[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101270716B1 - Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite - Google Patents

Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite Download PDF

Info

Publication number
KR101270716B1
KR101270716B1 KR1020110086034A KR20110086034A KR101270716B1 KR 101270716 B1 KR101270716 B1 KR 101270716B1 KR 1020110086034 A KR1020110086034 A KR 1020110086034A KR 20110086034 A KR20110086034 A KR 20110086034A KR 101270716 B1 KR101270716 B1 KR 101270716B1
Authority
KR
South Korea
Prior art keywords
graphene
photocatalyst
tio
composite
carbon nanofiber
Prior art date
Application number
KR1020110086034A
Other languages
Korean (ko)
Other versions
KR20130022960A (en
Inventor
양갑승
김보혜
김창효
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020110086034A priority Critical patent/KR101270716B1/en
Publication of KR20130022960A publication Critical patent/KR20130022960A/en
Application granted granted Critical
Publication of KR101270716B1 publication Critical patent/KR101270716B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 광촉매에 대한 것으로, 보다 구체적으로는 가시광선영역에서 높은 광촉매활성을 갖는 새로운 광촉매복합체인 광촉매-그래핀-탄소나노섬유복합체, 상기 복합체 제조방법, 및 상기 복합체를 포함하는 필터에 관한 것이다. The present invention relates to a photocatalyst, and more particularly, to a photocatalyst-graphene-carbon nanofiber composite, a method for preparing the composite, and a filter including the composite, which is a new photocatalyst complex having high photocatalytic activity in the visible light region. .

Description

광촉매-그래핀-탄소나노섬유복합체 제조방법{Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite}Photocatalyst-graphene-carbon nanofiber composite manufacturing method {Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite}

본 발명은 광촉매에 대한 것으로, 보다 구체적으로는 가시광선영역에서 높은 광촉매활성을 갖는 새로운 광촉매복합체인 광촉매-그래핀-탄소나노섬유복합체, 상기 복합체 제조방법, 및 상기 복합체를 포함하는 필터에 관한 것이다.
The present invention relates to a photocatalyst, and more particularly, to a photocatalyst-graphene-carbon nanofiber composite, a method for preparing the composite, and a filter including the composite, which is a new photocatalyst complex having high photocatalytic activity in the visible light region. .

환경문제를 해결하고자 다양한 방법들과 물질들이 개발되고 있는데, 이러한 여러 방법들 중 광촉매는 태양광을 이용하여 유기 오염물질을 분해하기 때문에 부수적인 오염을 일으키지 않는 장점이 있다. Various methods and materials have been developed to solve environmental problems. Among these methods, photocatalysts decompose organic pollutants using solar light, which does not cause incidental pollution.

광촉매는 "빛이 조사된 것에 의해 그 자신은 변하지 않지만, 화학반응을 촉진시켜 주는 물질"로서, 빛을 에너지원으로 하여 촉매 반응을 진행시키는 물질을 말하는데, 광촉매로는 반도체성 금속 산화물이나 황 화합물이 이용된다. 이러한 광촉매는 기존의 미생물이 제거할 수 없는 다양한 생물학적 난분해성 물질을 분해할 수 있는 것으로 알려져 왔는데, 상기와 같은 광촉매 효과를 나타내는 물질에는 ZnO, WO3, SnO2, ZrO2, TiO2, CdS 등이 있다.A photocatalyst is a substance that promotes a chemical reaction, although it does not change itself due to irradiation of light, and refers to a substance that advances a catalytic reaction using light as an energy source. The photocatalyst is a semiconducting metal oxide or a sulfur compound. This is used. Such photocatalysts have been known to decompose various biologically hardly decomposable substances that existing microorganisms cannot remove. Examples of such photocatalysts include ZnO, WO 3 , SnO 2 , ZrO 2 , TiO 2 , and CdS. There is this.

특히 TiO2 광촉매는 저렴한 비용, 인체의 무해성, 살균, 각종 유기물의 효과적 분해력, 안정성 및 지속적인 내구성 등과 같은 특성을 이용하여 유기물과 유해성 가스의 산화 제거반응, 난분해성 염색 폐수의 분해 반응 등 다양한 분야에서 응용이 가능하다. 이처럼 TiO2 광촉매는 가격이 저렴하고 빛을 에너지원으로 사용하며 반영구적 사용이 가능하므로 친환경적이면서 경제적이어서 각광을 받고 있다. In particular, TiO 2 photocatalyst has various fields such as low cost, harmlessness of human body, sterilization, effective degradability of various organic matters, stability and continuous durability, etc. Application is possible at As such, TiO 2 photocatalysts are in the spotlight because they are eco-friendly and economical because they are inexpensive, use light as an energy source, and can be used semi-permanently.

TiO2와 같은 반도체성 금속물질을 포함하여 광촉매물질은 일정한 영역의 에너지가 가해지면 전자가 가전자대(Valence Band)에서 전도대(Conduction Band)로 여기 된다. 즉 전도대에는 전자[e-, electron]들이 형성되게 되고 가전자대(Valence Band)에는 정공[h+, electron hole]이 형성되게 된다. 정공(h+)이 물과 반응해서 수산라디칼 (-OH)을 생성하고, 반대가 되는 환원반응에서는 공기 중 산소의 환원이 일어나 슈퍼옥사이드 음이온(O2 -), 2종의 활성산소를 생성한다. 특히 수산라디칼은 높은 산화, 환원전위를 가지고 있기 때문에 NOx, SOx, 휘발성유기화합물(VOCs) 및 각종 악취정화에 탁월한 효과를 지닌 것으로 밝혀지고 있다.Photocatalytic materials, including semiconducting metals such as TiO 2 , are excited by electrons from the valence band to the conduction band when a certain region of energy is applied. That is, electrons [e-, electrons] are formed in the conduction band, and holes [h +, electron holes] are formed in the valence band. The hole (h +) reacts with water to produce hydroxyl radical (-OH). In the opposite reduction reaction, oxygen is reduced in air to produce superoxide anion (O 2 ) and two active oxygen. In particular, since radicals have high oxidation and reduction potentials, it has been found to have an excellent effect on NO x , SO x , volatile organic compounds (VOCs) and various malodors.

한편, 탄소나노섬유는 미세한 다공구조의 큰 흡착특성을 이용하여 흡착, 탈색, 수처리제, 탈취제, 습기를 제거하는 조습제등의 용도로 사용될 수 있는 새로운 형태의 탄소재료이다. 광촉매를 함유하고 있는 탄소나노섬유는 기존 탄소나노섬유의 큰 비표면적과 기공의 깊이가 얕은 특성을 이용, 오염물질의 뛰어난 흡착성능과 빠른 흡착속도를 나타내는 지지체의 역할을 하는 동시에 광촉매를 고정시켜주는 효과를 주기 때문에 효율적인 광촉매활성을 기대할 수 있고, 다양한 분야에 복합체로서 사용이 가능하다. On the other hand, carbon nanofibers are a new type of carbon material that can be used for adsorption, decolorization, water treatment agent, deodorant, humidity control agent to remove moisture by using large adsorption characteristics of fine porous structure. Carbon nanofibers containing photocatalysts use the large specific surface area and shallow pore depth of existing carbon nanofibers to act as a supporter that shows excellent adsorption performance and fast adsorption rate of contaminants, while fixing photocatalysts. Because of the effect, efficient photocatalytic activity can be expected and can be used as a composite in various fields.

본 발명자들이 발명한 국내특허 출원번호 제10-2008-0137971호는 탄소나노섬유와 광촉매물질을 이용하여 광촉매 특성 즉 분해능력을 가지는 동시에 탄소나노섬유의 고유특성 즉 흡착능력을 갖게 되어 보다 우수한 정화기능을 갖는 광촉매활성을 갖는 복합탄소나노섬유제조방법 및 그 방법으로 제조된 복합탄소나노섬유를 개시하고 있는데, 보다 구체적으로는 "탄소나노섬유전구체 물질이 용해된 방사용액을 전기 방사하여 얻어진 탄소나노섬유 전구체를 200 내지 350℃에서 안정화하여 내염화 섬유를 얻는 단계; 광촉매 졸 용액을 준비하는 단계; 상기 광촉매 졸 용액에 상기 내염화섬유를 침지시켜 코팅하는 단계; 및 상기 코팅된 내염화섬유를 건조한 후 탄화시키는 단계를 포함하는 광촉매 활성을 갖는 복합탄소나노섬유제조방법"을 기재하고 있다.Korean Patent Application No. 10-2008-0137971 invented by the present inventors has a photocatalytic property, that is, a decomposability, using carbon nanofibers and a photocatalyst material, and at the same time, it has an inherent property, that is, adsorption capacity, of carbon nanofibers, thereby providing a superior purification function. Disclosed is a method for producing a composite carbon nanofiber having a photocatalytic activity and a composite carbon nanofiber prepared by the method, and more specifically, "Carbon nanofiber obtained by electrospinning a spinning solution in which a carbon nanofiber precursor material is dissolved. Stabilizing the precursor at 200 to 350 ° C. to obtain a flame resistant fiber; preparing a photocatalyst sol solution; immersing and coating the flame resistant fiber in the photocatalyst sol solution; and drying the coated flame resistant fiber It describes a method for producing a composite carbon nanofiber having a photocatalytic activity comprising the step of carbonizing.

그러나, 상기 특허에 개시된 복합탄소나노섬유제조방법으로 제조된 복합탄소나노섬유는 표면에 광촉매입자가 뭉쳐서 불균일하게 형성될 뿐만 아니라 탄화과정에서 종래의 광촉매물질과 동일하게 태양광의 대부분을 차지하는 가시광선 영역에서 광촉매활성을 나타내지 못하는 문제점이 있었다. However, the composite carbon nanofibers manufactured by the method of manufacturing the composite carbon nanofiber disclosed in the patent not only are not uniformly formed by agglomeration of photocatalytic particles on the surface, but also in the visible light region, which occupies most of the sunlight in the same process as the conventional photocatalytic materials. There was a problem in that it does not exhibit photocatalytic activity.

다시 말해, TiO2 를 포함하여 광촉매는 다양한 장점에도 불구하고 TiO2 를 포함하여 대부분의 광촉매물질의 띠간격이 3.0 ~ 3.2 eV이상 이므로 이 띠간격을 극복하기 위해서는 385 nm 보다 짧은 자외선 영역의 빛이 필요하기 때문이다. 그러나 자외선 영역은 태양광의 5% 미만에 불과하므로 태양에너지를 효과적으로 이용하기 위해서는 태양광에서 높은 비중을 차지하는 가시광선 영역의 빛에서 반응할 수 있어야 하므로, 전이금속 도핑, 플라즈마처리, 전자빔 조사, 비금속 도핑, 이온임플란트 등 다양한 개질방법과 함께 TiO2의 표면적을 넓혀서 반응효율을 좋게 하는 연구들이 많이 진행되고 있으나 아직 까지 효과적인 기술이 개발되지 않은 상태이다.In other words, despite the photocatalyst number of benefits, including TiO 2, and most of the band gap of the photocatalyst material it is because it is 3.0 ~ 3.2 eV or more light in this order to overcome the band gap short UV than 385 nm region, including TiO 2 Because it is necessary. However, since the ultraviolet region is less than 5% of sunlight, in order to effectively use solar energy, it must be able to react in the light of visible region, which occupies a high proportion of sunlight, so that transition metal doping, plasma treatment, electron beam irradiation, and non-metal doping Along with various reforming methods such as ion implants and ion implants, many studies have been conducted to improve the reaction efficiency by increasing the surface area of TiO 2 , but no effective technology has been developed.

또한, Graphene은 전기적으로는 금속특성, 반도체 특성 함께 가지면서 비표면적이 넓은 평면구조로 이루어져 있어 투명전극, 전기화학분야 전극, 촉매지지체 등의 분야에서 최근 각광받고 있는 소재이다. Graphene은 형성하고 있는 layer의 개수에 따라 특성을 나타내게 되는데 multi-layer Graphene의 경우 반도체의 특성을 나타내며 금속이나 금속산화물과 결합 할 때에 나노크기의 결정을 형성하도록 도와주는 특성이 많이 보고되어 지고 있어 최근 광촉매지지체로 활용하는 연구가 많이 진행되고 있다. 하지만 순수한 Graphene을 제조하기 위해서는 높은 생산단가와 낮은 생산효율을 갖고 있어 Graphene 자제를 촉매지지체로 사용하기에는 큰 무리가 따른다. In addition, Graphene has a planar structure with a large specific surface area while having both metal and semiconductor properties, and is a material that has recently been in the spotlight in the fields of transparent electrodes, electrochemical electrodes, and catalyst supports. Graphene is characterized by the number of layers formed. In the case of multi-layer graphene, it is characteristic of semiconductor and helps to form nano-sized crystal when combined with metal or metal oxide. A lot of researches are being used as photocatalyst support. However, to produce pure Graphene, it has high production cost and low production efficiency, which makes it difficult to use Graphene materials as catalyst support.

따라서, 광촉매의 성능을 극대화하고 가시광선에서도 반응하는 새로운 광촉매물질에 대한 개발 필요성은 환경 기술 에너지 기술 신 물질 개발의 영역에서 절실히 요구되고 있다.
Therefore, the necessity of developing a new photocatalytic material that maximizes the performance of the photocatalyst and reacts in visible light is urgently required in the area of development of environmental technology, energy technology and new material.

본 발명자들은 이러한 문제점을 해결하기 위하여 연구 노력한 결과 뛰어난 전기적 성질과 더불어 높은 비표면적을 갖는 Graphene의 장점을 활용하여 가시광선에서도 반응하는 광촉매물질을 개발함으로써 본 발명을 완성하였다.The present inventors have completed the present invention by developing a photocatalytic material that reacts in visible light by utilizing the advantages of Graphene having a high specific surface area as well as excellent electrical properties as a result of research efforts to solve this problem.

따라서, 본 발명의 목적은 가시광 영역의 빛을 흡수할 수 있어 자외선 영역뿐만 아니라 가시광선 영역에서도 높은 광촉매 활성을 보이므로, 야외의 태양광과 실내의 형광등 아래서도 높은 반응효율을 갖기 때문에 더욱 다양한 산업현장과 일상생활에서 사용될 수 있는 광촉매-그래핀-탄소나노섬유복합체, 상기 복합체 제조방법, 및 상기 복합체를 포함하는 필터를 제공하는 것이다.Accordingly, an object of the present invention is to absorb light in the visible region, showing high photocatalytic activity not only in the ultraviolet region but also in the visible region, and thus has a high reaction efficiency even under outdoor sunlight and fluorescent lamps in the room. It is to provide a photocatalyst-graphene-carbon nanofiber composite, which can be used in the field and daily life, the composite manufacturing method, and a filter comprising the composite.

본 발명의 다른 목적은 표면적이 커서 유기물의 담지량을 획기적으로 증가 시킬 수 있고, 그 기공의 깊이가 얕아 흡탈착 속도가 빠르므로 광촉매 활성의 반응속도가 증가될 수 있는 광촉매-그래핀-탄소나노섬유복합체, 상기 복합체 제조방법, 및 상기 복합체를 포함하는 필터를 제공하는 것이다.It is another object of the present invention to increase the amount of organic matter supported by a large surface area, and because the depth of the pores is shallow because the adsorption and desorption rate is fast photocatalyst-graphene-carbon nanofibers can increase the reaction rate of photocatalytic activity It is to provide a complex, a method for producing the complex, and a filter comprising the complex.

본 발명의 또 다른 목적은 그래핀(Graphene)이 광촉매입자를 나노입자 크기로 복합체의 표면에 균일하게 분산시켜 고정할 뿐만 아니라 광촉매에서 이동하는 전자를 안정적으로 잡아주는 트랩역할을 수행하여 광촉매활성 효율이 증가될 수 있는 광촉매-그래핀-탄소나노섬유복합체, 상기 복합체 제조방법, 및 상기 복합체를 포함하는 필터를 제공하는 것이다.Yet another object of the present invention is that graphene uniformly disperses photocatalytic particles on the surface of the composite in nanoparticle size, as well as performing a trap role to stably hold electrons moving in the photocatalyst, thereby improving photocatalytic activity efficiency. It is to provide a photocatalyst-graphene-carbon nanofiber composite which can be increased, a method for preparing the composite, and a filter including the composite.

본 발명의 또 다른 목적은 헤테로아톰이 결합되어 용매에 분산도가 높은 그래핀을 방사용액에 첨가하여 그래핀함유 탄소나노섬유를 제조함으로써 원가 및 제조공정의 단순화를 통해 제조비용을 낮출 수 있는 광촉매-그래핀-탄소나노섬유복합체, 상기 복합체 제조방법, 및 상기 복합체를 포함하는 필터를 제공하는 것이다.Still another object of the present invention is to add a graphene having a high dispersibility in a solvent by combining heteroatoms in a spinning solution to produce carbon nanofibers containing graphene, thereby reducing the production cost through simplifying the cost and manufacturing process. It is to provide a filter comprising a graphene-carbon nanofiber composite, the composite production method, and the composite.

본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
The objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.

상술된 본 발명의 목적을 달성하기 위해, 본 발명은 그래핀을 포함하여 자외선 영역에서 갖는 정도의 높은 광촉매 활성을 가시광선 영역에서도 갖는 것을 특징으로 하는 광촉매-그래핀-탄소나노섬유복합체를 제공한다. In order to achieve the above object of the present invention, the present invention provides a photocatalyst-graphene-carbon nanofiber composite comprising graphene having a high photocatalytic activity in the visible region as well as having in the ultraviolet region. .

바람직한 실시예에 있어서, 상기 광촉매-그래핀-탄소나노섬유복합체에 포함된 광촉매는 그래핀과의 상호작용을 통해 상기 복합체의 표면에 균일하게 분산되어 20 내지 50nm 크기의 결정들로 형성된다. In a preferred embodiment, the photocatalyst included in the photocatalyst-graphene-carbon nanofiber composite is uniformly dispersed on the surface of the composite through interaction with graphene to form crystals having a size of 20 to 50 nm.

바람직한 실시예에 있어서, 상기 광촉매-그래핀-탄소나노섬유복합체에 포함된 광촉매는 ZnO, WO3, SnO2, ZrO2, TiO2로 구성된 그룹에서 선택되는 어느 하나이다.In a preferred embodiment, the photocatalyst included in the photocatalyst-graphene-carbon nanofiber composite is any one selected from the group consisting of ZnO, WO 3 , SnO 2 , ZrO 2 , TiO 2 .

바람직한 실시예에 있어서, 상기 광촉매가 TiO2인 경우, 상기 복합체 표면에 형성된 TiO2 결정구조는 아나타제와 루틸의 결정 구조가 1:1의 분율로 혼재되어 있다.In a preferred embodiment, when the photocatalyst is TiO 2 , the crystal structure of anatase and rutile is mixed in a ratio of 1: 1 in the TiO 2 crystal structure formed on the surface of the composite.

바람직한 실시예에 있어서, 상기 광촉매-그래핀-탄소나노섬유복합체는 낮은 광촉매 효율을 갖는 루틸결정이 포함되어 있음에도 불구하고, 띠간격(E g >3.0 eV) 사이의 에너지를 가진 빛을 받았을 때 복합체내에 포함된 그래핀이 여기된 전자 또는 정공의 트랩 사이트(trap site)를 생성하여 전자-정공쌍의 재결합을 감소시킨다.In a preferred embodiment, the photocatalyst-graphene-carbon nanofiber composite is a composite when subjected to light with energy between band gaps ( E g > 3.0 eV), even though it contains rutile crystals with low photocatalytic efficiency. Graphene contained within creates a trap site of excited electrons or holes to reduce recombination of electron-hole pairs.

바람직한 실시예에 있어서, 상기 광촉매-그래핀-탄소나노섬유복합체의 가시광선 하에서 30분경과 후 15 ppm Methylene blue 제거효율은 100%이고 재사용이 가능하다. In a preferred embodiment, after 30 minutes under visible light of the photocatalyst-graphene-carbon nanofiber composite, the removal efficiency of 15 ppm Methylene blue is 100% and can be reused.

또한, 본 발명은 탄소나노섬유전구체물질 및 그래핀을 용해시켜 그래핀함유방사용액을 제조하는 단계; 상기 방사용액을 전기 방사하여 그래핀함유 전구체섬유를 제조하는 단계; 상기 전구체섬유를 200 내지 300℃에서 안정화하여 그래핀함유 내염화섬유를 제조하는 단계; 광촉매 졸 용액을 준비하는 단계; 상기 광촉매 졸 용액에 상기 그래핀함유 내염화섬유를 침지시켜 코팅하는 단계; 및 상기 코팅된 내염화섬유를 건조한 후 탄화시키는 단계를 포함하는 광촉매-그래핀-탄소나노섬유복합체 제조방법을 제공한다. In addition, the present invention comprises the steps of dissolving the carbon nanofiber precursor material and graphene to prepare a graphene-containing fat using solution; Preparing a graphene-containing precursor fiber by electrospinning the spinning solution; Stabilizing the precursor fiber at 200 to 300 ° C. to produce graphene-containing flame resistant fiber; Preparing a photocatalyst sol solution; Coating the graphene-containing chloride resistant fiber by dipping the photocatalyst sol solution; And it provides a photocatalyst-graphene-carbon nanofiber composite manufacturing method comprising the step of carbonizing the coated flame resistant fiber after drying.

바람직한 실시예에 있어서, 상기 그래핀함유방사용액은 상기 탄소나노섬유전구체물질에 대해 그래핀을 1 내지 20중량%로 포함한다.In a preferred embodiment, the graphene-containing fat solution contains 1 to 20% by weight of graphene based on the carbon nanofiber precursor material.

바람직한 실시예에 있어서, 상기 그래핀함유방사용액을 제조하는 단계는 그래핀을 DMF에 초음파를 이용해 분산시키는 단계 및 상기 분산 용액에 PAN을 용해시키는 단계를 포함한다. In a preferred embodiment, the step of preparing the graphene-containing fat solution includes the step of dispersing the graphene in the DMF using ultrasonic waves and dissolving the PAN in the dispersion solution.

바람직한 실시예에 있어서, 상기 코팅하는 단계는 상기 광촉매 졸용액에 상기 내염화섬유를 1~3시간 동안 침지시켜 수행되고, 상기 탄화시키는 단계는 800 ~ 1000 ℃까지 가온하여 수행된다.In a preferred embodiment, the coating step is performed by immersing the flame resistant fiber in the photocatalyst sol solution for 1 to 3 hours, the carbonizing step is performed by heating to 800 ~ 1000 ℃.

바람직한 실시예에 있어서, 상기 탄소나노섬유전구체 물질은 폴리 아크릴로 니트릴(polyacrylo nitrile, PAN), 폴리이미드(polyimide), 폴리벤조이미다졸(polybenz imidazole, PBI), 피치로 구성된 그룹에서 선택되는 어느 하나이다. In a preferred embodiment, the carbon nanofiber precursor material is any one selected from the group consisting of polyacrylo nitrile (PAN), polyimide, polybenzimidazole (PBI), pitch .

바람직한 실시예에 있어서, 상기 광촉매 전구체물질은 ZnO, WO3, SnO2, ZrO2, TiO2로 구성된 그룹에서 선택되는 어느 하나를 포함한다. In a preferred embodiment, the photocatalyst precursor material comprises any one selected from the group consisting of ZnO, WO 3 , SnO 2 , ZrO 2 , TiO 2 .

또한, 본 발명은 상술된 어느 한 항의 광촉매-그래핀-탄소나노섬유복합체를 포함하여 자외선 영역에서 갖는 정도의 높은 광촉매 활성을 가시광선 영역에서도 갖는 필터를 제공한다.The present invention also provides a filter having a high photocatalytic activity in the visible region, including the photocatalyst-graphene-carbon nanofiber composite described above, in the ultraviolet region.

바람직한 실시예에 있어서, 상기 필터는 공기청정기용 필터, 자동차 배기가스 정화용 필터, 정수용 필터를 포함한다.
In a preferred embodiment, the filter includes an air purifier filter, a vehicle exhaust gas purification filter, a water purification filter.

본 발명은 다음과 같은 우수한 효과를 갖는다.The present invention has the following excellent effects.

먼저, 본 발명의 광촉매-그래핀-탄소나노섬유복합체 및 상기 복합체를 포함하는 필터는 가시광 영역의 빛을 흡수할 수 있어 자외선 영역뿐만 아니라 가시광선 영역에서도 높은 광촉매 활성을 보이므로, 야외의 태양광과 실내의 형광등 아래서도 높은 반응효율을 갖기 때문에 더욱 다양한 산업현장과 일상생활에서 사용될 수 있다.First, the photocatalyst-graphene-carbon nanofiber composite of the present invention and the filter including the composite can absorb light in the visible region and thus exhibit high photocatalytic activity in the visible region as well as in the ultraviolet region. Because it has high reaction efficiency even under fluorescent lamps and indoors, it can be used in more various industrial sites and daily life.

또한, 본 발명의 광촉매-그래핀-탄소나노섬유복합체 및 상기 복합체를 포함하는 필터는 표면적이 커서 유기물의 담지량을 획기적으로 증가 시킬 수 있고, 그 기공의 깊이가 얕아 흡탈착 속도가 빠르므로 광촉매 활성의 반응속도가 증가될 수 있다.In addition, the photocatalyst-graphene-carbon nanofiber composite of the present invention and the filter including the complex have a large surface area, which can dramatically increase the amount of organic matter supported, and the depth of the pores is shallow, so that the adsorption and desorption rate is high, thus the photocatalytic activity The reaction rate of can be increased.

또한, 본 발명의 광촉매-그래핀-탄소나노섬유복합체, 상기 복합체 제조방법, 및 상기 복합체를 포함하는 필터에 의하면 그래핀이 광촉매입자를 나노크기로 복합체의 표면에 균일하게 분산시켜 고정할 뿐만 아니라 광촉매에서 이동하는 전자를 안정적으로 잡아주는 트랩역할을 수행하여 광촉매활성 효율이 증가될 수 있다.In addition, according to the photocatalyst-graphene-carbon nanofiber composite of the present invention, the method for preparing the composite, and the filter including the composite, graphene not only uniformly disperses the photocatalyst particles in nano size on the surface of the composite and is fixed. The efficiency of photocatalytic activity can be increased by performing a trap role to stably hold electrons moving in the photocatalyst.

또한, 본 발명의 광촉매-그래핀-탄소나노섬유복합체 제조방법에 의하면 헤테로아톰이 결합되어 용매에 분산도가 높은 그래핀을 방사용액에 첨가하여 그래핀함유 탄소나노섬유를 제조함으로써 원가 및 제조공정의 단순화를 통해 제조비용을 낮출 수 있다.
In addition, according to the method for preparing a photocatalyst-graphene-carbon nanofiber composite according to the present invention, a heteroatom is bonded to a graphene-containing carbon nanofiber by adding graphene having a high dispersion degree to a solvent to a spinning solution, thereby producing a carbon nanofiber containing graphene. By simplifying the manufacturing cost can be lowered.

도 1은 본 발명의 광촉매-그래핀-탄소나노섬유복합체 중 이산화티탄-그래핀-탄소나노섬유복합체(TiO2-graphene/CNF)의 일 실시예 및 다른 비교 광촉매에 대한 제조공정이 도시된 흐름도,
도 2는 그래핀의 X선 광전자 분광법 (XPS) 스펙트럼의 전체영역 스캔 (XPS Survey) 그래프
도 3 중 (a)는 TiO2/CNF의 전자현미경사진, (b)는 도 1의 제조공정에 따라 graphene/CNF에 TiO2가 코팅되어 형성된 본 발명의 광촉매-그래핀-탄소나노섬유복합체의 일 실시예인 TiO2-graphene/CNF 복합체의 전자현미경 사진,
도 4 중 (a)는 본 발명의 광촉매-그래핀-탄소나노섬유복합체의 일 실시예인 TiO2-Graphene/CNF 복합체의 투과전자현미경 사진(TEM), (b)는 TiO2-Graphene/CNF 복합체의 표면에 존재하는 나노입자의 제한시야 전자회절법(SAED) 결과사진, (c)는 TiO2-Graphene/CNF 복합체의 에너지 분산형 X선 분광기의 원소별 Mapping 사진,
도 5 중 (a)는 본 발명의 광촉매-그래핀-탄소나노섬유복합체의 일 실시예인 TiO2-Graphene/CNF 복합체의 X선 회절 패턴 그래프, (b)는 TiO2-CNF의 X선 회절 패턴 그래프,
도 6은 본 발명의 광촉매-그래핀-탄소나노섬유복합체의 일 실시예인 TiO2-Graphene/CNF 복합체의 Raman spectrum 그래프,
도 7은 본 발명의 광촉매-그래핀-탄소나노섬유복합체의 일 실시예인 TiO2- Graphene/CNF 복합체의 X선 광전자 분광법 (XPS) 스펙트럼의 전체영역 스캔 (XPS Survey) 그래프,
도 8 중 (a)는 TiO2-Graphene의 X선 광전자 분광법 (XPS)에 의해 Ti2p의 피크를 분리한 결과를 나타내는 그래프, (b)는 본 발명의 광촉매-그래핀-탄소나노섬유복합체의 일 실시예인 TiO2-Graphene/CNF 복합체의 X선 광전자 분광법 (XPS)에 의해 Ti2p의 피크를 분리한 결과를 나타내는 그래프,
도 9는 본 발명의 광촉매-그래핀-탄소나노섬유복합체의 일 실시예인 TiO2-Graphene/CNF 복합체 및 비교예물질들의 가시광선 조사시간에 따른 15ppm Methylene blue 용액의 농도 변화를 UV-Vis 분광 광도기로 분석한 그래프,
도 10은 본 발명의 광촉매-그래핀-탄소나노섬유복합체의 일 실시예인 TiO2-Graphene/CNF 복합체의 가시광선 조사 하에서 연속 사용에 따른 15ppm methylene blue 용액의 분해성능을 나타낸 그래프.
1 is a flow chart showing an embodiment of a titanium dioxide-graphene-carbon nanofiber composite (TiO 2 -graphene / CNF) in the photocatalyst-graphene-carbon nanofiber composite of the present invention and another comparative photocatalyst ,
2 is a full-domain scan (XPS Survey) graph of X-ray photoelectron spectroscopy (XPS) spectrum of graphene
In Figure 3 (a) is an electron micrograph of TiO 2 / CNF, (b) is a photocatalyst-graphene-carbon nanofiber composite of the present invention formed by coating TiO 2 on graphene / CNF according to the manufacturing process of Figure 1 Electron micrograph of the TiO 2 -graphene / CNF composite as an embodiment,
In Figure 4 (a) is a transmission electron micrograph (TEM) of the TiO 2 -Graphene / CNF composite of the photocatalyst-graphene-carbon nanofiber composite of the present invention, (b) is a TiO 2 -Graphene / CNF complex Limited field electron diffraction (SAED) results of the nanoparticles present on the surface of the nanoparticles, (c) are elemental mapping images of the energy dispersive X-ray spectrometer of the TiO 2 -Graphene / CNF complex,
Figure 5 (a) is an X-ray diffraction pattern graph of the TiO 2 -Graphene / CNF composite of an embodiment of the photocatalyst-graphene-carbon nanofiber composite of the present invention, (b) is an X-ray diffraction pattern of TiO 2 -CNF graph,
6 is a Raman spectrum graph of a TiO 2 -Graphene / CNF composite, which is an embodiment of the photocatalyst-graphene-carbon nanofiber composite of the present invention;
7 is a full-area scan (XPS Survey) graph of the X-ray photoelectron spectroscopy (XPS) spectrum of the TiO 2 -Graphene / CNF complex of an embodiment of the photocatalyst-graphene-carbon nanofiber composite of the present invention,
Figure 8 (a) is a graph showing the result of separating the peak of Ti2p by X-ray photoelectron spectroscopy (XPS) of TiO 2 -Graphene, (b) is one of the photocatalyst-graphene-carbon nanofiber composite of the present invention Graph showing the result of separating the peak of Ti2p by X-ray photoelectron spectroscopy (XPS) of the TiO 2 -Graphene / CNF composite as an example,
9 is a UV-Vis spectrophotometric diagram of the concentration change of 15 ppm Methylene blue solution according to the visible light irradiation time of the TiO 2 -Graphene / CNF composite and the comparative material of an example of the photocatalyst-graphene-carbon nanofiber composite of the present invention Graph,
10 is a graph showing the decomposition performance of 15ppm methylene blue solution according to continuous use under visible light irradiation of TiO 2 -Graphene / CNF composite of an embodiment of the photocatalyst-graphene-carbon nanofiber composite of the present invention.

본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.Although the terms used in the present invention have been selected as general terms that are widely used at present, there are some terms selected arbitrarily by the applicant in a specific case. In this case, the meaning described or used in the detailed description part of the invention The meaning must be grasped.

이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical structure of the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.

그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Like reference numerals used to describe the present invention throughout the specification denote like elements.

본 발명의 제1 기술적 특징은 그래핀(Graphene)을 포함하고 복합체 표면에 20~50 nm의 나노입자 광촉매 입자가 균일하게 분산 형성되어 자외선 영역에서 갖는 정도의 높은 광촉매 활성을 가시광선 영역에서도 갖는 것을 특징으로 하는 광촉매-그래핀-탄소나노섬유복합체에 있다. The first technical feature of the present invention is that the nanoparticle photocatalyst particles having graphene (Graphene) and 20 to 50 nm are uniformly dispersed on the surface of the composite to have a high photocatalytic activity in the visible region. Characterized in photocatalyst-graphene-carbon nanofiber composite.

여기서, 본 발명의 광촉매-그래핀-탄소나노섬유복합체에 포함된 광촉매는 상술된 바와 같이 나노입자 크기 즉 100nm 미만의 입자크기를 갖도록 상기 복합체의 표면에 균일하게 분산되어 형성되는데, 특히 그래핀과의 상호작용을 통해 20 내지 50nm 크기의 결정들로 형성될 수 있다. 즉, 광촉매-그래핀-탄소나노섬유복합체에 포함된 그래핀이 광촉매를 고정시키고 높은 온도의 열처리를 통해 제조된 탄소나노섬유복합체의 표면에 광촉매가 나노입자 크기를 갖도록 하면서 고르게 잘 분산되도록 하기 때문이다. 이와 같이 광촉매가 복합체 표면에 균일하게 형성되면 접촉면적이 상대적으로 증가되어 광촉매의 활성을 증가시킬 수 있을 뿐만 아니라, 광촉매입자가 나노크기로 형성되면 양자크기효과로 인해 나노크기보다 큰 입자로 형성된 광촉매의 일반적인 밴드갭 보다 낮은 에너지를 갖는 가시광선에서도 광촉매반응을 보일 수 있다. Here, the photocatalyst included in the photocatalyst-graphene-carbon nanofiber composite of the present invention is uniformly dispersed on the surface of the composite to have a nanoparticle size, that is, a particle size of less than 100 nm, as described above. It can be formed into crystals of 20 to 50nm size through the interaction of. That is, since graphene included in the photocatalyst-graphene-carbon nanofiber composite fixes the photocatalyst and disperses the photocatalyst evenly on the surface of the carbon nanofiber composite prepared by high temperature heat treatment, having the nanoparticle size. to be. As such, when the photocatalyst is uniformly formed on the surface of the composite, the contact area is relatively increased to increase the activity of the photocatalyst, and when the photocatalyst particles are formed in nanoscale, the photocatalyst formed of particles larger than the nanosize due to the quantum size effect. Photocatalytic reactions can be seen in visible light with energy lower than the typical bandgap of.

또한, 광촉매-그래핀-탄소나노섬유복합체가 빛을 받으면 광촉매의 가전대 전자가 전도도로 이동을 하면서 전자와 정공이 형성되는데 이때, 복합체에 포함된 그래핀 입자가 다층 그래핀(multi-layer Graphene )이면 그자체로서 반도체의 특성을 지니기 때문에 띠간격을 줄여주고 전자를 안정적으로 잡아주는 트랩역할을 하여 띠간격(E g > 3.0 eV) 사이의 에너지를 가진 빛을 받았을 때도 전자-정공쌍의 재결합을 감소시키는 역할을 함으로써 광촉매활성이 증가시키게 되므로 자외선 영역뿐만 아니라 가시광선 영역에서도 높은 광촉매 활성을 보이게 되는 것이다. In addition, when the photocatalyst-graphene-carbon nanofiber composite receives light, electrons and holes of the photocatalyst move toward conductivity and electrons and holes are formed, and the graphene particles included in the composite are multi-layer graphene. ), Which itself is a semiconductor, it acts as a trap to reduce the band gap and to stably hold the electrons, thus recombining the electron-hole pairs when receiving light with energy between band gaps ( E g > 3.0 eV). Since the photocatalytic activity is increased by the role of reducing the high photocatalytic activity in the visible region as well as the ultraviolet region.

또한, 본 발명의 광촉매-그래핀-탄소나노섬유복합체에 포함된 광촉매는 금속산화물로서, 반도체성 금속물질 그룹 즉 ZnO, WO3, SnO2, ZrO2, TiO2, CdS의 그룹에서 선택되는 어느 하나일 수 있는데, 비용대비 효과면에서 TiO2인 것이 바람직할 수 있다. In addition, the photocatalyst included in the photocatalyst-graphene-carbon nanofiber composite of the present invention is a metal oxide, which is selected from the group of semiconducting metal materials, that is, ZnO, WO 3 , SnO 2 , ZrO 2 , TiO 2 , CdS It may be one, it may be preferable that the TiO 2 in terms of cost effectiveness.

또한, 본 발명의 광촉매-그래핀-탄소나노섬유복합체에 포함된 광촉매가 TiO2인 경우, 바람직하게는 복합체 표면에 형성된 TiO2 결정구조는 아나타제와 루틸의 결정 구조가 1:1의 분율로 혼재된다.In addition, when the photocatalyst included in the photocatalyst-graphene-carbon nanofiber composite of the present invention is TiO 2 , preferably, the TiO 2 crystal structure formed on the surface of the composite is mixed in a ratio of 1: 1 of the anatase and rutile do.

이와 같은 구성을 갖는 본 발명의 광촉매-그래핀-탄소나노섬유복합체는 가시광선 하에서 30분경과 후 15 ppm Methylene blue 제거효율이 100%이며 재사용이 가능할 뿐만 아니라, 다음 특성들에 의해 가시광선 영역에서 광촉매 활성의 시너지 효과를 기대할 수 있다.The photocatalyst-graphene-carbon nanofiber composite of the present invention having such a configuration has a removal efficiency of 15% Methylene blue 100% after 30 minutes under visible light and is reusable. The synergistic effect of photocatalytic activity can be expected.

(1) 그래핀 : 광촉매와 결합하여 광촉매 입자가 탄소나노섬유복합체 표면에 균일하게 분산하여 나노크기로 형성되도록 도와주어 광촉매 활성의 효율을 증가시키고, 특히 다층 그래핀인 경우 띠간격을 좁혀주고 광여기 반응 시에 형성된 전자를 잡아주는 Trap 역할을 수행하여 전자와 정공의 지속시간을 증가를 가져옴으로써 광촉매활성이 증가되어 자외선 영역뿐만 아니라 가시광선 영역에서도 높은 광촉매 활성을 보이게 된다. (1) Graphene: Combined with a photocatalyst, the photocatalyst particles are uniformly dispersed on the surface of the carbon nanofiber composite to help form nanoscale particles, increasing the efficiency of photocatalytic activity, especially in the case of multilayer graphene, narrowing the band gap and By acting as a trap that traps the electrons formed during the excitation reaction, the photocatalytic activity is increased by increasing the duration of the electrons and holes, thereby showing high photocatalytic activity not only in the ultraviolet region but also in the visible region.

(2) : 나노크기의 광촉매 입자 : 나노크기로 탄소나노섬유복합체 표면에 균일하게 형성된 광촉매입자가 양자크기효과로 인해 나노크기보다 큰 입자로 형성된 광촉매의 일반적인 밴드갭 보다 낮은 에너지를 갖는 가시광선에서도 광촉매반응을 보일 수 있다. (2): Nano-sized photocatalyst particles: Photocatalytic particles uniformly formed on the surface of carbon nanofiber composites with nano-size even in visible light having energy lower than the general bandgap of photocatalysts formed of particles larger than nano-size due to quantum size effect It can show a photocatalytic reaction.

(3) 탄소나노섬유 : 광촉매-그래핀-탄소나노섬유 복합체의 지지체로 사용되는 탄소나노섬유는 표면적이 커서 유기물의 담지량을 획기적으로 증가 시킬 수 있고, 그 기공의 깊이가 얕아 흡탈착 속도가 빠르므로 광촉매 활성의 반응속도가 증가된다.(3) Carbon nanofibers: Carbon nanofibers, which are used as a support for photocatalyst-graphene-carbon nanofiber composites, have a large surface area, which can dramatically increase the amount of organic matter supported. Therefore, the reaction rate of photocatalytic activity is increased.

다음으로, 본 발명의 제2 기술적 특징은 헤테로아톰이 결합되어 용매에 분산도가 높은 그래핀과 탄소섬유전구체를 분산시켜 얻어진 방사용액을 전기방사하고 안정화하여 얻어진 그래핀함유 내염화섬유를 광촉매 졸 용액에 침지시킨 후 탄화하는 과정을 통해 우수한 광촉매효율을 갖는 광촉매-그래핀-탄소나노섬유복합체를 저렴하고 간단하게 제조하는데 있다.Next, a second technical feature of the present invention is that a photocatalyst sol is a graphene-containing flame resistant fiber obtained by electrospinning and stabilizing a spinning solution obtained by dispersing graphene and a carbon fiber precursor having high dispersibility in a solvent by combining heteroatoms. It is to inexpensively and simply prepare a photocatalyst-graphene-carbon nanofiber composite having excellent photocatalytic efficiency through a process of carbonization after immersion in a solution.

따라서, 본 발명의 광촉매-그래핀-탄소나노섬유복합체 제조방법은 탄소나노섬유전구체물질 및 그래핀을 용해시켜 그래핀함유방사용액을 제조하는 단계; 상기 방사용액을 전기 방사하여 그래핀함유 전구체섬유를 제조하는 단계; 상기 전구체섬유를 200 내지 300℃에서 안정화하여 그래핀함유 내염화섬유를 제조하는 단계; 광촉매 졸 용액을 준비하는 단계; 상기 광촉매 졸 용액에 상기 그래핀함유 내염화섬유를 침지시켜 코팅하는 단계; 및 상기 코팅된 내염화섬유를 건조한 후 탄화시키는 단계를 포함한다. Therefore, the photocatalyst-graphene-carbon nanofiber composite production method of the present invention comprises the steps of dissolving the carbon nanofiber precursor material and graphene to prepare a graphene-containing emulsion solution; Preparing a graphene-containing precursor fiber by electrospinning the spinning solution; Stabilizing the precursor fiber at 200 to 300 ° C. to produce graphene-containing flame resistant fiber; Preparing a photocatalyst sol solution; Coating the graphene-containing chloride resistant fiber by dipping the photocatalyst sol solution; And carbonizing the coated flame resistant fiber after drying.

여기서, 그래핀함유방사용액은 상기 탄소나노섬유전구체물질에 대해 그래핀을 1 내지 20중량%로 포함하는 것이 바람직하다. Here, it is preferable that the graphene-containing fat solution contains 1 to 20% by weight of graphene based on the carbon nanofiber precursor material.

상기 그래핀함유방사용액은 그래핀을 DMF에 초음파를 이용해 분산시키는 단계 및 상기 분산 용액에 PAN을 용해시키는 단계를 포함하여 제조되는 것이 바람직하다.The graphene-containing fat using solution is preferably prepared comprising the step of dispersing the graphene in DMF using ultrasonic waves and dissolving PAN in the dispersion solution.

코팅하는 단계는 광촉매 졸용액에 내염화섬유를 1~3시간 동안 침지시켜 수행되고, 탄화시키는 단계는 800 ~ 1000℃까지 가온하여 수행되는데, 이와 같은 열처리 공정을 통해 광촉매가 표면에 균일하게 분산되어 형성된 광촉매-그래핀-탄소나노섬유 복합체를 제조하는 것이다. The coating step is performed by immersing the flame resistant fiber in the photocatalyst sol solution for 1 to 3 hours, and the carbonizing step is performed by heating up to 800 to 1000 ° C. Through the heat treatment process, the photocatalyst is uniformly dispersed on the surface. It is to prepare a photocatalyst-graphene-carbon nanofiber composite formed.

한편, 탄소나노섬유전구체 물질은 폴리 아크릴로 니트릴(polyacrylo nitrile, PAN), 폴리이미드(polyimide), 폴리벤조이미다졸(polybenz imidazole, PBI), 피치로 구성된 그룹에서 선택되는 어느 하나일 수 있다. 예를 들어, 폴리 아크릴로 니트릴을 사용하는 경우 섬유성형용 폴리아크릴나이트릴 (PAN, 분자량=160,000)은 100% 순중합체 (homopolymer) 뿐 아니라 5-15%의 공중합체 (copolymer)를 함유한 개질된 아크릴을 사용할 수 있는데, 공중합체의 조성으로는 이타콘산 (itaconic acid)나 메틸아크릴레이트 (methylacrylate, MA)등을 공중합 물질로 사용할 수 있다. Meanwhile, the carbon nanofiber precursor material may be any one selected from the group consisting of polyacrylo nitrile (PAN), polyimide, polybenzimidazole (PBI), and pitch. For example, when polyacrylonitrile is used, the polyacrylonitrile for fiber molding (PAN, molecular weight = 160,000) is modified with not only 100% homopolymer but also 5-15% copolymer. It is possible to use acryl, and as the composition of the copolymer, itaconic acid (itaconic acid) or methyl acrylate (methylacrylate, MA) and the like may be used as a copolymer.

본 발명의 제3 기술적 특징은 가시광 영역의 빛을 흡수할 수 있어 자외선 영역뿐만 아니라 가시광선 영역에서도 높은 광촉매 활성을 보이므로, 야외의 태양광과 실내의 형광등 아래서도 높은 반응효율을 갖는 필터에 있다.The third technical feature of the present invention is a filter having high reaction efficiency under outdoor sunlight and fluorescent lamps because it can absorb light in the visible region and shows high photocatalytic activity not only in the ultraviolet region but also in the visible region. .

따라서, 본 발명은 상술된 어느 하나의 광촉매-그래핀-탄소나노섬유복합체를 포함하여 자외선 영역에서 갖는 정도의 높은 광촉매 활성을 가시광선 영역에서도 갖는 필터를 제공하는데, 본 발명의 필터는 유해가스의 흡착 및 분해 기능을 가진 공기청정기용 필터, 자동차용 배기가스 정화 필터 등에 널리 이용될 수 있으며, 폐수처리, 수중의 오염물질 및 색소를 분해할 수 있어 정수용으로도 널리 사용될 수 있다. 특히 자외선 영역에서만 광촉매 활성을 보여 제한된 사용범위를 갖던 종래의 TiO2 광촉매를 대신하여 야외의 태양광과 실내의 형광등 아래서도 높은 반응효율을 갖기 때문에 더욱 다양한 산업현장과 일상생활에서 사용될 수 있다.
Accordingly, the present invention provides a filter having a high photocatalytic activity in the visible light region, including any one of the photocatalyst-graphene-carbon nanofiber composites described above, in the ultraviolet region. It can be widely used for air purifier filter with adsorption and decomposition function, automobile exhaust gas purification filter, etc., and can be widely used for water purification as it can decompose wastewater treatment, water pollutants and pigments. In particular, instead of the conventional TiO 2 photocatalyst, which exhibited photocatalytic activity only in the ultraviolet region and has a limited use range, it has a high reaction efficiency even under outdoor sunlight and fluorescent lamps in the room, and thus can be used in various industrial sites and daily lives.

실시예 Example

도 1에 도시된 제조방법에 따라 다음과 같이 이산화티탄-그래핀-탄소나노섬유복합체(TiO2-Graphene/CNF 복합체)를 제조하였다.A titanium dioxide-graphene-carbon nanofiber composite (TiO 2 -Graphene / CNF composite) was prepared as follows according to the preparation method shown in FIG.

1. Graphene/PAN 내염화섬유 제조1. Graphene / PAN Chlorinated Fiber Manufacturing

그래핀(Graphene)은 XG Science에서 xGNP-C 750 등급을 구입하였고 PAN은 150,000의 분자량을 갖는 시약을 구입하여 정제 없이 사용하였다. Graphene purchased xGNP-C 750 grade from XG Science and PAN purchased a reagent having a molecular weight of 150,000 and used without purification.

그래핀을 DMF (N,N-dimethyformamide)에 초음파를 이용해 분산시킨 후, 여기에 PAN을 용해시켜 그래핀함유방사용액을 제조하였다. 여기서, 그래핀은 탄소나노섬유전구체인 PAN의 3 wt% 중량비를 사용하였다. 제조된 그래핀함유방사용액을 정전방사 방법을 이용해서 광촉매함유 전구체섬유인 나노섬유로 구성된 부직포 웹을 제조하였다. 이때의 정전방사 장치는 노즐과 콜렉터에 각각 25 kV(20~30 kV 범위에서 가변 가능)의 인가전압을 가하고, 방사구금과 콜렉터간의 거리는 10~30 cm 정도로 필요에 따라 가변 시켰다. Graphene was dispersed in DMF (N, N-dimethyformamide) using ultrasonic waves, and then PAN was dissolved therein to prepare a graphene-containing solution. Here, graphene was used as the weight ratio of 3 wt% of PAN, a carbon nanofiber precursor. The prepared graphene-containing spinning solution was prepared by using an electrospinning method to prepare a nonwoven web composed of nanofibers, which are photocatalyst-containing precursor fibers. In this case, the electrospinning apparatus applied an applied voltage of 25 kV (variable in the range of 20 to 30 kV) to the nozzle and the collector, respectively, and the distance between the spinneret and the collector was varied as needed about 10 to 30 cm.

전기방사하여 얻은 방사 섬유(부직포 웹) 즉 그래핀함유 전구체섬유를 열풍순환爐를 사용하여 압축공기를 분당 5~20 mL의 유속으로 공급하고, 분당 1 ℃의 승온 속도로 250 ℃에서 1시간 유지하여 안정화함으로써 그래핀/PAN 내염화섬유를 얻었다.
Spinning fibers (nonwoven webs) obtained by electrospinning, that is, graphene-containing precursor fibers, were supplied with a compressed air at a flow rate of 5 to 20 mL per minute using a hot air circulation 爐, and maintained at 250 ° C. for 1 hour at a temperature rising rate of 1 ° C. per minute. Stabilization was performed to obtain graphene / PAN chloride fiber.

2. 이산화티탄-그래핀-탄소나노섬유복합체(TiO2-Graphene/CNF 복합체)의 제조2. Preparation of Titanium Dioxide-Graphene-Carbon Nanofiber Composite (TiO 2 -Graphene / CNF Composite)

TiO2 졸 용액은 STREMCHEMICALS의 98%의 제품인 titanium n-butoxide (Ti(OnBu)4, 에탄올(Ethyl alcohol)과 톨루엔(Toluene)을 구입하여 다음과 같이 제조하였다. 먼저 1:1/v:v의 비율을 갖는 에탄올과 톨루엔에 titanium n-butoxide를 혼합하여 TiO2 졸 용액을 완성하였다.The TiO 2 sol solution was prepared by purchasing titanium n -butoxide (Ti (O n Bu) 4 ), ethanol (Ethyl alcohol) and toluene (98%) of STREMCHEMICALS as follows: First 1: 1 / v: TiO 2 sol solution was completed by mixing titanium n -butoxide with ethanol and toluene having a ratio of v.

이렇게 제조된 TiO2 졸 용액에 그래핀/PAN 내염화섬유를 1 시간 침지 코팅한 후, 미반응 titanium n-butoxide를 제거하고 세척한 다음 공기 중에서 건조시킨 후 분당 5 ℃의 승온 속도로 800 ℃로 열처리하여 TiO2-Graphene/CNF 복합체를 제조하였다.
The TiO 2 sol solution thus prepared was immersed and coated with graphene / PAN flame retardant fiber for 1 hour, unreacted titanium n- butoxide was removed, washed, dried in air, and then heated to 800 ° C. at a rate of 5 ° C. per minute. Heat treatment to prepare a TiO 2 -Graphene / CNF composite.

비교예 1Comparative Example 1

도 1에 도시된 제조방법에 따라 TiO2/CNF를 제조하였다.
TiO 2 / CNF was prepared according to the preparation method shown in FIG. 1.

비교예 2Comparative Example 2

도 2에 도시된 제조방법에 따라 CNF를 제조하였다.
CNF was prepared according to the preparation method shown in FIG.

비교예 3Comparative Example 3

도 2에 도시된 제조방법에 따라 graphene/CNF를 제조하였다.
According to the manufacturing method shown in Figure 2 was prepared graphene / CNF.

실험예 1 : 그래핀의 물성 분석Experimental Example 1 Analysis of Physical Properties of Graphene

그래핀의 물성을 분석하기 위해 Mettler 방법으로 원소분석하여 그 결과를 표 1에 나타내었다. In order to analyze the physical properties of the graphene elemental analysis by the Mettler method is shown in Table 1 the results.

원소분석Elemental analysis CC HH NN OO 그래핀Grapina 88.6888.68 0.790.79 1.111.11 7.957.95

표 1로부터, 질소 및 산소의 함량이 비교적 높음을 알 수 있었다. 즉 헤테로아톰의 함량이 비교적 높은 그래핀이므로 유기용매에 잘 분사됨을 예상할 수 있다.From Table 1, it can be seen that the contents of nitrogen and oxygen are relatively high. That is, since the graphene content of the heteroatom is relatively high, it can be expected to be well sprayed on the organic solvent.

또한, 그래핀의 표면과 계면의 구성 원소 및 화학적 결합상태를 알아보기 위해 표면 분석으로서 X-선광전자 분광법을 수행하고 그 결과 도 2에 도시하였다. 도 2에 도시된 바와 같이, 원소의 확인을 위해 전 에너지 영역을 wide scan (0~1100 eV)한 결과 뚜렷하게 탄소 및 산소원자가 보여 지고 질소 원자가 약하게 나타났다. X선 광전자 분광법 (XPS) 스펙트럼의 전체영역 스캔 (XPS Survey)을 기초로 하여 그래핀 표면에서 나오는 광전자 피크의 면적을 통해 C1s (285 eV), N 1s (400 eV), O 1s (533 eV)의 원소 조성비를 표 2에 나타내었다. In addition, X-ray photoelectron spectroscopy was performed as a surface analysis to determine the constituent elements and chemical bonding states of the surface and the interface of graphene, and the results are shown in FIG. 2. As shown in FIG. 2, a wide scan (0-1100 eV) of the entire energy region was used to identify elements, and carbon and oxygen atoms were clearly seen and the nitrogen atoms were weak. Based on the XPS Survey's full-area scan (XPS Survey), the area of the photoelectron peak coming from the surface of graphene is derived from C1s (285 eV), N 1s (400 eV), and O 1s (533 eV). The elemental composition ratio of is shown in Table 2.

SampleSample O/CO / C 원소조성비 (Atomic %)Elemental composition ratio (Atomic%) CC OO NN 그래핀Grapina 0.060.06 93.2993.29 5.905.90 0.810.81

실험예 2 : 외관 전자현미경 관찰 Experimental Example 2 Observation of Appearance Electron Microscope

비교예1에서 얻어진 TiO2/CNF 및 실시예에서 얻어진 TiO2-Graphene/CNF 복합체를 100nm 스케일에서 전자현미경으로 관찰하고 그 결과 SEM 사진을 도 3에 도시하였다. Obtained in Comparative Example 1 TiO 2 / CNF and the TiO 2 -Graphene / CNF composite obtained in Example were observed under an electron microscope at 100 nm scale, and the SEM image is shown in FIG. 3 as a result.

도 3(a)에 도시된 바와 같이 TiO2/CNF는 TiO2 입자들이 뭉쳐 약 100 nm 이상의 큰 입자들이 표면에 형성되어 존재함을 확인할 수 있다. 반면, 실시예에서 얻어진 TiO2-Graphene/CNF 복합체는 도 3(b)에 도시된 바와 같이 약 30nm의 크기를 갖는 TiO2 입자들이 복합체 표면에 균일하게 분포되어 있음을 확인할 수 있다. 이와 같이 도 3(b)의 SEM 사진은 광촉매와 같은 금속산화물을 탄소나노섬유 표면에 형성시킬 때 탄소나노섬유에 그래핀이 포함되면, 포함된 그래핀의 영향을 받아 즉 그래핀과 금속옥사이드의 상호작용을 통해 나노크기의 TiO2 입자가 탄소나노섬유 복합체 표면에 균일하게 잘 분산되었음을 보여준다.
As shown in FIG. 3 (a), TiO 2 / CNF has TiO 2 particles agglomerated to form large particles of about 100 nm or more. On the other hand, TiO 2 -Graphene / CNF obtained in the Examples As shown in FIG. 3 (b), it can be seen that TiO 2 particles having a size of about 30 nm are uniformly distributed on the surface of the composite. As such, the SEM photograph of FIG. 3 (b) shows that when graphene is included in the carbon nanofibers when the metal oxide such as a photocatalyst is formed on the surface of the carbon nanofibers, the graphene and the metal oxide are affected by the graphene included therein. The interaction shows that nanosized TiO 2 particles are uniformly well dispersed on the surface of the carbon nanofiber composite.

실험예 3 : 이산화티탄-그래핀-탄소나노섬유복합체(TiO2-Graphene/CNF 복합체)의 구조분석Experimental Example 3: Structural Analysis of Titanium Dioxide-Graphene-Carbon Nanofiber Composite (TiO 2 -Graphene / CNF Complex)

실시예에서 얻어진 이산화티탄-그래핀-탄소나노섬유복합체(TiO2-Graphene /CNF 복합체)의 구조를 분석하기 위해 다음과 같은 실험을 수행하고, 그 결과를 도 4 내지 도 6 및 표3에 나타내었다.In order to analyze the structure of the titanium dioxide-graphene-carbon nanofiber composite (TiO 2 -Graphene / CNF composite) obtained in the Example, the following experiment was carried out, and the results are shown in FIGS. It was.

1. 투과전자현미경(TEM)으로 관찰1. Observation with transmission electron microscope (TEM)

투과전자현미경(TEM)으로 관찰하고 그 결과 사진을 도 4의 (a)에 나타내었다.Observation was made with a transmission electron microscope (TEM), and the photograph is shown in FIG.

TiO2-Graphene/CNF 복합체의 투과전자현미경 (TEM) 사진이 도시된 도 4(a)로부터 평균 30 nm 크기의 결정들이 탄소나노섬유 복합체 표면에 잘 분산되어있음을 확인할 수 있었다.
From the transmission electron microscope (TEM) image of the TiO 2 -Graphene / CNF composite shown in Figure 4 (a) it can be seen that the average crystal size of 30 nm is well dispersed on the surface of the carbon nanofiber composite.

2. 물질의 내부구조 확인2. Check the internal structure of the material

물질 내부구조를 알기위해 TiO2-Graphene/CNF 복합체 표면에 존재하는 나노 입자의 제한시야 전자회절법 (SAED)을 수행하고, 그 결과사진을 도 4(b)에 나타내었고, 특정 영역 내에 있는 원소들의 분포를 (Mapping) 분석한 후 그 결과사진을 도 4(c)에 나타내었다.TiO 2 -Graphene / CNF to know the internal structure of materials Limited field electron diffraction (SAED) of the nanoparticles present on the surface of the composite was carried out, and the resulting photograph is shown in FIG. 4 (b). Is shown in Figure 4 (c).

도 4(b)에 도시된 바와 같이 회절패턴으로 (110), (211), (101) 형태의 초격자 회절점이 나타나고 있으므로 이를 통해 TiO2 나노입자의 루틸 (Rutile) 결정성 회절패턴을 확인하였다.As shown in (b) of FIG. 4B, the superlattice diffraction points of the (110), (211), and (101) forms are shown as the diffraction pattern, thereby confirming the rutile crystalline diffraction pattern of the TiO 2 nanoparticles. .

또한, 도 4(c)로부터 C, Ti, O 원소들이 확인되었으며 Ti와 O의 분산 분포가 유사하여 나노결정에 집중적으로 겹쳐 분포하는 것으로부터 이 결정이 TiO2 임을 알 수 있었다.
In addition, C, Ti, and O elements were identified from FIG. 4 (c), and the dispersion distribution of Ti and O were similar, indicating that the crystal was TiO 2 due to the intensive distribution of nanocrystals.

3. 그래핀에 의한 TiO2 결정도 확인 3. Confirmation of TiO 2 crystallinity by graphene

그래핀에 의한 TiO2 결정도를 알아보기 위해 TiO2-Graphene/CNF 복합체와 TiO2-CNF를 X선 회절분석하고 그 결과를 도 5에 나타내었다. TiO 2 -Graphene / CNF to determine TiO 2 crystallinity by graphene X-ray diffraction analysis of the composite and TiO 2 -CNF is shown in Figure 5 the results.

도 5(a)에 도시된 바와 같이 TiO2-Graphene/CNF 복합체의 경우, θ = 23°를 중심으로 결정성이 낮은 탄소를 나타내는 폭이 넓은 피크와 아나타제(2θ = 25°), 루틸(2θ = 28, 36.02, 41.27, 54.38, 56.62°)의 두 가지 TiO2 결정성 피크가 관찰되었다. 또한 아나타제와 루틸의 결정 구조가 거의 1:1의 분율로 혼재되어 있었다.TiO 2 -Graphene / CNF as shown in FIG. 5 (a) In the case of composites, there are two broad peaks representing low crystalline carbon centered on θ = 23 ° and two TiOs: anatase (2θ = 25 °) and rutile (2θ = 28, 36.02, 41.27, 54.38, 56.62 °). 2 crystalline peaks were observed. In addition, the crystal structures of anatase and rutile were mixed in a ratio of almost 1: 1.

반면, 도 5(b)에 도시된 바와 같이 TiO2-CNF는 아나타제와 루틸의 결정 구조가 1:4로 이루어져 있음을 확인할 수 있었다. On the other hand, TiO 2 -CNF as shown in Figure 5 (b) was confirmed that the crystal structure of anatase and rutile is 1: 4.

이러한 실험결과는 탄소나노섬유에 포함된 그래핀이 TiO2 입자 및 분자의 이동을 방해함으로써 고온에서 TiO2가 응집하는 현상을 방지하여 입자 크기의 증가 및 아나타제에서 루틸로의 상전이를 억제하는 역할을 하는 것으로 예측될 수 있다.
These experimental results show that graphene contained in carbon nanofibers prevents TiO 2 from agglomerating at high temperatures by preventing TiO 2 particles and molecules from moving, thereby increasing particle size and inhibiting phase transition from anatase to rutile. It can be expected to.

4. Raman spectrum을 분석4. Raman spectrum analysis

또한, TiO2-Graphene/CNF 복합체를 Raman spectrum으로 분석하고 그 결과를 도 6에 도시하였다.In addition, TiO 2 -Graphene / CNF The complex was analyzed by Raman spectrum and the results are shown in FIG. 6.

도 6에 도시된 바와 같이 1360cm-1 과 1580cm-1 에서 각각 탄소의 D-band 와 G-band가 관찰되었고, TiO2상에서 루틸을 나타내는 143, 256, 431, 612 cm-1 4개의 피크와 144cm-1에서 아나타제 결정을 나타내는 피크가 확인되었다.
As shown in FIG. 6, D-band and G-band of carbon were observed at 1360 cm −1 and 1580 cm −1 , respectively, and four peaks of 143, 256, 431, 612 cm −1 and 144 cm representing rutile on TiO 2 were observed. A peak indicating anatase crystals at -1 was found.

5. 표면과 계면의 구성 원소 및 화학적 결합상태 확인5. Confirmation of constituent elements and chemical bonding state of surface and interface

TiO2-Graphene/CNF 복합체의 표면과 계면의 구성 원소 및 화학적 결합상태를 알아보기 위해 표면 분석으로서 X-선광전자 분광법을 이용하였다. 원소의 확인을 위해 전 에너지 영역 wide scan (0~1100 eV)을 하였고 그 결과 사진을 도 7에 도시하였다. 또한, TiO2-Graphene/CNF 복합체 표면에서 나오는 광전자 피크의 면적을 통해 C1s (285V), N 1s (400eV), O 1s (530eV), Ti2p (459eV)의 원소 조성비를 분석하고, 그 결과를 표 3에 나타내었다.TiO 2 -Graphene / CNF X-ray photoelectron spectroscopy was used to analyze the constituent elements and chemical bonding states of the surface and the interface of the composite. In order to identify the element, a full scan (0-1100 eV) was performed in the entire energy region, and the photograph is shown in FIG. In addition, TiO 2 -Graphene / CNF The elemental composition ratios of C1s (285V), N1s (400eV), O1s (530eV), Ti2p (459eV) were analyzed through the area of the photoelectron peak coming from the surface of the composite, and the results are shown in Table 3.

SampleSample 원소조성비 (Atomic %)Elemental composition ratio (Atomic%) CC OO NN TiTi Graphene-TiO2/CNFGraphene-TiO 2 / CNF 47.547.5 36.036.0 2.782.78 13.713.7

6. XPS에 의한 Ti 피크 분리6. Ti peak separation by XPS

XPS를 이용해 TiO2-CNF 및 TiO2-Graphene/CNF 복합체의 Ti 피크를 분리하고 그 결과를 각각 도 8(a) 및 도 8(b)에 도시하였다. Synthesis of TiO 2 -CNF and TiO 2 -Graphene / CNF Composites Using XPS Ti peaks were separated and the results are shown in FIGS. 8 (a) and 8 (b), respectively.

도 8(a)에 도시된 바와 같이, Ti4+ Ti2p1 / 2와 Ti2p3 / 2 에 해당하는 459.62와 465.23 eV 결합에너지에서 피크들이 관찰되었지만, TiO2-Graphene/CNF 복합체의 경우 도 8(b)에 도시된 바와 같이 Ti4+ 뿐만 아니라 461.90과 458.58 eV에서 Ti3+ Ti2p1 / 2와 Ti2p3 / 2 피크들이 동시에 관찰되었다. As shown in Fig. 8 (a), of Ti 4+ Ti2p 1/2 and Ti2p 3/2 corresponding to peak at 459.62 and 465.23 eV binding energy was observed that in, TiO 2 for -Graphene / CNF composite as shown in Fig. 8 (b) Ti 4+, as well as 461.90 and Ti 3+ at 458.58 eV Ti2p 1/2 and Ti2p 3/2 peaks were observed at the same time.

이러한 실험결과는 그래핀을 포함하는 TiO2-Graphene/CNF 복합체에서 TiO2 표면의 Ti 산화상태가 변화되었음을 보여주는데, 이와 같이 변화된 Ti 산화상태 특히 Ti3+는 광 여기에 의해 발생된 carrier들의 trap으로 작용하여 전자(e-)와 정공(h+)의 재결합율을 감소시키고 결론적으로 광활성을 촉진할 것으로 예측되었다.
These experimental results show that the Ti oxidation state of TiO 2 surface was changed in TiO 2 -Graphene / CNF composite containing graphene. Thus, the changed Ti oxidation state, especially Ti 3+, is a trap of carriers generated by photo-excitation. action by electron (e -) were predicted to reduce the recombination rate of the positive hole (h +) to promote the conclusion as photoactive.

실험예 4 : 이산화티탄-그래핀-탄소나노섬유복합체(TiO2-Graphene/CNF 복합체)의 비표면적 측정Experimental Example 4 Measurement of Specific Surface Area of Titanium Dioxide-Graphene-Carbon Nanofiber Composite (TiO 2 -Graphene / CNF Composite)

실시예에서 제조된 이산화티탄-그래핀-탄소나노섬유복합체(TiO2-Graphene /CNF 복합체)의 비표면적 값의 평가를 위해 비교예1 내지 3에서 얻어진 비교광촉매들과 함께 총 4종류의 시료 (TiO2-Graphene /CNF 복합체, TiO2/CNF, Graphene/CNF, CNF)를 준비하여 비표면적을 측정하고 그 결과를 표 4에 나타내었다.In order to evaluate the specific surface area value of the titanium dioxide-graphene-carbon nanofiber composite (TiO 2 -Graphene / CNF composite) prepared in the example, a total of four types of samples were prepared together with the comparative photocatalysts obtained in Comparative Examples 1 to 3. TiO 2 -Graphene / CNF composite, TiO 2 / CNF, Graphene / CNF, CNF) was prepared to measure the specific surface area and the results are shown in Table 4.

TiO2-Graphene/CNFTiO 2 -Graphene / CNF Graphene/CNFGraphene / CNF TiO2-CNFTiO 2 -CNF CNFCNF BET Surface area (m2/g)BET Surface area (m 2 / g) 434434 447447 361361 405405 Total pore volume (cm3/g)Total pore volume (cm 3 / g) 0.2350.235 0.1770.177 0.1490.149 0.1830.183 Average pore diameter
(nm)
Average pore diameter
(nm)
2.172.17 1.581.58 1.601.60 1.811.81

표 4로부터, TiO2-Graphene/CNF 복합체, Graphene/CNF, TiO2-CNF, CNF는 각각 434, 447, 361, 405 m2/g 의 비표면적 값을 나타내었음을 알 수 있다. TiO2-CNF의 경우 TiO2 입자들의 결정크기가 커지고 (110 nm) 결정의 분산을 막아 CNF의 비표면적을 줄이는 결과를 보여준다. 그 결과, 높은 비표면적을 갖는 TiO2-Graphene/CNF 복합체가 낮은 비표면적(409.63 m2/g)을 갖는 TiO2-CNF 복합체보다 유기 오염물질을 저장할 수 있어 큰 용량과 흡탈착 속도가 빨라지므로 광촉매 활성도가 증가될 수 있음을 보여준다. 또한, Graphene/CNF는 광촉매 효과보다는 다공구조의 흡착성만을 이용한 유기물 제거이므로 흡착이 완결되면 정화능력이 급격히 떨어지는 단점이 있게 된다.From Table 4, it can be seen that the TiO 2 -Graphene / CNF composite, Graphene / CNF, TiO 2 -CNF, CNF exhibited specific surface area values of 434, 447, 361, and 405 m 2 / g, respectively. In the case of TiO 2 -CNF, the crystal size of TiO 2 particles is increased (110 nm) and the specific surface area of CNF is reduced by preventing the dispersion of crystals. As a result, TiO 2 -Graphene / CNF composites with higher specific surface area can store organic contaminants than TiO 2 -CNF composites with lower specific surface area (409.63 m 2 / g), which results in higher capacity and faster desorption rate. It shows that the photocatalytic activity can be increased. In addition, since Graphene / CNF removes organic substances using only the adsorptive structure of the porous structure rather than the photocatalytic effect, the purification ability is sharply reduced when the adsorption is completed.

한편 TiO2-Graphene/CNF 복합체의 경우 Graphene/CNF와 비슷한 비표면적을 지니는 것을 알 수 있지만 후술하는 MB 광분해 실험에서 광분해능력은 월등하게 앞서는 것을 알 수 있다. 이는 본 발명의 광촉매-그래핀-탄소나노섬유복합체가 기공의 흡착특성을 이용해 MB를 흡착하는 동시에 TiO2 광촉매활성으로 MB를 제거하는 다공성 광촉매복합체의 특성을 동시에 보이는 것을 알 수 있다. 또한 자외선 영역에서만 반응하는 기존 광촉매와는 달리 그래핀이 도입됨으로써 TiO2의 띠간격 사이에 새로운 트랩 사이트 (trap site)를 만들어 전자와 정공의 유지시간을 증가시킴으로써 낮은 에너지 영역인 가시광선에서도 뛰어난 광촉매 활성을 보였음을 확인할 수 있다.
On the other hand, the TiO 2 -Graphene / CNF composite has a specific surface area similar to that of Graphene / CNF, but it can be seen that the photodegradation ability is superior in the MB photolysis experiment described below. It can be seen that the photocatalyst-graphene-carbon nanofiber composite of the present invention simultaneously exhibits the characteristics of the porous photocatalyst complex which removes MB by TiO 2 photocatalytic activity while adsorbing MB by using the adsorption characteristics of pores. In addition, unlike conventional photocatalysts that react only in the ultraviolet region, graphene is introduced to create a new trap site between the band gaps of TiO 2 , increasing the retention time of electrons and holes. It can be confirmed that the activity was shown.

실험예 5 : 이산화티탄-그래핀-탄소나노섬유복합체(TiO2-Graphene/CNF 복합체)의 가시광선 광활성 평가 Experimental Example 5 Evaluation of Visible Light Activity of Titanium Dioxide-Graphene-Carbon Nanofiber Composite (TiO 2 -Graphene / CNF Composite)

실시예에서 제조된 이산화티탄-그래핀-탄소나노섬유복합체(TiO2-Graphene /CNF 복합체)의 가시광선 광활성 평가를 위해 비교예1 내지 3에서 얻어진 비교광촉매들과 함께 총 4종류의 시료 (TiO2-Graphene /CNF 복합체, TiO2/CNF, Graphene/CNF, CNF)를 준비하여 다음과 같이 실험을 수행하고, 그 결과를 도 10에 나타내었다. In order to evaluate the visible light activity of the titanium dioxide-graphene-carbon nanofiber composite (TiO 2 -Graphene / CNF composite) prepared in Example, a total of four types of samples (TiO) together with the comparative photocatalysts obtained in Comparative Examples 1 to 3 2- Graphene / CNF complex, TiO 2 / CNF, Graphene / CNF, CNF) was prepared and performed as follows, the results are shown in Figure 10.

메틸렌 블루(Methylene blue, MB) 염료를 15ppm의 농도로 용액을 제조하여 각각의 농도에 따른 광촉매 활성을 평가하였다. 제조된 용액 100 mL와 파우더상태로 준비된 시료 0.1 g을 비이커에 넣고 광원을 조사하여 염료 분해 성능을 관찰하였다. 광촉매활성 분해능력 평가를 위해 사용된 광원은 Visible light (13W, 400~800nm, FRX13EX-D)를 광원으로 사용하여 실험을 진행하였다. Methylene blue (MB) dye was prepared at a concentration of 15 ppm to evaluate photocatalytic activity according to each concentration. 100 mL of the prepared solution and 0.1 g of a sample prepared in powder form were placed in a beaker and irradiated with a light source to observe dye degradation performance. The light source used for the evaluation of the photocatalytic activity was tested using Visible light (13W, 400-800nm, FRX13EX-D) as a light source.

반응 후 MB의 농도 변화를 확인하기 위해 30분 간격으로 3 mL의 반응 용액을 채취하였고, TiO2 입자가 혼합되지 않은 순수한 용액을 얻기 위하여 0.45 μm (Millipore millex filter) 여과막을 사용하여 용액을 분리하였다. UV-Vis 분광기로 반응 시간에 따른 MB의 농도를 측정하였다.After the reaction, 3 mL of the reaction solution was taken at intervals of 30 minutes to confirm the change in concentration of MB. The solution was separated using a 0.45 μm (Millipore millex filter) filtration membrane to obtain a pure solution containing no TiO 2 particles. . The concentration of MB according to reaction time was measured by UV-Vis spectroscopy.

도 9는 가시광선 영역에서의 총 4개의 시료에 대한 MB 광분해도와 광분해 반응 속도를 그래프로 나타낸 것인데, 도 9에 도시된 15 ppm MB제거 효율을 아래 표5에 정리하여 나타내었다.
FIG. 9 is a graph showing MB photodegradation and photolysis reaction rates for a total of four samples in the visible region, and the 15 ppm MB removal efficiencies shown in FIG. 9 are summarized in Table 5 below.

TiO2-
Graphene/CNF
TiO 2-
Graphene / CNF
Graphene/CNFGraphene / CNF TiO2-CNFTiO 2 -CNF CNFCNF
M.B 제거효율*
(30분 후)
MB removal efficiency *
(30 minutes later)
100 %100% 31.3 %31.3% 31.3 %31.3% 18.7 %18.7%
M.B 제거효율*
(180분 후)
MB removal efficiency *
(After 180 minutes)
100 %100% 35.0 %35.0% 35.5 %35.5% 21.3 %21.3%

* MB 제거효율 =

Figure 112011066738680-pat00001
* MB removal efficiency =
Figure 112011066738680-pat00001

MB 분해 효율은 본 발명의 TiO2-Graphene/CNF 복합체가 가장 높은 제거효율을 보였다. 즉 TiO2-Graphene/CNF 복합체는 가시광선 하에서 30분 만에 100%의 MB 제거효율을 보였으나, Graphene/CNF와 TiO2-CNF의 경우에는 180분 후에도 약 35%의 낮은 분해효율을 보였고 CNF의 경우에는 가장 낮은 21.3%의 분해효율을 보였기 때문이다. MB decomposition efficiency of TiO 2 -Graphene / CNF composite of the present invention showed the highest removal efficiency. In other words, the TiO 2 -Graphene / CNF composite showed 100% MB removal efficiency in 30 minutes under visible light, but the graphene / CNF and TiO 2 -CNF showed low degradation efficiency of about 35% after 180 minutes and CNF. In the case of, the lowest decomposition efficiency was 21.3%.

이러한 실험결과는 본 발명의 TiO2-Graphene/CNF 복합체가 다른 광촉매복합체들과 달리 낮은 에너지를 갖는 가시광선에서도 높은 광촉매활성 효율을 나타내는 것을 보여준다.These experimental results show that the TiO 2 -Graphene / CNF composite of the present invention exhibits high photocatalytic activity efficiency even in visible light having low energy, unlike other photocatalyst complexes.

이와 같이 본 발명의 TiO2-Graphene/CNF 복합체가 가시광선에서도 높은 광촉매활성 효율을 나타내는 이유는 그래핀의 영향으로 나노사이즈의 광촉매 입자(실시예의 경우 TiO2 particle)가 광촉매 복합체 표면에 균일하게 형성되어 오염물질과의 접촉면적이 상대적으로 증가하게 되고, 다층 그래핀(multi-layer Graphene)은 그자체로서 반도체의 특성을 지니기 때문에 띠 간격을 줄여줌과 동시에 광촉매반응에 의해 여기된 광촉매( 실시예의 경우 TiO2)의 전자를 잡아주는 acceptor 역할을 하여 전자와 정공의 지속시간을 증가시켜 광촉매 활성이 증가되게 되기 때문인 것을 예측된다.
The reason why the TiO 2 -Graphene / CNF composite of the present invention exhibits high photocatalytic activity efficiency even in visible light is that nano-sized photocatalytic particles (TiO 2 particles in the embodiment) are uniformly formed on the surface of the photocatalytic composite under the influence of graphene. As a result, the contact area with contaminants increases relatively, and since multi-layer graphene has its own characteristics as a semiconductor, it reduces the band gap and at the same time, the photocatalyst excited by the photocatalytic reaction ( In this case, it is expected that photocatalytic activity is increased by increasing the duration of electrons and holes by acting as an acceptor to hold electrons of TiO 2 ).

실험예 6 : 이산화티탄-그래핀-탄소나노섬유복합체(TiO2-Graphene/CNF 복합체)의 광활성 반응 반복실험Experimental Example 6: Repeated photoactive reaction of titanium dioxide-graphene-carbon nanofiber composite (TiO 2 -Graphene / CNF composite)

실시예에서 제조된 TiO2-Graphene/CNF 복합체를 광활성 반응 실험을 진행한 결과 일반적으로 광활성 평가에 적용되는 MB 농도보다 높은 15ppm을 적용하였음에도 불구하고 TiO2-Graphene/CNF 복합체의 경우 30분 만에 15ppm 의 MB가 모두 제거됨을 상술된 실험예4를 통해 확인하였다. 이에 광촉매활성 반복실험을 실시하고 그 결과를 도 10에 도시하였다. 본 실험에서는 가시광선을 광원으로 사용하였고 15ppm의 MB 100 ml를 제조한 후 0.1g의 광촉매 복합체 파우더를 비이커에 넣고 광원을 조사하였다. 첫 번째 cycle에서 MB 가 100% 제거 되었을 때 MB를 추가하여 농도 15 ppm으로 맞춘 후 다음 가시광선을 조사하여 분해 실험을 반복하였다. The TiO 2 -Graphene / CNF composite prepared in Example was subjected to the photoactivity reaction experiment. In spite of the application of 15 ppm higher than the MB concentration which is generally applied to the photoactivity evaluation, the TiO 2 -Graphene / CNF composite was obtained in 30 minutes. It was confirmed through Experimental Example 4 described above that all 15 ppm of MB were removed. The photocatalytic activity was repeated and the results are shown in FIG. 10. In this experiment, visible light was used as a light source. After preparing 100 ppm of 15 ppm of MB, 0.1 g of photocatalytic composite powder was placed in a beaker and irradiated with a light source. When MB was removed 100% in the first cycle, MB was added to adjust the concentration to 15 ppm, and the decomposition experiment was repeated by examining the next visible light.

도 10에 도시된 바와 같이 본 발명의 TiO2-Graphene/CNF 복합체는 4cycle까지 15ppm 의 MB를 100% 모두 제거하였고 5 cycle에서 광촉매활성이 약간 저하됨을 확인할 수 있었다. As shown in FIG. 10, in the TiO 2 -Graphene / CNF composite of the present invention, 100% of 15 ppm of MB was removed until 4 cycles, and the photocatalytic activity was slightly decreased at 5 cycles.

이와 같은 실험결과들로부터 본 발명의 실시예에서 얻어진 TiO2-Graphene /CNF 복합체를 구성하는 각 구성요소들이 하기 표 6에 기재된 역할을 수행하는 것을 예측할 수 있다. From these experimental results, it can be predicted that each component constituting the TiO 2 -Graphene / CNF composite obtained in the embodiment of the present invention performs the role described in Table 6 below.

TiO2-Graphene/CNF 복합체TiO 2 -Graphene / CNF Composite GrapheneGraphene ㆍ TiO2와 결합하여 나노크기의 TiO2 파티클을 균일하게 분산하도록 도와주어 광촉매 활성의 효율을 증가시킴.
ㆍ Graphene은 반도체와 같은 특성을 지녀서 TiO2의 띠간격을 좁혀주고 광여기 반응 시에 형성된 전자를 잡아주는 Trap 역할을 수행하여 전자와 정공의 지속시간을 증가시켜 가시광선에서도 높은 광촉매 활성을 띔.
In combination with TiO 2 and given to help uniformly disperse the TiO 2 particles of nano size increases the efficiency of the photocatalytic activity.
ㆍ Graphene has the same characteristics as semiconductors and it has a high photocatalytic activity in visible light by increasing the duration of electrons and holes by narrowing the band gap of TiO2 and trapping electrons formed during photoexcitation reaction.
Nano size TiO2 Nano size TiO 2 ㆍ 일정한 띠간격 이상의 에너지를 가진 빛을 받았을 때 전자와 정공이 생성되고, 이 전자-정공쌍을 통해 여러 가지 유기물의 산화와 같은 반응들이 일어남
ㆍ 나노크기의 TiO2는 양자크기효과로 인해 일반적인 TiO2의 밴드갭(3.2eV)보다 낮은 에너지를 갖는 가시광선에서도 광촉매반응을 보임.
Electrons and holes are generated when light with energy above a certain bandgap occurs, and reactions such as oxidation of various organic substances occur through this electron-hole pair
Nano sized TiO2 shows photocatalytic reaction in visible light with energy lower than the band gap (3.2eV) of TiO2 due to quantum size effect.
CNFCNF 높은 비표면적을 통해 유기물의 담지량 증가 및 흡탈착 속도가 빨라지므로 광촉매 활성의 반응속도가 증가하게 됨 High specific surface area increases organic loading and adsorption and desorption rate, increasing reaction rate of photocatalytic activity

구체적인 실시예로 개시하지는 않지만 광촉매로 이산화티탄(TiO2)이 아닌 ZnO, WO3, SnO2, ZrO2, CdS를 포함하는 본 발명의 광촉매-그래핀-탄소나노입자복합체는 금속이온의 도핑으로 인해 쇼트키장벽을 낮추어 가시광선에서 광촉매 활성을 갖는 Ag-TiO2/CNF 보다 높은 가시광선 광촉매 효과를 갖는 것을 알 수 있었다.Although not disclosed in specific examples, the photocatalyst-graphene-carbon nanoparticle composite of the present invention including ZnO, WO 3 , SnO 2 , ZrO 2 , and CdS, which is not titanium dioxide (TiO 2 ) as a photocatalyst, may be prepared by doping with metal ions. It was found that the Schottky barrier has a higher visible light photocatalytic effect than Ag-TiO 2 / CNF having a photocatalytic activity in visible light.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, Various changes and modifications will be possible.

Claims (14)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 탄소나노섬유전구체물질 및 그래핀을 용해시켜 그래핀함유 방사용액을 제조하는 단계;
상기 방사용액을 전기 방사하여 그래핀함유 전구체섬유를 제조하는 단계;
상기 전구체섬유를 200 내지 300℃에서 안정화하여 그래핀함유 내염화섬유를 제조하는 단계;
광촉매 졸 용액을 준비하는 단계;
상기 광촉매 졸 용액에 상기 그래핀함유 내염화섬유를 침지시켜 코팅하는 단계; 및
상기 코팅된 내염화섬유를 건조한 후 탄화시키는 단계를 포함하는데,
상기 그래핀함유방사용액은 상기 탄소나노섬유전구체물질에 대해 그래핀을 1 내지 20중량%로 포함하는 것을 특징으로 하는 광촉매-그래핀-탄소나노섬유복합체 제조방법.
Preparing a graphene-containing spinning solution by dissolving carbon nanofiber precursors and graphene;
Preparing a graphene-containing precursor fiber by electrospinning the spinning solution;
Stabilizing the precursor fiber at 200 to 300 ° C. to produce graphene-containing flame resistant fiber;
Preparing a photocatalyst sol solution;
Coating the graphene-containing chloride resistant fiber by dipping the photocatalyst sol solution; And
Carbonizing the coated flame resistant fiber after drying,
The graphene-containing fat using solution is a photocatalyst-graphene-carbon nanofiber composite manufacturing method characterized in that it comprises 1 to 20% by weight of graphene relative to the carbon nanofiber precursor material.
삭제delete 탄소나노섬유전구체물질 및 그래핀을 용해시켜 그래핀함유 방사용액을 제조하는 단계;
상기 방사용액을 전기 방사하여 그래핀함유 전구체섬유를 제조하는 단계;
상기 전구체섬유를 200 내지 300℃에서 안정화하여 그래핀함유 내염화섬유를 제조하는 단계;
광촉매 졸 용액을 준비하는 단계;
상기 광촉매 졸 용액에 상기 그래핀함유 내염화섬유를 침지시켜 코팅하는 단계; 및
상기 코팅된 내염화섬유를 건조한 후 탄화시키는 단계를 포함하는데,
상기 그래핀함유방사용액을 제조하는 단계는 그래핀을 DMF에 초음파를 이용해 분산시키는 단계 및 상기 분산 용액에 PAN을 용해시키는 단계를 포함하는 것을 특징으로 하는 광촉매-그래핀-탄소나노섬유복합체 제조방법.
Preparing a graphene-containing spinning solution by dissolving carbon nanofiber precursors and graphene;
Preparing a graphene-containing precursor fiber by electrospinning the spinning solution;
Stabilizing the precursor fiber at 200 to 300 ° C. to produce graphene-containing flame resistant fiber;
Preparing a photocatalyst sol solution;
Coating the graphene-containing chloride resistant fiber by dipping the photocatalyst sol solution; And
Carbonizing the coated flame resistant fiber after drying,
The step of preparing the graphene-containing emulsion using the photocatalyst-graphene-carbon nanofiber composite manufacturing method comprising the step of dispersing the graphene in the DMF using ultrasonic waves and dissolving PAN in the dispersion solution .
제 7 항 또는 제 9 항에 있어서,
상기 코팅하는 단계는 상기 광촉매 졸용액에 상기 내염화섬유를 1~3시간 동안 침지시켜 수행되고, 상기 탄화시키는 단계는 800 ~ 1000℃까지 가온하여 수행되는 것을 특징으로 하는 광촉매-그래핀-탄소나노섬유복합체 제조방법.
10. The method according to claim 7 or 9,
The coating step is performed by immersing the flame resistant fiber in the photocatalyst sol solution for 1 to 3 hours, and the carbonizing is performed by heating to 800 to 1000 ° C. The photocatalyst-graphene-carbon nano Fiber composite manufacturing method.
제 7 항 또는 제 9 항에 있어서,
상기 탄소나노섬유전구체 물질은 폴리 아크릴로 니트릴(polyacrylo nitrile, PAN), 폴리이미드(polyimide), 폴리벤조이미다졸(polybenz imidazole, PBI), 피치로 구성된 그룹에서 선택되는 어느 하나인 것을 특징으로 하는 광촉매-그래핀-탄소나노섬유복합체 제조방법.
10. The method according to claim 7 or 9,
The carbon nanofiber precursor material is any one selected from the group consisting of polyacrylo nitrile (PAN), polyimide, polybenzimidazole (PBI), and pitch. -Graphene-carbon nano fiber composite manufacturing method.
제 7 항 또는 제 9 항에 있어서,
상기 광촉매 전구체물질은 ZnO, WO3, SnO2, ZrO2, TiO2로 구성된 그룹에서 선택되는 어느 하나를 포함하는 것을 특징으로 광촉매-그래핀-탄소나노섬유복합체 제조방법.


10. The method according to claim 7 or 9,
The photocatalyst precursor material is ZnO, WO 3 , SnO 2 , ZrO 2 , TiO 2 , characterized in that it comprises any one selected from the group consisting of photocatalyst-graphene-carbon nanofiber composite manufacturing method.


삭제delete 삭제delete
KR1020110086034A 2011-08-26 2011-08-26 Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite KR101270716B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110086034A KR101270716B1 (en) 2011-08-26 2011-08-26 Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110086034A KR101270716B1 (en) 2011-08-26 2011-08-26 Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020130016774A Division KR101334294B1 (en) 2013-02-18 2013-02-18 Photocatalyst-graphenes-carbon nano-fiber composite and filter comprising the same

Publications (2)

Publication Number Publication Date
KR20130022960A KR20130022960A (en) 2013-03-07
KR101270716B1 true KR101270716B1 (en) 2013-06-03

Family

ID=48175520

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110086034A KR101270716B1 (en) 2011-08-26 2011-08-26 Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite

Country Status (1)

Country Link
KR (1) KR101270716B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104277219A (en) * 2014-10-11 2015-01-14 南京大学 Photocatalytic material polyimide, as well as preparation method and applications thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101625739B1 (en) * 2013-06-21 2016-06-13 코오롱인더스트리 주식회사 Polyacrylonitrile Precursor for Carbon Fiber and Method for Preparing the Same
CN105126820B (en) * 2015-09-23 2017-05-10 长沙理工大学 Preparation method of three-dimensional graphene/tungsten-based nanosheet/magnesium-doped zinc oxide layer-by-layer assembly structure
KR101898524B1 (en) * 2017-02-20 2018-09-13 한국과학기술연구원 Methods of manufacturing metal-carbon lmaterial complexed films
US10888845B1 (en) 2020-07-17 2021-01-12 King Abdulaziz University Graphene-tungsten oxide-metal boride/hydroxide photocatalysts, and methods for organic pollutant degradation and hydrogen production
CN112108184B (en) * 2020-10-20 2023-03-24 西安工程大学 Preparation of bismuth ferrite/graphene/TiO by using wool sheet 2 Method for preparing photocatalyst
CN112516685A (en) * 2020-11-17 2021-03-19 华东师范大学重庆研究院 Visible light photocatalysis air purification glass fiber filter element and preparation method thereof
CN113145105A (en) * 2021-04-01 2021-07-23 山东农业大学 Homogeneous and heterogeneous tungsten trioxide nanobelt photocatalyst and preparation method thereof
CN114653355A (en) * 2022-05-10 2022-06-24 华东师范大学重庆研究院 Photocatalytic material, preparation method and photocatalytic air epidemic prevention filter screen
CN116393178B (en) * 2023-03-14 2024-05-14 中国水利水电第六工程局有限公司 Lake and pond treatment method based on graphene photocatalytic net

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928232B1 (en) 2007-05-04 2009-11-24 주식회사 에이엠오 Dust, deodorant and antibacterial filters with nanofiber webs
KR20100079470A (en) * 2008-12-31 2010-07-08 전남대학교산학협력단 Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and tio2,sio2 sol solutions used for thermo stable photo catalyst
US20100317790A1 (en) 2009-03-03 2010-12-16 Sung-Yeon Jang Graphene composite nanofiber and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928232B1 (en) 2007-05-04 2009-11-24 주식회사 에이엠오 Dust, deodorant and antibacterial filters with nanofiber webs
KR20100079470A (en) * 2008-12-31 2010-07-08 전남대학교산학협력단 Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and tio2,sio2 sol solutions used for thermo stable photo catalyst
US20100317790A1 (en) 2009-03-03 2010-12-16 Sung-Yeon Jang Graphene composite nanofiber and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104277219A (en) * 2014-10-11 2015-01-14 南京大学 Photocatalytic material polyimide, as well as preparation method and applications thereof

Also Published As

Publication number Publication date
KR20130022960A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
KR101334294B1 (en) Photocatalyst-graphenes-carbon nano-fiber composite and filter comprising the same
KR101270716B1 (en) Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite
US12064753B2 (en) Metal oxide nanofibrous materials for photodegradation of environmental toxins
Li et al. Growth of BiOBr/ZIF-67 nanocomposites on carbon fiber cloth as filter-membrane-shaped photocatalyst for degrading pollutants in flowing wastewater
Mao et al. Size tunable Bi3O4Br hierarchical hollow spheres assembled with {0 0 1}-facets exposed nanosheets for robust photocatalysis against phenolic pollutants
Calisir et al. Nitrogen-doped TiO2 fibers for visible-light-induced photocatalytic activities
KR101083060B1 (en) Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and TiO2,SiO2 sol solutions used for thermo stable photo catalyst
Adhikari et al. Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation
Zhan et al. Durable ZIF-8/Ag/AgCl/TiO2 decorated PAN nanofibers with high visible light photocatalytic and antibacterial activities for degradation of dyes
Zhang et al. Dual functional N-doped TiO2-carbon composite fibers for efficient removal of water pollutants
Ahn et al. Bandgap-designed TiO2/SnO2 hollow hierarchical nanofibers: Synthesis, properties, and their photocatalytic mechanism
Costantino et al. In situ formation of SnO2 nanoparticles on cellulose acetate fibrous membranes for the photocatalytic degradation of organic dyes
US20070149397A1 (en) Photocatalytic composite material, method for producing the same and application thereof
Reli et al. Photocatalytic decomposition of N2O over g-C3N4/BiVO4 composite
Sedghi et al. A one step electrospinning process for the preparation of polyaniline modified TiO2/polyacrylonitile nanocomposite with enhanced photocatalytic activity
Cai et al. Electrospun polymer nanofibers coated with TiO2 hollow spheres catalyze for high synergistic photo-conversion of Cr (VI) and As (III) using visible light
KR101562254B1 (en) Macromolecular nanofiber having photocatalystic activity in visible light region and manufacturing method thereof
Alsawat et al. Synthesis of carbon nanotube–nanotubular titania composites by catalyst-free CVD process: insights into the formation mechanism and photocatalytic properties
Tsai et al. Synthesis of Ag‐modified TiO2 nanotube and its application in photocatalytic degradation of dyes and elemental mercury
KR101216497B1 (en) Method for producing Ag-photocatalyst-carbon nano fiber complex, and filter comprising the same
Yang et al. A highly efficient nano-graphite-doped TiO 2 photocatalyst with a unique sea-island structure for visible-light degradation
Tseng et al. Facile synthesis of Ag/TiO2 by photoreduction method and its degradation activity of methylene blue under UV and visible light irradiation
Kottappara et al. Enhancing semiconductor photocatalysis with carbon nanostructures for water/air purification and self-cleaning applications
Liu et al. Multicomponent composite membrane with three-phase interface heterostructure as photocatalyst for organic dye removal
Far et al. Metal-organic frameworks decorated Ti3C2Tx MXene nanosheets (MXene@ UiO-66) for enhanced photocatalytic dye degradation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160405

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170508

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180427

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190527

Year of fee payment: 7