide a search service,
Collecting the images that are the target of the search results,
Extracting meta feature values of the collected image;
Generating a candidate cluster by arranging the images based on the similarity of the extracted meta feature values;
Extracting an image feature value for an image belonging to the candidate cluster;
Generating a feature connection diagram by connecting the images having the difference value of the image feature values below the reference line;
Generating a document connection diagram by connecting images included in the same document with lines with respect to the images belonging to the candidate cluster;
Comparing the feature connection diagram and the document connection diagram to generate an image cluster from which overlapping lines are removed; and
Generating a search result for the query based on the cluster of images;
Search service method comprising a.
상기 이미지 군집에서 대표 이미지를 선정하고, 상기 대표 이미지를 중심으로 나머지 이미지를 계층 분류하여 대표 이미지 트리를 생성하는 단계
를 더 포함하는 검색 서비스 방법.The method of claim 17,
Selecting a representative image from the image cluster, and classifying the remaining images based on the representative image to generate a representative image tree
Search service method further comprising.
상기 검색 결과를 생성하는 단계는,
상기 쿼리에 관련된 대표 이미지 트리를 선택하고 대표 이미지 트리에 포함된 이미지를 사용자 단말에게 제공하는 단계
를 포함하는 검색 서비스 방법.The method of claim 18,
Wherein the generating the search result comprises:
Selecting a representative image tree related to the query and providing an image included in the representative image tree to a user terminal
Search service method comprising a.
상기 대표 이미지에서 신장되는 연결선 중 동일한 연결선에 연결된 복수의 이미지를 군으로 묶고, 동일한 군에 속하는 이미지의 상기 메타 특징값을 이용하여 키워드 트리를 생성하는 단계
를 더 포함하는 검색 서비스 방법.The method of claim 18,
Grouping a plurality of images connected to the same connection line among the extension lines extending from the representative image into a group, and generating a keyword tree using the meta feature values of the images belonging to the same group;
Search service method further comprising.
상기 키워드 트리를 이용하여 연관 키워드를 제공하는 단계
를 더 포함하는 검색 서비스 방법.In paragraph 20
Providing an associated keyword using the keyword tree
Search service method further comprising.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120053800A KR101354721B1 (en) | 2012-05-21 | 2012-05-21 | Search system and method of search service |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120053800A KR101354721B1 (en) | 2012-05-21 | 2012-05-21 | Search system and method of search service |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130129725A KR20130129725A (en) | 2013-11-29 |
KR101354721B1 true KR101354721B1 (en) | 2014-01-29 |
Family
ID=49856264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120053800A KR101354721B1 (en) | 2012-05-21 | 2012-05-21 | Search system and method of search service |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101354721B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180107042A (en) * | 2018-09-14 | 2018-10-01 | 주식회사 카카오 | Method for clustering and sharing images, and system and application implementing the same method |
KR101934108B1 (en) * | 2017-01-25 | 2018-12-31 | 주식회사 카카오 | Method for clustering and sharing images, and system and application implementing the same method |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102240570B1 (en) | 2014-05-13 | 2021-04-15 | 삼성전자주식회사 | Method and apparatus for generating spanning tree,method and apparatus for stereo matching,method and apparatus for up-sampling,and method and apparatus for generating reference pixel |
KR102473155B1 (en) * | 2016-01-18 | 2022-11-30 | 주식회사 케이티 | Method for providing interactive information service and apparatus therefor |
KR102644097B1 (en) * | 2017-12-29 | 2024-03-06 | 주식회사 피제이팩토리 | Method for auto-conversion of multi-depth image |
KR102644105B1 (en) * | 2017-12-29 | 2024-03-06 | 주식회사 피제이팩토리 | Method for auto-generation of multi-depth image |
JP6810780B2 (en) * | 2018-10-11 | 2021-01-06 | ネイバー コーポレーションNAVER Corporation | CNN infrastructure image search method and equipment |
KR102215082B1 (en) * | 2018-10-11 | 2021-02-10 | 네이버 주식회사 | Apparatus and method for searching image based on convolutional neural network |
KR102207073B1 (en) * | 2018-11-23 | 2021-01-22 | 박재범 | Method of creating a story with conflict structure using image cards |
KR20220090103A (en) * | 2020-12-22 | 2022-06-29 | 주식회사 피제이팩토리 | Method and apparatus for image labeling and image annotation using meuti-depth image |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990025292A (en) * | 1997-09-11 | 1999-04-06 | 정선종 | An Effective Search Method of Image Database by Filtering Process |
KR20080026063A (en) * | 2006-09-19 | 2008-03-24 | 소니 가부시끼 가이샤 | Information processing apparatus, method and program |
-
2012
- 2012-05-21 KR KR1020120053800A patent/KR101354721B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990025292A (en) * | 1997-09-11 | 1999-04-06 | 정선종 | An Effective Search Method of Image Database by Filtering Process |
KR20080026063A (en) * | 2006-09-19 | 2008-03-24 | 소니 가부시끼 가이샤 | Information processing apparatus, method and program |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101934108B1 (en) * | 2017-01-25 | 2018-12-31 | 주식회사 카카오 | Method for clustering and sharing images, and system and application implementing the same method |
KR20180107042A (en) * | 2018-09-14 | 2018-10-01 | 주식회사 카카오 | Method for clustering and sharing images, and system and application implementing the same method |
KR102023687B1 (en) | 2018-09-14 | 2019-09-20 | 주식회사 카카오 | Method for sharing images, and system and application implementing the same method |
Also Published As
Publication number | Publication date |
---|---|
KR20130129725A (en) | 2013-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101354721B1 (en) | Search system and method of search service | |
CN102043833B (en) | Search method and device based on query word | |
KR102017853B1 (en) | Method and apparatus for searching | |
CN102541999B (en) | The picture search of object sensitivity | |
JP5212610B2 (en) | Representative image or representative image group display system, method and program thereof, and representative image or representative image group selection system, method and program thereof | |
US20140189480A1 (en) | Dynamic aggregation and display of contextually relevant content | |
CN106383887A (en) | Environment-friendly news data acquisition and recommendation display method and system | |
CN103186600B (en) | The specific analysis method and apparatus of internet public feelings | |
JP6428795B2 (en) | Model generation method, word weighting method, model generation device, word weighting device, device, computer program, and computer storage medium | |
US10229198B2 (en) | Video matching service to offline counterpart | |
CN105653572A (en) | Resource processing method and apparatus | |
JP2008217428A (en) | Image-retrieving program, method, and device | |
CN103577478A (en) | Web page pushing method and system | |
CN106326391A (en) | Method and device for recommending multimedia resources | |
KR101550886B1 (en) | Apparatus and method for generating additional information of moving picture contents | |
CN102737029A (en) | Searching method and system | |
US20170132267A1 (en) | Pushing system and method based on natural information recognition, and a client end | |
CN108431800B (en) | Image processing apparatus and display method of image search interface | |
CN103226569A (en) | Video providing method, device and system | |
CN103077217A (en) | Method, device and equipment for providing result additional information matched with query sequence | |
CN103744887A (en) | Method and device for people search and computer equipment | |
CN111259225B (en) | New media information display method and device, electronic equipment and computer readable medium | |
CN112825089A (en) | Article recommendation method, article recommendation device, article recommendation equipment and storage medium | |
US8943101B2 (en) | Keyword acquiring device, content providing system, keyword acquiring method, a computer-readable recording medium and content providing method | |
KR102281266B1 (en) | System and Method for Extracting Keyword and Ranking in Video Subtitle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170109 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190328 Year of fee payment: 9 |