KR101172373B1 - Preparation method of Metal/TiO2 nanostructures - Google Patents
Preparation method of Metal/TiO2 nanostructures Download PDFInfo
- Publication number
- KR101172373B1 KR101172373B1 KR1020100017011A KR20100017011A KR101172373B1 KR 101172373 B1 KR101172373 B1 KR 101172373B1 KR 1020100017011 A KR1020100017011 A KR 1020100017011A KR 20100017011 A KR20100017011 A KR 20100017011A KR 101172373 B1 KR101172373 B1 KR 101172373B1
- Authority
- KR
- South Korea
- Prior art keywords
- titanium oxide
- platinum
- poly
- metal
- producing
- Prior art date
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 138
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 69
- 239000002184 metal Substances 0.000 title claims abstract description 56
- 229910052751 metal Inorganic materials 0.000 title claims description 27
- 238000002360 preparation method Methods 0.000 title description 7
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 130
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 114
- 238000004519 manufacturing process Methods 0.000 claims abstract description 27
- 230000001699 photocatalysis Effects 0.000 claims abstract description 22
- 239000002243 precursor Substances 0.000 claims description 43
- 239000010409 thin film Substances 0.000 claims description 43
- 239000000693 micelle Substances 0.000 claims description 41
- 229920001400 block copolymer Polymers 0.000 claims description 32
- 239000012703 sol-gel precursor Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 24
- 239000002904 solvent Substances 0.000 claims description 23
- 229910052697 platinum Inorganic materials 0.000 claims description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 12
- 229920000359 diblock copolymer Polymers 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 10
- 239000010936 titanium Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 8
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 3
- 229920000361 Poly(styrene)-block-poly(ethylene glycol) Polymers 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229960000583 acetic acid Drugs 0.000 claims description 3
- 239000012362 glacial acetic acid Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 229920000390 Poly(styrene-block-methyl methacrylate) Polymers 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 claims description 2
- 235000019253 formic acid Nutrition 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229920000885 poly(2-vinylpyridine) Polymers 0.000 claims description 2
- 229920000075 poly(4-vinylpyridine) Polymers 0.000 claims description 2
- 229920000977 poly(butadiene-b-ethylene oxide) Polymers 0.000 claims description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- -1 titanium alkoxide Chemical class 0.000 claims description 2
- MBDHJOBKSBYBJB-UHFFFAOYSA-N oxygen(2-) platinum(2+) titanium(4+) Chemical compound [O-2].[Ti+4].[Pt+2].[O-2].[O-2] MBDHJOBKSBYBJB-UHFFFAOYSA-N 0.000 claims 13
- 239000005977 Ethylene Substances 0.000 claims 1
- 150000007513 acids Chemical class 0.000 claims 1
- 238000007865 diluting Methods 0.000 claims 1
- 239000012046 mixed solvent Substances 0.000 claims 1
- 229920003228 poly(4-vinyl pyridine) Polymers 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 claims 1
- 229910003446 platinum oxide Inorganic materials 0.000 abstract description 33
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 30
- 150000004706 metal oxides Chemical class 0.000 abstract description 30
- 229920000469 amphiphilic block copolymer Polymers 0.000 abstract description 7
- 230000003287 optical effect Effects 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 80
- 230000000052 comparative effect Effects 0.000 description 18
- 239000002105 nanoparticle Substances 0.000 description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 10
- 239000002082 metal nanoparticle Substances 0.000 description 9
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 238000000441 X-ray spectroscopy Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011941 photocatalyst Substances 0.000 description 4
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- GRWPYGBKJYICOO-UHFFFAOYSA-N 2-methylpropan-2-olate;titanium(4+) Chemical compound [Ti+4].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-].CC(C)(C)[O-] GRWPYGBKJYICOO-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 1
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 238000001015 X-ray lithography Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910001922 gold oxide Inorganic materials 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- ZEIWWVGGEOHESL-UHFFFAOYSA-N methanol;titanium Chemical compound [Ti].OC.OC.OC.OC ZEIWWVGGEOHESL-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007557 optical granulometry Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229960005235 piperonyl butoxide Drugs 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0004—Preparation of sols
- B01J13/0047—Preparation of sols containing a metal oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0052—Preparation of gels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/087—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
- B01J19/088—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/12—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
- B01J19/122—Incoherent waves
- B01J19/123—Ultraviolet light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
- C01G9/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Catalysts (AREA)
Abstract
본 발명은 양친성 블록공중합체를 주형으로 이용한 금속/산화티탄 나노 구조체, 구체적으로 메조세공성 금속/산화티탄 나노 구조체의 제조방법 및 이에 따라 제조된 광촉매 활성이 향상된 금속/산화티탄 나노 구조체, 특히 백금/산화티탄 나노 구조체에 관한 것으로서, 우수한 광촉매 활성을 나타내므로 친환경소자, 광전지, 광센서 등 다양한 분야에 유용하게 사용될 수 있다.The present invention provides a metal / titanium oxide nanostructure using an amphiphilic block copolymer as a template, specifically a method for producing a mesoporous metal / titanium oxide nanostructure, and a metal / titanium oxide nanostructure having improved photocatalytic activity, in particular The present invention relates to a platinum / titanium oxide nanostructure, and exhibits excellent photocatalytic activity, and thus may be usefully used in various fields such as environmentally friendly devices, photovoltaic cells, and optical sensors.
Description
본 발명은 양친성 블록공중합체를 주형으로 이용한 금속/산화티탄 나노 구조체, 구체적으로 메조세공성 금속/산화티탄 나노 구조체의 제조방법 및 이에 따라 제조된 광촉매 활성이 향상된 금속/산화티탄 나노 구조체, 특히 백금/산화티탄 나노 구조체에 관한 것이다.
The present invention provides a metal / titanium oxide nanostructure using an amphiphilic block copolymer as a template, specifically a method for producing a mesoporous metal / titanium oxide nanostructure, and a metal / titanium oxide nanostructure having improved photocatalytic activity, in particular The present invention relates to a platinum / titanium oxide nanostructure.
산화티탄(TiO2)은 루타일(rutile), 아나타제(anatase), 브루카이트(brookite) 등 3개의 결정구조를 갖는 반도체성 금속 산화물로, 결정구조에 따라 독특한 기능을 발현하는 특징을 갖는다. 이 중 루타일은 굴절율, 경도, 유전율이 좋아 주로 산업용, 페인트의 백색안료, 화장품, 식용 첨가제로 사용되고, 저온에서 안정성이 우수한 아나타제는 광촉매로 널리 사용되고 있으며, 이러한 산화티탄은 일반적으로는 인체에 무해하여 현재 페인트, 인쇄잉크, 프라스틱, 종이, 합성섬유, 고무, 콘덴서, 크레용, 전기전자 소자 등에 넓게 이용되고 있는 물질이다.Titanium oxide (TiO 2 ) is a semiconducting metal oxide having three crystal structures, such as rutile, anatase, and brookite, and has unique characteristics depending on the crystal structure. Among them, rutile has good refractive index, hardness, and dielectric constant, and is mainly used for industrial, paint, white pigment, cosmetics, and food additives. It is widely used in paints, printing inks, plastics, paper, synthetic fibers, rubber, capacitors, crayons, electrical and electronic devices.
나노결정립 산화티탄은 뛰어난 광물리적, 광화학적 특성이 있어 광촉매 및 광전지 이용에 광범위하게 연구되고 있으나, 에너지밴드갭(energy band gap, 3.2V)이 비교적 크다는 한계 때문에 가시광 영역에서의 광범위한 적용이 제한되고 있다. 이러한 단점을 개선하기 위한 가장 잘 알려진 방법으로 귀금속이 도입된 이종접합 구조의 금속/산화티탄(Metal/TiO2) 하이브리드 나노소재화 기법을 들 수 있으며, 금속/산화티탄과 같은 금속/반도체 이종 성분으로 구성된 복합소재는 금속 성분이 갖는 표면플라즈몬 성질 효과 등에 기인한 뛰어난 물리적 특성으로 인해 단성분 산화티탄이 갖지 못하는 향상된 성질을 발현하는 것으로 알려지고 있어서 다색성 발광소재, 광촉매, 센서 등에 광범위하게 이용될 수 있다.Nanocrystalline titanium oxide has been studied extensively in photocatalytic and photovoltaic applications because of its excellent photophysical and photochemical properties, but its limitation in its relatively large energy band gap (3.2V) limits its wide range of applications in the visible range. have. Metal / titanium oxide of the noble metal is introduced into the well-known method heterostructure to improve these shortcomings (Metal / TiO 2) hybrid nanomaterial screen may be made of techniques, the metal / semiconductor two kinds of components, such as metal / titanium oxide Composite materials are known to express improved properties that single-component titanium oxides do not have due to their excellent physical properties due to the surface plasmon properties of metals, so they can be widely used in multicolored light emitting materials, photocatalysts, sensors, etc. have.
산화티탄과 금속을 결합시키는 전형적인 방법으로는 음이온 도핑(anion doping), 백금 개질(Pt modification), 귀금속 혼성(hybridization with noble metal) 등이 있다. 위와 같은 방법으로 결합된 귀금속과 산화티탄 복합체는 광전이된 전하 캐리어(carrier)의 재결합을 방해함으로써, 높은 양자수득율(quantum yield)을 보이는 산화티탄 광촉매 반응을 나타낸다(Hoffmann,M.R., Martin,S.T., Choi W., Bahnemann,D.W., Chem. Rev. (1995) 95, 69). 예를 들어, 백금/산화티탄(Pt/TiO2), 은/산화티탄(Ag/TiO2) 및 금/산화티탄(Au/TiO2) 과 같이 이종 성분으로 구성된 복합 재료는 훌륭한 광물리적 특성이 있는 것으로 보고 된 바 있다. 이러한 복합재료의 신뢰할 만한 기능을 보장하기 위해서는 형태와 조성이 잘 제어된 다중성분의 통합이 중요한 요소이며, 포토리소그래피(photolithography), X-선 리소그래피(X-ray lithography), 전자빔 리소그래피(electron beam lithography)등과 같은 제조방법이 하이브리드 금속/산화티탄 시스템을 구현하기 위해 사용되어 왔다. 이러한 하향식 방법(top-down approach)을 이용한 복합재료의 제조는 대면적에 걸쳐 균일한 패턴을 형성시킬 수 있는 장점을 가지고 있지만, 고가의 리소그래피 장비가 필요하며, 리소그래피 장비에 사용되는 광원의 제한으로 인해 수 나노미터 내지 수십 나노미터의 규칙적인 패턴을 형성하기 어렵다는 단점을 가지고 있다. 따라서 금속/산화티탄 하이브리드 나노구조체를 제조하기 위해서는 리소그래피와 같은 하향식 방법 대신 상향식 방법(bottom-up approach)을 이용하는 것이 유리하다고 할 수 있다.Typical methods of combining titanium oxide and metals include anion doping, platinum modification, and hybridization with noble metal. The noble metal and titanium oxide composites bonded in the above manner interfere with the recombination of photocharged charge carriers, resulting in a titanium oxide photocatalytic reaction with high quantum yield (Hoffmann, MR, Martin, ST, Choi W., Bahnemann, DW, Chem. Rev. (1995) 95, 69). For example, composite materials composed of dissimilar components such as platinum / titanium oxide (Pt / TiO 2 ), silver / titanium oxide (Ag / TiO 2 ), and gold / titanium oxide (Au / TiO 2 ) have good mineral physical properties. It has been reported. In order to ensure the reliable functioning of such composites, the integration of well-formed and controlled multicomponents is an important factor, including photolithography, X-ray lithography, and electron beam lithography. Manufacturing methods have been used to implement hybrid metal / titanium oxide systems. The manufacturing of a composite material using this top-down approach has the advantage of forming a uniform pattern over a large area, but requires expensive lithography equipment and due to the limitation of the light source used in the lithography equipment. Due to this, it is difficult to form a regular pattern of several nanometers to several tens of nanometers. Therefore, in order to manufacture a metal / titanium oxide hybrid nanostructure, it may be advantageous to use a bottom-up approach instead of a top-down method such as lithography.
한편, 메조세공성 산화티탄의 경우, 일반적인 산화티탄 나노 입자나 결정에 비하여 기공의 생성으로 인하여 물질의 접근성이 쉬워지고 표면적이 상당히 커지는 특징을 바탕으로 발광소재, 광촉매, 센서 등의 분야로의 광범위한 적용이 기대되는 물질이다. 따라서 메조세공성 산화티탄에 금속을 도입하여 금속/산화티탄 나노구조체를 제조하면, 메조세공성 산화티탄이 갖는 장점과 금속 성분이 발현하는 기능이 결합되어 뛰어난 광활성 물질로 이용될 수 있을 것이며, 이러한 금속/메조세공성 산화티탄 물질의 광범위한 응용을 위하여 보다 간단하고 저렴한 공정의 개발이 필수적이다.On the other hand, mesoporous titanium oxide is widely used in the field of light emitting materials, photocatalysts, sensors, etc. based on the characteristics that the accessibility of materials and the surface area are considerably increased due to the generation of pores, compared to the general titanium oxide nanoparticles or crystals. It is a material that is expected to apply. Therefore, if metal / titanium oxide nanostructures are prepared by introducing metal into mesoporous titanium oxide, the mesoporous titanium oxide may be combined with the functions of expressing metal components to be used as an excellent photoactive material. Development of simpler and less expensive processes is essential for a wide range of applications of metal / mesoporous titanium oxide materials.
이에 본 발명자들은 양친성 블록공중합체를 주형으로 이용한 금속/산화티탄 나노 구조체, 구체적으로 메조세공성 금속/산화티탄 나노 구조체의 제조방법 및 이에 따라 제조된 광촉매 활성이 향상된 금속/산화티탄 나노 구조체, 특히 백금/산화티탄 나노 구조체가 향상된 광촉매 활성을 나타냄을 알아내고, 본 발명을 완성하였다.
Therefore, the inventors of the present invention provide a metal / titanium oxide nanostructure using an amphiphilic block copolymer as a template, specifically, a method for producing a mesoporous metal / titanium oxide nanostructure, and a metal / titanium oxide nanostructure having improved photocatalytic activity, In particular, it was found that the platinum / titanium oxide nanostructures exhibited enhanced photocatalytic activity and completed the present invention.
본 발명의 목적은 양친성 블록공중합체를 이용한 금속/산화티탄 나노 구조체, 특히 메조세공성 금속/산화티탄 나노 구조체의 제조방법을 제공하는 데 있다.It is an object of the present invention to provide a method for producing a metal / titanium oxide nanostructure, particularly a mesoporous metal / titanium oxide nanostructure, using an amphiphilic block copolymer.
본 발명의 또 다른 목적은 상기 제조방법에 의해 제조된 광촉매 활성이 향상된 금속/산화티탄 나노 구조체, 특히 백금/산화티탄 나노 구조체를 제공하는 데 있다.
Still another object of the present invention is to provide a metal / titanium oxide nanostructure, in particular a platinum / titanium oxide nanostructure, having improved photocatalytic activity prepared by the above method.
상기 목적을 달성하기 위해, 본 발명은 블록공중합체를 용매에 용해시켜 역마이셀 용액을 제조하는 단계(단계 a); 금속 나노입자 전구체를 용매에 용해시켜 콜로이드 용액을 제조하는 단계(단계 b); 산화티탄 졸-겔 전구체 용액을 제조하는 단계(단계 c); 상기 단계 a에서 제조된 역마이셀 용액, 상기 단계 b에서 제조된 콜로이드 용액 및 상기 단계 c에서 제조된 졸-겔 전구체 용액을 상기 단계 a에서 제조된 역마이셀 용액에 대해 서로 다른 비율로 혼합하는 단계(단계 d), 혼합 후 기판에 스핀 코팅하여 나노입자 어레이부터 메조세공성 나노구조체에 이르는 금속/산화티탄/블록공중합체 박막을 제조하는 단계(단계 e); 및 상기 단계 e에서 제조된 박막을 후처리하여 블록공중합체를 제거하고 금속 전구체를 금속으로 환원시키는 단계(단계 f)를 포함하는 금속/산화티탄 하이브리드 나노구조체의 제조방법을 제공하며, 본 발명의 제조방법에 의해 제조된 금속/산화티탄 나노 구조체는 향상된 광촉매 활성을 갖는다.
In order to achieve the above object, the present invention comprises the steps of preparing a reverse micelle solution by dissolving the block copolymer in a solvent (step a); Dissolving the metal nanoparticle precursor in a solvent to prepare a colloidal solution (step b); Preparing a titanium oxide sol-gel precursor solution (step c); Mixing the reverse micelle solution prepared in step a, the colloidal solution prepared in step b and the sol-gel precursor solution prepared in step c in different ratios with respect to the reverse micelle solution prepared in step a) Step d) spin-coating the substrate after mixing to produce a metal / titanium oxide / block copolymer thin film from nanoparticle array to mesoporous nanostructures (step e); And post-treating the thin film prepared in step e to remove the block copolymer and reducing the metal precursor to the metal (step f), thereby providing a method for producing a metal / titanium oxide hybrid nanostructure. The metal / titanium oxide nanostructures produced by the process have improved photocatalytic activity.
본 발명에 따른 양친성 블록공중합체를 주형으로 이용한 금속/산화티탄 나노 구조체, 특히 메조세공성 백금/산화티탄 나노구조체는 블록공중합체를 이용하여 제조공정이 간단하고, 빛에 민감하게 반응하는 산화티탄과 금속을 함유하고 있어 우수한 광촉매 활성을 나타내므로 친환경소자, 광전지, 광센서 등 다양한 분야에 유용하게 사용될 수 있다.
Metal / titanium oxide nanostructures, in particular mesoporous platinum / titanium oxide nanostructures, using the amphiphilic block copolymers according to the present invention, are easy to manufacture using block copolymers and are sensitive to light oxidation. Since titanium and metal are contained, it shows excellent photocatalytic activity, which can be usefully used in various fields such as environmentally friendly devices, photovoltaic cells, and optical sensors.
도 1은 본 발명에 따른 백금/산화티탄 나노 구조체의 제조공정을 나타낸 도식도이다.
도 2는 본 발명에 따른 실시예 1 및 비교예 1 박막의 흡광도 분석 결과를 나타낸 그래프이다.
도 3과 4는 각각 본 발명에 따른 실시예 1, 비교예 1의 나노구조체를 나타낸 원자힘 현미경(AFM) 사진이다(자외선 조사 전: 실시예 1 - 도 3(a), (b), (c), 비교예 1 - 도 4(a), (b), (c); 자외선 조사 후: 실시예 1 - 도 3(d), (e), (f), 비교예 1 - 도 4(d), (e), (f)).
도 5는 본 발명에 따른 실시예 1의 내부구조를 나타낸 주사전자현미경(TEM, 도 5(a), 5(b), 5(c)) 사진, 라인 스캔 X-선 분광분석(EDS line scan, 도 5(a) 및 (a-1), 5(b) 및 (b-1), 5(c) 및 (c-1)) 사진 및 X-선 분광분석(EDS, 도 5(a-2), 5(b-2), 5(c-2)) 결과이다.
도 6은 본 발명에 따른 실시예 1과 비교예 1의 제조방법으로 제조된 박막의 318 ㎚에서 흡광 피크의 광도비를 나타낸 그래프이다.
도 7은 백금/산화티탄 광촉매 활성 메커니즘을 나타낸 도식도이다.1 is a schematic diagram showing a manufacturing process of the platinum / titanium oxide nanostructures according to the present invention.
Figure 2 is a graph showing the absorbance analysis results of Example 1 and Comparative Example 1 thin film according to the present invention.
3 and 4 are atomic force microscope (AFM) photographs showing nanostructures of Example 1 and Comparative Example 1 according to the present invention, respectively (before ultraviolet irradiation: Examples 1 to 3 (a), (b), ( c), Comparative Examples 1-4 (a), (b), (c); after ultraviolet irradiation: Examples 1-3 (d), (e), (f), Comparative Examples 1-4 ( d), (e), (f)).
Figure 5 is a scanning electron microscope (TEM, Figure 5 (a), 5 (b), 5 (c)) photograph showing the internal structure of Example 1 according to the present invention, line scan X-ray spectroscopy (EDS line scan 5 (a) and (a-1), 5 (b) and (b-1), 5 (c) and (c-1)) photographs and X-ray spectroscopy (EDS, FIG. 5 (a-) 2), 5 (b-2), and 5 (c-2)) results.
Figure 6 is a graph showing the light absorption ratio of the absorption peak at 318 nm of the thin film prepared by the production method of Example 1 and Comparative Example 1 according to the present invention.
7 is a schematic representation of a platinum / titanium oxide photocatalytic activity mechanism.
본 발명은, The present invention,
(a) 자기 조립 이중블록 공중합체를 용매에 용해시켜 역마이셀 용액을 제조하는 단계; (a) dissolving the self-assembling diblock copolymer in a solvent to prepare a reverse micelle solution;
(b) 금속 전구체를 알코올 용매와 혼합하여 콜로이드 용액을 제조하는 단계; (b) mixing the metal precursor with an alcohol solvent to prepare a colloidal solution;
(c) 산화티탄 전구체를 알코올 용매와 혼합하여 졸-겔 전구체 용액을 제조하는 단계; 및 (c) mixing the titanium oxide precursor with an alcohol solvent to prepare a sol-gel precursor solution; And
(d) 상기 단계 (b)에서 제조된 콜로이드 용액 및 단계 (c)에서 제조된 졸-겔 전구체 용액을 단계 (a)에서 제조된 역마이셀 용액에 넣고 혼합하여 콜로이드 용액 및 졸-겔 전구체 용액을 함유하는 역마이셀 용액을 제조하는 단계;를 포함하는 금속-산화티탄 나노 구조체의 제조방법을 제공한다.(d) the colloidal solution prepared in step (b) and the sol-gel precursor solution prepared in step (c) are added to the reverse micelle solution prepared in step (a) and mixed to mix the colloidal solution and the sol-gel precursor solution. It provides a method for producing a metal-titanium oxide nanostructure comprising a; preparing a reverse micelle solution containing.
본 발명에서, 상기 (d)단계 이후, In the present invention, after the step (d),
(e) 콜로이드 용액 및 졸-겔 전구체 용액을 함유하는 역마이셀 용액을 기판 상에 코팅하여 금속-산화티탄-블록공중합체 박막을 제조하는 단계; 및 (e) coating a reverse micelle solution containing a colloidal solution and a sol-gel precursor solution onto a substrate to produce a metal-titanium oxide-block copolymer thin film; And
(f) 상기 박막을 후처리 하여 자기 조립 공중합체를 제거하는 단계를 추가로 포함할 수 있다. (f) further treating the thin film to remove the self-assembled copolymer.
본 발명의 제조방법을 통해 제조된 금속-산화티탄 나노 구조체는 우수한 광촉매 활성을 나타낸다.
The metal-titanium oxide nanostructures prepared through the preparation method of the present invention exhibit excellent photocatalytic activity.
이하, 본 발명을 단계별로 상세히 설명한다.
Hereinafter, the present invention will be described in detail step by step.
먼저, 본 발명에 따른 상기 단계 (a)는 자기조립 이중블록 공중합체를 용매에 용해시켜 역마이셀 용액을 제조하는 단계로서, 자기조립 이중블록 공중합체로는 양친성 블록공중합체를 사용할 수 있다. First, the step (a) according to the present invention is a step of preparing a reverse micelle solution by dissolving the self-assembled diblock copolymer in a solvent, an amphiphilic block copolymer may be used as the self-assembled diblock copolymer.
상기 단계 (a)의 블록공중합체는 한쪽 블록에만 선택적으로 용해되어 용액 내에서 역마이셀을 형성할 수 있다. The block copolymer of step (a) may be selectively dissolved in only one block to form reverse micelles in solution.
본 발명에서 상기 블록공중합체로는 양친성 이중블록공중합체인 폴리(스티렌-블록-에틸렌 옥사이드) (Poly(styrene-b-ethylene oxide, PS-b-PEO), 폴리스티렌-블록-폴리(4-비닐피리딘)(PS-b-P4VP), 폴리스티렌-블록-폴리(2-비닐피리딘)(PS-b-P2VP), 폴리(스티렌-블록-메타크릴산메틸) (Poly(styrene-b-methyl methacrylate), 폴리(스티렌-블록-아크릴산) (Poly(styrene-b-acrylic acid), 폴리(부타디엔-블록-에틸렌 옥사이드) (Poly(butadiene-b-ethylene oxide), 및 폴리(프로필렌-블록-에틸렌 옥사이드) (Poly(propylene-b-ethylene oxide) 등을 사용할 수 있으나, 양친성 블록공중합체이면 이에 제한되지 않는다. In the present invention, the block copolymer is poly (styrene-block-ethylene oxide) which is an amphiphilic diblock copolymer (Poly (styrene-b-ethylene oxide, PS-b-PEO), polystyrene-block-poly (4-vinylpyridine) (PS-b-P4VP), polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), poly (styrene-block-methyl methacrylate) (Poly (styrene-b-methyl methacrylate), Poly (styrene-b-acrylic acid), poly (butadiene-block-ethylene oxide) (Poly (butadiene-b-ethylene oxide), and poly (propylene-block-ethylene oxide) ( Poly (propylene-b-ethylene oxide) and the like can be used, but is not limited to the amphiphilic block copolymer.
상기 용매는 상기 이중블록 공중합체 중 폴리스티렌 블록을 선택적으로 용해하는 톨루엔, 클로로포름, 테트라하이드로푸란, 디메틸포름아마이드(DMF, dimethylformamide), 벤젠, 사이클로헥산, 헥산 또는 에틸 아세테이트 등을 사용하는 것이 바람직하나, 역마이셀을 형성할 수 있는 용매이면 이에 제한되지 않는다.The solvent is preferably toluene, chloroform, tetrahydrofuran, dimethylformamide (DMF, dimethylformamide), benzene, cyclohexane, hexane or ethyl acetate, which selectively dissolves the polystyrene block in the diblock copolymer. The solvent may be formed as long as it can form reverse micelles.
나아가, 상기 단계 (a)의 역마이셀 용액은 블록공중합체를 0.1 내지 1.5 중량% 포함할 수 있다. 상기 블록공중합체가 0.1 중량% 미만이면 산화티탄 나노입자가 배열되지 않아 하이브리드 나노입자 어레이가 형성되지 않는 문제가 발생할 수 있고, 1.5 중량%를 초과하면 후속 공정인 스핀 코팅에 의한 박막 형성 과정에서 단분자 마이셀 배열을 얻기 어렵다는 문제가 있다.Furthermore, the reverse micelle solution of step (a) may comprise 0.1 to 1.5% by weight of the block copolymer. If the block copolymer is less than 0.1% by weight, the titanium oxide nanoparticles may not be arranged so that a hybrid nanoparticle array may not be formed. When the block copolymer is more than 1.5% by weight, the block copolymer may be formed in a thin film forming process by spin coating. There is a problem that it is difficult to obtain a molecular micelle array.
다음으로, 본 발명에 따른 상기 단계 (b)는 금속 나노 입자를 용매에 용해시켜 금속 전구체 용액을 제조하는 단계이다.Next, step (b) according to the present invention is a step of dissolving the metal nanoparticles in a solvent to prepare a metal precursor solution.
본 발명에서 단계 (b)의 금속 전구체 콜로이드 용액은 금속 전구체를 0.1 내지 5 중량%, 보다 구체적으로는 0.1 내지 3중량% 함유할 수 있는데, 농도가 낮을 때에는 역마이셀 용액과 혼합될 때 알코올의 함량 과다로 인하여 고분자의 용해도가 떨어지는 문제점이 발생할 우려가 있고, 농도가 높을 때에는 알코올 용매의 용해도를 넘어서는 금속 전구체 함량으로 인하여 균일한 금속 전구체 용액을 얻지 못하는 문제점이 발생할 우려가 있다.In the present invention, the metal precursor colloidal solution of step (b) may contain 0.1 to 5% by weight of the metal precursor, more specifically 0.1 to 3% by weight. When the concentration is low, the content of alcohol when mixed with reverse micelle solution There is a fear that the problem of poor solubility of the polymer due to the excessive, and when the concentration is high, there is a fear that a problem of failing to obtain a uniform metal precursor solution due to the metal precursor content beyond the solubility of the alcohol solvent.
본 발명에서 상기 단계 (b)의 금속으로는 백금, 금, 은, 코발트, 철, 팔라듐, 구리, 카드뮴, 루테늄, 니켈, 망간 등이 사용될 수 있으며, 알코올류에 녹는 금속염이라면 어떠한 금속 전구체라도 사용 가능하다. 보다 구체적으로, 백금 전구체로는 염화 백금(platinum chloride), 염화 백금산(chloroplatinic acid) 또는 친수성 리간드로 개질된 백금 나노입자 등을 전구체로 사용할 수 있다. 이 때 친수성 리간드는 알코올기(-OH), 카르복시산기(-COOH) 등이 바람직하다.Platinum, gold, silver, cobalt, iron, palladium, copper, cadmium, ruthenium, nickel, manganese, etc. may be used as the metal of step (b) in the present invention, and any metal precursor may be used as long as the metal salt is soluble in alcohols. It is possible. More specifically, the platinum precursor may be used as a precursor such as platinum chloride, chloroplatinic acid or platinum nanoparticles modified with a hydrophilic ligand. At this time, the hydrophilic ligand is preferably an alcohol group (-OH), a carboxylic acid group (-COOH) or the like.
상기 단계 (b)의 용매로는 프로판올, 에탄올, 메탄올, 부탄올 등을 사용할 수 있으며, 특히 이소프로판올을 사용할 수 있다. 상기와 같이 용해된 금속은 블록공중합체의 친수성 블록 부분에 선택적으로 결합할 수 있다.Propanol, ethanol, methanol, butanol, and the like may be used as the solvent of step (b), and particularly isopropanol may be used. The dissolved metal as described above may be selectively bonded to the hydrophilic block portion of the block copolymer.
이때, 상술한 용매에 금속 나노입자를 용해시키는 경우, 금속 나노입자의 함량은 친수성 고분자의 분자량과 하기 단계 (c)에서 사용되는 산화티탄 졸-겔 전구체의 양을 고려하여 적절한 범위 내에서 조절할 수 있다. 바람직한 금속 나노입자의 함량은 하기 단계 (d)에서 구체적으로 설명한다.In this case, in the case of dissolving the metal nanoparticles in the above-described solvent, the content of the metal nanoparticles can be adjusted within an appropriate range in consideration of the molecular weight of the hydrophilic polymer and the amount of the titanium oxide sol-gel precursor used in the following step (c). have. Preferred content of the metal nanoparticles is described in detail in step (d) below.
다음으로, 본 발명에 따른 상기 단계 (c)는 산화티탄 졸-겔 전구체 용액을 제조하는 단계이다. 상기 졸-겔 전구체 용액은 용매에 산화티탄 전구체를 용해시킨 후, 강산을 첨가하여 희석하고 교반하여 제조될 수 있다. 상기 산화티탄 전구체로는 티타늄 알콕사이드를 사용할 수 있으며, 보다 구체적으로는 티타늄 메톡사이드, 티타늄 에톡사이드(Titanium ethoxide), 티타늄 테트라-이소프로폭사이드(Titanium tetra-isopropoxide, TTIP), 티타늄 부톡사이드(Titanium butoxide), 티타늄 터셔리 부톡사이드(titanium tert-butoxide)를 사용할 수 있으며, 상기 용매로는 에탄올, 이소프로판올 등을 사용할 수 있다.Next, step (c) according to the present invention is to prepare a titanium oxide sol-gel precursor solution. The sol-gel precursor solution may be prepared by dissolving the titanium oxide precursor in a solvent, followed by dilution and stirring with a strong acid. Titanium alkoxide may be used as the titanium oxide precursor, and more specifically, titanium methoxide, titanium ethoxide, titanium tetra-isopropoxide (TTIP), and titanium butoxide (titanium). butoxide) and titanium tert-butoxide may be used, and ethanol, isopropanol, or the like may be used as the solvent.
상기 산은 상기 단계 (a)의 블록공중합체의 친수성 블록 부분을 개방 또는 함몰시켜주고, 동시에 산화티탄 전구체를 가수분해시켜 개방 또는 함몰된 친수성 블록 부분에 조밀한 산화티탄 나노구조체가 형성될 수 있도록 한다. 이때, 산은 진한 염산, 빙초산, 질산, 포름산 등이 사용될 수 있고, 이들 중 2종 이상을 혼합하여 사용할 수 있으나 이로 제한되지는 않는다.The acid opens or recesses the hydrophilic block portion of the block copolymer of step (a) and simultaneously hydrolyzes the titanium oxide precursor to form a dense titanium oxide nanostructure in the open or recessed hydrophilic block portion. . At this time, the acid may be concentrated hydrochloric acid, glacial acetic acid, nitric acid, formic acid, and the like, and may be used by mixing two or more of them, but is not limited thereto.
본 발명에 따른 상기 단계 (e)는 상기 단계 (a)에서 제조된 역마이셀 용액, 상기 단계 (b)에서 제조된 금속 나노입자 전구체 용액 및 상기 단계 (c)에서 제조된 산화티탄 졸-겔 전구체 용액을 혼합하는 단계 (d)를 거친 후, 기판에 스핀 코팅하여 금속/산화티탄/블록공중합체 박막을 제조하는 단계이다.Step (e) according to the present invention is the reverse micelle solution prepared in step (a), the metal nanoparticle precursor solution prepared in step (b) and the titanium oxide sol-gel precursor prepared in step (c) After the step (d) of mixing the solution, spin coating the substrate to prepare a metal / titanium oxide / block copolymer thin film.
본 발명에서 상기 기판으로는 실리콘 웨이퍼, 유리, 쿼츠, 알루미늄 또는 구리와 같은 금속 기판, PET 필름과 같은 플라스틱 기판 등 다양한 기판을 사용할 수 있다.In the present invention, a variety of substrates may be used as the substrate, such as a silicon wafer, glass, quartz, a metal substrate such as aluminum or copper, or a plastic substrate such as PET film.
상기 단계 (e)에 있어서, 역마이셀 용액, 금속 나노입자 전구체 용액 및 산화티탄 졸-겔 전구체 용액은 제조되는 금속/산화티탄 하이브리드 나노 구조체의 질서(orderedness)의 관점에서 금속 나노입자의 함량이 일정비율을 갖도록 혼합되는 것이 바람직하다. 예를 들면, 먼저 폴리(스티렌-블록-에틸렌 옥사이드) 역마이셀 용액 내 친수성 블록인 에틸렌옥사이드에 대하여 금속 나노입자의 몰비(Pt/EO)는 0.1 내지 0.5가 되도록 혼합하는 것이 바람직하며, 단계 (d)에서는 단계 (a)의 역마이셀 용액에 대하여 단계 (c)의 산화티탄 졸-겔 전구체 용액이 10 내지 80%의 부피비, 보다 구체적으로는 40 내지 80%의 부피비가 되도록 혼합할 수 있다.In step (e), the reverse micelle solution, the metal nanoparticle precursor solution and the titanium oxide sol-gel precursor solution have a constant content of metal nanoparticles in view of the orderedness of the metal / titanium oxide hybrid nanostructures to be produced. It is preferable to mix to have a ratio. For example, first, the molar ratio (Pt / EO) of the metal nanoparticles to ethylene oxide, which is a hydrophilic block in the poly (styrene-block-ethylene oxide) reverse micelle solution, is preferably mixed so as to be 0.1 to 0.5, and the step (d ), The titanium oxide sol-gel precursor solution of step (c) may be mixed in a volume ratio of 10 to 80%, more specifically 40 to 80% relative to the reverse micelle solution of step (a).
만약, 상기 몰비(Pt/EO)가 0.1 미만이면 각 역마이셀에 금속 입자의 분산이 균일하지 않게 되는 문제가 있고, 0.5를 초과하면 역마이셀에 포함되지 않고 금속 입자끼리 결합하여 덩어리를 형성하는 문제가 있다.If the molar ratio (Pt / EO) is less than 0.1, there is a problem in that the dispersion of metal particles in each reverse micelle is not uniform. If the molar ratio (Pt / EO) is more than 0.5, the particles are not included in the reverse micelle and bound together to form agglomerates. There is.
나아가, 상기 단계 (a)의 역마이셀 용액에 대한 산화티탄 졸-겔 전구체 용액의 비율이 증가함에 따라 블록공중합체의 친수성 블록 부분에 선택적으로 결합하는 산화티탄의 함량이 달라지게 되고 이에 따른 나노구조체의 변형이 야기되어 나노입자 어레이부터 메조세공성 나노구조체에 이르는 다양한 금속/산화티탄/블록공중합체 박막의 제조가 가능해진다. 그러나 역마이셀 용액에 대한 산화티탄 졸-겔 전구체 용액의 비율이 증가할수록 금속/산화티탄 하이브리드 구조체가 블록공중합체 주형을 벗어나 이웃하는 복합전구체와 응집하여 덩어리를 형성하는 문제가 있으므로 산화티탄 전구체의 함량이 블록공중합체 양에 대해 일정 비율을 갖도록 혼합하는 것이 바람직하다.Furthermore, as the ratio of the titanium oxide sol-gel precursor solution to the reverse micelle solution of step (a) increases, the content of titanium oxide selectively binding to the hydrophilic block portion of the block copolymer is changed, and thus the nanostructure. Modifications of the polymers lead to the production of various metal / titanium oxide / block copolymer thin films, ranging from nanoparticle arrays to mesoporous nanostructures. However, as the ratio of the titanium oxide sol-gel precursor solution to the reverse micelle solution increases, the content of the titanium oxide precursor is increased because the metal / titanium oxide hybrid structure leaves the block copolymer template and aggregates with neighboring composite precursors to form agglomerates. It is preferable to mix so that it may have a fixed ratio with respect to this block copolymer amount.
단계 (f)는 상기 단계 (e)에서 제조된 박막을 후처리하여 블록공중합체를 제거하는 동시에 금속 전구체를 금속으로 환원시키는 단계로서 상기 후처리는 산소 플라즈마 노출, 열처리 또는 자외선 조사 중 어느 하나 일 수 있다. Step (f) is a step of post-treatment of the thin film prepared in step (e) to remove the block copolymer and at the same time reducing the metal precursor to metal, wherein the post-treatment is any one of oxygen plasma exposure, heat treatment or ultraviolet irradiation. Can be.
또한, 본 발명은 상술한 제조방법에 의해 제조되는 광촉매 활성이 향상된 금속/산화티탄 나노 구조체를 제공한다. 상기 나노구조체는 예를 들면, 금속/산화티탄 나노입자 어레이, 메조세공성 금속/산화티탄 나노 구조체일 수 있으며, 보다 구체적으로는 백금/산화티탄 나노입자 어레이, 메조세공성 백금/산화티탄 나노구조체 등일 수 있다.
The present invention also provides a metal / titanium oxide nanostructure having improved photocatalytic activity prepared by the above-described manufacturing method. The nanostructures can be, for example, metal / titanium oxide nanoparticle arrays, mesoporous metal / titanium oxide nanostructures, more specifically platinum / titanium oxide nanoparticle arrays, mesoporous platinum / titanium oxide nanostructures And the like.
본 발명에 따른 금속/산화티탄 하이브리드 나노구조체는 특히 백금이 하이브리드 됨으로써 우수한 광촉매 활성을 갖는다. 상기 하이브리드 나노구조체의 광촉매 활성을 알아보기 위해 본 발명의 실시예 1 및 비교예 1에서 제조된 백금/산화티탄 박막과 산화티탄 박막의 파라니트로페놀 분해 정도를 측정한 실험을 비교해보면, 광촉매 실험 시작 후 5시간 후 실시예 1은 비교예 1에 비하여 광촉매 활성이 거의 같거나 뚜렷이 증가했음을 알 수 있다.The metal / titanium oxide hybrid nanostructures according to the present invention have excellent photocatalytic activity, in particular by hybridization of platinum. In order to examine the photocatalytic activity of the hybrid nanostructures, a comparison of experiments in which the platinum / titanium oxide thin films prepared in Example 1 and Comparative Example 1 of the present invention and the measurement of the decomposition of paranitrophenols of the titanium oxide thin films was started, the photocatalyst experiment was started. After 5 hours, it can be seen that in Example 1, the photocatalytic activity was almost the same or increased significantly compared to Comparative Example 1.
따라서, 본 발명에 따른 상기 하이브리드 나노구조체는 광촉매제로, 친환경소자, 광전지, 광센서 등의 분야에 유용하게 사용할 수 있다.
Therefore, the hybrid nanostructure according to the present invention is a photocatalyst, and can be usefully used in fields such as environmentally friendly devices, photovoltaic cells, and optical sensors.
이하, 본 발명을 실시예에 의해 더욱 상세히 설명한다. 단, 하기의 실시예는 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 제한되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are merely to illustrate the invention, the content of the present invention is not limited by the following examples.
<실시예 1> 백금/산화티탄 하이브리드 나노구조체의 제조Example 1 Preparation of Platinum / Titanium Oxide Hybrid Nanostructure
단계 1.
폴리스티렌-블록-폴리에틸렌옥사이드(PS-b-PEO, Mn,PS=20000, Mn,PEO=6500 g/mol, Polymer Source, Inc.)를 톨루엔(toluene)에 1.0 중량%의 농도로 용해시켜 역마이셀 용액을 제조하였다.
Polystyrene-block-polyethylene oxide (PS-b-PEO, Mn, PS = 20000, Mn, PEO = 6500 g / mol, Polymer Source, Inc.) was dissolved in toluene at a concentration of 1.0% by weight of reverse micelles The solution was prepared.
단계 2. 백금 전구체 나노입자 용액의 제조
염화백금 염을 이소프로판올(isopropanol)에 1.0 중량% 농도로 용해시켜 염화백금 용액을 제조하였다.
A platinum chloride solution was prepared by dissolving the platinum chloride salt in isopropanol at a concentration of 1.0% by weight.
단계 3. 산화티탄 졸-겔 전구체 용액의 제조Step 3. Preparation of titanium oxide sol-gel precursor solution
티타늄 테트라-이소프로폭사이드(titanium tetra-isopropoxide, Aldrich) 0.2 g을 용해시킨 이소프로판올 1.903 g에 빙초산(glacial acetic acid) 0.254 g을 첨가하고 6시간 동안 교반한 후, 이소프로판올 0.242 ㎖를 첨가하여 추가적으로 한 시간 이상 교반하여 산화티탄 전구체 용액을 제조하였다.
To 1.903 g of isopropanol dissolved in 0.2 g of titanium tetra-isopropoxide (Aldrich), 0.254 g of glacial acetic acid was added and stirred for 6 hours, followed by addition of 0.242 ml of isopropanol. Stirring for more than a time to prepare a titanium oxide precursor solution.
단계 4. 백금/산화티탄/Step 4. Platinum / Titanium Oxide / 블록공중합체Block copolymer 박막의 제조 Manufacture of thin film
상기 단계 1의 역마이셀 용액의 에틸렌옥사이드에 대하여 백금 나노입자의 몰비(Pt/EO)가 0.3이 되도록 혼합하고, 역마이셀 용액에 대하여 산화티탄 졸-겔 전구체 용액은 각각 10% ? 80%의 부피비로 혼합하였다. 상기 역마이셀 용액, 염화백금 용액 및 산화티탄 졸-겔 전구체 용액을 혼합하여 일주일 동안 교반한 후, 실리콘 기판에 적하시키고 2500 rpm으로 120초 동안 스핀코팅하여 백금/산화티탄/블록공중합체 박막을 제조하였다.
The molar ratio (Pt / EO) of the platinum nanoparticles is 0.3 to the ethylene oxide of the reverse micelle solution of
단계 5. 자외선 조사를 통한 백금/산화티탄 Step 5. Platinum / Titanium Oxide by Ultraviolet Irradiation 하이브리드hybrid 나노구조체 제조 Nanostructure Manufacturing
254 ㎚ 파장의 자외선을 25 J/㎠ 에너지 강도로 7시간 동안 상기 단계 4의 박막에 조사하여 블록공중합체를 제거하는 동시에 백금 전구체를 백금으로 환원시켜줌으로써 백금/산화티탄 나노구조체를 제조하였다(도 1 참조).
A platinum / titanium oxide nanostructure was prepared by irradiating the thin film of step 4 with ultraviolet rays of 254 nm wavelength at 25 J /
<비교예 1> 산화티탄 나노구조체의 제조Comparative Example 1 Preparation of Titanium Oxide Nanostructure
실시예 1의 백금 나노입자 용액을 제조하는 상기 단계 2를 생략한 것을 제외하고는, 실시예 1과 동일하게 수행하여 백금 나노입자가 포함되지 않은 산화티탄 나노구조체를 제조하였다.
Titanium oxide nanostructures containing no platinum nanoparticles were prepared in the same manner as in Example 1, except that
<실험예 1> 백금/산화티탄/블록공중합체 박막과 산화티탄/블록공중합체 박막의 흡광도 분석Experimental Example 1 Analysis of Absorbance of Platinum / Titanium Oxide / Block Copolymer Thin Film and Titanium Oxide / Block Copolymer Thin Film
본 발명에 따른 실시예 1과 비교예 1의 박막에 자외선-가시선을 조사하여 흡광도를 알아보기 위해, 자외선-가시선 분광광도계(spectrophotometer, Varian, Cary 500)를 이용하여 흡광도를 측정하고, 그 결과를 도 2에 나타내었다.In order to determine the absorbance by irradiating ultraviolet-visible lines to the thin films of Example 1 and Comparative Example 1 according to the present invention, the absorbance was measured using an ultraviolet-visible spectrophotometer (Vrospectometer, Varian, Cary 500), and the
도 2의 자외선-가시선 흡수 스펙트럼을 참조하면, 역마이셀 용액에 대하여 산화티탄 졸-겔 전구체 용액의 양을 10% 부피비에서 40%, 80%로 증가시켜 혼합할 수록 산화티탄의 흡광이 증가하는 것을 확인하였으며, 상기 비교예 1의 박막은 250-300 ㎚ 파장 범위, 즉 자외선 영역에서 산회티탄의 특성 흡광 피크가 뚜렷이 나타나는 데 비해 350 nm 이상의 파장 범위, 즉 가시선 영역에서의 빛의 흡수가 매우 약한 것을 볼 수 있는데, 비교예 1과 실시예 1의 박막의 스펙트럼 결과를 비교분석한 결과, 백금의 첨가로 자외선 영역뿐만 아니라 350 nm 파장 이상의 가시선 범위에서도 산화티탄의 흡광이 크게 증가한 것을 알 수 있다.
Referring to the ultraviolet-visible absorption spectrum of FIG. 2, the absorption of titanium oxide increases as the amount of the titanium oxide sol-gel precursor solution is increased from 40% to 80% at 10% by volume for the reverse micelle solution. In Comparative Example 1, the thin film of Comparative Example 1 exhibited a very weak absorption of light in the wavelength range of 350 nm or more, that is, in the visible range, whereas the characteristic absorption peak of the ash ash titanium was apparent in the 250-300 nm wavelength range, that is, in the ultraviolet region. As can be seen, as a result of comparative analysis of the spectral results of the thin films of Comparative Example 1 and Example 1, it can be seen that the absorption of titanium oxide significantly increased not only in the ultraviolet region but also in the visible range of 350 nm or more due to the addition of platinum.
<실험예 2> 백금의 유무 또는 산화티탄의 함량의 변화에 따른 나노구조체의 배열분석Experimental Example 2 Arrangement Analysis of Nanostructures with or without Platinum or Titanium Oxide Content
본 발명에 따른 실시예 1과 비교예 1의 나노구조체를 원자힘 현미경(AFM, DI/Veeco, USA)을 이용하여 촬영하고, 그 결과를 도 3과 도 4에 나타내었다.The nanostructures of Example 1 and Comparative Example 1 according to the present invention were photographed by using an atomic force microscope (AFM, DI / Veeco, USA), and the results are shown in FIGS. 3 and 4.
도 3(a), (b), (c)는 실시예 1의 백금/산화티탄 하이브리드 나노구조체의 자외선 조사 전 배열을 촬영한 사진으로서, 도 3(a), (b), (c)는 동일한 양의 백금 콜로이드 용액과 함께 각각 역마이셀 용액에 대하여 산화티탄 졸-겔 전구체 용액의 양이 10%, 40%, 80% 부피비로 첨가되었을 때의 백금/산화티탄/블록공중합체 나노구조체의 모습을 보여주며, 도 4(a), (b), (c)는 이의 비교예 사진이다. 이 사진들에서 밝은 부분은 폴리스티렌 블록을, 어두운 부분은 폴리에틸렌옥사이드 블록을 나타낸다. 역마이셀 용액에 첨가한 산화티탄 졸-겔 전구체 용액의 양이 증가할수록 박막의 매트릭스가 폴리스티렌 블록에서 폴리에틸렌옥사이드 블록으로 반전되는 현상을 관찰할 수 있었고, 이로부터 산화티탄 졸-겔 전구체 용액의 양을 증가시킴으로써 역전(reverse) 구조를 형성하는 산화티탄/블록공중합체 박막 또는 백금/산화티탄/블록공중합체 박막을 얻을 수 있음을 확인하였다. 이러한 현상은 산화티탄 졸-겔 전구체에 함유되어 있는 알코올 성분이 폴리에틸렌옥사이드 블록을 재구성시켜 역마이셀을 개방시킴으로써 유도되는 현상으로, 산화티탄 구조체의 배열에 산화티탄 전구체에 함유된 알코올 성분이 큰 역할을 하고 있음을 알 수 있다.3 (a), (b), (c) is a photograph taken before the ultraviolet irradiation of the platinum / titanium oxide hybrid nanostructure of Example 1, Figures 3 (a), (b), (c) Appearance of platinum / titanium oxide / block copolymer nanostructures when the amount of titanium oxide sol-gel precursor solution is added in 10%, 40%, and 80% volume ratios to the reverse micelle solution together with the same amount of platinum colloid solution 4 (a), (b) and (c) are photographs of comparative examples thereof. In these photographs, the lighter part represents the polystyrene block and the darker part represents the polyethylene oxide block. As the amount of titanium oxide sol-gel precursor solution added to the reverse micelle solution increased, the matrix of the thin film was inverted from the polystyrene block to the polyethylene oxide block, and the amount of the titanium oxide sol-gel precursor solution was observed. By increasing, it was confirmed that a titanium oxide / block copolymer thin film or a platinum / titanium oxide / block copolymer thin film forming a reverse structure can be obtained. This phenomenon is a phenomenon in which the alcohol component contained in the titanium oxide sol-gel precursor is induced by reconstructing the polyethylene oxide block to open reverse micelles, and the alcohol component contained in the titanium oxide precursor plays an important role in the arrangement of the titanium oxide structure. It can be seen that.
도 3(d), (e), (f)는 각각 도 3(a), (b), (c) 박막에 7시간 동안 자외선을 조사하여 블록공중합체를 제거한 실시예 1의 배열을 나타낸 사진이고, 도 4 (d), (e), (f)는 이의 비교예 사진이다. 이 사진들에서 산화티탄/블록공중합체 박막 또는 백금/산화티탄/블록공중합체 박막의 폴리스티렌 블록 부분만 제거되고 폴리에틸렌옥사이드 블록 부분은 그대로 남아있는 것과 같은 현상을 볼 수 있는데 이로부터 백금 전구체와 산화티탄 전구체가 폴리에틸렌옥사이드 블록에 위치했음을 확인할 수 있다. 3 (d), (e) and (f) are photographs showing the arrangement of Example 1 in which the block copolymer was removed by irradiating ultraviolet rays to the thin films of FIGS. 3 (a), (b) and (c) for 7 hours, respectively. 4 (d), (e) and (f) are photographs of comparative examples thereof. In these photographs, only the polystyrene block portion of the titanium oxide / block copolymer thin film or the platinum / titanium oxide / block copolymer thin film is removed and the polyethylene oxide block portion remains as it is. It can be seen that the precursor is located in the polyethylene oxide block.
또한, 역마이셀 용액에 대하여 산화티탄 졸-겔 전구체 용액의 양이 10%, 40%, 80% 부피비로 첨가되었을 때, 자외선 조사 후 각각 나노입자 어레이(도 3(d), 도 4(d)), 무질서한 나노선 구조체와 함께 일부 메조세공성 나노구조체(도 3(e), 도 4(e)), 메조세공성(mesoporous) 나노구조체(도 3(f), 도 4(f))가 형성됨을 확인하였고, 이로부터 산화티탄 전구체의 상대적인 농도를 변화시킴으로써 산화티탄 구조체의 형태와 배열을 조절할 수 있음을 알 수 있다.In addition, when the amount of the titanium oxide sol-gel precursor solution was added in a volume ratio of 10%, 40%, and 80% with respect to the reverse micelle solution, the nanoparticle arrays (Fig. 3 (d) and Fig. 4 (d)) after ultraviolet irradiation, respectively. ), Along with the disordered nanowire structures, some mesoporous nanostructures (FIG. 3 (e), 4 (e)), mesoporous nanostructures (FIG. 3 (f), 4 (f)) It was confirmed that the formation, from which it can be seen that the shape and arrangement of the titanium oxide structure can be controlled by changing the relative concentration of the titanium oxide precursor.
더 나아가 도 3과 도 4를 비교했을 때, 백금의 유무를 제외하고 다른 모든 실험 조건, 예를 들어 역마이셀 용액의 양, 산화티탄 전구체 용액의 양, 알코올 함유량 등이 동일한 상황에서 도 3이 도 4에 비해 질서도가 높고 비교적 균일한 도메인 크기의 육방밀집 배열을 나타내는 것으로 미루어 보아, 백금의 첨가가 생성되는 백금/산화티탄 하이브리드 나노구조체의 균일한 육방밀집 정렬에 영향을 미침을 알 수 있다.
Furthermore, when comparing FIG. 3 and FIG. 4, FIG. 3 shows a case where all other experimental conditions except platinum are present, for example, the amount of reverse micelle solution, the amount of titanium oxide precursor solution, and the alcohol content are the same. In comparison with 4, it shows a hexagonal array with a relatively uniform domain size, indicating that the addition of platinum affects the uniform hexagonal alignment of the platinum / titanium oxide hybrid nanostructures.
<실험예 3> 백금/산화티탄 하이브리드 나노구조체의 내부구조 분석Experimental Example 3 Analysis of Internal Structure of Platinum / Titanium Oxide Hybrid Nanostructure
본 발명에 따른 실시예 1의 내부구조를 X-선 분광분석장치(EDS)가 장착된 투과전자현미경(TEM, JEOL JSM2100-F)을 이용하여 분석하고, 그 결과를 도 5에 나타내었다.The internal structure of Example 1 according to the present invention was analyzed using a transmission electron microscope (TEM, JEOL JSM2100-F) equipped with an X-ray spectroscopy (EDS), and the results are shown in FIG. 5.
투과전자현미경을 이용하기 위해, 백금/산화티탄 박막에 탄소를 코팅하고 폴리아크릴산(poly acrylic acid) 35 중량% 수용액을 떨어뜨린 후 70℃에서 12시간 동안 열처리한 상태에서 실리콘 기판에서 백금/산화티탄 박막과 폴리아크릴산을 함께 떼어낸 후 폴리아크릴산을 물에 녹여내어 얻어낸 백금/산화티탄 박막을 구리 그리드에 입히는 방법으로 시편을 제조하였다. In order to use the transmission electron microscope, platinum / titanium oxide thin film was coated on a platinum / titanium oxide thin film, and 35% by weight of poly acrylic acid was dropped, followed by heat treatment at 70 ° C. for 12 hours. After removing the thin film and polyacrylic acid together, the specimen was prepared by coating a platinum / titanium oxide thin film obtained by dissolving polyacrylic acid in water and coating it on a copper grid.
투과전자현미경 관찰 결과, 역마이셀 용액에 대해 산화티탄 전구체 용액이 10% 부피비로 첨가되었을 때, 도메인은 육방정계로 이루어져 있으며, 무기물질로 보이는 입자들이 이 도메인 내에 위치함을 알 수 있고(도 5(a) 참조), 산화티탄 전구체 용액이 40% 부피비로 첨가된 경우, 도메인들이 연결된 형태를 보이며 일부 메조세공을 갖는 구조체가 형성되며, 무기물질로 보이는 입자들이 연결된 도메인 내부 또는 메조세공의 주변부에 위치함을 알 수 있고(도 5(b) 참조), 산화티탄 전구체 용액이 80% 부피비로 늘어났을 때, 메조세공성 구조체가 형성되며 무기물질로 보이는 입자들이 주로 메조세공 주변부에 위치함을 확인하였다(도 5(c) 참조). 이러한 백금/산화티탄 박막 구조의 사진은 도 3(d), (e), (f) 사진과 일치하는 결과이다. As a result of transmission electron microscopy, when the titanium oxide precursor solution was added in 10% by volume to the reverse micelle solution, the domain was composed of hexagonal system, and particles which appeared to be inorganic materials were located in this domain (FIG. 5). When the titanium oxide precursor solution is added in 40% by volume, a structure is formed in which the domains are connected and some mesopores are formed, and the inside of the domain or the periphery of the mesopores in which the particles appear to be inorganic materials are connected. It can be seen that the position (see Fig. 5 (b)), when the titanium oxide precursor solution is increased by 80% by volume, the mesoporous structure is formed and the particles appear to be mainly located around the mesopore (See FIG. 5 (c)). The photograph of such a platinum / titanium oxide thin film structure is a result consistent with those of FIGS. 3 (d), (e), and (f).
또한, X-선 분광분석장치에 의한 라인 스캔 결과, 역마이셀 용액에 대해 산화티탄 전구체 용액이 10% 부피비로 첨가되었을 때, 백금(파란색 선)과 산화티탄(티타늄 - 빨간색 선, 산소 - 연두색 선)의 피크가 육방정계로 이루어진 도메인 내에서 관찰되었으나(도 5(a) 및 도 5(a-1) 참조), 산화티탄 전구체 용액이 40% 부피비로 첨가된 경우, 백금과 산화티탄의 피크가 도메인들이 연결된 부분에서 관찰되며(도 5(b) 및 도 5(b-1) 참조), 산화티탄 전구체 용액이 80% 부피비로 늘어났을 때, 백금과 산화티탄의 피크가 주로 메조세공 주변부에서 관찰되었다(도 5(c) 및 도 5(c-1) 참조). 이는 AFM 사진 분석과 일치하는 결과라 할 수 있으며, 이러한 라인 스캔 결과와 더불어 X-선 분광분석장치에 의한 측정 결과로부터 제조된 박막에 백금과 산화티탄이 있음을 확인할 수 있다(도 5(a-2), 5(b-2) 및 5(c-2) 참조).
In addition, as a result of a line scan by X-ray spectroscopy, when a titanium oxide precursor solution was added in a 10% volume ratio to a reverse micelle solution, platinum (blue line) and titanium oxide (titanium-red line, oxygen-light green line) ) Is observed in the domain consisting of hexagonal systems (see FIGS. 5 (a) and 5 (a-1)), but when the titanium oxide precursor solution is added in a 40% volume ratio, the peaks of platinum and titanium oxide When the domains are joined (see Figures 5 (b) and 5 (b-1)), the peaks of platinum and titanium oxide are mainly observed around mesopores when the titanium oxide precursor solution is increased to 80% by volume. (See FIG. 5 (c) and FIG. 5 (c-1)). This is a result consistent with the AFM photo analysis, and it can be seen that the thin film prepared from the measurement results by the X-ray spectroscopy apparatus with platinum and titanium oxide in the thin film manufactured (Fig. 5 (a- 2), 5 (b-2) and 5 (c-2)).
<실험예 4> 광촉매 활성 분석Experimental Example 4 Analysis of Photocatalytic Activity
본 발명에 따른 실시예 1과 비교예 1의 나노구조체에 대해 광촉매 활성 정도를 알아보기 위해, 상기 실시예 1 및 비교예 1에 자외선을 조사하고, 파라니트로페놀(p-nitrophenol)의 감소 정도를 통해 상기 박막의 광촉매 활성을 측정하였다.In order to determine the degree of photocatalytic activity of the nanostructures of Example 1 and Comparative Example 1 according to the present invention, ultraviolet rays were irradiated to Example 1 and Comparative Example 1, and a reduction degree of p -nitrophenol was measured. The photocatalytic activity of the thin film was measured through.
10 ppm 파라니트로페놀을 함유하고 있는 자외선 큐벳(cuvette)에 상기 실시예 1, 비교예 1의 박막을 침지시켜 일정 시간 동안 254 ㎚ 파장의 자외선을 조사하였고, 318 ㎚에서 흡광 피크의 강도 비(I/I0)를 분석하여 도 6에 나타내었다. An ultraviolet cuvette containing 10 ppm paranitrophenol was immersed in the thin films of Example 1 and Comparative Example 1 and irradiated with ultraviolet rays at a wavelength of 254 nm for a predetermined time, and the intensity ratio of the absorption peak at 318 nm (I / I 0 ) is analyzed and shown in FIG. 6.
역마이셀 용액에 대해 산화티탄 전구체 용액이 10%와 40% 부피비로 첨가된 경우, 백금 첨가에 의해 파라니트로페놀의 분해 효과가 뚜렷이 증가함을 확인하였으며, 심지어 산화티탄 전구체 용액이 10% 첨가되었을 때의 백금/산화티탄 박막과 산화티탄 전구체 용액이 40% 첨가되었을 때의 산화티탄 박막의 파라니트로페놀 분해율이 거의 비슷함을 볼 수 있다. When the titanium oxide precursor solution was added at a volume ratio of 10% and 40% with respect to the reverse micelle solution, it was confirmed that the decomposition effect of paranitrophenol was significantly increased by the addition of platinum, even when 10% of the titanium oxide precursor solution was added. It can be seen that the decomposition rate of paranitrophenol in the titanium oxide thin film when the platinum / titanium oxide thin film and the titanium oxide precursor solution were added 40%.
또한, 산화티탄 전구체 용액이 80% 첨가되었을 때, 10% 또는 40% 첨가되었을 때에 비해 산화티탄 박막 또는 백금/산화티탄 박막에 의한 파라니트로페놀 분해가 급격히 증가하는 경향을 보였으며, 5시간 후 상기 박막은 파라니트로페놀 용액의 약 75%를 완전히 분해하였다. 이 경우 예외적으로 백금 첨가에 의한 광촉매 활성의 증가 경향이 뚜렷이 관찰되지는 않았는데, 이는 메조세공성 산화티탄 구조체가 갖는 특성 등에서 기인된 결과라고 생각된다.In addition, when 80% of the titanium oxide precursor solution was added, the decomposition of paranitrophenol by the titanium oxide thin film or the platinum / titanium oxide thin film tended to increase rapidly compared to when 10% or 40% was added. The thin film completely degraded about 75% of the paranitrophenol solution. In this case, an exceptional tendency of increasing photocatalytic activity due to the addition of platinum was not clearly observed, which is considered to be a result due to the characteristics of the mesoporous titanium oxide structure.
광촉매 활성에 대한 메커니즘은 에너지밴드다이어그램으로 알 수 있는데(도 7 참조), 상기 실시예 1 박막의 광촉매성이 증가된 이유는 광전이된 전자가 산화티탄에서 백금으로 이동하여, 광전이된 전자(electron)-홀(hole) 쌍들(pairs) 사이의 재결합을 방해하기 때문이다. 전자와 재결합하기 위해서는 홀이 필요한데, 홀의 농도가 굉장히 낮아 슈퍼옥사이드 음이온 라디칼(superoxide anion radical)과 같은 활성 물질을 형성하는 환원반응과 결합할 가능성이 높아진다. 상기 슈퍼옥사이드 음이온 라디칼은 매우 강한 산화성 물질이며, 유기 물질을 굉장히 효율적으로 분해할 수 있다.The mechanism for the photocatalytic activity can be seen in the energy band diagram (see FIG. 7). The reason why the photocatalytic property of the thin film of Example 1 is increased is that the photoelectron moves from titanium oxide to platinum and thus the photoelectron ( This is because it prevents recombination between electron-hole pairs. Holes are required to recombine with electrons, and the concentration of holes is so low that they are more likely to combine with the reduction reactions that form active materials such as superoxide anion radicals. The superoxide anion radical is a very strong oxidizing material and can decompose organic materials very efficiently.
Claims (20)
(b) 백금 전구체를 알코올 용매와 혼합하여 콜로이드 용액을 제조하는 단계;
(c) 산화티탄 전구체를 알코올 용매와 혼합하여 졸-겔 전구체 용액을 제조하는 단계; 및
(d) 상기 단계 (b)에서 제조된 콜로이드 용액 및 단계 (c)에서 제조된 졸-겔 전구체 용액을 단계 (a)에서 제조된 역마이셀 용액과 혼합하여 콜로이드 용액 및 졸-겔 전구체 용액을 함유하는 역마이셀 용액을 제조하는 단계;를 포함하되,
상기 단계 (d)에서, 단계(a)의 역마이셀 용액에 대하여 단계(c)의 산화티탄 졸-겔 전구체 용액이 40 내지 80%의 부피비가 되도록 혼합하는 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
(a) dissolving the self-assembling diblock copolymer in a solvent to prepare a reverse micelle solution;
(b) mixing the platinum precursor with an alcohol solvent to prepare a colloidal solution;
(c) mixing the titanium oxide precursor with an alcohol solvent to prepare a sol-gel precursor solution; And
(d) mixing the colloidal solution prepared in step (b) and the sol-gel precursor solution prepared in step (c) with the reverse micelle solution prepared in step (a) to contain the colloidal solution and the sol-gel precursor solution. Preparing a reverse micelle solution;
In step (d), mesoporous platinum-oxidation, characterized in that the titanium oxide sol-gel precursor solution of step (c) is mixed in a volume ratio of 40 to 80% with respect to the reverse micelle solution of step (a). Method for producing titanium nanostructures.
(e) 콜로이드 용액 및 졸-겔 전구체 용액을 함유하는 역마이셀 용액을 기판 상에 코팅하여 금속-산화티탄-블록공중합체 박막을 제조하는 단계; 및
(f) 상기 박막을 후처리 하여 자기 조립 공중합체를 제거하는 단계를 추가로 포함하는 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 1,
(e) coating a reverse micelle solution containing a colloidal solution and a sol-gel precursor solution onto a substrate to produce a metal-titanium oxide-block copolymer thin film; And
(f) post-treating the thin film to remove the self-assembling copolymer, further comprising the step of producing a mesoporous platinum-titanium oxide nanostructure.
상기 단계 (a)의 자기 조립 이중블록 공중합체가 양친성 이중블록 공중합체인 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 1,
Method for producing a mesoporous platinum-titanium oxide nanostructure, characterized in that the self-assembling diblock copolymer of step (a) is an amphiphilic diblock copolymer.
상기 양친성 이중블록 공중합체가 폴리(스티렌-블록-에틸렌 옥사이드) (Poly(styrene-b-ethylene oxide, PS-b-PEO), 폴리스티렌-블록-폴리(4-비닐피리딘)(PS-b-P4VP), 폴리스티렌-블록-폴리(2-비닐피리딘)(PS-b-P2VP), 폴리(스티렌-블록-메타크릴산메틸) (Poly(styrene-b-methyl methacrylate), 폴리(스티렌-블록-아크릴산) (Poly(styrene-b-acrylic acid), 폴리(부타디엔-블록-에틸렌 옥사이드) (Poly(butadiene-b-ethylene oxide) 및 폴리(프로필렌-블록-에틸렌 옥사이드) (Poly(propylene-b-ethylene oxide)로 이루어진 그룹으로부터 선택되는 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 3,
The amphiphilic diblock copolymer is poly (styrene-block-ethylene oxide) (Poly (styrene-b-ethylene oxide, PS-b-PEO), polystyrene-block-poly (4-vinylpyridine) (PS-b- P4VP), polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), poly (styrene-block-methyl methacrylate) (Poly (styrene-b-methyl methacrylate), poly (styrene-block- Poly (styrene-b-acrylic acid), poly (butadiene-block-ethylene oxide) (Poly (butadiene-b-ethylene oxide) and poly (propylene-block-ethylene oxide) (Poly (propylene-b-ethylene method of producing a mesoporous platinum-titanium oxide nanostructure, characterized in that it is selected from the group consisting of.
상기 단계 (a)의 용매는 이중블록 공중합체의 어느 한 쪽 블록만을 선택적으로 용해시키는 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 1,
The solvent of step (a) is a method for producing a mesoporous platinum-titanium oxide nanostructure, characterized in that to selectively dissolve only one block of the diblock copolymer.
상기 용매는 톨루엔, 클로로포름, 테트라하이드로푸란(THF), 디메틸포름아마이드(DMF, Dimethylformamide), 벤젠, 사이클로헥산(cyclohexane), 헥산(Hexane) 및 에틸 아세테이트(ethyl acetate)으로 이루어진 그룹으로부터 선택되는 어느 하나인 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 1,
The solvent is any one selected from the group consisting of toluene, chloroform, tetrahydrofuran (THF), dimethylformamide (DMF, Dimethylformamide), benzene, cyclohexane, hexane and ethyl acetate. Method for producing a mesoporous platinum-titanium oxide nanostructure, characterized in that.
상기 단계 (a)의 역마이셀 용액이 자기 조립 이중블록 공중합체를 0.1 내지 1.5중량% 함유하는 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 1,
Method for producing a mesoporous platinum-titanium oxide nanostructure, characterized in that the reverse micelle solution of step (a) contains 0.1 to 1.5% by weight of the self-assembling diblock copolymer.
상기 단계 (b)의 백금 전구체 콜로이드 용액이 금속 전구체를 0.1 내지 5중량% 함유하는 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 1,
Method for producing a mesoporous platinum-titanium oxide nanostructure, characterized in that the platinum precursor colloidal solution of step (b) contains 0.1 to 5% by weight of a metal precursor.
상기 단계 (b) 및 (c)에서 사용되는 알코올 용매가 프로판올, 메탄올, 에탄올 및 부탄올로 이루어진 그룹으로부터 선택되는 하나 이상의 용매 또는 이들의 혼합용매인 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 1,
Mesoporous platinum-titanium oxide nanostructures, characterized in that the alcohol solvent used in steps (b) and (c) is at least one solvent selected from the group consisting of propanol, methanol, ethanol and butanol or a mixed solvent thereof. Manufacturing method.
산화티탄 전구체가 티타늄 알콕사이드인 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 1,
A method for producing a mesoporous platinum-titanium oxide nanostructure, wherein the titanium oxide precursor is titanium alkoxide.
상기 단계 (c)가
(c1) 산화티탄 전구체를 알코올 용매에 넣고, 여기에 산을 첨가하는 단계; 및
(c2) 알코올 용매를 추가로 첨가하여 희석하고 혼합하는 단계를 포함하는 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 1,
Step (c)
(c1) placing a titanium oxide precursor in an alcohol solvent and adding an acid thereto; And
(c2) further adding, diluting and mixing the alcohol solvent to prepare the mesoporous platinum-titanium oxide nanostructure.
산이 빙초산, 염산, 질산 및 포름산으로 이루어진 그룹으로부터 선택되는 하나의 산 또는 상기 그룹으로부터 선택되는 2종 이상의 혼합산인 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 12,
A method for producing a mesoporous platinum-titanium oxide nanostructure, characterized in that the acid is one acid selected from the group consisting of glacial acetic acid, hydrochloric acid, nitric acid and formic acid, or two or more mixed acids selected from the group.
단계 (d)에서, 단계(a)의 역마이셀 용액의 에틸렌옥사이드에 대한 단계(b)의 금속의 몰비(Pt/EO)가 0.1 내지 0.5가 되도록 혼합하는 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 1,
In step (d), the mesoporous platinum-oxidation is characterized in that the molar ratio (Pt / EO) of the metal of step (b) to the ethylene oxide of the reverse micelle solution of step (a) is 0.1 to 0.5. Method for producing titanium nanostructures.
기판이 실리콘 웨이퍼, 유리, 쿼츠, 금속 기판 및 플라스틱 기판으로 이루어진 그룹으로부터 선택되는 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 2,
A method for producing a mesoporous platinum-titanium oxide nanostructure, characterized in that the substrate is selected from the group consisting of silicon wafers, glass, quartz, metal substrates and plastic substrates.
상기 단계 (f)에서의 후처리가 자외선 조사, 산소 플라즈마 노출 및 열처리로 이루어진 그룹으로부터 선택되는 것을 특징으로 하는 메조세공성 백금-산화티탄 나노 구조체의 제조방법.
The method of claim 2,
The post-treatment in step (f) is selected from the group consisting of ultraviolet irradiation, oxygen plasma exposure and heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100017011A KR101172373B1 (en) | 2010-02-25 | 2010-02-25 | Preparation method of Metal/TiO2 nanostructures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100017011A KR101172373B1 (en) | 2010-02-25 | 2010-02-25 | Preparation method of Metal/TiO2 nanostructures |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110097253A KR20110097253A (en) | 2011-08-31 |
KR101172373B1 true KR101172373B1 (en) | 2012-08-08 |
Family
ID=44932299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100017011A KR101172373B1 (en) | 2010-02-25 | 2010-02-25 | Preparation method of Metal/TiO2 nanostructures |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101172373B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101365754B1 (en) * | 2012-04-09 | 2014-02-24 | 한국과학기술원 | Preparation of metal decorated hybrid microspheres with controlled surface nanostructures |
KR102572120B1 (en) * | 2021-05-25 | 2023-08-30 | 한국과학기술원 | Method for manufacturing composite material containing carbon-noble metal and forming of composite structure |
-
2010
- 2010-02-25 KR KR1020100017011A patent/KR101172373B1/en not_active IP Right Cessation
Non-Patent Citations (3)
Title |
---|
논문1:NEW J. CHEM(2009) |
논문2:BULL. KOREAN CHEM. SOC(2007)* |
논문3:J. MATER. CHEM(2009) |
Also Published As
Publication number | Publication date |
---|---|
KR20110097253A (en) | 2011-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jangid et al. | Polyaniline-TiO 2-based photocatalysts for dyes degradation | |
Sarma et al. | Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO microrods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system | |
Ghiyasiyan-Arani et al. | Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization | |
Sudha et al. | Review on the photocatalytic activity of various composite catalysts | |
Khan et al. | Defect-induced band gap narrowed CeO2 nanostructures for visible light activities | |
Guo et al. | Microscale hierarchical three-dimensional flowerlike TiO2/PANI composite: synthesis, characterization, and its remarkable photocatalytic activity on organic dyes under UV-light and sunlight irradiation | |
Sang et al. | TiO2 nanoparticles as functional building blocks | |
Sabzehmeidani et al. | Electrospinning preparation of NiO/ZnO composite nanofibers for photodegradation of binary mixture of rhodamine B and methylene blue in aqueous solution: central composite optimization | |
Temerov et al. | Silver-decorated TiO2 inverse opal structure for visible light-induced photocatalytic degradation of organic pollutants and hydrogen evolution | |
US9346913B2 (en) | Methods of preparing monodispersed polydopamine nano- or microspheres, and methods of preparing nano- or microstructures based on the polydopamine nano- or microspheres | |
KR101446327B1 (en) | Hydrid Photocatalyst Nanoparticle with Improved Photoactivity and Method for Preparing the Same | |
Zhang et al. | Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation | |
Lin et al. | Facile synthesis of heterostructured ZnO–ZnS nanocables and enhanced photocatalytic activity | |
Lee et al. | Titania nanocoating on MnCO3 microspheres via liquid-phase deposition for fabrication of template-assisted core–shell-and hollow-structured composites | |
Baruah et al. | Optoelectronically suitable graphene oxide-decorated titanium oxide/polyaniline hybrid nanocomposites and their enhanced photocatalytic activity with methylene blue and rhodamine B dye | |
Goncalves et al. | Synthesis of TiO2 nanocrystals with a high affinity for amine organic compounds | |
Pawar et al. | Surface modification of titanium dioxide | |
Wang et al. | Photocatalytic surface-initiated polymerization on TiO2 toward well-defined composite nanostructures | |
Zhang et al. | Well-dispersed Pt nanocrystals on the heterostructured TiO2/SnO2 nanofibers and the enhanced photocatalytic properties | |
Chen et al. | Terephthalate acid decorated TiO2 for visible light driven photocatalysis mediated via ligand-to-metal charge transfer (LMCT) | |
Huang et al. | Facile in situ synthesis of Ag and Bi co-decorated BiOCl heterojunction with high photocatalytic performance over the full solar spectrum | |
KR20110134701A (en) | 3d multilayer structures and method for preparing thereof | |
Kumar | Mixed phase lamellar titania-titanate anchored with Ag2O and polypyrrole for enhanced adsorption and photocatalytic activity | |
KR101012123B1 (en) | Preparation method of metal/zinc oxide hetero nanostructures with enhanced photocatalytic efficiency and metal/zinc oxide hetero nanostructures | |
Eskalen et al. | Investigating the PVA/TiO2/CDs polymer nanocomposites: effect of carbon dots for photocatalytic degradation of Rhodamine B |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170202 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170728 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |