KR101170488B1 - Reversible formaldehyde detection sensor and manufacturing method thereof - Google Patents
Reversible formaldehyde detection sensor and manufacturing method thereof Download PDFInfo
- Publication number
- KR101170488B1 KR101170488B1 KR1020090132060A KR20090132060A KR101170488B1 KR 101170488 B1 KR101170488 B1 KR 101170488B1 KR 1020090132060 A KR1020090132060 A KR 1020090132060A KR 20090132060 A KR20090132060 A KR 20090132060A KR 101170488 B1 KR101170488 B1 KR 101170488B1
- Authority
- KR
- South Korea
- Prior art keywords
- formaldehyde
- detection sensor
- detection
- reversible
- formula
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/78—Ring systems having three or more relevant rings
- C07D311/80—Dibenzopyrans; Hydrogenated dibenzopyrans
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
- G01N21/783—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/22—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
본 발명은 가역적 포름알데히드 검출 센서, 검출 방법 및 검출 장치에 관한 것이다. 본 발명의 가역적 포름알데히드 검출 센서는 하기 화학식 1로 표시되는 물질을 포함하는 것을 특징으로 한다.The present invention relates to a reversible formaldehyde detection sensor, a detection method and a detection device. Reversible formaldehyde detection sensor of the present invention is characterized in that it comprises a substance represented by the following formula (1).
[화학식 1][Formula 1]
본 발명의 가역적 포름알데히드 검출 센서, 검출 방법 및 검출 장치에 따르면, 포름알데히드와 가역적으로 반응하여 형광 물질을 생성할 수 있는 소정 물질을 개발하여 이를 활용함으로써, 공존가스의 방해를 받지 않고 포름알데히드만을 정확하게 정량할 수 있는 선택성이 우수하고, 계속적으로 재사용이 가능하여 소요 비용이 절감되며, 민감도가 우수하여 정밀한 검출이 가능하며, 응답속도가 매우 빠른 장점이 있다.According to the reversible formaldehyde detection sensor, the detection method and the detection apparatus of the present invention, by developing and utilizing a predetermined material capable of generating a fluorescent material by reversibly reacting with formaldehyde, only formaldehyde without being disturbed by coexistence gas Excellent selectivity to quantify accurately, and can be reused continuously, reducing the cost, high sensitivity, precise detection, and the response speed is very fast.
가역적, 포름알데히드, 검출, 센서, 발광, 형광체 Reversible, Formaldehyde, Detection, Sensor
Description
본 발명은 가역적 포름알데히드 검출 센서, 검출 방법 및 검출 장치에 관한 것으로, 더욱 상세하게는 공존가스의 방해를 받지 않고 포름알데히드만을 정확하게 정량할 수 있는 선택성이 우수하고, 계속적으로 재사용이 가능하여 소요 비용이 절감되며, 정밀한 검출이 가능하며, 응답시간을 단축시킬 수 있는 가역적 포름알데히드 검출 센서, 검출 방법 및 검출 장치에 관한 것이다. The present invention relates to a reversible formaldehyde detection sensor, a detection method and a detection apparatus, and more particularly, it is excellent in selectivity capable of accurately quantifying only formaldehyde without being disturbed by coexistent gas, and can be reused continuously, thus requiring cost. The present invention relates to a reversible formaldehyde detection sensor, a detection method, and a detection apparatus capable of reducing the amount of time, accurate detection, and reducing the response time.
현재의 주거 환경, 특히 화학 물질을 포함하는 건재 및 내장재를 사용하는 주택 및 빌딩 등의 건축물의 고기밀화(高氣密化)는, 건재 및 내장재로부터 대기 중에 방산되는 각종 화학 물질에 의해 거주자 및 사용자 등에게 각종 신체 질환을 발생시키고 있다.The high density of buildings, such as houses and buildings that use the current building environment, especially building materials and interior materials containing chemicals, is inhabited by users and users by various chemicals released from the building materials and interior materials into the atmosphere. Various body diseases are caused to the back.
이들의 증상은 다양하고, 이들의 발증 원인에 대해서는 아직 밝혀지지 않은 부분이 많으며 각종 복합 요인이 고려되어야 한다. 통상적으로 이들 증상은 새집증 후군(sick house syndrom)으로 불리는데, 특히 합판 접착제 등의 건축용 접착제 및 의복의 호료(糊料) 등에 함유되는 포름알데히드가 이의 원인 물질 중의 하나이다. 포름알데히드에 대한 WHO의 실내 환경 기준은 0.08ppm 이하로 엄격하게 규제 되고 있다.Their symptoms vary, and the cause of their development is still unknown and various complex factors should be considered. These symptoms are commonly referred to as sick house syndrom, and formaldehyde contained in building adhesives such as plywood adhesives and clothing of clothing, and the like is one of its causes. WHO's indoor environmental standards for formaldehyde are strictly regulated below 0.08 ppm.
가스 중의 포름알데히드 농도의 측정방법 및 측정장치로는 다양한 것들이 알려져 있으며, 그 중 대표적인 것으로, Various methods are known as measuring methods and measuring apparatuses for the concentration of formaldehyde in a gas.
일본 공업 규격 JIS K0604에 준거한 포름알데히드와 하이드록실아민 포스포네이트의 반응「3HCHO + (NH2OH)3ㆍH3PO4 → H3PO4 + 3HCN=NCH + 3H2O」에 의해 생성된 유리산에 의해 색을 나타내는 지시약의 변색을 활용하는 포름알데히드 검지관;Reaction of formaldehyde and hydroxylamine phosphonate according to Japanese Industrial Standard JIS K0604 produced by `` 3HCHO + (NH 2 OH) 3 ㆍ H 3 PO 4 → H 3 PO 4 + 3HCN = NCH + 3H 2 O '' A formaldehyde detector tube utilizing the discoloration of the indicator which is colored by the free acid;
하이드록실아민 설페이트와 pH 지시약인 메틸 옐로우를 실리카 겔이 혼화된 시험지에 담지시킨 검지 탭(detection tab)에 포름알데히드를 포함하는 피검 가스를 접촉시킴으로써 포름알데히드와 하이드록실아민 설페이트가 상기와 동일하게 반응하여 생성된 유리산에 의한 시험지 표면의 변색을 발광소자(LED) 및 수광소자(PIN형 포토다이오드)를 사용하여 측정하는 방법 및 장치[멀티 가스 파인더 FP-85, 포름알데히드 모니터 FP-250FlW: 리켄케이키 제조];Formaldehyde and hydroxylamine sulfate react in the same manner as above by contacting a test gas containing formaldehyde to a detection tab on which hydroxyl yellow sulfate and methyl yellow, a pH indicator, are supported on a test paper mixed with silica gel. Method and apparatus for measuring the discoloration of the test paper surface by the free acid produced by using a light emitting element (LED) and a light receiving element (PIN type photodiode) [Multi gas finder FP-85, formaldehyde monitor FP-250FlW: Riken Kiki manufacture];
피검 가스를 통하여 포집액(0.5% H3BO3 용액)에 포름알데히드를 포집하고 당해 용액에 4-아미노-3-하이드라지노-5-머캅토-1,2,4-트리아졸(AHMT)을 가하여 알칼리 조건 하에 반응시킨 다음 당해 용액에 과요오드산칼륨(KIO4) 용액을 가하여 발색시킨 색조를 비색계 및 분광광도계를 사용하여 측정하는 방법 및 장치[실세 트(SILSET): 시마쓰세이사쿠쇼 제조];Formaldehyde is collected in the collection liquid (0.5% H 3 BO 3 solution) through the test gas and 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT) is collected in the solution. A method and apparatus for measuring color tone by adding a potassium periodate (KIO 4 ) solution to the solution and then developing the solution by using a colorimeter and a spectrophotometer. [SILSET: manufactured by Shimadzu Corporation ];
그 밖에, 포름알데히드를 흡착제에 흡착시키거나 흡수제에 흡수시켜 가스 크로마토그래피(GC) 및 고속 액체크로마토그래피(HPLC) 등의 고도의 분석기기를 사용 하여 분석하는 방법; 및In addition, a method of adsorbing or adsorbing formaldehyde to an adsorbent and analyzing the resultant using an advanced analyzer such as gas chromatography (GC) and high performance liquid chromatography (HPLC); And
전극 위에서 포름알데히드를 산화시켜, 산화 전위를 측정하는 정전위 전기분해법 등의 전기화학적 분석법 등이 공지되어 있다.BACKGROUND OF THE INVENTION Electrochemical analytical methods such as a potentiostatic electrolysis method for oxidizing formaldehyde on an electrode to measure oxidation potential are known.
이들 방법 중에서, 검지관 및 하이드록실아민 설페이트 시험지를 사용하는 방법이 장치가 휴대형이고 측정 결과를 측정 현장에서 알 수 있다는 이점을 갖지만, 공존 가스 중에 NO X 등의 산성가스, 아세트알데히드, 아세톤, 암모니아 등이 존재하는 경우, 이들의 영향을 받아 정확한 포름알데히드 농도를 얻을 수 없는 경우가 있다. 또한, 포름알데히드의 WHO의 실내 환경기준 0.08ppm을 검출하기 위해서는 약 30분의 통기 시간이 요구된다.Among these methods, the method of using a detection tube and a hydroxylamine sulfate test paper has the advantage that the apparatus is portable and the measurement result can be known at the measurement site, but in the coexistence gas, acid gases such as NO X, acetaldehyde, acetone, ammonia Etc. exist, these effects may not be able to obtain an accurate formaldehyde concentration. In addition, about 30 minutes of aeration time is required in order to detect 0.08 ppm of indoor environment standards of WHO of formaldehyde.
검지관 및 하이드록실아민 설페이트 시험지를 사용하는 방법 이외의 방법들도 포름알데히드 검출의 선택성, 측정시간 및 검출 강도 등에서 개선되어야 할 부분들이 많으며, 특히 포름알데히드 검출을 위해 한 번 사용되고 나면 재사용할 수 없어 소요 비용에 있어서도 문제점을 안고 있다.In addition to using the detector tube and the hydroxylamine sulfate test paper, there are many areas to be improved in the selectivity, the measurement time, and the intensity of the detection of formaldehyde, and cannot be reused once used, especially for the detection of formaldehyde. There is also a problem with the cost.
따라서, 검출의 선택성이 우수하고, 재사용이 가능하며, 정밀한 검출이 가능하고, 단축된 측정시간을 갖는 포름알데이드의 검출 센서 개발이 절실히 요구되고 있다.Therefore, there is an urgent need to develop a formaldehyde detection sensor having excellent detection selectivity, reusability, precise detection, and shortened measurement time.
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 공존가스의 방해를 받지 않고 포름알데히드만을 정확하게 정량할 수 있는 선택성이 우수하고, 계속적으로 재사용이 가능하여 소요 비용이 절감되며, 민감도가 우수하여 정밀한 검출이 가능하며, 응답속도가 빠른 포름알데히드의 검출 센서를 제공하는 것을 그 목적으로 한다. In order to solve the problems of the prior art as described above, the present invention has excellent selectivity for accurately quantifying only formaldehyde without being disturbed by coexistence gas, and can be reused continuously to reduce the required cost and excellent sensitivity. It is an object of the present invention to provide a formaldehyde detection sensor capable of precise detection and fast response speed.
또한, 상기와 같은 검출 센서를 이용한 포름알데히드의 검출 방법을 제공하는 것을 그 목적으로 한다.It is also an object of the present invention to provide a method for detecting formaldehyde using the above-described detection sensor.
또한, 상기와 같은 검출 센서를 이용한 포름알데히드의 검출 장치를 제공하는 것을 그 목적으로 한다.Moreover, it aims at providing the detection apparatus of formaldehyde using the above-mentioned detection sensor.
상기의 목적을 달성하기 위하여 본 발명자들은 예의 연구를 거듭한 결과, 포름알데히드와 가역적으로 반응하여 형광 물질을 생성할 수 있는 소정 물질을 이용하여 포름알데히드의 검출이 가능함을 확인하고, 이를 통하여 본 발명을 완성하게 되었다. In order to achieve the above object, the present inventors have intensively researched and confirmed that formaldehyde can be detected by using a predetermined substance capable of generating a fluorescent substance by reversibly reacting with formaldehyde, and through this, the present invention. To complete.
본 발명은 하기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 가역적 포름알데히드 검출 센서를 제공한다.The present invention provides a reversible formaldehyde detection sensor comprising a compound represented by the following formula (1).
[화학식 1][Formula 1]
상기 검출 센서는 포름알데히드 검출 시 형광을 발광하는 것을 특징으로 한다.The detection sensor is characterized in that to emit fluorescence upon detection of formaldehyde.
또한, 상기 검출 센서는 포름알데히드의 농도가 증가함에 따라 형광의 강도가 강해지는 것을 특징으로 한다.In addition, the detection sensor is characterized in that the intensity of fluorescence becomes stronger as the concentration of formaldehyde increases.
본 발명은 또한, 하기 화학식 2로 표시되는 화합물을 포함하는 것을 특징으로 하는 가역적 포름알데히드 검출 센서를 제공한다.The present invention also provides a reversible formaldehyde detection sensor comprising a compound represented by the following formula (2).
[화학식 2][Formula 2]
상기 검출 센서는 포름알데히드 검출 시 형광을 발광하는 것을 특징으로 하는 가역적 포름알데히드 검출 센서.The detection sensor is a reversible formaldehyde detection sensor, characterized in that to emit fluorescence upon formaldehyde detection.
또한, 상기 검출 센서는 포름알데히드의 농도가 증가함에 따라 형광의 강도가 강해지는 것을 특징으로 하는 가역적 포름알데히드 검출 센서.In addition, the detection sensor is a reversible formaldehyde detection sensor, characterized in that the intensity of fluorescence becomes stronger as the concentration of formaldehyde increases.
본 발명은 또한, 상기 검출 센서를 포함하는 것을 특징으로 하는 가역적 포름알데히드 검출 센서 어레이를 제공한다.The present invention also provides a reversible formaldehyde detection sensor array comprising the detection sensor.
본 발명은 또한, 상기 검출 센서를 이용하는 포름알데히드 검출 방법을 제공한다.The present invention also provides a formaldehyde detection method using the detection sensor.
본 발명의 가역적 포름알데히드 검출 센서, 검출 방법 및 검출 장치에 따르면, 포름알데히드와 가역적으로 반응하여 형광 물질을 생성할 수 있는 소정 물질을 개발하여 이를 활용함으로써, 공존가스의 방해를 받지 않고 포름알데히드만을 정확하게 정량할 수 있는 선택성이 우수하고, 계속적으로 재사용이 가능하여 소요 비용이 절감되며, 민감도가 우수하여 정밀한 검출이 가능하며, 응답속도가 매우 빠른 장점이 있다.According to the reversible formaldehyde detection sensor, the detection method and the detection apparatus of the present invention, by developing and utilizing a predetermined material capable of generating a fluorescent substance by reversibly reacting with formaldehyde, only formaldehyde without being disturbed by coexistence gas Excellent selectivity to quantify accurately, and can be reused continuously, reducing the cost, high sensitivity, high precision detection, very fast response.
이하, 첨부된 도면을 참조하여 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
하기 화학식 3으로 표시되는 화합물은 형광을 나타내는 물질로서 잘 알려져 있다. 이 화합물의 여기파장과 형광파장은 각각 490nm, 510nm이다.The compound represented by the following formula (3) is well known as a material exhibiting fluorescence. The excitation wavelength and the fluorescence wavelength of this compound are 490 nm and 510 nm, respectively.
[화학식 3](3)
그러나, 위 화합물에 아미노기가 결합되어 있는 아래 화학식 4의 화합물은 형광을 나타내지 않는데, 이는 PET(Photoinduced Electron Transfer) Mechanism에 의해 형광이 켄칭(quenching)되기 때문이다.However, the compound represented by the following Chemical Formula 4 having an amino group bonded to the above compound does not exhibit fluorescence because the fluorescence is quenched by PET (Photoinduced Electron Transfer) Mechanism.
[화학식 4][Formula 4]
위 현상은 형광체(X)에 아미노기(-NH2)가 결합되어 있는 대부분의 화합물(X-NH2)에서 발견할 수 있는 현상이다. 그러나, 이러한 화합물을 하기 반응식 1과 같이 카르복시산과 반응시키면 PET Mechanism에 의한 quenching 현상이 없어져 형광을 나타내는 화합물이 생성된다.This phenomenon can be found in most compounds (X-NH 2 ) in which an amino group (-NH 2 ) is bonded to phosphor (X). However, when such a compound is reacted with carboxylic acid as in Scheme 1, the quenching phenomenon caused by PET mechanism is eliminated to produce a compound exhibiting fluorescence.
한편, 알데히드와 아민은 아래 반응식 2 및 반응식 3과 같이 이민을 형성하는 반응을 한다.Meanwhile, the aldehyde and the amine react with each other to form imines, as shown in Schemes 2 and 3 below.
[반응식 1][Reaction Scheme 1]
[반응식 3]Scheme 3
이를 통해, 상기 화학식 2의 화합물을 포름알데히드와 반응시키면 하기 반응식 4와 같은 반응을 하게 되며, 이 반응을 통해 생성된 화합물은 PET Mechanism에 의한 quenching 현상이 일어나지 않으므로 형광을 나타내게 된다. As a result, when the compound of Formula 2 is reacted with formaldehyde, the reaction is performed as in Scheme 4 below, and the compound produced through the reaction does not generate quenching due to PET mechanism and exhibits fluorescence.
[반응식 4]Scheme 4
그러나, 위 반응을 통해 생성된 화합물은 두 개의 분자 사이에 커플링(coupling)이 일어나 아래 화학식 5와 같은 화합물이 생성되며, 이러한 화합물 내에서 각 분자들 상호 간에 quenching이 일어나 형광이 사라지게 된다.However, the compound produced by the above reaction occurs between the coupling (coupling) between the two molecules to produce a compound as shown in the following formula (5), the quenching between each molecule in such a compound disappears the fluorescence.
[화학식 5][Chemical Formula 5]
이러한 현상은 페놀의 알파 포지션에 위치한 수소에 의해 유발되는 Mannich 반응에 의해 발생하게 된다. 본 발명은 이러한 사실에 기초하여 알파 포지션에 수소를 포름알데히드를 가역적으로 검출할 수 있는 화합물을 개발하였다.This is caused by the Mannich reaction induced by hydrogen located at the alpha position of phenol. The present invention has developed a compound capable of reversibly detecting formaldehyde with hydrogen at the alpha position.
본 발명의 가역적 포름알데히드 검출 센서는 하기 화학식 1으로 표시되는 화합물 또는 하기 화학식 2로 표시되는 화합물을 포함한다.Reversible formaldehyde detection sensor of the present invention includes a compound represented by the formula (1) or a compound represented by the formula (2).
[화학식 1][Formula 1]
[화학식 2][Formula 2]
상기 화학식 1 및 화학식 2로 표시되는 화합물들은 포름알데히드의 첨가 또는 제거에 의해 하기 반응식 5와 같이 상호 변환될 수 있다.Compounds represented by Formula 1 and Formula 2 may be mutually converted as shown in Scheme 5 by the addition or removal of formaldehyde.
[반응식 5]Scheme 5
즉, 포름알데히드가 첨가되면 화학식 1의 화합물이 포름알데히드와 반응하여 형광을 나타내는 화학식 2의 화합물로 변환되며, 포름알데히드의 농도가 증가함에 따라 형광의 강도 또한 증가하게 된다. 아울러, 포름알데히드의 농도가 감소하면 화학식 2의 화합물이 화학식 1의 화합물로 변환되면서 형광의 강도 또한 감소하게 된다.That is, when formaldehyde is added, the compound of Formula 1 is converted into a compound of Formula 2 that reacts with formaldehyde to fluoresce, and the intensity of fluorescence also increases as the concentration of formaldehyde increases. In addition, when the concentration of formaldehyde is reduced, the compound of Formula 2 is converted to the compound of Formula 1, and the intensity of fluorescence is also reduced.
화학식 1으로 표시되는 화합물 또는 화학식 2로 표시되는 화합물을 포함하는 본 발명의 포름알데히드 검출센서는 공존가스의 방해를 받지 않고 포름알데히드만을 정확하게 정량할 수 있는 선택성이 우수하고, 가역적이어서 계속적으로 재사용이 가능하여 소요 비용이 절감되고 포름알데히드의 농도 변화를 효과적으로 모니터링할 수 있다. 또한, 민감도가 우수하여 정밀한 검출이 가능하며, 응답속도가 매우 빠른 장점이 있다.Formaldehyde detection sensor of the present invention comprising a compound represented by the formula (1) or a compound represented by the formula (2) is excellent in selectivity that can accurately quantitate only formaldehyde without being disturbed by the coexistence gas, reversible and continuous reuse This reduces costs and enables effective monitoring of changes in formaldehyde concentrations. In addition, it is possible to accurately detect the excellent sensitivity, and has a very fast response speed.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the present invention. Such variations and modifications are intended to be within the scope of the appended claims.
실시예Example (포름알데히드 검출센서의 제조A)(Manufacture A of Formaldehyde Detection Sensor)
암모니아 (Ammonia, 0.182 g)와 35% 포름알데히드 (formaldehyde, 0.2mL, 2.49mmol)와 디클로로플로로센 (2’,7’-dichlorofluorescein, 1.00g , 2.49mmol) 를 메탄올 용액에 가하고 24 h동안 교반한다. 용매를 감압조건에서 제거하고 이를 과량의 클로로포름 용액에 녹인다. 이 과정을 통해 얻어진 용액으로부터 flash column chromatography(silica gel , 1:1 methanol /ethylacetate )를 이용하여 화학식 1로 표시되는 물질을 정제한다. Ammonia (Ammonia, 0.182 g), 35% formaldehyde (0.2 mL, 2.49 mmol) and dichloroflolocene (2 ', 7'-dichlorofluorescein, 1.00 g, 2.49 mmol) were added to the methanol solution and stirred for 24 h. do. The solvent is removed under reduced pressure and dissolved in an excess of chloroform solution. From the solution obtained through this process, flash column chromatography (silica gel, 1: 1 methanol / ethylacetate) is used to purify the material represented by Chemical Formula 1.
실험예Experimental Example (성능 평가)(Performance evaluation)
알데하이드의 검출 특성을 확인하기 위하여 형광 측정 장치(PL Spectrometer, 신코사 제품, 모델명:S-3100)를 이용하여 알데히드 양에 따른 형과 강도를 측정하였다. 5uM의 화학식 1 화합물이 포함된 메탄올 용액을 제조하고 이에 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 13.2, 26.4, 52.8당량의 포름알데히드를 첨가하여 형광증가를 관찰하였으며, 그 결과를 도 1의 그래프에 도시하였다. 도 1을 통해 알 수 있는 바와 같이 포름알데히드의 양이 증가함에 따라 2배 정도의 형 광이 증가함을 확인할 수 있었다.In order to confirm the detection characteristics of the aldehyde, the fluorescence measuring device (PL Spectrometer, manufactured by Shinko Corp., model name: S-3100) was measured using a form and intensity according to the amount of aldehyde. A methanol solution containing 5 μM of Formula 1 was prepared, and fluorescence increase was observed by adding 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 13.2, 26.4, and 52.8 equivalents of formaldehyde thereto. Shown in the graph of 1. As can be seen from Figure 1 it was confirmed that as the amount of formaldehyde increased the fluorescence of about 2 times.
도 1은 상기 실험예를 통해 얻어진 결과를 나타낸 그래프이다.1 is a graph showing the results obtained through the experimental example.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090132060A KR101170488B1 (en) | 2009-12-28 | 2009-12-28 | Reversible formaldehyde detection sensor and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090132060A KR101170488B1 (en) | 2009-12-28 | 2009-12-28 | Reversible formaldehyde detection sensor and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110075573A KR20110075573A (en) | 2011-07-06 |
KR101170488B1 true KR101170488B1 (en) | 2012-08-01 |
Family
ID=44915553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090132060A KR101170488B1 (en) | 2009-12-28 | 2009-12-28 | Reversible formaldehyde detection sensor and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101170488B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104327042B (en) * | 2014-09-26 | 2016-11-02 | 郑州大学 | A kind of formaldehyde quick detection reagent and preparation method and application |
KR102685161B1 (en) * | 2023-04-10 | 2024-07-12 | 한국화학연구원 | Color-changing photonic crystal structure containing a titanium-composite and an aldehyde sensor manufactured using the same |
-
2009
- 2009-12-28 KR KR1020090132060A patent/KR101170488B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR20110075573A (en) | 2011-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | A highly sulfite-selective ratiometric fluorescent probe based on ESIPT | |
Wang et al. | A ratiometric fluorescent probe for bisulphite anion, employing intramolecular charge transfer | |
Dai et al. | A highly selective fluorescent sensor for mercury ion (II) based on azathia‐crown ether possessing a dansyl moiety | |
Sutariya et al. | Novel tritopic calix [4] arene CHEF-PET fluorescence paper based probe for La3+, Cu2+, and Br−: Its computational investigation and application to real samples | |
Xu et al. | A highly sensitive naked-eye fluorescent probe for trace hydrazine based on ‘C-CN’bond cleavage | |
CN104418875A (en) | Fluorescent molecular probe for detecting fluoride ions as well as synthesis method and application thereof | |
WO2003091724A1 (en) | Method of measuring formaldehyde concentration of gas and measuring instrument | |
Sandhu et al. | Ratiometric fluorophore for quantification of iodide under physiological conditions: applications in urine analysis and live cell imaging | |
Xu et al. | A new colorimetric and far‐red fluorescent probe for hydrazine with a large red‐shifted absorption spectrum | |
CN107353300B (en) | A kind of preparation and application of phenylboronic acid hypochlorous acid colorimetric fluorescence probe | |
Karakuş et al. | Fluorescein based three-channel probe for the selective and sensitive detection of CO32− ions in an aqueous environment and real water samples | |
KR101170488B1 (en) | Reversible formaldehyde detection sensor and manufacturing method thereof | |
Shi et al. | A highly colorimetric and ratiometric fluorescent probe for the detection of fluoride ions using test strips | |
Padié et al. | A novel reaction-based, chromogenic and “turn-on” fluorescent chemodosimeter for fluoride detection | |
CN107266397A (en) | A kind of preparation and application of thiocarbamates hypochlorous acid fluorescence probe | |
KR101031314B1 (en) | Mercury ion detection sensor using phosphorescence, mercury ion detection sensor array comprising the same and method of preparing the same | |
CN113624728A (en) | Ratiometric fluorescent probe system for detecting hydrazine and method for detecting hydrazine concentration | |
CN110317175B (en) | Naphthalene derivative and synthesis method and application thereof | |
JP2001165859A (en) | Measuring method of bisphenols and polyphenols | |
CN116120918A (en) | Bimodal nanoprobe for detecting nitrite and preparation method and application thereof | |
JP3828427B2 (en) | Reagent for measuring formaldehyde and method for measuring formaldehyde using the same | |
Li et al. | A fluorescent chemosensor for Hg2+ based on a rhodamine derivative in an aqueous solution | |
CN111610172B (en) | Detection of hydrazine and cyanide in water sample by dual-response optical probe rhodamine B derivative | |
Teknikel et al. | Recent Advances in Chemodosimeters Designed for Amines | |
CN112724963A (en) | Lighting type fluorescent probe for formaldehyde detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150702 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160704 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170724 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |