KR101311876B1 - Electroconductive coating composition for glass and preparation method thereof - Google Patents
Electroconductive coating composition for glass and preparation method thereof Download PDFInfo
- Publication number
- KR101311876B1 KR101311876B1 KR1020120003438A KR20120003438A KR101311876B1 KR 101311876 B1 KR101311876 B1 KR 101311876B1 KR 1020120003438 A KR1020120003438 A KR 1020120003438A KR 20120003438 A KR20120003438 A KR 20120003438A KR 101311876 B1 KR101311876 B1 KR 101311876B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- solution
- glass
- conductive coating
- coating liquid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/006—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
- C03C17/007—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/28—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
- C03C17/32—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Paints Or Removers (AREA)
Abstract
본 발명은 유리용 전도성 코팅액 조성물 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 (ⅰ) 탄소나노튜브 분산액 80-95중량%, 및 (ⅱ) 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액이 혼합된 바인더액 5-20중량%를 포함함으로써 코팅막의 균일성, 화학적 안정성, 강도, 전기전도도가 우수할 뿐만 아니라 유리에 대한 접착력과 투과도를 동시에 만족시킬 수 있으며 LCD 등과 같은 각종 화상표시장치의 외관 유리뿐만 아니라 터치 스크린 패널 등과 같은 각종 기능성 소재의 보호를 위한 상부 유리에 바람직하게 적용될 수 있는 유리용 전도성 코팅액 조성물 및 이의 제조방법에 관한 것이다.The present invention relates to a conductive coating liquid composition for glass and a method for preparing the same, and more specifically, (i) 80-95% by weight of a carbon nanotube dispersion, and (ii) a polyacrylic acid resin solution, a silane sol and a dispersant solution. By including 5-20% by weight of the binder solution, the coating film not only has excellent uniformity, chemical stability, strength, and electrical conductivity, but also satisfies the adhesion and permeability to the glass at the same time. It also relates to a conductive coating liquid composition for glass that can be preferably applied to the upper glass for the protection of various functional materials such as touch screen panels and the like and a method of manufacturing the same.
Description
본 발명은 코팅성, 화학적 안정성, 전기전도도뿐만 아니라 유리에 적용 시 강도와 투과도가 우수한 유리용 전도성 코팅액 조성물 및 이의 제조방법에 관한 것이다.
The present invention relates to a coating composition, chemical stability, electrical conductivity, as well as a conductive coating liquid composition for glass excellent in strength and permeability when applied to glass and a method for producing the same.
최근 들어 액정표시장치(LCD)는 옥내용뿐만 아니라 옥외 광고용, 인테리어용, 전자 칠판용, 3차원 화상표시용 등으로 그 용도가 확대되고 있다. 예컨대, 기업 광고 또는 홍보를 위해 운용되는 옥내외용; 전광판을 통한 광고 활성화; 병원, 쇼핑몰, 호텔 등에서 홍보용; 공항, 터미널, 기차역 등에서 지리 안내용 등의 다양한 분야에서 그 수요가 증대되고 있다. 이와 같이 그 용도가 확대됨에 따라 날씨 변화 또는 외부 충격에 의해 액정패널이 손상되거나 외부의 오염 물질로 인해 손상되는 위험이 증가하고 있어, 이를 방지하기 위한 보호 유리가 적용되고 있다.Recently, the liquid crystal display (LCD) has been widely used not only for indoor use but also for outdoor advertisement, interior use, electronic blackboard, and three-dimensional image display. For example, indoor or outdoor for corporate advertising or promotion; Activation of advertising through billboards; For publicity in hospitals, shopping malls, hotels, etc .; The demand is increasing in various fields such as geographic information at airports, terminals, railway stations, and the like. As the use thereof expands, the risk of damage to the liquid crystal panel due to weather changes or external shocks or damage due to external pollutants increases, and a protective glass for preventing this is applied.
또한, LCD에는 각종 정보를 입력하기 위한 터치 스크린 패널 등과 같은 각종 기능성 소재가 액정패널 상부에 구비되는데, 이 기능성 소재를 보호하기 위하여 고강도 유리와 같은 투명 보호판이 적용되고 있다.In addition, the LCD has various functional materials such as a touch screen panel for inputting various information on the liquid crystal panel, and a transparent protective plate such as high strength glass is applied to protect the functional material.
한편, LCD는 그 생산 공정 중 정전기가 발생되기 쉬운데, 발생된 정전기는 광학부재에 이물이 흡착되어 표면을 오염시키는 문제, 액정 배향의 뒤틀림으로 인한 얼룩 문제뿐만 아니라 박막 트랜지스터 회선을 파손시킬 우려가 있다.On the other hand, LCDs are susceptible to static electricity during the production process, which may damage the thin film transistor line as well as the problem of contamination of the surface by foreign matter adsorbed to the optical member, staining due to the distortion of the liquid crystal alignment. .
이러한 문제점을 해결하기 위하여, LCD 외관 유리 표면에 전도성 코팅막을 형성시켜 스크래치, 이물 오염에 의한 손상을 방지하는 동시에 정전기 문제도 해결하고 있다.In order to solve this problem, a conductive coating film is formed on the surface of the LCD exterior glass to prevent damage due to scratches and foreign contamination, while at the same time solving the electrostatic problem.
전도성 코팅막을 형성하기 위한 전도성 물질로는 폴리티오펜, 폴리피롤, 폴리아닐린 등의 전도성 고분자가 사용되고 있으나, 이들은 용해성, 투과성, 열안정성 등이 낮아 유리에 적용 시 도포성, 접착력, 강도 등의 물성이 낮다는 한계가 있다. 또한, 코팅막의 전기전도도는 두께에 비례하여 증가하게 되는데, 전도성 고분자의 경우 가시광선 영역의 빛을 흡수하기 때문에 두께가 증가하게 되면 투과도를 만족시키기 어렵게 된다.Conductive polymers such as polythiophene, polypyrrole, and polyaniline are used as conductive materials for forming the conductive coating film, but these have low solubility, permeability, and thermal stability, and thus have low physical properties such as coating properties, adhesion, and strength when applied to glass. There is a limit. In addition, the electrical conductivity of the coating film is increased in proportion to the thickness. In the case of the conductive polymer absorbs light in the visible region, it is difficult to satisfy the transmittance when the thickness is increased.
이를 고려하여, 최근에는 전도성 물질로 탄소나노튜브가 이용되고 있다. 탄소나노튜브는 물리적으로 견고하고 화학적 안정성이 뛰어나며, 기계적 특성이 우수할 뿐만 아니라 열전도도가 높고, 전기적 선택성, 전계방출 특성을 보유하고 있다. 그러나, 탄소나노튜브의 경우 코팅액 내에서 분산성이 좋지 못하여 균일한 코팅막을 얻기 어려워 외부 환경에 의해 손상되기 쉬워 이에 대한 개선이 필요하며, 유리에 적용 시 투과도 특성도 동시에 만족시켜야 한다.
In consideration of this, recently, carbon nanotubes have been used as conductive materials. Carbon nanotubes are physically robust, have excellent chemical stability, have excellent mechanical properties, high thermal conductivity, and have electrical selectivity and field emission characteristics. However, in the case of carbon nanotubes, it is difficult to obtain a uniform coating film due to poor dispersibility in the coating solution, which is easily damaged by the external environment, and needs to be improved.
본 발명은 대전방지성이 우수할 뿐만 아니라 외부 손상에 의한 강도와 투과도가 우수한 코팅막의 형성이 가능하여 LCD를 포함한 각종 화상표시장치의 외관 유리뿐만 아니라 터치 스크린 패널 등과 같은 각종 기능성 소재의 보호를 위한 상부 유리에 바람직하게 적용될 수 있는 유리용 전도성 코팅액 조성물을 제공하는 것을 목적으로 한다.The present invention is capable of forming a coating film having excellent antistatic properties and excellent strength and permeability due to external damage, so as to protect various functional materials such as touch screen panels as well as exterior glass of various image display apparatuses including LCDs. An object of the present invention is to provide a conductive coating liquid composition for glass, which can be preferably applied to the upper glass.
또한, 본 발명은 상기 유리용 전도성 코팅액 조성물의 제조방법을 제공하는 것을 다른 목적으로 한다.In addition, another object of the present invention is to provide a method for preparing the conductive coating liquid composition for glass.
또한, 본 발명은 상기 유리용 전도성 코팅액 조성물로 형성된 전도성 코팅막이 구비된 전도성 유리를 제공하는 것을 또 다른 목적으로 한다.
In addition, another object of the present invention is to provide a conductive glass having a conductive coating film formed of the conductive coating liquid composition for glass.
1. (ⅰ) 탄소나노튜브 분산액 80-95중량%, 및 (ⅱ) 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액이 혼합된 바인더액 5-20중량%를 포함하고, 탄소나노튜브 분산액은 탄소나노튜브 0.21-0.5중량%, 분산제 0.21-1.5중량% 및 잔량의 물을 포함하는 유리용 전도성 코팅액 조성물.1. (i) 80-95% by weight of carbon nanotube dispersion, and (ii) 5-20% by weight of a binder liquid in which a polyacrylic acid resin solution, a silane sol and a dispersant solution are mixed, and the carbon nanotube dispersion is carbon nano A conductive coating liquid composition for glass, comprising 0.21-0.5% by weight of a tube, 0.21-1.5% by weight of a dispersant, and a balance of water.
2. 위 1에 있어서, 분산제는 도데실술폰산나트륨, 도데실벤젠술폰산나트륨 또는 이들의 혼합물인 유리용 전도성 코팅액 조성물.2. In the above 1, wherein the dispersing agent is sodium dodecyl sulfonate, sodium dodecylbenzene sulfonate or a mixture thereof for the conductive coating liquid composition.
3. 위 1에 있어서, 폴리아크릴산 수지 용액은 폴리아크릴산 수지 0.001-1중량%, 물 0.003-5중량% 및 알코올계 용매 94-99.9중량%를 포함하는 유리용 전도성 코팅액 조성물.3. In the above 1, the polyacrylic acid resin solution is 0.001-1% by weight of polyacrylic acid resin, 0.003-5% by weight of water and 94-99.9% by weight of the alcohol-based solvent coating composition for a glass composition.
4. 위 1에 있어서, 실란졸은 알콕시기의 탄소수가 1-20인 테트라알콕시실란 화합물 30-40중량%, 상기 테트라알콕시실란 화합물과 다르고 알콕시기의 탄소수가 1-20인 알콕시실란 화합물 20-30중량%, 산촉매 1-5중량%, 알코올계 용매 20-35중량% 및 잔량의 물을 포함하는 유리용 전도성 코팅액 조성물.4. In the above 1, the silane sol is 30-40% by weight of a tetraalkoxysilane compound having 1 to 20 carbon atoms of the alkoxy group, and different from the tetraalkoxysilane compound and having an alkoxy group having 20 to 20 carbon atoms of the alkoxy group. A conductive coating liquid composition for glass, comprising 30% by weight, 1-5% by weight of acid catalyst, 20-35% by weight of alcohol solvent, and residual amount of water.
5. 위 4에 있어서, 테트라알콕시실란 화합물은 테트라에톡시실란, 테트라메톡시실란, 테트라-n-프로폭시실란 및 이들의 올리고머로 이루어진 군으로부터 선택된 1종 이상인 유리용 전도성 코팅액 조성물.5. In the above 4, the tetraalkoxysilane compound is at least one conductive coating liquid composition selected from the group consisting of tetraethoxysilane, tetramethoxysilane, tetra-n-propoxysilane and oligomers thereof.
6. 위 4에 있어서, 알콕시실란 화합물은 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리에톡시실란, 에틸트리메톡시실란, 메틸트리프로폭시실란, 메틸트리부톡시실란, 프로필트리메톡시실란, 프로필트리에톡시실란, 이소부틸트리에톡시실란, 이소부틸트리메톡시실란, 옥틸트리에톡시실란, 옥틸트리메톡시실란 및 메타크릴옥시데실트리메톡시실란으로 이루어진 군으로부터 선택된 1종 이상인 유리용 전도성 코팅액 조성물.6. In the above 4, the alkoxysilane compound is methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, methyltripropoxysilane, methyltributoxysilane, propyltrimeth At least one selected from the group consisting of methoxysilane, propyltriethoxysilane, isobutyltriethoxysilane, isobutyltrimethoxysilane, octyltriethoxysilane, octyltrimethoxysilane and methacryloxydecyltrimethoxysilane Conductive coating liquid composition for glass.
7. 위 1에 있어서, 분산제 용액은 도데실술폰산나트륨, 도데실벤젠술폰산나트륨 또는 이들의 혼합물 중 선택된 분산제 0.1-5중량% 및 물 95-99.9중량%를 포함하는 유리용 전도성 코팅액 조성물.7. In the above 1, the dispersant solution is a conductive coating liquid composition for glass containing 0.1-5% by weight and 95-99.9% by weight of the dispersant selected from sodium dodecyl sulfonate, sodium dodecylbenzenesulfonate or a mixture thereof.
8. 위 1에 있어서, 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액의 혼합비는 25-35:12-25:40-60인 유리용 전도성 코팅액 조성물.8. according to the above 1, the mixing ratio of the polyacrylic acid resin solution, silane sol and dispersant solution is 25-35: 12-25: 40-60 conductive coating liquid composition.
9. 위 1에 있어서, 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액의 혼합비는 30-35:15-20:45-55인 유리용 전도성 코팅액 조성물.9. In the above 1, the mixing ratio of the polyacrylic acid resin solution, silane sol and dispersant solution is 30-35: 15-20: 45-55 conductive coating liquid composition.
10. 탄소나노튜브 0.21-0.5중량%, 분산제 0.21-1.5중량% 및 잔량의 물을 혼합하여 탄소나노튜브 분산액을 제조하는 제1단계; 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액을 각각 제조하는 제2단계; 제2단계에서 제조된 폴리아크릴산 수지 용액과 실란졸을 혼합한 후 이 혼합액에 분산제 용액을 혼합하여 바인더액을 제조하는 제3단계; 및 제1단계에서 제조된 탄소나노튜브 분산액 80-95중량%와 제2단계에서 제조된 바인더액 5-20중량%를 혼합하는 제4단계를 포함하는 유리용 전도성 코팅액의 제조방법.10. A first step of preparing a carbon nanotube dispersion by mixing 0.21-0.5% by weight of carbon nanotubes, 0.21-1.5% by weight of a dispersant and the balance of water; A second step of preparing a polyacrylic acid resin solution, a silane sol and a dispersant solution, respectively; A third step of preparing a binder liquid by mixing the polyacrylic acid resin solution prepared in the second step with the silane sol, and then mixing the dispersant solution with the mixed solution; And a fourth step of mixing 80-95% by weight of the carbon nanotube dispersion prepared in the first step and 5-20% by weight of the binder solution prepared in the second step.
11. 위 10에 있어서, 제3단계는 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액의 혼합비가 25-35:12-25:40-60가 되도록 수행되는 유리용 전도성 코팅액 조성물의 제조방법.11. In the above 10, the third step is a method for producing a conductive coating liquid composition for glass is carried out so that the mixing ratio of the polyacrylic acid resin solution, silane sol and dispersant solution is 25-35: 12-25: 40-60.
12. 일면에 위 1 내지 9 중 어느 한 항의 유리용 전도성 코팅액 조성물로 형성된 전도성 코팅막이 구비된 전도성 유리.12. Conductive glass with a conductive coating film formed of a conductive coating liquid composition for glass of any one of the above 1 to 9 on one side.
13. 위 12에 있어서, 액정표시장치 또는 터치 스크린 패널의 보호를 위한 외관 유리인 전도성 유리.
13. The conductive glass according to the above 12, which is an exterior glass for protecting a liquid crystal display or a touch screen panel.
본 발명은 탄소나노튜브의 분산성 및 코팅성이 크게 향상되어 균일한 코팅막을 형성시킬 수 있고, 형성된 코팅막의 화학적 안정성, 전기전도도가 우수할 뿐만 아니라 유리에 적용 시 외관 손상에 대한 강도와 투과도를 동시에 만족시킬 수 있는 유리용 전도성 코팅액 및 이의 제조방법을 제공할 수 있다.The present invention can greatly improve the dispersibility and coating properties of the carbon nanotubes to form a uniform coating film, excellent chemical stability and electrical conductivity of the formed coating film as well as the strength and permeability for appearance damage when applied to glass At the same time it can provide a conductive coating liquid for glass and a method for producing the same.
또한, 본 발명의 전도성 코팅액은 LCD 등과 같은 각종 화상표시장치의 표시화면을 보호하기 위한 외관 유리뿐만 아니라 터치 스크린 패널 등과 같은 각종 기능성 소재의 상부에 구비되는 보호 유리에 바람직하게 적용될 수 있다.
In addition, the conductive coating solution of the present invention can be preferably applied to the protective glass provided on top of various functional materials such as a touch screen panel as well as the appearance glass for protecting the display screen of various image display devices such as LCD.
본 발명은 코팅성, 화학적 안정성, 전기전도도뿐만 아니라 유리에 적용 시 강도와 투과도가 우수한 유리용 전도성 코팅액 조성물 및 이의 제조방법에 관한 것이다.The present invention relates to a coating composition, chemical stability, electrical conductivity, as well as a conductive coating liquid composition for glass excellent in strength and permeability when applied to glass and a method for producing the same.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 유리용 전도성 코팅액 조성물은 (ⅰ) 탄소나노튜브 분산액 80-95중량%, 및 (ⅱ) 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액이 혼합된 바인더액 5-20중량%를 포함하는 것을 특징으로 한다.The conductive coating liquid composition for glass of the present invention comprises (i) 80-95% by weight of carbon nanotube dispersion, and (ii) 5-20% by weight of a binder liquid in which a polyacrylic acid resin solution, a silane sol and a dispersant solution are mixed. It features.
본 발명의 전도성 코팅액 조성물은 물을 용매로 하며, 여기에 친수성 알코올계 용매가 혼합된 수분산액 형태의 조성물이다.The conductive coating liquid composition of the present invention is a composition in the form of an aqueous dispersion in which water is used as a solvent and a hydrophilic alcohol solvent is mixed thereto.
(ⅰ) 탄소나노튜브 분산액은 탄소나노튜브 0.21-0.5중량%, 분산제 0.21-1.5중량% 및 잔량의 물이 혼합된 것이다.(Iii) A carbon nanotube dispersion is a mixture of 0.21-0.5% by weight of carbon nanotubes, 0.21-1.5% by weight of a dispersant, and a balance of water.
본 발명에서는 전도성 물질로서 탄소 원자로 구성된 나노미터 크기의 구조체인 탄소나노튜브(carbon nanotube, CNT)를 사용한다.In the present invention, a carbon nanotube (CNT), which is a nanometer-sized structure composed of carbon atoms, is used as the conductive material.
탄소나노튜브(CNT)는 통상의 아크(arc) 방전법, 레이저 증착법, 플라즈마 화학기상증착법, 기상 합성법, 열분해법 등과 같은 방법으로 제조된 후 열처리된 것일 수 있다. 위 합성법에 의해 제조된 생성물에는 합성된 탄소나노튜브와 함께 비정질 탄소 또는 결정성 흑연 입자와 같은 탄소 불순물과 촉매 전이금속 입자 등이 존재한다. 예컨대, 아크 방전법으로 제조되는 경우 생성물 100중량% 중에 탄소나노튜브 15-30중량%, 탄소 불순물 45-70중량% 및 촉매 전이금속 입자 5-25중량%가 포함된다. 이와 같이 불순물이 함유된 탄소나노튜브를 정제과정 없이 직접 코팅액에 적용하는 경우 코팅액의 분산성과 코팅성이 저하되고 탄소나노튜브 고유의 독특한 물성이 제대로 발현되기 어렵다. 따라서, 본 발명에서는 아크 방전법으로 제조된 생성물을 열처리하여 불순물을 최대한 제거시킨 탄소나노튜브를 사용한다. 구체적으로, 위 합성법에 의해 제조된 생성물을 시트 또는 평균직경이 2-5㎜인 과립 형상으로 만든 후 진행방향(수평 기준)에 대하여 아래쪽으로 1-5° 각도로 경사진 회전성 반응기에 투입하고, 회전성 반응기를 350-500℃로 가열하면서 산화성 가스를 위 투입된 생성물 1g에 대하여 200-500㏄/분의 속도로 공급하여 60-150분 동안 열처리한다. 이때, 경사진 회전성 반응기가 5-20rpm의 속도로 회전함으로써 생성물이 분산되면서 접촉 표면적이 최대화되는 동시에 자동적으로 진행방향으로 이동하여 산화성 가스와의 접촉 표면적이 최대화되고 국부적인 산화가 방지된 상태로 열처리된다. 이 방법에 의하면, 투입된 생성물의 무게가 60-85% 감소되어 고순도의 탄소나노튜브가 수득된다.Carbon nanotubes (CNT) may be prepared by a method such as a conventional arc discharge method, laser deposition method, plasma chemical vapor deposition method, gas phase synthesis method, thermal decomposition method and the like and then heat treated. In the product prepared by the above synthesis method, carbon impurities such as amorphous carbon or crystalline graphite particles, catalyst transition metal particles, etc. are present together with the synthesized carbon nanotubes. For example, when produced by the arc discharge method, 15-30 wt% of carbon nanotubes, 45-70 wt% of carbon impurities, and 5-25 wt% of catalyst transition metal particles are included in 100 wt% of the product. As such, when carbon nanotubes containing impurities are directly applied to the coating liquid without refining, the dispersibility and coating properties of the coating liquid are lowered, and the unique physical properties unique to the carbon nanotubes are difficult to be properly expressed. Therefore, the present invention uses carbon nanotubes in which impurities are removed as much as possible by heat-treating the products prepared by the arc discharge method. Specifically, the product prepared by the above synthesis method is made into a sheet or a granule having an average diameter of 2 to 5 mm, and then the granular product is fed into a rotatable reactor inclined downward at an angle of 1-5 degrees with respect to the traveling direction , The rotary reactor is heated to 350-500 캜, and the oxidizing gas is supplied at a rate of 200-500 cc / min to 1 g of the charged product, followed by heat treatment for 60-150 minutes. At this time, the tilted rotary reactor rotates at a speed of 5-20 rpm to disperse the product, thereby maximizing the contact surface area and automatically moving in the traveling direction to maximize the contact surface area with the oxidizing gas and to prevent local oxidation Heat treated. According to this method, the weight of the charged product is reduced by 60-85% to obtain high purity carbon nanotubes.
탄소나노튜브는 총 100중량% 중에 탄소 불순물이 40중량% 이하, 보다 바람직하게는 25중량% 이하로 포함된 것이 코팅액의 분산성과 안정성뿐만 아니라 코팅막의 전기전도도 및 투과도 확보에 있어서 좋다.Carbon nanotubes containing 40% by weight or less, more preferably 25% by weight or less of carbon impurities in the total 100% by weight is good in ensuring the electrical conductivity and permeability of the coating film as well as dispersibility and stability of the coating solution.
탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 또는 다중벽 탄소나노튜브일 수 있으며, 이들은 단독 또는 2종 이상 조합하여 사용할 수 있다.The carbon nanotubes may be single-walled carbon nanotubes, double-walled carbon nanotubes, or multi-walled carbon nanotubes, which may be used alone or in combination of two or more.
탄소나노튜브는 탄소나노튜브 분산액 총 100중량%에 대하여 0.21-0.5중량%로 포함되는 것이 좋다. 함량이 0.21-0.5중량%로 포함되면 분산성, 코팅성, 내스크래치성, 투과도 등이 일정 수준 이상으로 우수하게 유지되면서 전기전도도도 우수하게 나타나서 유리하다.The carbon nanotubes may be included in an amount of 0.21-0.5% by weight based on 100% by weight of the carbon nanotube dispersion. If the content is contained in 0.21-0.5% by weight, the dispersibility, coating properties, scratch resistance, permeability, etc. are maintained to a certain level or more, it is advantageous because the electrical conductivity is also excellent.
분산제는 음이온계 계면활성제라면 그 종류가 특별히 한정되지 않으나, 도데실술폰산나트륨(sodium dodecylsulfonate, SDS) 또는 도데실벤젠술폰산나트륨(sodium dodecyl benzene sulfonate, NaDDBS)이 폴리아크릴산 수지 및 탄소나노튜브와의 상용성이 우수하여 코팅액의 분산성을 극대화시켜 균일한 코팅막을 얻을 수 있다는 점에서 바람직하다.The dispersant is not particularly limited as long as it is an anionic surfactant, but sodium dodecylsulfonate (SDS) or sodium dodecyl benzene sulfonate (NaDDBS) is compatible with polyacrylic resins and carbon nanotubes. It is preferable in that the excellent coating properties can be obtained by maximizing the dispersibility of the coating liquid to obtain a uniform coating film.
분산제는 탄소나노튜브 분산액 총 100중량%에 대하여 0.21-1.5중량%로 포함되는 것이 좋다. 함량이 0.21중량% 미만인 경우 분산성 개선 효과가 불충분할 수 있고, 1.5중량% 초과인 경우 전기전도도 특성과 밀착성을 저하시킬 수 있다.The dispersant may be included as 0.21-1.5% by weight based on 100% by weight of the carbon nanotube dispersion. If the content is less than 0.21% by weight, the effect of improving dispersibility may be insufficient. If the content is more than 1.5% by weight, the conductivity and the adhesion may be reduced.
(ⅱ) 바인더액은 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액이 혼합된 것이다.(Ii) The binder liquid is a mixture of a polyacrylic acid resin solution, a silane sol and a dispersant solution.
폴리아크릴산 수지 용액은 폴리아크릴산 수지(고형분 함량 기준) 0.001-1중량%, 물 0.003-5중량% 및 알코올계 용매 94-99.9중량%가 혼합된 용액이다.The polyacrylic acid resin solution is a solution in which 0.001-1% by weight of polyacrylic acid resin (based on solid content), 0.003-5% by weight of water and 94-99.9% by weight of an alcohol solvent are mixed.
알코올계 용매는 본 발명의 코팅액이 물을 용매로 하는 코팅액이라는 점을 고려하여 친수성 알코올계 용매인 것이 좋다. 구체적으로, 메탄올, 에탄올, n-프로판올, 이소프로판올, n-부탄올, 이소부탄올, sec-부탄올, tert-부탄올, n-아밀알코올, 이소아밀알코올, sec-아밀알코올, tert-아밀알코올, 1-에틸-1-프로판올, 2-메틸-1-부탄올, n-헥산올 또는 시클로헥산올 등을 들 수 있으며, 이들은 단독 또는 2종 이상 조합하여 사용할 수 있다. 친수성 알코올계 용매의 경우 폴리아크릴산 수지뿐만 아니라 탄소나노튜브 분산액과의 혼합성이 좋아 코팅액의 물성 확보에 좋다.The alcohol solvent is preferably a hydrophilic alcohol solvent in consideration of the fact that the coating liquid of the present invention is a coating liquid containing water as a solvent. Specifically, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-amyl alcohol, isoamyl alcohol, sec-amyl alcohol, tert-amyl alcohol, 1-ethyl -1-propanol, 2-methyl-1-butanol, n-hexanol, cyclohexanol, etc. are mentioned, These can be used individually or in combination of 2 or more types. In the case of the hydrophilic alcohol-based solvent, it is good to ensure the physical properties of the coating liquid because of good mixing properties with the carbon nanotube dispersion as well as polyacrylic acid resin.
폴리아크릴산 수지는 기재에 대한 밀착성을 향상시키고 코팅막의 변형을 방지하며, 탄소나노튜브가 기재에 잘 부착되어 충분한 전기전도도 특성을 구현할 수 있도록 하는 성분이다. 특히, 폴리아크릴산 수지의 경우 탄소나노튜브를 분산시키는데 있어서 코팅액의 pH를 조절하는 것이 가능하여 분산 안정성에 크게 기여한다는 점에서 보다 바람직하다.Polyacrylic acid resin is a component that improves the adhesion to the substrate and prevents deformation of the coating film, and carbon nanotubes are attached to the substrate to realize sufficient electrical conductivity properties. In particular, the polyacrylic acid resin is more preferable in that it is possible to control the pH of the coating liquid in dispersing the carbon nanotubes, which greatly contributes to dispersion stability.
폴리아크릴산 수지는 고형분 함량이 20-50중량%인 수용액 상태의 것을 사용하는 것이 좋고, 또한 GPC법에 의한 중량평균분자량(폴리스티렌 환산)이 1,000 내지 700,000인 것이 바람직하다.It is preferable to use polyacrylic acid resin in the form of an aqueous solution having a solid content of 20-50% by weight, and it is preferable that the weight average molecular weight (in terms of polystyrene) of GPC method is 1,000 to 700,000.
폴리아크릴산 수지는 폴리아크릴산 수지 용액 총 100중량%에 대하여 0.001-1중량%(고형분 함량 기준)로 포함되는 것이 바람직하다. 함량이 0.001중량% 미만인 경우 분산 안정성과 코팅성 확보가 어려울 수 있고, 1중량% 초과인 경우 전기전도도가 저하될 수 있다.The polyacrylic acid resin is preferably included as 0.001-1% by weight (based on the solid content) based on 100% by weight of the total acrylic acid resin solution. If the content is less than 0.001% by weight, it may be difficult to secure dispersion stability and coating property, and when the content is more than 1% by weight, electrical conductivity may be lowered.
물은 위 폴리아크릴산 수지가 수용액 상태로 사용되는 경우 이에 포함된 것일 수 있으며 또는 별도로 소량 포함될 수 있으며, 그 함량은 0.003-5중량%일 수 있다.When the polyacrylic acid resin is used in an aqueous solution, water may be included therein or may be included in a small amount separately, and its content may be 0.003-5% by weight.
실란졸은 알콕시기의 탄소수가 1-20인 테트라알콕시실란 화합물 30-40중량%; 상기 테트라알콕시실란 화합물과 다르고 알콕시기의 탄소수가 1-20인 알콕시실란 화합물 20-30중량%, 산촉매 1-5중량%, 알코올계 용매 20-35중량% 및 잔량의 물이 혼합되어 졸-겔 반응에 의해 얻어진 것이다. 이 함량 범위로 혼합되는 경우 졸-겔 반응이 잘 일어나 얻어진 실란졸의 물성이 좋고, 특히 유리 기재에 적용 시 강한 밀착성을 나타내어 외부 손상에 대한 강도, 즉 경도를 확보할 수 있도록 한다.The silane sol is 30-40% by weight of a tetraalkoxysilane compound having 1-20 carbon atoms in the alkoxy group; 20-30% by weight of the alkoxysilane compound different from the tetraalkoxysilane compound having 1-20 carbon atoms of the alkoxy group, 1-5% by weight of the acid catalyst, 20-35% by weight of the alcohol solvent, and the remaining amount of water are mixed with the sol-gel. It is obtained by reaction. When mixed in this content range, the sol-gel reaction occurs well, so that the physical properties of the obtained silane sol are good, particularly when applied to a glass substrate to ensure strength, that is, hardness against external damage.
테트라알콕시실란 화합물은 실란졸을 형성하기 위한 성분으로서 알콕시기는 직쇄 또는 분지쇄일 수 있으며 탄소수가 1-20인 것이 바람직하다. 그 중에서도 테트라에톡시실란, 테트라메톡시실란, 테트라-n-프로폭시실란 또는 이들의 올리고머 등이 바람직하며, 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.The tetraalkoxysilane compound is a component for forming a silane sol, and the alkoxy group may be linear or branched, and preferably has 1-20 carbon atoms. Especially, tetraethoxysilane, tetramethoxysilane, tetra-n-propoxysilane, these oligomers, etc. are preferable, These can be used individually or in mixture of 2 or more types.
알콕시실란 화합물은 위 테트라알콕시실란 화합물과 함께 실란졸을 형성하기 위한 성분으로서, 위 테트라알콕시실란 화합물과 그 종류가 상이한 것이라면 특별히 한정되지 않으며 알콕시기가 직쇄 또는 분지쇄일 수 있으며 탄소수가 1-20인 것을 들 수 있다. 구체적으로, 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리에톡시실란, 에틸트리메톡시실란, 메틸트리프로폭시실란, 메틸트리부톡시실란, 프로필트리메톡시실란, 프로필트리에톡시실란, 이소부틸트리에톡시실란, 이소부틸트리메톡시실란, 옥틸트리에톡시실란, 옥틸트리메톡시실란, 메타크릴옥시데실트리메톡시실란 등의 치환 또는 비치환된 직쇄 또는 분지쇄인 알킬기의 탄소수가 1-20인 알킬알콕시실란; 페닐트리메톡시실란, 페닐트리에톡시실란, 페닐트리프로폭시실란, 페닐트리부톡시실란; 3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, 2-아미노에틸-3-아미노프로필트리메톡시실란, N-β-(아미노에틸)-γ-아미노프로필트리메톡시실란, N-(n-부틸)-3-아미노프로필트리메톡시실란, 3-아미노프로필메틸디에톡시실란; 디메틸디메톡시실란, 디에틸디에톡시실란, γ-글리시딜옥시프로필트리메톡시실란, γ-글리시딜옥시프로필트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 3-머캡토프로필트리메톡시실란; 트리데카플루오로-1,1,2,2-테트라히드로옥틸프리에톡시실란, 트리플루오로프로필트리메톡시실란, 헵타데카플루오로데실트리메톡시실란, 헵타데카플루오로데실트리이소프로폭시실란 등의 알킬기의 탄소수가 1-20인 플루오로알킬실란 등을 들 수 있으며, 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다. 이 중에서 알킬기의 탄소수가 1-20인 알킬알콕시실란이 바람직하다.The alkoxysilane compound is a component for forming a silane sol together with the tetraalkoxysilane compound, and is not particularly limited as long as the alkoxysilane compound is different from the above tetraalkoxysilane compound, and the alkoxy group may be linear or branched and has 1-20 carbon atoms. Can be mentioned. Specifically, methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, methyltripropoxysilane, methyltributoxysilane, propyltrimethoxysilane, propyltriethoxysilane Carbon number of a substituted or unsubstituted linear or branched alkyl group, such as isobutyltriethoxysilane, isobutyltrimethoxysilane, octyltriethoxysilane, octyltrimethoxysilane and methacryloxydecyltrimethoxysilane Alkylalkoxysilanes of 1-20; Phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, phenyltributoxysilane; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminoethyl-3-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N- (n-butyl) -3-aminopropyltrimethoxysilane, 3-aminopropylmethyldiethoxysilane; Dimethyldimethoxysilane, Diethyldiethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-mer Captopropyltrimethoxysilane; Tridecafluoro-1,1,2,2-tetrahydrooctylfreeethoxysilane, trifluoropropyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriisopropoxysilane, etc. And fluoroalkylsilanes having 1 to 20 carbon atoms in the alkyl group of the above, and these may be used alone or in combination of two or more thereof. Among these, alkyl alkoxysilanes having 1 to 20 carbon atoms are preferable.
산촉매는 실란졸에 적정 가교도를 부여하기 위한 것으로서, 염산, 황산, 인산, 질산, 희석된 플루오르화 수소산 등을 들 수 있으며, 이들은 단독 또는 2종 이상 혼합하여 사용할 수 있다.The acid catalyst is for imparting an appropriate degree of crosslinking to the silane sol, and may include hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, diluted hydrofluoric acid, and the like, and these may be used alone or in combination of two or more thereof.
알코올계 용매와 물은 실란졸의 형성 시 가수분해에 영향을 미치기 위한 것으로서, 위에 기재된 통상의 친수성 알코올계 용매를 단독 또는 2종 이상 혼합하여 사용할 수 있다.The alcohol solvent and water are used to influence the hydrolysis upon formation of the silane sol, and the above-described conventional hydrophilic alcohol solvents may be used alone or in combination of two or more thereof.
상기 성분들을 특정 시간 동안 혼합함으로써 졸-겔 반응에 의한 실란졸을 얻을 수 있게 된다. 실란졸은 특히 코팅액을 유리 기재에 적용하는 경우 강한 밀착성을 부여하여 우수한 강도 특성을 확보할 수 있다.By mixing the above components for a certain time, it becomes possible to obtain a silane sol by a sol-gel reaction. The silane sol, in particular, when the coating liquid is applied to the glass substrate, can provide strong adhesion to secure excellent strength characteristics.
분산제 용액은 도데실술폰산나트륨, 도데실벤젠술폰산나트륨 또는 이들의 혼합물 중 선택된 분산제 0.1-5중량%와 물 95-99.9중량%가 혼합된 용액으로서, 폴리아크릴산 수지 용액과 실란졸이 균일하게 혼합될 수 있도록 하는 동시에 (ⅰ) 탄소나노튜브 분산액과 혼합 시에도 혼합을 용이하게 하여 코팅성을 향상시킬 수 있다.The dispersant solution is a solution in which 0.1-5% by weight of the dispersant selected from sodium dodecyl sulfonate, sodium dodecylbenzenesulfonate, or a mixture thereof and 95-99.9% by weight of water are mixed to uniformly mix the polyacrylic acid resin solution and the silanazole. In addition, it is possible to improve the coating property by facilitating the mixing even when mixing with the (i) carbon nanotube dispersion.
폴리아크릴산 수지 용액, 실란졸 및 분산제 용액은 25-35:12-25:40-60의 중량비로 혼합되어 바인더 용액을 구성할 수 있으며, 바람직하게 30-35:15-20:45-55의 중량비로 혼합되는 것이 좋다. 이 중량비로 혼합되는 경우에는 탄소나노튜브 분산액과의 혼합성과 상용성이 좋아 균일한 코팅막을 얻을 수 있을 뿐만 아니라 유리에 대한 강한 밀착성, 강도와 투과도를 동시에 만족시킬 수 있게 된다.The polyacrylic acid resin solution, the silane sol and the dispersant solution may be mixed in a weight ratio of 25-35: 12-25: 40-60 to constitute a binder solution, preferably a weight ratio of 30-35: 15-20: 45-55 It is good to mix with. In the case of mixing in this weight ratio, it is possible to obtain a uniform coating film with good compatibility and compatibility with the carbon nanotube dispersion, as well as to satisfy the strong adhesion to the glass, strength and permeability at the same time.
위와 같은 (ⅰ) 탄소나노튜브 분산액과 (ⅱ) 바인더액은 유리용 전도성 코팅액 조성물 100중량%에 대하여 80-95중량%:5-20중량%의 비로 포함되는 것이 바람직하고, 보다 바람직하게는 85-93중량%:7-15중량%의 비인 것이 좋다. 이와 같이 혼합되는 경우에는 탄소나노튜브의 분산성을 최대화시켜 균일한 코팅막을 얻을 수 있고, 유리에 대한 강한 밀착성과 강도를 확보하면서도 높은 투과도도 유지할 수 있다.The carbon nanotube dispersion and (ii) the binder liquid as described above are preferably included in a ratio of 80-95% by weight: 5-20% by weight with respect to 100% by weight of the conductive coating liquid composition for glass, more preferably 85 The ratio is -93% by weight: 7-15% by weight. When mixed in this way, it is possible to obtain a uniform coating film by maximizing the dispersibility of the carbon nanotubes, while maintaining a strong adhesion and strength to the glass while maintaining a high permeability.
이러한 전도성 코팅액 조성물은 유리, 예컨대 LCD 등과 같은 각종 화상표시장치의 표시화면을 보호하기 위한 보호용 외관 유리뿐만 아니라 터치 스크린 패널 등과 같은 각종 기능성 소재의 상부에 구비되는 보호 유리에 바람직하게 적용될 수 있다. 구체적으로, 유리의 일면에 위 전도성 코팅액 조성물을 도공 및 건조하여 형성된 전도성 코팅막이 구비된 전도성 유리일 수 있다. 이때, 전도성 코팅막은 유리의 LCD 또는 터치 스크린 패널 등과 같은 각종 기능성 소재의 시인측에 형성될 수 있다.The conductive coating liquid composition may be preferably applied to a protective glass provided on top of various functional materials such as a touch screen panel as well as a protective appearance glass for protecting a display screen of various image display devices such as a glass, for example, an LCD. Specifically, the conductive glass may be provided with a conductive coating film formed by coating and drying the conductive coating liquid composition on one surface of the glass. In this case, the conductive coating film may be formed on the viewer side of various functional materials such as LCD or touch screen panel of glass.
본 발명의 전도성 코팅액 조성물은 다음과 같은 방법으로 제조될 수 있다.The conductive coating liquid composition of the present invention can be prepared by the following method.
탄소나노튜브 분산액을 제조하는 제1단계; 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액을 각각 제조하는 제2단계; 제2단계에서 제조된 폴리아크릴산 수지 용액과 실란졸을 혼합한 후 이 혼합액에 분산제 용액을 혼합하여 바인더액을 제조하는 제3단계; 및 제1단계에서 제조된 탄소나노튜브 분산액 80-95중량%와 제2단계에서 제조된 바인더액 5-20중량%를 혼합하는 제4단계를 포함한다. A first step of preparing a carbon nanotube dispersion; A second step of preparing a polyacrylic acid resin solution, a silane sol and a dispersant solution, respectively; A third step of preparing a binder liquid by mixing the polyacrylic acid resin solution prepared in the second step with the silane sol, and then mixing the dispersant solution with the mixed solution; And a fourth step of mixing 80-95 wt% of the carbon nanotube dispersion prepared in the first step and 5-20 wt% of the binder solution prepared in the second step.
제1단계는 탄소나노튜브 분산액을 제조하는 단계로서, 전도성 물질인 탄소나노튜브 0.21-0.5중량%, 분산제인 도데실술폰산나트륨, 도데실벤젠술폰산나트륨 또는 이들의 혼합물 0.21-1.5중량% 및 잔량의 물을 혼합하여 탄소나노튜브 분산액을 제조한다. 이때, 전도성 물질의 양호한 분산을 위해 초음파분산기(ultrasonic) 또는 고압분산기(nonamizer)를 이용할 수 있다. 예컨대, 초음파분산기를 이용하는 경우 40㎑, 150W에서 0.5-5시간 동안 분산시킬 수 있다. 또한, 초음파 처리 후 원심분리를 수행할 수도 있다.The first step is to prepare a carbon nanotube dispersion, the carbon nanotube 0.21-0.5% by weight of the conductive material, sodium dodecyl sulfonate, sodium dodecylbenzene sulfonate or a mixture thereof 0.21-1.5% by weight and the balance of Water is mixed to prepare a carbon nanotube dispersion. In this case, an ultrasonic disperser or an ultrasonicizer may be used for good dispersion of the conductive material. For example, when using an ultrasonic disperser can be dispersed for 0.5-5 hours at 40 Hz, 150W. In addition, centrifugation may be performed after sonication.
제2단계는 바인더액을 구성하는 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액을 각각 제조하는 단계이다.The second step is to prepare a polyacrylic acid resin solution, a silane sol and a dispersant solution constituting the binder liquid, respectively.
폴리아크릴산 수지 용액은 폴리아크릴산 수지(고형분 함량 기준) 0.001-1중량%, 물 0.003-5중량% 및 알코올계 용매 94-99.9중량%를 혼합하여 제조한다. 혼합 시간은 특별히 한정되지 않으며, 각 성분이 잘 혼합될 때까지 수행할 수 있다. 또한, 혼합을 양호하게 하기 위하여 항온조에서 가열하면서 혼합할 수도 있다.The polyacrylic acid resin solution is prepared by mixing 0.001-1% by weight of polyacrylic acid resin (based on solids content), 0.003-5% by weight of water, and 94-99.9% by weight of an alcohol solvent. Mixing time is not specifically limited, It can carry out until each component mixes well. Moreover, in order to make mixing favorable, you may mix, heating in a thermostat.
실란졸은 알콕시기의 탄소수가 1-20인 테트라알콕시실란 화합물 30-40중량%, 상기 테트라알콕시실란 화합물과 다르고 알콕시기의 탄소수가 1-20인 알콕시실란 화합물 20-30중량%, 산촉매 1-5중량%, 알코올계 용매 20-35중량% 및 잔량의 물을 혼합하여 졸-겔 반응시켜 제조한다. 혼합은 상온에서 15-30시간 동안 수행할 수 있다.The silane sol is 30-40% by weight of a tetraalkoxysilane compound having 1-20 carbon atoms in the alkoxy group, 20-30% by weight of an alkoxysilane compound having 1-20 carbon atoms different from the tetraalkoxysilane compound and an acid catalyst 1- Prepared by sol-gel reaction by mixing 5% by weight, 20-35% by weight of the alcohol solvent and the remaining amount of water. Mixing can be carried out at room temperature for 15-30 hours.
분산제 용액은 도데실술폰산나트륨, 도데실벤젠술폰산나트륨 또는 이들의 혼합물 중 선택된 분산제 0.1-5중량% 및 물 95-99.9중량%를 혼합하여 제조한다.The dispersant solution is prepared by mixing 0.1-5% by weight of the selected dispersant and 95-99.9% by weight of water in sodium dodecylsulfonate, sodium dodecylbenzenesulfonate or mixtures thereof.
제3단계는 제2단계에서 각각 제조된 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액을 혼합하여 바인더액을 제조하는 단계이다. 특히, 본 발명에서는 바인더액을 구성하는 3성분 중 폴리아크릴산 수지 용액과 실란졸을 먼저 혼합하고, 이 혼합액에 분산제 용액을 혼합하는 순서로 수행하는 것을 특징으로 한다. 이때, 균일한 혼합을 위해 항온조에서 가열하면서 수행할 수 있다. 예컨대, 폴리아크릴산 수지 용액과 실란졸을 10-30분 동안 혼합한 후 이 혼합액에 분산제 용액을 넣고 1-10분 동안 혼합할 수 있다. 이 방법에 의하면, 폴리아크릴산 수지와 실란졸이 균일하게 혼합되어 각각의 성분이 갖는 효과를 최대로 발현시킬 수 있으며, 제1단계의 탄소나노튜브 분산액과의 혼합 시에도 분산성과 코팅성을 크게 향상시킬 수 있게 된다. 이를 통하여, 유리에 적용 시 균일하고 밀착성이 좋아 강도가 우수할 뿐만 아니라 투과도도 양호한 코팅막을 얻을 수 있다.The third step is to prepare a binder liquid by mixing the polyacrylic acid resin solution, the silane sol and the dispersant solution prepared in the second step, respectively. In particular, the present invention is characterized in that the polyacrylic acid resin solution and the silane sol among the three components constituting the binder liquid are mixed first, and then the dispersant solution is mixed with the mixed solution. At this time, it may be performed while heating in a thermostat for uniform mixing. For example, the polyacrylic acid resin solution and the silane sol may be mixed for 10-30 minutes, and then the dispersant solution may be added to the mixed solution and mixed for 1-10 minutes. According to this method, the polyacrylic acid resin and the silane sol are uniformly mixed to maximize the effect of each component, and greatly improves dispersibility and coating property even when mixing with the carbon nanotube dispersion of the first step. You can do it. Through this, it is not only excellent in strength and good permeability but also excellent in adhesion when applied to glass. A good coating film can be obtained.
또한, 제3단계는 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액의 혼합비가 25-35:12-25:40-60가 되도록 혼합하는 것이 바람직하고, 보다 바람직하게 30-35:15-20:45-55의 중량비로 혼합하는 것이 좋다.In the third step, the mixing ratio of the polyacrylic acid resin solution, the silane sol and the dispersant solution is preferably 25-35: 12-25: 40-60, more preferably 30-35: 15-20: 45 Mixing at a weight ratio of -55 is recommended.
제4단계는 제1단계에서 제조된 탄소나노튜브 분산액 80-95중량%와 제3단계에서 제조된 바인더액 5-20중량%를 혼합하여 전도성 코팅액 조성물을 제조하는 단계이다. 이때, 혼합을 양호하게 하기 위하여 항온조에서 가열하면서 1-5분 동안 수행할 수 있다.The fourth step is to prepare a conductive coating solution composition by mixing 80-95% by weight of the carbon nanotube dispersion prepared in the first step and 5-20% by weight of the binder solution prepared in the third step. At this time, it may be performed for 1-5 minutes while heating in a thermostat in order to improve the mixing.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 이들 실시예는 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
Hereinafter, preferred examples are provided to aid the understanding of the present invention, but these examples are merely illustrative of the present invention and are not intended to limit the scope of the appended claims. It is apparent to those skilled in the art that various changes and modifications can be made to the present invention, and such modifications and changes belong to the appended claims.
실시예Example
실시예 1Example 1
아크 방전법으로 합성된 탄소나노튜브(SA100, ㈜나노솔루션)를 경사각도가 3°인 로터리 킬른 회전성 반응기를 이용하여 5-20rpm의 회전속도, 420℃의 온도, 250㏄/분의 산화성 가스 공급 속도로 100분 동안 열처리하여 탄소 불순물의 함량이 15%인 탄소나노튜브A를 사용하였다. 탄소나노튜브A 0.27중량부, 도데실술폰산나트륨(SDS) 0.27중량부 및 물 99.46중량부를 혼합하고 35분 동안 초음파분산기로 처리하였다. 처리된 용액을 6,000rpm으로 12분 동안 원심분리하여 탄소나노튜브 분산액을 제조하였다.Carbon nanotubes (SA100, NanoSolution Co., Ltd.), synthesized by the arc discharge method, were rotated at a speed of 5-20 rpm, a temperature of 420 ° C., and an oxidizing gas of 250 mW / min using a rotary kiln rotary reactor having an inclination angle of 3 °. Heat treatment was performed for 100 minutes at a feed rate to use carbon nanotubes A having a carbon impurity content of 15%. 0.27 parts by weight of carbon nanotubes A, 0.27 parts by weight of sodium dodecyl sulfonate (SDS) and 99.46 parts by weight of water were mixed and treated with an ultrasonic disperser for 35 minutes. The treated solution was centrifuged at 6,000 rpm for 12 minutes to prepare a carbon nanotube dispersion.
폴리아크릴산 수지 수용액(고형분 25%) 0.4중량부와 에탄올 99.6중량부를 혼합하고 잘 섞일때까지 교반하여 폴리아크릴산 수지 용액을 제조하였다.0.4 parts by weight of an aqueous polyacrylic acid resin solution (solid content 25%) and 99.6 parts by weight of ethanol were mixed and stirred until well mixed to prepare a polyacrylic acid resin solution.
테트라에톡시실란 37중량부, 메틸트리에톡시실란 24중량부, 에탄올 27중량부, 염산(35%) 4중량부 및 물 8중량부를 24시간 동안 혼합하여 졸-겔 반응시켜 실란졸을 제조하였다.37 parts by weight of tetraethoxysilane, 24 parts by weight of methyltriethoxysilane, 27 parts by weight of ethanol, 4 parts by weight of hydrochloric acid (35%) and 8 parts by weight of water were mixed for 24 hours to prepare a silane sol. .
도데실술폰산나트륨(SDS) 0.5중량부와 물 99.5중량부를 항온조에서 가열하면서 5분 동안 혼합하여 분산제 용액을 제조하였다.0.5 parts by weight of sodium dodecyl sulfonate (SDS) and 99.5 parts by weight of water were mixed for 5 minutes while heating in a thermostat to prepare a dispersant solution.
제조된 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액을 32.5:17.5:50의 중량비로 혼합하여 바인더액을 제조하였다. 이때, 먼저 폴리아크릴산 수지 용액과 실란졸을 항온조에서 5분 동안 가열하면서 총 20분 동안 혼합하고, 이 혼합물에 분산제 용액을 첨가하고 항온조에서 5분 동안 혼합하였다.The binder solution was prepared by mixing the prepared polyacrylic acid resin solution, silane sol and dispersant solution in a weight ratio of 32.5: 17.5: 50. At this time, the polyacrylic acid resin solution and the silane sol were mixed for a total of 20 minutes while heating in a thermostat for 5 minutes, a dispersant solution was added to the mixture and mixed for 5 minutes in a thermostat.
제조된 탄소나노튜브 분산액과 바인더액을 90:10의 중량비로 첨가하고 항온조에서 5분 동안 가열하면서 혼합하여 전도성 코팅액 조성물을 제조하였다.
The prepared carbon nanotube dispersion and the binder solution were added in a weight ratio of 90:10, and mixed with heating in a thermostat for 5 minutes to prepare a conductive coating solution composition.
실시예 2-12 , 비교예 1-5Example 2-12, Comparative Example 1-5
상기 실시예 1과 동일하게 실시하되, 하기 표 1에 나타낸 바와 같은 조성으로 전도성 코팅액을 제조하였다.
The same process as in Example 1, except that the conductive coating solution was prepared in the composition as shown in Table 1.
비교예 6Comparative Example 6
상기 실시예 1과 동일하게 실시하되, 바인더액 제조시 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액을 동시에 첨가하고 항온조에서 가열하면서 5분 동안 혼합였다.
The same procedure as in Example 1 was carried out, but the polyacrylic acid resin solution, the silane sol and the dispersant solution were added at the same time, and mixed for 5 minutes while heating in a thermostat.
탄소나노튜브 분산액B: SA100(탄소 불순물 함량:45-70%) 포함
바인더액Ⅰ: 폴리아크릴산 수지 용액
바인더액Ⅱ: 실란졸
비안더액Ⅲ: 분산제 용액Carbon nanotube dispersion A: Contains carbon nanotube (carbon impurity content: 15%) after heat treatment of SA100
Carbon nanotube dispersion B: contains SA100 (carbon impurity content: 45-70%)
Binder solution I: polyacrylic acid resin solution
Binder solution II: silane sol
Biander liquid III: Dispersant solution
시험예Test Example
상기 실시예 및 비교예에서 제조된 전도성 코팅액의 물성을 하기 방법으로 측정하고, 그 결과를 하기 표 2에 나타내었다.
Physical properties of the conductive coating liquids prepared in Examples and Comparative Examples were measured by the following methods, and the results are shown in Table 2 below.
1. 분산성1. Dispersibility
제조된 전도성 코팅액 조성물 소량을 유리판에 떨어뜨려서 응집이 되는지 여부를 확인하였으며, 나머지 코팅액 조성물은 유리병에 넣어 보관하였다. 동일한 방법으로 30일 동안 응집여부를 확인하였으며, 그 결과를 하기 기준에 의거하여 평가하였다.A small amount of the prepared conductive coating liquid composition was dropped on the glass plate to determine whether the agglomerate was agglomerated, and the remaining coating liquid composition was stored in a glass bottle. In the same manner, it was confirmed whether the flocculation for 30 days, the results were evaluated based on the following criteria.
<평가 기준><Evaluation Criteria>
○: 30일 후 응집 발생함(양호).○: Aggregation occurred after 30 days (good).
△: 10일 후 응집 발생함(보통).(Triangle | delta): Aggregation generate | occur | produces after 10 days (usually).
×: 2일 이내 응집 발생함(불량).
X: Aggregation generate | occur | produces within 2 days (defect).
2. 2. 코팅성Coating property
제조된 전도성 코팅액을 유리판 상에 스핀 코터를 이용하여 코팅하고 80℃에서 15분 동안 건조하여 전도성 코팅막을 형성하였다. 형성된 전도성 코팅막의 표면 균일성을 육안으로 관찰하고, 하기 기준에 의거하여 평가하였다.The prepared conductive coating solution was coated on a glass plate using a spin coater and dried at 80 ° C. for 15 minutes to form a conductive coating film. The surface uniformity of the formed conductive coating film was visually observed and evaluated based on the following criteria.
<평가 기준><Evaluation Criteria>
○: 코팅액 도포 시 액상 막이 일정하게 도포됨(양호).(Circle): A liquid film | membrane is apply | coated uniformly at the time of coating liquid application (good).
△: 코팅액 도포 시 액상 막이 불균일하게 도포되는 부분이 일부 있음(보통).(Triangle | delta): There exist some parts to which a liquid film is apply | coated unevenly at the time of coating liquid application (usually).
×: 코팅액 도포 시 액상 막이 일정하게 도포되지 않아 균일한 코팅층이 형성되지 못함(불량).
X: A liquid film is not apply | coated uniformly at the time of coating liquid coating, and a uniform coating layer is not formed (defect).
3. 표면비저항(Ω/□)3. Surface resistivity (Ω / □)
표면저항 측정기를 이용하여 위 2에서 형성된 전도성 코팅막의 표면비저항을 측정하였다. 이때, 표면비저항 측정은 4-Point Probe 방식을 채택하여 수행하였으며, 코팅막 표면을 길이 방향으로 삼등분으로 나누고 그 중 중앙부에서 측정한 후 하기 기준에 의거하여 평가하였다.The surface resistivity of the conductive coating film formed in the above 2 was measured using a surface resistance meter. At this time, the surface resistivity measurement was carried out by adopting a 4-point probe method, the coating film surface was divided into three parts in the longitudinal direction and measured in the center portion of the coating film was evaluated based on the following criteria.
<평가 기준><Evaluation Criteria>
○: 표면비저항(Ω/□) ≤ 5×105(양호).○: Surface specific resistance (Ω / □) ≤ 5 x 10 5 (good).
△: 5×105 < 표면비저항(Ω/□) ≤ 5×106(보통).Δ: 5 × 10 5 <surface specific resistance (Ω / □) ≤ 5 × 10 6 (normal).
×: 5×106 < 표면비저항(Ω/□)(불량).
X: 5 x 10 6 <surface specific resistance (Ω / □) (bad).
4. 투과도(%)4. Permeability (%)
위 2에서 형성된 전도성 코팅막의 투과도를 분광광도계를 이용하여 550㎚에서의 측정하였으며, 그 결과를 코팅이 되지 않은 유리의 투과도인 90.5%를 기준값으로 하여 비교하고, 하기 기준에 의거하여 평가하였다.The transmittance of the conductive coating film formed in the above 2 was measured at 550 nm using a spectrophotometer, and the results were compared based on 90.5%, the transmittance of the uncoated glass, as a reference value, and evaluated based on the following criteria.
<평가 기준><Evaluation Criteria>
○: 85.5 ≤ 투과도(%)(양호).○: 85.5 ≤ transmittance (%) (good).
△: 81.5 ≤ 투과도(%) < 85.5(보통).Δ: 81.5 ≤ transmittance (%) <85.5 (typical).
×: 투과도(%) < 81.5(불량).
X: Permeability (%) <81.5 (bad).
5. 5. 내스크래치성Scratch resistance (연필경도)(Pencil hardness)
위 2에서 형성된 전도성코팅막의 표면을 연필경도 시험기(221-D, Yoshimitsu사)를 이용하여 H, 2H, 3H, 4H, 5H, 6H, 7H, 8H, 9H 연필로 측정하였다.
The surface of the conductive coating film formed in the above 2 was measured by H, 2H, 3H, 4H, 5H, 6H, 7H, 8H, 9H pencil using a pencil hardness tester (221-D, Yoshimitsu).
(H)Pencil hardness
(H)
(Ω/□)Measures
(Ω / □)
(%)Measures
(%)
위 표 2와 같이, 본 발명에 따라 탄소나노튜브 분산액과 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액이 혼합된 바인더액을 최적 함량비로 포함하는 실시예 1-12의 전도성 코팅액은 비교예 1-6의 코팅액보다 분산성과 코팅성이 우수하여 균일한 코팅막을 형성할 수 있으며, 전기전도도와 투과도가 우수할 뿐만 아니라 특히 유리판에 대한 밀착성이 좋아 충분한 경도도 확보할 수 있음을 확인하였다. 특히, 바인더액을 구성하는 3종류의 성분들의 혼합비가 최적화되는 경우 보다 더 효과적이었다.As shown in Table 2, according to the present invention, the conductive coating solution of Example 1-12 including the binder solution in which the carbon nanotube dispersion, the polyacrylic acid resin solution, the silane sol and the dispersant solution is mixed in an optimal content ratio is Comparative Example 1-6. Dispersibility and coating properties of the coating solution is better than that of forming a uniform coating film, it was confirmed that not only has excellent electrical conductivity and permeability, but also particularly good adhesion to the glass plate to ensure sufficient hardness. In particular, it was more effective than the case where the mixing ratio of the three kinds of components constituting the binder liquid was optimized.
또한, 바인더액을 구성하는 3성분이 동시에 혼합된 비교예 6의 경우 응집 현상이 일어나 분산성과 코팅성이 실시예에 비해 떨어지고, 이로 인해 다른 물성 전반에 걸쳐 좋지 못하였다.In addition, in the case of Comparative Example 6 in which the three components constituting the binder liquid were mixed at the same time, agglomeration occurred, resulting in inferior dispersibility and coating property as compared with the Examples, which was not good throughout other physical properties.
Claims (13)
(ⅱ) 폴리아크릴산 수지 용액, 실란졸 및 분산제 용액이 혼합된 바인더액 5-20중량%를 포함하고,
상기 탄소나노튜브 분산액은 탄소나노튜브 0.21-0.5중량%, 분산제 0.21-1.5중량% 및 잔량의 물을 포함하는 유리용 전도성 코팅액 조성물.
(Iii) 80-95 wt% of carbon nanotube dispersion, and
(Ii) 5-20% by weight of a binder liquid in which a polyacrylic acid resin solution, a silane sol and a dispersant solution are mixed,
The carbon nanotube dispersion is a conductive coating liquid composition for glass comprising a carbon nanotube 0.21-0.5% by weight, a dispersant 0.21-1.5% by weight and the balance of water.
The conductive coating liquid composition for glass according to claim 1, wherein the dispersant is sodium dodecyl sulfonate, sodium dodecylbenzenesulfonate or a mixture thereof.
The conductive coating liquid composition for glass according to claim 1, wherein the polyacrylic acid resin solution contains 0.001-1% by weight of polyacrylic acid resin, 0.003-5% by weight of water, and 94-99.9% by weight of an alcohol solvent.
The silane sol is 30-40% by weight of a tetraalkoxysilane compound having 1-20 carbon atoms in the alkoxy group, and 20-30% by weight of an alkoxysilane compound different from the tetraalkoxysilane compound having 1-20 carbon atoms in the alkoxy group. %, Acid catalyst 1-5% by weight, alcohol-based solvent 20-35% by weight and the remaining amount of water conductive coating liquid composition.
The conductive coating liquid composition for glass according to claim 4, wherein the tetraalkoxysilane compound is at least one selected from the group consisting of tetraethoxysilane, tetramethoxysilane, tetra-n-propoxysilane and oligomers thereof.
The compound of claim 4, wherein the alkoxysilane compound is methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, methyltripropoxysilane, methyltributoxysilane, propyltrimethoxysilane For at least one glass selected from the group consisting of propyltriethoxysilane, isobutyltriethoxysilane, isobutyltrimethoxysilane, octyltriethoxysilane, octyltrimethoxysilane and methacryloxydecyltrimethoxysilane Conductive coating solution composition.
The conductive coating liquid composition for glass according to claim 1, wherein the dispersant solution comprises 0.1-5% by weight and 95-99.9% by weight of a dispersant selected from sodium dodecyl sulfonate, sodium dodecylbenzenesulfonate or a mixture thereof.
The conductive coating liquid composition for glass according to claim 1, wherein the mixing ratio of the polyacrylic acid resin solution, the silane sol and the dispersant solution is 25-35: 12-25: 40-60.
The conductive coating liquid composition for glass according to claim 1, wherein the mixing ratio of the polyacrylic acid resin solution, the silane sol and the dispersant solution is 30-35: 15-20: 45-55.
폴리아크릴산 수지 용액, 실란졸 및 분산제 용액을 각각 제조하는 제2단계;
제2단계에서 제조된 폴리아크릴산 수지 용액과 실란졸을 혼합한 후 이 혼합액에 분산제 용액을 혼합하여 바인더액을 제조하는 제3단계; 및
제1단계에서 제조된 탄소나노튜브 분산액 80-95중량%와 제2단계에서 제조된 바인더액 5-20중량%를 혼합하는 제4단계를 포함하는 유리용 전도성 코팅액의 제조방법.
A first step of preparing a carbon nanotube dispersion by mixing 0.21-0.5% by weight of carbon nanotubes, 0.21-1.5% by weight of a dispersant, and a balance of water;
A second step of preparing a polyacrylic acid resin solution, a silane sol and a dispersant solution, respectively;
A third step of preparing a binder liquid by mixing the polyacrylic acid resin solution prepared in the second step with the silane sol, and then mixing the dispersant solution with the mixed solution; And
Method for producing a conductive coating liquid for glass comprising a fourth step of mixing 80-95% by weight of the carbon nanotube dispersion prepared in the first step and 5-20% by weight of the binder solution prepared in the second step.
The method of claim 10, wherein the third step is performed such that a mixing ratio of the polyacrylic acid resin solution, the silane sol, and the dispersant solution is 25-35: 12-25: 40-60.
Conductive glass having a conductive coating film formed on one surface of the conductive coating liquid composition of any one of claims 1 to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120003438A KR101311876B1 (en) | 2012-01-11 | 2012-01-11 | Electroconductive coating composition for glass and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120003438A KR101311876B1 (en) | 2012-01-11 | 2012-01-11 | Electroconductive coating composition for glass and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130082300A KR20130082300A (en) | 2013-07-19 |
KR101311876B1 true KR101311876B1 (en) | 2013-09-26 |
Family
ID=48993640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120003438A KR101311876B1 (en) | 2012-01-11 | 2012-01-11 | Electroconductive coating composition for glass and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101311876B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105647086A (en) * | 2014-12-01 | 2016-06-08 | 乐金显示有限公司 | Carbon nanotube dispersion liquid composition and method for manufacturing of the same, conductive coating liquid composition, antistatic film and display device |
CN106928842A (en) * | 2015-12-31 | 2017-07-07 | 乐金显示有限公司 | Conductive coating liquid composition and antistatic film and use its display device |
CN106947306A (en) * | 2015-12-31 | 2017-07-14 | 乐金显示有限公司 | Conductive coating liquid composition and antistatic film and use its display device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9714350B2 (en) * | 2014-12-01 | 2017-07-25 | Lg Display Co., Ltd. | Carbon nanotube dispersion liquid composition and method for manufacturing of the same, conductive coating liquid composition comprising the same, antistatic film and display device using the same |
KR101999963B1 (en) * | 2015-06-12 | 2019-07-15 | 주식회사 엘지화학 | Display Module |
KR102436187B1 (en) * | 2015-12-31 | 2022-08-26 | 엘지디스플레이 주식회사 | Method For Manufacturing Of Antistatic Film And Method For Manufacturing Of Display Device Using The Same |
EP3357880B1 (en) * | 2017-02-03 | 2019-11-20 | 3M Innovative Properties Company | Protective coating composition for siliceous substrates |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005336341A (en) | 2004-05-27 | 2005-12-08 | Mitsubishi Rayon Co Ltd | Composition containing carbon nanotube, composite material having coating film made thereof and method for producing the same |
JP2006027961A (en) | 2004-07-16 | 2006-02-02 | Univ Of Tokyo | Carbon nanotube dispersion film and light emitting body |
KR20070101312A (en) * | 2005-01-13 | 2007-10-16 | 신벤션 아게 | Composite materials containing carbon nanoparticles |
KR100962294B1 (en) | 2009-07-29 | 2010-06-11 | 주식회사 나노솔루션 | Electroconductive coating composition containing carbon nanotube and preparing method thereof |
-
2012
- 2012-01-11 KR KR1020120003438A patent/KR101311876B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005336341A (en) | 2004-05-27 | 2005-12-08 | Mitsubishi Rayon Co Ltd | Composition containing carbon nanotube, composite material having coating film made thereof and method for producing the same |
JP2006027961A (en) | 2004-07-16 | 2006-02-02 | Univ Of Tokyo | Carbon nanotube dispersion film and light emitting body |
KR20070101312A (en) * | 2005-01-13 | 2007-10-16 | 신벤션 아게 | Composite materials containing carbon nanoparticles |
KR100962294B1 (en) | 2009-07-29 | 2010-06-11 | 주식회사 나노솔루션 | Electroconductive coating composition containing carbon nanotube and preparing method thereof |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105647086A (en) * | 2014-12-01 | 2016-06-08 | 乐金显示有限公司 | Carbon nanotube dispersion liquid composition and method for manufacturing of the same, conductive coating liquid composition, antistatic film and display device |
CN106928842A (en) * | 2015-12-31 | 2017-07-07 | 乐金显示有限公司 | Conductive coating liquid composition and antistatic film and use its display device |
CN106947306A (en) * | 2015-12-31 | 2017-07-14 | 乐金显示有限公司 | Conductive coating liquid composition and antistatic film and use its display device |
CN106928842B (en) * | 2015-12-31 | 2019-07-19 | 乐金显示有限公司 | Conductive coating liquid composition and antistatic film and the display device for using it |
US10418147B2 (en) | 2015-12-31 | 2019-09-17 | Lg Display Co., Ltd. | Conductive coating liquid composition, and an antistatic film and a display device using the same |
US10705261B2 (en) | 2015-12-31 | 2020-07-07 | Lg Display Co., Ltd. | Conductive coating liquid composition, and an antistatic film and a display device using the same |
Also Published As
Publication number | Publication date |
---|---|
KR20130082300A (en) | 2013-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101311876B1 (en) | Electroconductive coating composition for glass and preparation method thereof | |
Smith Jr et al. | Carbon nanotube-conductive additive-space durable polymer nanocomposite films for electrostatic charge dissipation | |
JP3937113B2 (en) | Organic-inorganic composite conductive sol and method for producing the same | |
JP2019524919A (en) | Composite particles having a coated aggregate having a low-structure carbon black core, coating and ink having high resistivity and optical density, apparatus made using these, and method for making the same | |
WO2015151489A1 (en) | Composition for forming transparent conductive layer | |
Wang et al. | Preparation and characterization of NIR cutoff antimony doped tin oxide/hybrid silica coatings | |
JP2018521939A (en) | Tungsten oxide colloidal suspension doped with tungsten and method for preparing the same | |
JPWO2011024830A1 (en) | Conductive coating composition and covering member | |
JPWO2011024829A1 (en) | Conductive coating composition and covering member | |
US7309457B2 (en) | Chain inorganic oxide fine particle groups | |
KR101113099B1 (en) | Electroconductive coating composition for glass and preparation method thereof | |
JPH09263716A (en) | Overcoat composition for transparent electrically conductive film excellent in electical conductivity | |
JP6690968B2 (en) | Method for manufacturing transparent conductive substrate and lateral electric field type liquid crystal display panel with built-in touch panel function | |
JP2012160290A (en) | Method for producing conductive complex | |
JP6470860B1 (en) | Coating composition, conductive film and liquid crystal display panel | |
JP6491910B2 (en) | Transparent conductive sheet and method for producing the same | |
JP6530644B2 (en) | Composition for forming ITO conductive film and ITO conductive film | |
JP6717584B2 (en) | Conductive coating liquid and conductive coating | |
KR20150004712A (en) | Ceramic composition and method for manufacturing the same, and heat radiating member using the same | |
JP2016119305A (en) | Constituent and conductive material provided therefrom | |
JP5686942B2 (en) | Hard coat film-forming coating material and substrate with hard coat film | |
JP2008120960A (en) | Coating agent having conductivity | |
TW202003724A (en) | Inorganic oxide dispersion having high transparency | |
JP3606772B2 (en) | Paint for forming transparent antistatic film and substrate with transparent antistatic film | |
JP6530673B2 (en) | Composition for forming phosphorus-doped tin oxide conductive film and phosphorus-doped tin oxide conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170928 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180928 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190814 Year of fee payment: 7 |