[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101229678B1 - Preparation method for high thermally conductive and electrically insulating EVA sheet for solar cell encapsulant - Google Patents

Preparation method for high thermally conductive and electrically insulating EVA sheet for solar cell encapsulant Download PDF

Info

Publication number
KR101229678B1
KR101229678B1 KR1020110059599A KR20110059599A KR101229678B1 KR 101229678 B1 KR101229678 B1 KR 101229678B1 KR 1020110059599 A KR1020110059599 A KR 1020110059599A KR 20110059599 A KR20110059599 A KR 20110059599A KR 101229678 B1 KR101229678 B1 KR 101229678B1
Authority
KR
South Korea
Prior art keywords
sheet
vinyl acetate
acetate copolymer
ethylene vinyl
solar cell
Prior art date
Application number
KR1020110059599A
Other languages
Korean (ko)
Other versions
KR20130007681A (en
Inventor
조재환
장희정
이구형
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR1020110059599A priority Critical patent/KR101229678B1/en
Publication of KR20130007681A publication Critical patent/KR20130007681A/en
Application granted granted Critical
Publication of KR101229678B1 publication Critical patent/KR101229678B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • C08L2203/162Applications used for films sealable films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 전기절연성 및 열전도성이 우수한 태양전지 봉지재용 EVA 시트의 제조방법에 관한 것으로서, 보다 상세하게는 에틸렌비닐아세테이트 공중합체 수지에 전기절연성 및 열전도성이 우수한 첨가제, 자외선 흡수제, 광안정제, 가교제, 가교조제 및 실란커플링제를 혼합하여 시트를 성형하는 것을 특징으로 하는 태양전지 봉지재용 EVA 시트의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing an EVA sheet for solar cell encapsulation material having excellent electrical insulation and thermal conductivity, and more particularly, to an ethylene vinyl acetate copolymer resin, an additive having excellent electrical insulation and thermal conductivity, an ultraviolet light absorber, a light stabilizer, and a crosslinking agent. And a crosslinking aid and a silane coupling agent to form a sheet, and to a method for producing a EVA sheet for solar cell encapsulant.

Description

전기절연성 및 열전도성이 우수한 태양전지 봉지재용 EVA 시트의 제조방법{Preparation method for high thermally conductive and electrically insulating EVA sheet for solar cell encapsulant}Preparation method of EAA sheet for solar cell encapsulation material having excellent electrical insulation and thermal conductivity {Preparation method for high thermally conductive and electrically insulating EVA sheet for solar cell encapsulant}

본 발명은 전기절연성 및 열전도성이 우수한 태양전지 봉지재용 EVA 시트의 제조방법에 관한 것으로서, 보다 상세하게는 에틸렌비닐아세테이트 공중합체(이하, 'EVA'라고 칭함) 수지에 전기절연성 및 열전도성이 우수한 첨가제, 자외선 흡수제, 광안정제, 가교제, 가교조제 및 실란커플링제를 혼합하여 시트를 성형하는 것을 특징으로 하는 태양전지 봉지재용 EVA 시트의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing an EVA sheet for solar cell encapsulation material having excellent electrical insulation and thermal conductivity, and more particularly, excellent in electrical insulation and thermal conductivity in an ethylene vinyl acetate copolymer (hereinafter referred to as EVA) resin. The present invention relates to a method for producing an EVA sheet for solar cell encapsulant, comprising forming an sheet by mixing an additive, an ultraviolet absorbent, a light stabilizer, a crosslinking agent, a crosslinking aid, and a silane coupling agent.

태양광 발전에 사용되는 태양전지 모듈은 통상 셀(cell)을 보호하기 위해 양면에 EVA 시트가 사용되며, 추가적으로 태양광이 입사되는 쪽에는 투명 유리기판, 그 반대편에는 수증기 차단성 및 내후성이 우수한 시트로 라미네이팅되어 있다. 상기 라미네이팅 방법은 투명유리 기판, EVA 시트, 셀, EVA 시트, 기체 차단성 시트를 적층한 후, 특정의 온도, 압력하에 가열, 가교하여 접착시키는 것이다.The solar cell module used in solar power generation is usually EVA sheet is used on both sides to protect the cell, additionally transparent glass substrate on the side where the solar light is incident, and on the other side, the sheet having excellent water barrier and weather resistance It is laminated. The laminating method is to laminate a transparent glass substrate, an EVA sheet, a cell, an EVA sheet, a gas barrier sheet, and then heat and crosslink the adhesive under a specific temperature and pressure.

일반적으로 태양전지 봉지재용 EVA 시트는, 가교 후 높은 투명성과 접착성, 내후 안정성이 요구되기 때문에, EVA에 가교제, 가교조제, 실란 커플링제, 산화방지제, 광안정제, UV 흡수제 등 각종 첨가제를 첨가하여 EVA의 용융온도 이상이면서, 가교제인 유기과산화물 분해온도 이하의 온도에서 용융 혼련하여 봉지재용 EVA 시트를 제조한다.Generally, since EVA sheet for solar cell encapsulation material requires high transparency, adhesiveness, and weather resistance after crosslinking, various additives such as a crosslinking agent, a crosslinking aid, a silane coupling agent, an antioxidant, a light stabilizer, and a UV absorber are added to EVA. The EVA sheet for sealing material is manufactured by melt-kneading at the temperature more than the melting temperature of EVA and below the decomposition temperature of the organic peroxide which is a crosslinking agent.

한편, 통상적으로 태양광 발전량은 태양전지 동작 모듈의 온도와 밀접한 상관 관계가 있으며, 특히 결정계 실리콘 태양전지 모듈의 경우 더욱 민감하다. 즉, 동작 모듈온도가 증가할수록 발전량은 감소하는 반비례 관계임을 알 수 있는데, 문헌에 의하면 일사량이 동일한 날임에도 불구하고 모듈온도가 높은 여름철의 발전량이 모듈의 온도가 낮은 겨울철의 발전량보다 감소함을 보여주고 있다(신혜영, 홍익대 석사논문 “태양전지 모듈의 전.후면 온도변화에 의한 출력에 관한 연구”2009). On the other hand, in general, the amount of photovoltaic power generation is closely correlated with the temperature of the solar cell operation module, and more particularly in the case of a crystalline silicon solar cell module. In other words, as the operating module temperature increases, the amount of generation decreases in inverse relationship. According to the literature, although the amount of solar radiation is the same day, the amount of generation in the summer with high module temperature is lower than the amount of generation in winter with low module temperature. (Shin Hye-Young, Master's Thesis, Hongik University "A Study on the Output by Temperature Change of Front and Back of Solar Module", 2009).

그러나, 통상적인 태양전지 모듈은 셀 상, 하 및 주위에 열전도성이 극히 낮은 EVA 시트로 에워싸여 있기 때문에(EVA 열 전도도: 0.23W/m.K) 모듈의 작동에 따라 모듈 자체에서 발생하는 열을 제대로 외부로 방출하지 못하는 단점이 있었다.However, the conventional solar cell module is surrounded by an extremely low thermal conductivity EVA sheet above, below, and around the cell (EVA thermal conductivity: 0.23 W / mK). There was a disadvantage that can not be released to the outside.

최근, 상기와 같은 단점을 보완하기 위한 방안으로 다양한 기술들이 개발되어 특허 출원되고 있으며, 대표적인 예로서 국내 공개특허공보 제10-2010-0131201호에는 태양전지 모듈이 보호부재(backsheet)가 제거된 상태의 구조로, 셀 후면 EVA 시트에 열전도성 금속 분말을 첨가하여, 방열특성을 갖는 EVA 시트의 방열 효과에 의해 모듈 내부의 온도를 저하시켜 발전효율을 극대화시키는 기술이 공개되어 있다. 하지만 이 특허에서 인용된 금속분말은 대부분 열전도성이 우수할 뿐만 아니라 전기전도성도 우수하여 전기 절연성이 요구되는 태양전지 봉지재로는 적합하지 않으며, 또한 강력한 내후 안정성을 부여하는 보호부재를 제거하는 대신 오로지 열전도성 금속분말이 함유된 EVA 시트를 사용하는 것으로 되어 있어, 장기 내후성 문제도 발생할 우려가 있다. Recently, various technologies have been developed and applied for a solution to compensate for the above disadvantages, and as a representative example, in Korean Laid-Open Patent Publication No. 10-2010-0131201, a solar cell module has a backsheet removed. In the structure, by adding a thermally conductive metal powder to the back of the EVA sheet, a technology for maximizing the power generation efficiency by lowering the temperature inside the module by the heat dissipation effect of the EVA sheet having a heat dissipation characteristic is disclosed. However, most of the metal powders cited in this patent are not only suitable for solar cell encapsulation materials that require electrical insulation due to their excellent thermal conductivity and electrical conductivity. Since only EVA sheet containing a thermally conductive metal powder is used, there is a possibility that long-term weather resistance problems will also occur.

본 발명의 목적은, 특히 태양전지 모듈에 있어서 셀과 셀 후면측 보호부재와의 사이에 사용하기에 적합한, 전기절연성 및 열전도성이 우수한 태양전지 봉지재용 EVA 시트의 제조방법을 제공하는 것이다. An object of the present invention is to provide a method for producing an EVA sheet for solar cell encapsulant having excellent electrical insulation and thermal conductivity, which is particularly suitable for use between a cell and a cell back side protective member in a solar cell module.

본 발명에 따른 태양전지 봉지재용 EVA 시트의 제조방법은, EVA 수지에 전기절연성 및 열전도성이 우수한 첨가제, 자외선 흡수제, 광안정제, 가교제, 가교조제 및 실란커플링제를 혼합하여 시트를 성형하는 것을 특징으로 한다. The method for manufacturing an EVA sheet for solar cell encapsulation according to the present invention is characterized in that the sheet is formed by mixing an additive, an ultraviolet absorber, a light stabilizer, a crosslinking agent, a crosslinking aid, and a silane coupling agent which are excellent in electrical insulation and thermal conductivity with EVA resin. It is done.

하나의 구체예에서, 본 발명의 태양전지 봉지재용 EVA 시트의 제조방법은, EVA 수지에 전기절연성 및 열전도성이 우수한 첨가제, 자외선 흡수제, 광안정제, 가교제, 가교조제 및 실란커플링제를 함께 혼합하여 가교제의 분해온도 이하에서 용융 혼련하여 시트를 성형하는 것을 포함한다.In one embodiment, the manufacturing method of the EVA sheet for solar cell encapsulation material of the present invention, by mixing the EVA resin with additives, UV absorbers, light stabilizers, crosslinking agents, crosslinking aids and silane coupling agents together with excellent electrical insulation and thermal conductivity Shaping and kneading at a temperature below the decomposition temperature of the crosslinking agent to form a sheet.

다른 구체예에서, 본 발명의 태양전지 봉지재용 EVA 시트의 제조방법은, EVA 수지에 전기절연성 및 열전도성이 우수한 첨가제, 자외선 흡수제 및 광안정제를 균일하게 혼합시켜 얻어진 EVA 수지 조성물을 압출기에서 가교제의 분해온도 이하에서 용융시키면서, 가교제, 가교조제 및 실란커플링제를 혼합하여 용융 혼련하여 시트를 성형하는 것을 포함한다. In another embodiment, the manufacturing method of the EVA sheet for solar cell encapsulant of the present invention, EVA resin composition obtained by uniformly mixing the additives, ultraviolet absorbers and light stabilizers excellent in electrical insulation and thermal conductivity with EVA resin of the crosslinking agent in the extruder It melt | melts and knead | mixes a crosslinking agent, a crosslinking adjuvant, and a silane coupling agent, melt | melting below a decomposition temperature, and shape | molding a sheet | seat.

이러한 구체예에 따른 본 발명의 태양전지 봉지재용 EVA 시트의 제조방법의 일예는, 다음의 단계들을 포함하여 이루어질 수 있다:An example of a method of manufacturing an EVA sheet for solar cell encapsulant of the present invention according to this embodiment may include the following steps:

(1) EVA 수지에 전기절연성 및 열전도성이 우수한 첨가제, 자외선 흡수제 및 광안정제를 80~220℃에서 용융 혼련하여 수지 조성물을 얻는 단계, 및(1) melt-kneading an EVA resin with an additive having excellent electrical insulation and thermal conductivity, an ultraviolet absorber and a light stabilizer at 80 to 220 ° C. to obtain a resin composition, and

(2) 상기 (1)단계로부터 얻은 EVA 수지 조성물에 가교제, 가교조제 및 실란커플링제를 혼합하여 가교제의 분해온도 이하에서 용융 혼련하여 시트를 성형하는 단계.(2) mixing the crosslinking agent, the crosslinking aid and the silane coupling agent to the EVA resin composition obtained in the step (1) to melt kneading at a temperature below the decomposition temperature of the crosslinking agent to form a sheet.

상기 (1)단계에서, 용융 혼련시의 온도는 80~220℃가 바람직한데, 이 온도 범위를 벗어날 경우에는, 시트 성형성이 나빠 바람직하지 않다.In the step (1), the temperature at the time of melt kneading is preferably 80 ~ 220 ℃, if out of this temperature range, sheet formability is bad, it is not preferable.

상기 (2)단계에서는, 상기 (1)단계에서 얻어진 EVA 수지 조성물에 가교제, 가교조제 및 실란커플링제를 혼합하여 가교제의 분해온도 이하에서 용융 혼련하여 시트를 성형한다.In the step (2), the crosslinking agent, the crosslinking aid and the silane coupling agent are mixed with the EVA resin composition obtained in the step (1) to melt kneading at a temperature below the decomposition temperature of the crosslinking agent to form a sheet.

또는 상기 (2)단계에서는 상기 (1)단계에서 얻어진, 첨가제가 균일하게 분산된 EVA 수지 조성물을 유기과산화물의 분해온도 이하에서 압출기로 용융시키면서, 가교제, 가교조제 및 실란커플링제의 혼합물을 별도의 원료공급장치를 통하여 상기 압출기에 공급하여 용융 혼련하여 시트를 성형할 수도 있다.Alternatively, in step (2), a mixture of a crosslinking agent, a crosslinking aid, and a silane coupling agent is separately dissolved while melting the EVA resin composition obtained by the above step (1) with an additive dispersed uniformly at an decomposition temperature of the organic peroxide or less with an extruder. The sheet may be formed by supplying the extruder through a raw material supply device to melt-kneading the sheet.

상기 (2)단계에서, 가교제의 분해 온도보다 높은 온도에서 용융 혼련할 경우, 시트 성형성이 나쁘거나 선가교가 일어나 바람직하지 않다.In the step (2), when melt kneading at a temperature higher than the decomposition temperature of the crosslinking agent, sheet formability is bad or cross-linking occurs, which is not preferable.

또 다른 구체예에서, 본 발명의 태양전지 봉지재용 EVA 시트의 제조방법은, 상기와 같은 본 발명의 EVA 시트의 제조방법에 의해 전기절연성 및 열전도성이 우수한 첨가제 함유 EVA 시트(절연방열 EVA 시트)를 제조할 때, 이 EVA 시트의 상하 양면 중 적어도 하나의 면에, 상기 전기절연성 및 열전도성이 우수한 첨가제를 함유하지 않는 통상적인 태양전지 봉지재용 EVA 시트를 공압출하여, 다층 구조의 시트로 성형하는 것을 포함한다. In another embodiment, the manufacturing method of the EVA sheet for solar cell encapsulant of the present invention, the additive-containing EVA sheet (insulating heat-resistant EVA sheet) excellent in electrical insulation and thermal conductivity by the manufacturing method of the EVA sheet of the present invention as described above In manufacturing the sheet, the EVA sheet for conventional solar cell encapsulant which does not contain the additive having excellent electrical insulation and thermal conductivity is co-extruded into at least one of the upper and lower surfaces of the EVA sheet and formed into a sheet having a multilayer structure. It involves doing.

이러한 다층 구조의 시트에 있어서, 본 발명에 의한 전기절연성 및 열전도성이 우수한 첨가제 함유 절연방열 EVA 시트의 두께는, 전기절연성 및 열전도성 측면에서, 다층 EVA 시트의 전체 두께의 50% 이상, 바람직하게는 50~80%인 것이 바람직하다.In the sheet of such a multilayer structure, the thickness of the additive-containing insulating heat resistant EVA sheet excellent in electrical insulation and thermal conductivity according to the present invention is preferably 50% or more of the total thickness of the multilayer EVA sheet in terms of electrical insulation and thermal conductivity. Is preferably 50 to 80%.

본 발명에 따른 태양전지 봉지재용 EVA 시트의 제조방법에 있어서, 상기 EVA 수지는 비닐아세테이트(VA) 함량이 15~32중량%이고, 용융지수(190℃, 2.16kg의 하중으로 측정)가 1~30g/10분인 것이 바람직한데, 상기 비닐아세테이트의 함량이 상기 범위를 벗어나는 경우에는 유연성 및 내블로킹성이 떨어져 바람직하지 않고, 상기 용융지수가 상기 범위를 벗어나는 경우에는 시트 성형성 및 기계적 물성이 떨어져 바람직하지 않다.In the method of manufacturing an EVA sheet for solar cell encapsulation according to the present invention, the EVA resin has a vinyl acetate (VA) content of 15 to 32% by weight, and a melt index (measured by a load of 190 ° C. and 2.16 kg) is 1 to 1. It is preferable that the content of the vinyl acetate is in the range of 30 g / 10 minutes, which is not preferable because of its flexibility and blocking resistance, and when the melt index is out of the range, sheet formability and mechanical properties are poor. Not.

본 발명에서 사용되는 전기절연성 및 열전도성이 우수한 첨가제는, 그 종류에 특별한 한정은 없고, 예를 들면, 질화붕소, 산화아연, 산화마그네슘, 산화알루미늄, 탄화규소 및 울라스토나이트로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.The additive having excellent electrical insulation and thermal conductivity used in the present invention is not particularly limited in its kind, and is selected from the group consisting of, for example, boron nitride, zinc oxide, magnesium oxide, aluminum oxide, silicon carbide, and ulastonite. 1 or more types can be used.

상기 전기절연성 및 열전도성이 우수한 첨가제의 평균 입자크기는 0.5~100㎛인 것이 바람직한데, 상기 첨가제의 평균 입자크기가 0.5㎛ 미만일 경우에는 경제성이 떨어져 바람직하지 않고, 100㎛를 초과하는 경우에는 열전도 효과가 미미하여 바람직하지 않다.It is preferable that the average particle size of the additive having excellent electrical insulation and thermal conductivity is 0.5 to 100 μm. However, when the average particle size of the additive is less than 0.5 μm, economical efficiency is not preferable, and when the average particle size exceeds 100 μm, thermal conductivity is exceeded. The effect is negligible and undesirable.

본 발명에 따른 태양전지 봉지재용 EVA 시트의 제조방법에 있어서, 상기 EVA 수지 100중량부에 대하여, 전기절연성 및 열전도성이 우수한 첨가제 1.0~80중량부 사용하는 것이 바람직한데, 상기 첨가제의 함량이 1.0중량부 미만인 경우에는 열전도 효과가 미미하여 바람직하지 않고, 80중량부를 초과하는 경우에는 경제성이 떨어져서 바람직하지 않다. In the method for producing an EVA sheet for solar cell encapsulation according to the present invention, it is preferable to use 1.0 to 80 parts by weight of an additive having excellent electrical insulation and thermal conductivity with respect to 100 parts by weight of the EVA resin, but the content of the additive is 1.0 If it is less than the weight part, the heat conduction effect is insignificant, and it is not preferable. If it exceeds 80 parts by weight, economic efficiency is inferior.

본 발명에 사용되는 자외선 흡수제는 2-히드록시-4-메톡시벤조페논, 2-히드록시-4-메톡시-2'-카르복시벤조페논, 2-히드록시-4-옥톡시벤조페논, 2-히드록시-4-n-도데실옥시벤조페논, 2-히드록시-4-n-옥타데실옥시벤조페논, 2-히드록시-4-벤질옥시벤조페논, 2-히드록시-4-메톡시-5-술포벤조페논, 2-히드록시-5-클로로벤조페논, 2,4-디히드록시벤조페논, 2,2'-디히드록시-4-메톡시벤조페논, 2,2'-디히드록시-4,4'-디메톡시벤조페논, 2,2',4,4'-테트라히드록시벤조페논으로 이루어지는 군으로부터 선택되는 1종 이상을 사용할 수 있다.The ultraviolet absorbers used in the present invention are 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2'-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2 -Hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-n-octadecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2-hydroxy-4-methoxy -5-Sulfobenzophenone, 2-hydroxy-5-chlorobenzophenone, 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-di One or more types selected from the group consisting of hydroxy-4,4'-dimethoxybenzophenone and 2,2 ', 4,4'-tetrahydroxybenzophenone can be used.

본 발명에 따른 태양전지 봉지재용 EVA 시트의 제조방법에 있어서, 상기 EVA 수지 100중량부에 대하여, 상기 자외선 흡수제 0.01~0.5중량부를 사용하는 것이 바람직한데, 0.01중량부 미만인 경우에는 자외선 안정 효과가 미미하여 바람직하지 않고, 0.5중량부를 초과하는 경우에는 변색이 되거나 경제성이 떨어져 바람직하지 않다.In the manufacturing method of the EVA sheet for solar cell encapsulation material according to the present invention, it is preferable to use 0.01 to 0.5 parts by weight of the ultraviolet absorber with respect to 100 parts by weight of the EVA resin, but less than 0.01 parts by weight of the ultraviolet stabilizing effect is insignificant It is unpreferable, and when it exceeds 0.5 weight part, it becomes discolored or it is uneconomical and unpreferable.

본 발명에서 사용되는 광안정제는, 그 종류에 특별히 한정은 없고, 예를 들면, 힌더드 아민계 광안정제 등을 사용할 수 있으며, 구체예로는 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이트(bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate), 비스-(엔-옥틸옥시-테트라메틸)피페리디닐세바케이트(bis-(N-octyloxy-tetramethyl)piperidinyl sebacate), 비스(1,2,2,6,6-펜타메틸-4-피페리딜)세바케이트(bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate) 및 메틸-1,2,2,6,6-펜타메틸-4-피페리딜세바케이트(methyl-1,2,2,6,6-pentamethyl-4-piperidyl sebacate) 등으로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.The light stabilizer used in the present invention is not particularly limited in kind, and for example, a hindered amine light stabilizer may be used, and specific examples thereof include bis (2,2,6,6-tetramethyl- 4-piperidyl) sebacate (bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate), bis- (ene-octyloxy-tetramethyl) piperidinyl sebacate (bis- (N- octyloxy-tetramethyl) piperidinyl sebacate), bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate (bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate) and methyl-1,2,2,6,6-pentamethyl-4-piperidyl sebacate (methyl-1,2,2,6,6-pentamethyl-4-piperidyl sebacate) and the like. One or more kinds selected may be used.

본 발명에 따른 태양전지 봉지재용 EVA 시트의 제조방법에 있어서, 상기 EVA 수지 100중량부에 대하여, 상기 광안정제 0.01~0.3중량부를 사용하는 것이 바람직한데, 광안정제의 함량이 0.01중량부 미만인 경우에는 광안정 효과가 미미하여 바람직하지 않고, 0.3중량부를 초과하는 경우에는 경제성이 떨어져서 바람직하지 않다. In the manufacturing method of the EVA sheet for solar cell encapsulant according to the present invention, it is preferable to use 0.01 to 0.3 parts by weight of the light stabilizer with respect to 100 parts by weight of the EVA resin, when the content of the light stabilizer is less than 0.01 parts by weight The light stability effect is not preferable because it is insignificant, and when it exceeds 0.3 parts by weight, it is not preferable because of poor economic efficiency.

본 발명에서 사용되는 가교제의 예로서는 유기과산화물을 들 수 있는데, 예를 들면 1시간 반감기 온도(분해온도)가 130~160℃인 디알킬퍼옥사이드계 가교제 및 1시간 반감기 온도가 100~135℃인 알킬퍼옥시에스테르계 가교제 또는 퍼옥시 케탈로 이루어지는 군으로부터 선택되는 1종 이상을 사용할 수 있으며, 또한 1시간 반감기 온도가 서로 다른 2종 이상을 병용하는 것도 가능하다.Examples of the crosslinking agent used in the present invention include organic peroxides. For example, a dialkyl peroxide crosslinking agent having a half-life temperature (decomposition temperature) of 130 to 160 ° C and an alkyl having a half-life temperature of 100 to 135 ° C. 1 or more types chosen from the group which consists of a peroxy ester-type crosslinking agent or a peroxy ketal can be used, and also it can also use together 2 or more types from which the half-life temperature differs for 1 hour.

상기 디알킬퍼옥사이드계 가교제의 구체예로는 2,4-디메틸-2,5-비스(t-부틸퍼옥시)헥산(2,5-dimethyl-2,5-bis(t-butylperoxy)hexane) 등이 있고, 알킬퍼옥시에스테르계 가교제의 구체예로는 t-부틸-2-에틸헥실 모노퍼옥시카보네이트(tert-butylperoxy-2-ethylhexyl carbonate) 등이 있으며, 퍼옥시 케탈계로는 1,1-디-(t-부틸퍼옥시)-3,3,5-트리메틸시클로헥산(1,1-di-(t-butylperoxy)-3,3,5-trimethylcyclohexane) 등을 들 수 있다.Specific examples of the dialkyl peroxide crosslinking agent are 2,4-dimethyl-2,5-bis (t-butylperoxy) hexane (2,5-dimethyl-2,5-bis (t-butylperoxy) hexane) Specific examples of the alkyl peroxy ester-based crosslinking agent include t-butyl-2-ethylhexyl monoperoxycarbonate, and the like, and the peroxy ketal system is 1,1-. Di- (t-butylperoxy) -3,3,5-trimethylcyclohexane (1,1-di- (t-butylperoxy) -3,3,5-trimethylcyclohexane) etc. are mentioned.

상기 가교제는 EVA 수지 100중량부에 대하여, 0.3~1.5중량부를 포함하는 것이 바람직한데, 0.3중량부 미만이면 가교 효과가 미미하여 바람직하지 않고, 1.5중량부를 초과하면 경제성이 떨어져 바람직하지 않다.It is preferable that the said crosslinking agent contains 0.3-1.5 weight part with respect to 100 weight part of EVA resin, but when it is less than 0.3 weight part, the crosslinking effect is insignificant, and it is unpreferable, and when it exceeds 1.5 weight part, it is unpreferable in economical efficiency.

본 발명에서 사용되는 가교조제는, 그 종류에 특별히 한정은 없고, 예를 들면, 폴리알릴 화합물이나 폴리메타크릴옥시 화합물을 사용할 수 있으며, 구체예로는 트리알릴이소시아누레이트(Triallyl isocyanurate) 등을 들 수 있다.The type of crosslinking aid used in the present invention is not particularly limited, and for example, a polyallyl compound or a polymethacryloxy compound can be used, and specific examples thereof include triallyl isocyanurate and the like. Can be mentioned.

상기 가교조제는 EVA 수지 100중량부에 대하여, 0.3~1.5중량부를 포함하는 것이 바람직한데, 0.3중량부 미만이면 가교 효과가 미미하여 바람직하지 않고, 1.5중량부를 초과하면 경제성이 떨어져 바람직하지 않다.It is preferable that the said crosslinking adjuvant contains 0.3-1.5 weight part with respect to 100 weight part of EVA resin, but when it is less than 0.3 weight part, the crosslinking effect is insignificant, and when it exceeds 1.5 weight part, it is unpreferable in economical efficiency.

본 발명에서 사용되는 실란 커플링제는, 그 종류에 특별히 한정이 없고, 예를 들면, 유기규소 화합물을 사용할 수 있으며, 구체예로는 3-메타크릴옥시프로필메톡시실란(3-Methacryloxypropyl trimethoxysilane) 등을 들 수 있다.The silane coupling agent used in the present invention is not particularly limited in kind, and for example, an organosilicon compound can be used, and specific examples thereof include 3-methacryloxypropyl methoxy silane (3-Methacryloxypropyl trimethoxysilane) and the like. Can be mentioned.

상기 실란커플링제는 EVA 수지 100중량부에 대하여, 0.3~1.5중량부를 포함하는 것이 바람직한데, 0.3중량부 미만이면 소량이어서 첨가효과를 나타내지 못해 바람직하지 않고, 1.5중량부를 초과하면 경제성이 떨어져 바람직하지 않다.The silane coupling agent preferably contains 0.3 to 1.5 parts by weight with respect to 100 parts by weight of EVA resin, but less than 0.3 parts by weight is not preferred because it does not exhibit an additive effect. not.

본 발명에 따른 태양전지 봉지재용 시트 제조방법에 있어서, 상기 성분들 이외에 통상적인 첨가제들을 필요에 따라 더 첨가할 수 있다.In the method for manufacturing a sheet for solar cell encapsulant according to the present invention, in addition to the above components, conventional additives may be further added as necessary.

본 발명에 의하면, 기존의 통상적인 태양전지 봉지재용 EVA 시트 조성물에 전기절연성 및 열전도성이 우수한 첨가제를 첨가함으로써 태양전지 모듈의 내부 온도를 저하시키고, 모듈의 발전효율의 극대화를 도모할 수 있다. According to the present invention, by adding an additive having excellent electrical insulation and thermal conductivity to an existing EVA sheet composition for a solar cell encapsulation material, it is possible to lower the internal temperature of the solar cell module, and to maximize the power generation efficiency of the module.

도 1은 커버 유리, 투명 EVA 시트, 태양 셀, 본 발명에 따라 제조된 절연방열 EVA 시트 및 보호부재층(backsheet)으로 이루어진 태양전지 모듈의 일예이고,
도 2는 본 발명에 의해 제조되는, 투명 EVA 시트, 절연방열 EVA 시트 및 투명 EVA 시트로 이루어진 다층 구조 시트의 일예이다.
1 is an example of a solar cell module consisting of a cover glass, a transparent EVA sheet, a solar cell, an insulating heat-resistant EVA sheet and a protective backsheet prepared according to the present invention,
2 is an example of a multilayer structure sheet made of a transparent EVA sheet, an insulating heat-resistant EVA sheet, and a transparent EVA sheet produced by the present invention.

이하, 하기의 실시예를 통하여 본 발명을 더욱 상세하게 설명하지만, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to these examples.

실시예 1Example # 1

표 1의 조성대로, 첨가제가 들어있지 않은 EVA 수지(비닐아세테이트 함량 28중량%, 용융지수 15g/10분, 삼성토탈 E280PV) 100중량부에 대하여, 전기절연성 및 열전도성이 우수한 첨가제로서 독일 ESK Ceramics사의 질화붕소(BORONID? S1-SF, 평균입경 2㎛) 20중량부, UV 흡수제로 바스프사의 Chimassorb 81(2-히드록시-4-옥틸옥시-벤조페논) 0.3중량부, UV 안정제(광안정제)로서 바스프사의 Tinuvin 770(비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이트) 0.1중량부를 혼합 후 압출기에 투입하고, 압출온도 190℃에서 용융혼련하여 펠렛상의 EVA 수지 조성물을 얻었다.According to the composition of Table 1, Germany ESK Ceramics as an additive having excellent electrical insulation and thermal conductivity based on 100 parts by weight of EVA resin (28% by weight of vinyl acetate, 15g / 10 minutes of melt index, Samsung Total E280PV) containing no additives. 20 parts by weight of boron nitride (BORONID® S1-SF, average particle diameter: 2 µm), 0.3 parts by weight of Chimassorb 81 (2-hydroxy-4-octyloxy-benzophenone) from BASF Corporation as a UV absorber, UV stabilizer (light stabilizer) As a BASF Tinuvin 770 (bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate) 0.1 parts by weight of the mixture was added to the extruder, melt-kneaded at an extrusion temperature of 190 ℃ pelletized EVA resin A composition was obtained.

상기에서 얻은 EVA 수지 조성물 펠렛 100중량부에 대하여 가교제로서 알케마사의 Luperox TBEC(t-부틸-2-에틸헥실 모노퍼옥시카보네이트) 0.7중량부, 가교조제로서 에보닉사의 TAICROS(트리알릴이소시아누레이트) 0.5중량부, 및 실란커플링제로서 다우코닝사의 OFS 6030(3-메타크릴옥시프로필트리메톡시실록산) 0.5중량부를 혼합한 후, 압출기 온도를 90℃, T-다이 온도를 100℃로 하고, 시트의 선속도를 분당 6.5미터로 하여 두께 0.45mm의 시트를 제조하였다.0.7 parts by weight of Luperox TBEC (t-butyl-2-ethylhexyl monoperoxycarbonate) manufactured by Alchema Inc. as a crosslinking agent with respect to 100 parts by weight of the EVA resin composition pellet obtained above, TAICROS (triallyl isocyanur) manufactured by Evonik Corporation as a crosslinking aid Rate) 0.5 parts by weight and 0.5 parts by weight of OFS 6030 (3-methacryloxypropyltrimethoxysiloxane) manufactured by Dow Corning as a silane coupling agent, followed by mixing the extruder temperature at 90 ° C and the T-die temperature at 100 ° C. The sheet having a thickness of 0.45 mm was prepared with a linear velocity of 6.5 meters per minute.

실시예 2Example 2

전기절연성 및 열전도성이 우수한 첨가제로서 독일 ESK Ceramics사의 질화붕소(BORONID? S1-SF) 45중량부를 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 시트를 제조하였다.A sheet was manufactured in the same manner as in Example 1, except that 45 parts by weight of boron nitride (BORONID® S1-SF) manufactured by ESK Ceramics, Germany, was added as an additive having excellent electrical insulation and thermal conductivity.

실시예 3Example 3

전기절연성 및 열전도성이 우수한 첨가제로서 일본 Tokuyama사의 질화알루미늄 H Grade(평균입경 1㎛) 20중량부를 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 시트를 제조하였다.A sheet was manufactured in the same manner as in Example 1, except that 20 parts by weight of aluminum nitride H Grade (average particle diameter: 1 mu m) manufactured by Tokuyama, Japan, was added as an additive having excellent electrical insulation and thermal conductivity.

실시예 4Example 4

압출기 1에서 실시예 1과 동일한 조성물을 동일한 성형조건으로 용융혼련하고, 압출기 2에서 질화붕소가 첨가되지 않은 것을 제외하고는 실시예 1과 동일한 조성물을 동일한 성형조건으로 용융혼련하여, 공압출 다이를 이용하여 압출기 1에서 용융혼련된 수지 조성물을 350㎛ 두께의 중간층으로, 압출기 2에서 용융혼련된 수지 조성물을 중간층의 상, 하층으로 적층되도록 공압출하여 총 두께 0.45mm의 3층 구조의 시트를 제조하였다.The same composition as in Example 1 was melt-kneaded under the same molding conditions, and the same composition as Example 1 was melt-kneaded under the same molding conditions except that boron nitride was not added in the extruder 2 to co-extrude the die. Co-extruded melt kneaded in Extruder 1 into an intermediate layer having a thickness of 350 μm, and co-extruded into the upper and lower layers of the melt kneaded in Extruder 2 into a three-layered sheet having a total thickness of 0.45 mm It was.

비교예 1Comparative Example 1

표 1의 조성대로 EVA 수지(비닐아세테이트 함량 28중량%, 용융지수 15g/10분, 삼성토탈 E280PV) 100중량부에 대하여, UV 흡수제로 바스프사의 Chimassorb 81(2-히드록시-4-옥틸옥시-벤조페논) 0.3중량부, UV 안정제로 바스프사의 Tinuvin 770(비스(2,2,6,6,-테트라메틸-4-피페리딜)세바케이트) 0.1중량부, 가교제로 알케마사 Luperox TBEC(t-부틸-2-에틸헥실 모노퍼옥시카보네이트) 0.7 중량부, 가교조제로 에보닉사의 TAICROS(트리알릴이소시아누레이트) 0.5중량부, 및 실란커플링제로 다우코닝사의 OFS 6030(3-메타크릴옥시프로필트리메톡시실록산) 0.5중량부를 혼합 후, 압출기 온도 90℃, T-다이 온도를 100℃로 하고, 시트의 선속도를 분당 6.5미터로 하여 두께 0.45mm의 시트를 제조하였다.Vasp's Chimassorb 81 (2-hydroxy-4-octyloxy-) as a UV absorber based on 100 parts by weight of EVA resin (28% by weight of vinyl acetate, 15 g / 10 min of melt index, Samsung Total E280PV) according to the composition of Table 1. Benzophenone) 0.3 parts by weight, BASF Tinuvin 770 (bis (2,2,6,6, -tetramethyl-4-piperidyl) sebacate) 0.1 parts by weight, UV stabilizer, Alkema Luperox TBEC (t 0.7 parts by weight of -butyl-2-ethylhexyl monoperoxycarbonate), 0.5 parts by weight of TAICROS (triallyl isocyanurate) from Evonik as a crosslinking aid, and OFS 6030 (3-methacryl) from Dow Corning as a silane coupling agent. Oxypropyltrimethoxysiloxane) 0.5 parts by weight was mixed, and a sheet having a thickness of 0.45 mm was produced with an extruder temperature of 90 ° C and a T-die temperature of 100 ° C and a linear speed of the sheet of 6.5 meters per minute.

Figure 112011046535256-pat00001
Figure 112011046535256-pat00001

실시예 5Example 5

강화유리와의 접착강도 측정용 시편제조의 경우, 저철분 강화 유리(200mm×200mm) 위에 상기 실시예 1에서 얻은 EVA 시트(200mm×160mm) 1장을 놓고, 그 위에 DNP사 백시트(200mm×200mm)를 놓고, 가교도와 전기절연성, 열전도성 측정용 시편제조의 경우, 테프론 시트 위에 실시예 1에서 얻은 EVA 시트(200mm×160mm) 1장을 놓고, 그 위에 다시 테프론 시트를 놓고, 온도 150℃에서 6분간 진공단계를 거쳤으며, 그런 다음, 16분간 라미네이터 상부압과 하부압 차이를 100Mpa로 유지하여 가교를 진행하여 시편을 제조하였다. 상온 냉각 과정을 거친 후 제조된 시편의 내부 기포 잔존 상태를 육안으로 관찰하고, 가교된 시편에 대해 강화유리와의 접착강도(N/cm), 가교도, 전기절연성, 열전도성을 평가했다. 유리와의 박리 시험조건은 ASTM 903에 의거 UTM 인장강도 측정기를 사용하여 180도 방향에서, 152mm/분의 박리속도로 측정하였다. 가교도의 경우 ASTM D2765에 의거 용매 자일렌을 이용하여 측정하였으며, 전기절연성의 경우 ASTM D257에 준하여 체적고유저항을 측정하고, 열전도성의 경우 ASTM E 1530 (평판열류방법)에 의거 평가하였다.In the case of specimen preparation for measuring the adhesive strength with tempered glass, 1 sheet of EVA sheet (200 mm × 160 mm) obtained in Example 1 was placed on the low iron tempered glass (200 mm × 200 mm), and the DNP backsheet (200 mm × 200 mm), and in the case of specimen preparation for measuring crosslinkability, electrical insulation and thermal conductivity, one sheet of EVA sheet (200 mm x 160 mm) obtained in Example 1 was placed on a Teflon sheet, and the Teflon sheet was placed thereon again, and the temperature was 150 ° C. After the vacuum step for 6 minutes, and then, the specimen was prepared by crosslinking by maintaining the difference between the laminator upper pressure and lower pressure at 100Mpa for 16 minutes. After the cooling process at room temperature, the internal bubbles and residual states of the prepared specimens were visually observed. The crosslinked specimens were evaluated for adhesive strength (N / cm), crosslinking degree, electrical insulation, and thermal conductivity. Peel test conditions with glass were measured at a peel rate of 152 mm / min in a 180 degree direction using a UTM tensile strength meter according to ASTM 903. The crosslinking degree was measured using solvent xylene according to ASTM D2765, the volume specific resistance was measured according to ASTM D257 for electrical insulation, and the thermal conductivity was evaluated according to ASTM E 1530 (plate heat flow method).

실시예 6Example 6

상기 실시예 2에서 제조된 시트를 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 시편을 제조하여, 동일한 방법으로 관찰, 측정 및 평가하였다.Except for using the sheet prepared in Example 2, the specimen was prepared in the same manner as in Example 5, and observed, measured and evaluated in the same manner.

실시예 7Example 7

상기 실시예 3에서 제조된 시트를 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 시편을 제조하여 동일한 방법으로 관찰, 측정 및 평가하였다.Except for using the sheet prepared in Example 3, the specimen was prepared in the same manner as in Example 5, observed, measured and evaluated in the same manner.

실시예 8Example 8

상기 실시예 4에서 제조된 시트를 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 시편을 제조하여 동일한 방법으로 관찰, 측정 및 평가하였다.Except for using the sheet prepared in Example 4, the specimen was prepared in the same manner as in Example 5, observed, measured and evaluated in the same manner.

비교예 2Comparative Example 2

상기 비교예 1에서 제조된 시트를 사용한 것을 제외하고는, 실시예 5와 동일한 방법으로 시편을 제조하여, 동일한 방법으로 관찰, 측정 및 평가하였다.Except for using the sheet prepared in Comparative Example 1, a specimen was prepared in the same manner as in Example 5, observed, measured and evaluated in the same manner.

상기 실시예 5~8 및 비교예 2에서 얻어진 가교된 시트의 물성 평가 결과를 표 2에 나타내었다.Table 2 shows the results of evaluating the physical properties of the crosslinked sheets obtained in Examples 5 to 8 and Comparative Example 2.

Figure 112011046535256-pat00002
Figure 112011046535256-pat00002

상기 표 2의 결과에 나타낸 바와 같이, 본 발명에 따른 방법에 의할 경우, 가교도, 접착강도, 및 전기절연성이 크게 저하하지 않으면서 열전도성이 우수한 태양전지 봉지재용 EVA 시트를 제조할 수 있음을 알 수 있다.As shown in the results of Table 2, according to the method according to the present invention, it is possible to manufacture an EVA sheet for solar cell encapsulant having excellent thermal conductivity without significantly lowering the degree of crosslinking, adhesive strength, and electrical insulation. It can be seen.

10 … 커버 유리
30A … 투명 EVA 시트
40 … 태양 셀
30B … 절연방열 EVA 시트
20 … 보호부재층
31B … 투명 EVA 시트
32B … 절연방열 EVA 시트
31B … 투명 EVA 시트
10 ... Cover glass
30A. Transparent EVA sheet
40 ... Solar cell
30B. Insulation Heat Resistant EVA Sheet
20 ... Protective member layer
31B. Transparent EVA sheet
32B. Insulation Heat Resistant EVA Sheet
31B. Transparent EVA sheet

Claims (13)

삭제delete 삭제delete 삭제delete 다음의 단계들을 포함하여 이루어지는 것을 특징으로 하는 태양전지 봉지재용 에틸렌비닐아세테이트 공중합체 시트의 제조방법;
(1) 에틸렌비닐아세테이트 공중합체 수지에 전기절연성 및 열전도성 첨가제, 자외선 흡수제 및 광안정제를 80~220℃에서 용융 혼련하여 수지 조성물 얻는 단계, 및
(2) 상기 (1)단계로부터 얻은 에틸렌비닐아세테이트 공중합체 수지 조성물에 가교제로서 유기과산화물, 가교조제 및 실란커플링제를 혼합하여 가교제의 분해온도 이하에서 용융 혼련하여 시트를 성형하는 단계.
Method for producing an ethylene vinyl acetate copolymer sheet for a solar cell encapsulation material comprising the following steps;
(1) melting and kneading an ethylene vinyl acetate copolymer resin with an electrically insulating and thermally conductive additive, an ultraviolet absorber, and a light stabilizer at 80 to 220 ° C. to obtain a resin composition, and
(2) mixing the organic peroxide, the crosslinking aid and the silane coupling agent as a crosslinking agent in the ethylene vinyl acetate copolymer resin composition obtained in the step (1) to melt kneading at a temperature below the decomposition temperature of the crosslinking agent to form a sheet.
제 4항에 있어서, 상기 (2)단계에서, 상기 (1)단계에서 얻은 에틸렌비닐아세테이트 공중합체 수지 조성물에 유기과산화물, 가교조제 및 실란커플링제를 혼합한 후, 유기과산화물의 분해온도 이하에서 용융 혼련하여 시트를 성형하는 것을 특징으로 하는 태양전지 봉지재용 에틸렌비닐아세테이트 공중합체 시트의 제조방법.The method according to claim 4, wherein in step (2), an organic peroxide, a crosslinking aid and a silane coupling agent are mixed with the ethylene vinyl acetate copolymer resin composition obtained in step (1), and then melted at a decomposition temperature of the organic peroxide. A method for producing an ethylene vinyl acetate copolymer sheet for solar cell encapsulant, which is kneaded to form a sheet. 제 4항에 있어서, 상기 (2)단계에서 상기 (1)단계에서 얻은 에틸렌비닐아세테이트 공중합체 수지 조성물에 유기과산화물, 가교조제 및 실란커플링제의 혼합물을 별도의 원료공급 장치를 통하여 공급하여, 용융혼련하여 시트를 성형하는 것을 특징으로 하는 태양전지 봉지재용 에틸렌비닐아세테이트 공중합체 시트의 제조방법.The method of claim 4, wherein the mixture of the organic peroxide, the crosslinking aid and the silane coupling agent is supplied to the ethylene vinyl acetate copolymer resin composition obtained in the step (1) in the step (2) through a separate raw material supply device, and melted. A method for producing an ethylene vinyl acetate copolymer sheet for solar cell encapsulant, which is kneaded to form a sheet. 제 4항에 있어서, 상기 전기절연성 및 열전도성 첨가제 함유 에틸렌비닐아세테이트 공중합체 시트의 성형시에, 상기 에틸렌비닐아세테이트 공중합체 시트의 상하 양면 중 적어도 하나의 면에 상기 전기절연성 및 열전도성 첨가제를 함유하지 않은 태양전지 봉지재용 에틸렌비닐아세테이트 공중합체 시트를 공압출하여 다층 구조의 시트를 성형하는 것을 더 포함하는 것을 특징으로 하는 태양전지 봉지재용 에틸렌비닐아세테이트 공중합체 시트의 제조방법. 5. The method of claim 4, wherein at the time of forming the electrically insulating and thermally conductive additive-containing ethylene vinyl acetate copolymer sheet, the electrically insulating and thermally conductive additives are contained on at least one of upper and lower surfaces of the ethylene vinyl acetate copolymer sheet. A method of manufacturing an ethylene vinyl acetate copolymer sheet for solar cell encapsulation, further comprising co-extruding an ethylene vinyl acetate copolymer sheet for solar cell encapsulation that is not formed. 제 7항에 있어서, 상기 전기절연성 및 열전도성 첨가제 함유 에틸렌비닐아세테이트 공중합체 시트의 두께는 상기 다층구조의 시트의 전체 두께의 50~80%인 것을 특징으로 하는 태양전지 봉지재용 에틸렌비닐아세테이트 공중합체 시트의 제조방법.8. The ethylene vinyl acetate copolymer for solar cell encapsulation material according to claim 7, wherein the thickness of the electrically insulating and thermally conductive additive-containing ethylene vinyl acetate copolymer sheet is 50 to 80% of the total thickness of the multilayer structure sheet. Manufacturing method of the sheet. 제 4항 내지 제 8항 중 어느 한 항에 있어서, 상기 에틸렌비닐아세테이트 공중합체 수지 100중량부에 대하여 상기 전기절연성 및 열전도성 첨가제 1.0~80중량부를 사용하는 것을 특징으로 하는 태양전지 봉지재용 에틸렌비닐아세테이트 공중합체 시트의 제조방법. The ethylene vinyl for solar cell encapsulation material according to any one of claims 4 to 8, wherein 1.0 to 80 parts by weight of the electrically insulating and thermally conductive additive is used based on 100 parts by weight of the ethylene vinyl acetate copolymer resin. Process for the preparation of acetate copolymer sheet. 제 4항 내지 제 8항 중 어느 한 항에 있어서, 상기 에틸렌비닐아세테이트 공중합체 수지의 비닐아세테이트 함량이 15~32중량%이고, 용융지수(190℃, 2.16kg의 하중으로 측정)가 1~30g/10분인 것을 특징으로 하는 태양전지 봉지재용 에틸렌비닐아세테이트 공중합체 시트의 제조방법. The vinyl acetate content of the ethylene vinyl acetate copolymer resin is 15 to 32% by weight, and the melt index (190 DEG C, measured at a load of 2.16 kg) is 1 to 30 g. Method for producing an ethylene vinyl acetate copolymer sheet for solar cell encapsulation material characterized in that / 10 minutes. 제 4항 내지 제 8항 중 어느 한 항에 있어서, 상기 전기절연성 및 열전도성 첨가제는 질화붕소, 산화아연, 산화마그네슘, 산화알루미늄, 탄화규소 및 울라스토나이트로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 태양전지 봉지재용 에틸렌비닐아세테이트 공중합체 시트의 제조방법. The method of claim 4, wherein the electrically insulating and thermally conductive additive is one or more selected from the group consisting of boron nitride, zinc oxide, magnesium oxide, aluminum oxide, silicon carbide, and ulastonite. A method for producing an ethylene vinyl acetate copolymer sheet for solar cell encapsulant. 제 4항 내지 제 8항 중 어느 한 항에 있어서, 상기 전기절연성 및 열전도성 첨가제의 평균 입자크기는 0.5~100㎛인 것을 특징으로 하는 태양전지 봉지재용 에틸렌비닐아세테이트 공중합체 시트의 제조방법.


The method of manufacturing an ethylene vinyl acetate copolymer sheet for solar cell encapsulation according to any one of claims 4 to 8, wherein the average particle size of the electrically insulating and thermally conductive additives is 0.5 to 100 µm.


삭제delete
KR1020110059599A 2011-06-20 2011-06-20 Preparation method for high thermally conductive and electrically insulating EVA sheet for solar cell encapsulant KR101229678B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110059599A KR101229678B1 (en) 2011-06-20 2011-06-20 Preparation method for high thermally conductive and electrically insulating EVA sheet for solar cell encapsulant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110059599A KR101229678B1 (en) 2011-06-20 2011-06-20 Preparation method for high thermally conductive and electrically insulating EVA sheet for solar cell encapsulant

Publications (2)

Publication Number Publication Date
KR20130007681A KR20130007681A (en) 2013-01-21
KR101229678B1 true KR101229678B1 (en) 2013-02-05

Family

ID=47838014

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110059599A KR101229678B1 (en) 2011-06-20 2011-06-20 Preparation method for high thermally conductive and electrically insulating EVA sheet for solar cell encapsulant

Country Status (1)

Country Link
KR (1) KR101229678B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11417857B2 (en) 2018-01-24 2022-08-16 Samsung Display Co., Ltd. Heterocyclic compound and electronic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837310B1 (en) * 2016-12-07 2018-03-09 한화토탈 주식회사 Method for manufacturing Ethylene vinyl acetate copolymer for solar cell encapsulant and preparation method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100105903A (en) * 2008-03-05 2010-09-30 가부시키가이샤 브리지스톤 Sealing film for solar cells and solar cell using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100105903A (en) * 2008-03-05 2010-09-30 가부시키가이샤 브리지스톤 Sealing film for solar cells and solar cell using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11417857B2 (en) 2018-01-24 2022-08-16 Samsung Display Co., Ltd. Heterocyclic compound and electronic apparatus
US12127426B2 (en) 2018-01-24 2024-10-22 Samsung Display Co., Ltd. Heterocyclic compound and electronic apparatus

Also Published As

Publication number Publication date
KR20130007681A (en) 2013-01-21

Similar Documents

Publication Publication Date Title
KR20080078816A (en) Filler for solar cell module, solar cell module using same, and method for producing filler for solar cell module
KR20140117403A (en) Solar cell module having excellent appearance and method for manufacturing same
KR102000811B1 (en) Solar battery module and method of manufacture thereof
JP6152099B2 (en) Solar cell module
WO2011132560A1 (en) Sealing film for solar cell and solar cell using same
JP2014212318A (en) Encapsulant composition for solar cell module, encapsulant sheet for solar cell module, and solar cell module
KR20190020163A (en) Vinylidene fluoride resin composition, resin film, back sheet for solar cells, and solar cell module
JP4762377B2 (en) Amorphous silicon solar cell module
JP2014241342A (en) Production method of sealing material sheet for solar cell module
JP2015162498A (en) Laminate for solar cell sealing material, solar cell sealing material, and solar battery module
JP2010278428A (en) Sheet for solar cell, and solar cell module
JP5967115B2 (en) Combination set of encapsulant composition for solar cell module, encapsulant sheet, and method for producing encapsulant sheet
KR101229678B1 (en) Preparation method for high thermally conductive and electrically insulating EVA sheet for solar cell encapsulant
JP2011216829A (en) Composition, sheet, and solar cell module
KR101472712B1 (en) Non-crosslink type solar cell sealing material composition, solar cell sealing material comprising the same and solar cell modules comprising solar cell sealing material
JP2024063196A (en) Encapsulant sheet for solar cell module and solar cell module using the same
KR20140017044A (en) Preparing process of an encapsulation sheet for a solarcell module by using master batch
KR20110104603A (en) Sealing material for solar cell and sheet for solar-cell sealing
KR101233625B1 (en) Preparation method for excellent weather stable EVA sheet for solar cell encapsulant
KR101624572B1 (en) Encapsulant sheet for solar cells and solar cell module comprising same
JP6354146B2 (en) Solar cell encapsulant
KR20130095537A (en) Solar battery module comprising high viscosity white eva resin layer
EP3164892B1 (en) Co-extruded backsheet for solar cell modules
JP2020072159A (en) Transparent protective sheet for solar battery module
JP6163396B2 (en) Solar cell encapsulant sheet and solar cell module

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151229

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171222

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191212

Year of fee payment: 8