KR101176823B1 - Latex modified concrete composition used polyfiber and polymer powder - Google Patents
Latex modified concrete composition used polyfiber and polymer powder Download PDFInfo
- Publication number
- KR101176823B1 KR101176823B1 KR20120041311A KR20120041311A KR101176823B1 KR 101176823 B1 KR101176823 B1 KR 101176823B1 KR 20120041311 A KR20120041311 A KR 20120041311A KR 20120041311 A KR20120041311 A KR 20120041311A KR 101176823 B1 KR101176823 B1 KR 101176823B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- concrete
- polyfiber
- latex
- resin
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
- C04B16/0616—Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B16/0641—Polyvinylalcohols; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B24/2623—Polyvinylalcohols; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/34—Natural resins, e.g. rosin
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/141—Slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B24/2641—Polyacrylates; Polymethacrylates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
본 발명은 콘크리트 조성물에 관한 것으로, 보다 상세하게는 콘크리트 분말수지 및 폴리파이버(중합섬유)를 사용한 교면포장용 라텍스 개질 콘크리트 조성물에 관한 것이다.
The present invention relates to a concrete composition, and more particularly, to a latex modified concrete composition for cross-packaging using concrete powder resin and polyfiber (polymerized fiber).
일반적으로 각종 콘크리트 구조물을 제조하는 데에는 보통콘크리트(Normal Concrete)를 사용해 왔다. 상기 보통콘크리트의 경우 시공성이 양호하다는 이점이 있는 반면 투수성이 높아 염화물이나 수분의 침투로 인하여 콘크리트가 열화되는 문제점을 가지고 있었다.In general, normal concrete (Normal Concrete) has been used to manufacture various concrete structures. In the case of the ordinary concrete, there is an advantage that the workability is good, while the water permeability has a problem that the concrete is deteriorated due to the penetration of chloride or water.
상기와 같은 문제를 해결하기 위해 2000년대 초기 일반 콘크리트에 SBR(Styrene -Butadiene Rubber) 라텍스를 첨가하여 수밀한 조직을 형성시키는 라텍스 개질콘크리트(Latex Modified Concrete)가 개발되어 사용되어 왔다.In order to solve the above problems, latex modified concrete (Latex Modified Concrete) has been developed and used to form a watertight structure by adding SBR (Styrene-Butadiene Rubber) latex to general concrete in the early 2000s.
하지만 라텍스개질콘크리트의 경우 유기재료인 라텍스와 무기재료인 시멘트의 응결차이에 의한 균열, 라텍스 필름 파괴 현상과 라텍스의 양이 과도할 경우에 콘크리트 표면에 라텍스 피막을 형성시켜 콘크리트 표면 마감성을 저하시키며 고가의 라텍스 재료비로 인해 시공비 상승이 불가피 하였다.However, in the case of latex modified concrete, latex film is formed on the concrete surface when the latex film is cracked due to the difference between the condensation of organic material latex and the cement material which is inorganic material, and the amount of latex is excessive. Due to the latex material cost of the construction cost was inevitable.
또한 2006년 다량의 광물질 혼화재와 Poly계 섬유를 결합재에 다량 첨가하여 콘크리트를 수밀화시켜 염분 침투율 저감, 동결융해 및 박리저항성을 향상시킨 고성능 콘크리트(HPC: High Performance Concrete)가 도입되어 사용되어 왔다. 상기의 콘크리트를 사용하여 교량의 수명 연장을 기대하였으나 교량 슬라브 콘크리트와의 부착성능 저하, 무기혼화재료의 과다 사용으로 균열저항성 저하와 국내에서 생산되지 않는 고가의 실리카 흄의 사용으로 높은 재료비가 문제점으로 대두되고 있다.In addition, high performance concrete (HPC: High Performance Concrete) has been introduced in 2006 by adding a large amount of mineral admixture and poly-based fiber to the binder to make the concrete watertight, thereby reducing salt penetration rate, freezing thawing and peeling resistance. Expected to extend the service life of the bridge by using the above concrete, but high material cost due to deterioration of adhesion performance with bridge slab concrete, excessive resistance of cracks due to excessive use of inorganic mixed materials, and the use of expensive silica fume not produced in Korea. It is emerging.
최근 시공성능 향상과 품질편차, 공사비 절감을 위해 결합재 내 분말수지와 섬유를 첨가한 콘크리트 조성물 개발이 연구되고 있으나 부착성능 및 염분침투저항성능이 발휘되지 못하는 문제점이 있는 것이 사실이다.
Recently, in order to improve construction performance, quality deviation, and construction cost reduction, the development of concrete composition with powder resin and fiber in binder is being studied, but it is true that there is a problem in that adhesion performance and salt penetration resistance are not exhibited.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 안출된 것으로서, 발명의 목적은 분말수지, 폴리파이버(polyfiber)와 액상 라텍스를 동시에 사용하여 콘크리트의 강도, 균열저항성능, 부착강도를 개선시키는 효과와 고가의 라텍스 사용량을 절감시켜 콘크리트의 생산비와 품질편차를 줄일 수 있는 콘크리트 조성물을 제공함에 있다.
The present invention has been made to solve the problems of the prior art as described above, the object of the invention is to improve the strength, crack resistance performance, adhesion strength of concrete by using a powder resin, polyfiber (polyfiber) and liquid latex at the same time It is to provide a concrete composition that can reduce the production cost and quality deviation of concrete by reducing the effect and the use of expensive latex.
본 발명은 시멘트계 결합재 15~20중량%, 잔골재 40~45중량%, 굵은골재 30~35중량%, 물 5~10중량% 및 액상 라텍스 1~3중량%를 포함하여 구성되는 분말수지 및 폴리파이버를 사용한 라텍스개질 콘크리트 조성물을 제공하는 것을 특징으로 한다.
The present invention is a powder resin and polyfiber comprising 15 to 20 wt% cement-based binder, 40 to 45 wt% of fine aggregate, 30 to 35 wt% of coarse aggregate, 5 to 10 wt% of water, and 1 to 3 wt% of liquid latex. To provide a latex modified concrete composition using.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
상기 시멘트계 결합재는 보통포틀랜드시멘트 60~96중량%, 팽창재 1~10중량%, 슬래그분말 1~20중량%, 분말수지 0.1~5중량%, 폴리파이버(Polyfiber) 0.01~2.0중량% 및 감수제 1~3중량%로 구성되는 것이 바람직하다.The cement-based binder is usually 60 to 96% by weight of Portland cement, 1 to 10% by weight of expansion material, 1 to 20% by weight of slag powder, 0.1 to 5% by weight of powder resin, 0.01 to 2.0% by weight of polyfiber and water reducing agent 1 to It is preferable that it consists of 3 weight%.
상기 보통포틀랜드시멘트는 60중량% 미만의 경우에는 결합재 부족으로 인한 콘크리트 강도발현 저하, 부착력 저하, 내구성이 저하되며, 거친 콘크리트가 제조되어 표면 마감성이 저하되는 문제가 있고, 96중량% 초과의 경우에는 결합재의 비표면적이 증가하여 많은 단위수량을 필요하게 되고, 작업성 저하 및 균열저항성 저하 시키는 문제가 있어 시멘트계 결합재 100중량%에 대하여 60~96중량%인 것이 바람직하다.When the ordinary portland cement is less than 60% by weight, concrete strength expression, adhesion, and durability are lowered due to the lack of a binder, and coarse concrete is produced, resulting in a problem in that the surface finish is lowered. Since the specific surface area of the binder is increased, a large amount of unit is required, and there is a problem of lowering workability and crack resistance, and it is preferably 60 to 96% by weight based on 100% by weight of the cement-based binder.
상기 팽창재는 석고계 팽창재를 사용하며, 1중량% 미만의 경우에는 콘크리트 수축에 의한 균열발생 위험이 있고 10중량% 초과의 경우에는 팽창에 의한 균열이 발생할 수 있으며, 강도를 저하시키는 문제가 있어 시멘트계 결합재 100중량%에 대하여 1~10중량%인 것이 바람직하다.The expansion material uses a gypsum-based expansion material, if less than 1% by weight there is a risk of cracking caused by the shrinkage of the concrete, if more than 10% by weight may occur due to expansion cracking, there is a problem of lowering the strength of the cement-based It is preferable that it is 1-10 weight% with respect to 100 weight% of binders.
상기 슬래그분말은 잠재수경성을 가진 고로슬래그 미분말을 사용하며, 1중량% 미만의 경우에는 성능이 고로슬래그 미분말의 성능이 거의 발현되지 못하는 문제가 있고, 20중량% 초과의 경우에는 초기 강도가 발현되지 못하는 문제가 있어 시멘트계 결합재 100중량%에 대하여 1~20중량%인 것이 바람직하다.The slag powder uses a blast furnace slag powder having a latent hydrophobicity, there is a problem that the performance of the fine blast furnace slag powder is less than 1% by weight, the initial strength is not expressed in the case of more than 20% by weight There is a problem that can not be 1 to 20% by weight based on 100% by weight cement-based binder.
상기 분말수지는 비닐아세테이트(Vinyl acetate)계, 메탈크릴산메틸 아크릴산프틸(Methyl methacrylate-butyl acrylate)계, 스티렌 부틸아크릴레이트(styrene butyl acrylate)계 등을 사용하는 것이 바람직하다. 더욱 바람직하기로는 비닐아세테이트계가 바람직하다.The powder resin is preferably vinyl acetate (Vinyl acetate), methyl methacrylate (methyl methacrylate) (butyl acrylate), styrene butyl acrylate (styrene butyl acrylate). More preferably, vinyl acetate type is preferable.
상기 분말수지는 탄력성이 우수하며 경시안정성과 내후성이 강하고 점성이 높아 접착력이 높은 폴리머 고형분으로서, 액상수지 100중량%에 대하여 비닐 아세테이트 단량체(VAM: Vinyl acetate monomer) 35~40중량%, 폴리비닐알코올(PVA: Polyvinyl alcohol) 0.5~2중량%, 2-페녹시에탄올(2-Phenoxyethanol; Ethylene Glycol Monophenyl Ether) 1~5중량% 및 물 55~60중량%를 주성분으로 혼합하여 제조된 액상수지를 고형화 시킨 것을 사용하는 것이 바람직하다. The powdered resin is a polymer solid material having excellent elasticity, high aging stability and weather resistance, and high viscosity, and has high adhesive strength. 35 to 40% by weight of vinyl acetate monomer (VAM) based on 100% by weight of liquid resin, polyvinyl alcohol (PVA: Polyvinyl alcohol) 0.5 ~ 2 wt%, 2-phenoxyethanol (2-Phenoxyethanol; Ethylene Glycol Monophenyl Ether) 1 ~ 5 wt% It is preferable to use what was made.
상기 분말수지는 0.1중량% 미만의 경우에는 부착강도 및 염소이온침투 저항성능이 저하되는 문제가 있고 5중량% 초과의 경우에는 강도발현이 저하되는 문제가 있어 시멘트계 결합재 100중량%에 대하여 0.1~5중량%인 것이 바람직하다.When the powdered resin is less than 0.1% by weight, there is a problem that the adhesion strength and chlorine ion permeation resistance performance is lowered, and when the powdered resin is more than 5% by weight, the strength expression is lowered 0.1 to 5 with respect to 100% by weight of the cement binder It is preferable that it is weight%.
상기 폴리파이버(Polyfiber)는 폴리비닐 알콜(Polyvinyl alcohol)을 사용하는데 섬유자체에 히드록시기(OH-)를 가지고 있어 내산성, 내알칼리성, 분산성이 우수하며, 섬유의 거친 표면으로 인하여 시멘트와 부착성능이 우수하며 섬유차제의 높은 인장력과 뛰어난 탄성계수, 낮은 신장율, 높은 내후성을 가진다. 또한 단위 체적당 차지하는 섬유수가 많아 섬유의 가교작용을 통하여 시멘트 복합체의 인장강도, 휨 인성 증대 및 균열저항성 향상, 충격 및 파손, 피로 반복하중을 저항할 수 있는 높여주는 등 콘크리트의 역학적 성질을 개선시키는데 매우 효과적이다.This has got the acid resistance, alkali resistance, dispersibility is excellent and due to the rough surface of the fiber cement and the adhesion performance, wherein the poly-fiber (Polyfiber) is polyvinyl alcohol (Polyvinyl alcohol) The hydroxy group in the fiber itself (OH) for use It is excellent and has high tensile strength, excellent modulus of elasticity, low elongation and high weatherability of fiber car. In addition, due to the large number of fibers per unit volume, it is possible to improve the mechanical properties of concrete such as increasing the tensile strength, flexural toughness and crack resistance of cement composites, and increasing the resistance to impact and breakage and repeated fatigue loads through fiber crosslinking. Very effective.
상기 폴리파이버(Polyfiber)는 0.01중량% 미만의 경우에는 휨강도, 인장강도 및 균열저항성능이 저하되는 문제가 있고 2.0중량% 초과의 경우에는 강도저하와 콘크리트 혼합 시 섬유가 뭉치는 문제가 있어 시멘트계 결합재 100중량%에 대하여 0.01~2.0중량%인 것이 바람직하다.When the polyfiber is less than 0.01% by weight, bending strength, tensile strength, and crack resistance are deteriorated, and in the case of more than 2.0% by weight, the strength of the fiber and agglomeration of concrete when mixing concrete cement-based binder It is preferable that it is 0.01 to 2.0 weight% with respect to 100 weight%.
상기 감수제는 나프탈렌계, 멜라민계 또는 폴리카르본산계 감수제 중 어느 하나인 것을 선택하여 사용하는 것이 바람직하며, 1중량% 미만의 경우에는 슬럼프 저하로 인한 작업성이 저하되고, 3중량% 초과의 경우에는 재료분리로 인한 강도저하 문제가 있어 시멘트계 결합재 100중량%에 대하여 1~3중량%인 것이 바람직하다.
The water reducing agent is preferably used to select any one of the naphthalene-based, melamine-based or polycarboxylic acid-based reducing agent, when less than 1% by weight is lowered in workability due to slump lowering, when more than 3% by weight Since there is a problem of strength deterioration due to material separation, it is preferable that the content is 1-3 wt% based on 100 wt% of the cement-based binder.
상기 시멘트계 결합재는 본 발명의 콘크리트 총 조성물에 대하여 15~20중량%로 사용하는 것이 바람직하다. 15중량% 미만의 경우에는 강도와 부착력 저하 및 염화물침투 저항성, 동결융해 저항성 등이 저하되며, 20중량% 초과의 경우에는 작업성 및 균열저항성이 저하된다.
The cement-based binder is preferably used in 15 to 20% by weight based on the total concrete composition of the present invention. If it is less than 15% by weight, the strength and adhesion deterioration, chloride penetration resistance, freeze-thawing resistance, etc. are lowered, and when it exceeds 20% by weight, workability and cracking resistance are lowered.
상기 잔골재는 본 발명의 콘크리트 총 조성물에 대하여 40~45중량%로 사용하는 것이 바람직하다. 40중량% 미만의 경우에는 콘크리트의 강도 성능 및 표면마감성이 저하되는 문제가 발생되며, 45중량% 초과의 경우에는 재료분리 및 강도성능이 저하되는 문제가 발생된다.
The fine aggregate is preferably used in 40 to 45% by weight relative to the total composition of the concrete of the present invention. If less than 40% by weight, a problem occurs that the strength performance and surface finish of the concrete is lowered, in the case of more than 45% by weight material separation and strength performance is reduced.
상기 굵은골재는 본 발명의 콘크리트 총 조성물에 대하여 30~35중량%로 사용하는 것이 바람직하다. 30중량% 미만의 경우에는 강도성능 및 작업성이 저하되고, 단위수량이 증가되는 문제가 발생되며, 35중량% 초과의 경우에는 거친 콘크리트가 제조되어 표면마감성이 저하되는 문제가 발생된다.
The coarse aggregate is preferably used in 30 to 35% by weight relative to the total composition of the concrete of the present invention. If less than 30% by weight, the strength performance and workability is lowered, there is a problem that the unit quantity is increased, and when more than 35% by weight, the rough concrete is produced to cause a problem that the surface finish is lowered.
상기 물은 5중량% 미만의 경우에는 작업성 및 마감성능이 저하되고, 10중량% 초과의 경우에는 재료분리 및 블리딩의 위험과 강도성능이 저하되는 문제가 있어 본 발명의 콘크리트 총 조성물에 대하여 5~10중량%로 사용하는 것이 바람직하다.
When the water is less than 5% by weight, workability and finishing performance is lowered, and when the water content is greater than 10% by weight, there is a problem that the risk of material separation and bleeding and the strength performance is lowered. It is preferable to use it at -10 weight%.
상기 액상 라텍스는 라텍스 고형분 45~50중량%에 물 55~50중량%이며, 라텍스 고형분은 스티렌(Styrene) 60~70중량%, 부타디엔(Butadiene) 30~40중량%로 이루어진 SB(Styrene-Butadiene) 라텍스를 사용하는 것이 바람직하다.The liquid latex is 45 to 50% by weight of the latex solids 55 to 50% by weight of water, latex solids are styrene (Styrene) 60 to 70% by weight, butadiene (Butadiene) consisting of 30 to 40% by weight of SB (Styrene-Butadiene) Preference is given to using latex.
상기 액상 라텍스는 본 발명의 콘크리트 총 조성물에 대하여 1~3중량%로 사용하는 것이 바람직하며, 1중량% 미만의 경우에는 방수성능 및 부착력이 감소되고, 3중량% 초과의 경우에는 콘크리트 마감성능 저하 및 재료분리 위험이 있다.
The liquid latex is preferably used in 1 to 3% by weight with respect to the total composition of the present invention, less than 1% by weight of the waterproof performance and adhesion is reduced, in the case of more than 3% by weight of concrete finishing performance deterioration And material separation risks.
본 발명에 의한 분말수지, 폴리파이버와 액상 라텍스가 혼입된 콘크리트 조성물을 제공함으로써, 염화물이나 수분의 침투를 방지하여 콘크리트가 열화되는 것을 방지하는 것은 물론, 동결융해 저항성 및 수축저감에 따른 균열 억제효과, 장기강도, 부착강도가 향상되는 효과를 갖는다.By providing a concrete composition in which powder resin, polyfiber, and liquid latex are mixed according to the present invention, the concrete is prevented from being deteriorated by preventing the penetration of chloride or water, as well as the effect of inhibiting cracking due to freeze-thawing resistance and shrinkage reduction. It has the effect of improving long-term strength and adhesion strength.
또한, 고가인 라텍스의 사용량을 대폭 줄임으로 인해 원가절감의 효과와 콘크리트의 품질편차를 줄일 수 있다.
In addition, by significantly reducing the use of expensive latex, it is possible to reduce the effect of cost reduction and the quality deviation of concrete.
도 1은 폴리비닐알콜 섬유의 사진이다.
도 2는 분말수지와 폴리파이버(Polyfiber)가 혼합된 결합재 사진이다.
도 3은 배합사례별 길이변화율을 측정한 결과를 나타낸 그래프이다.1 is a photograph of a polyvinyl alcohol fiber.
FIG. 2 is a photograph of a binder in which powder resin and polyfiber are mixed.
Figure 3 is a graph showing the results of measuring the length change rate for each compounding case.
이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 다음의 실시예는 본 발명의 범위를 한정하는 것은 아니며, 본 발명의 기술적 사상의 범위 내에서 당업자에 의한 통상적인 변화가 가능하다.
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are not intended to limit the scope of the present invention, and ordinary changes by those skilled in the art are possible within the scope of the technical idea of the present invention.
<실시예 1>≪ Example 1 >
비닐아세테이트 분말수지를 사용한 콘크리트의 강도 측정Strength Measurement of Concrete Using Vinyl Acetate Powder Resin
본 발명의 비닐아세테이트 분말수지의 특성은 하기의 표 1에 나타내었다.The properties of the vinyl acetate powder resin of the present invention are shown in Table 1 below.
본 발명의 비닐아세테이트 분말수지(VA 수지), 메탈크릴산메틸 아크릴산프틸 분말수지(MMA 수지), 스티렌 부틸아크릴레이트 분말수지(ST 수지)를 각각 결합재인 시멘트 100중량%에 대하여 2.5중량% 사용하고 기타 성분은 하기의 표 2와 같이하여 콘크리트를 제조하여 다음과 같이 콘크리트의 28일 압축강도, 휨강도, 부착강도, 슬럼프를 측정하였다.The vinyl acetate powder resin (VA resin), the methyl methacrylate acrylate powder resin (MMA resin), and the styrene butyl acrylate powder resin (ST resin) of the present invention were each used in an amount of 2.5% by weight based on 100% by weight cement. Other components were prepared in the concrete as shown in Table 2 below to measure the 28-day compressive strength, flexural strength, adhesion strength, slump of concrete as follows.
대조군으로 상기 수지를 사용하지 않은 일반콘크리트를 제조하였다.General concrete without the resin was prepared as a control.
그 결과를 하기의 표 2에 나타내었다.
The results are shown in Table 2 below.
슬럼프 측정Slump measurement
KS F 2402「콘크리트의 슬럼프 시험방법」에 따라 바닥면 안지름 20cm, 윗면 안지름 10cm, 높이 30cm 및 두께 1.5mm 이상인 슬럼프 콘에 콘크리트를 1/3씩 25회 봉 다짐을 하여 채워 넣고 슬럼프 콘을 수직으로 들어 올린 후 콘크리트의 중앙부에서 공시체 높이와의 차를 5mm 단위로 측정하였다.
According to KS F 2402 "Test method of concrete slump", slump cone with 20cm inside diameter, 10cm inside diameter, 30cm height and 1.5mm thickness is filled with 25 rods of concrete 1/3 times, and the slump cone is vertically After lifting, the difference from the specimen height in the center of the concrete was measured in 5 mm units.
압축강도 측정Compressive strength measurement
KS F 2405「콘크리트의 압축강도 시험방법」에 따라 공시체를 그 중심축이 가압판의 중심과 일치하도록 놓은 후, 시험기의 가압판과 공시체의 끝면은 직접 밀착시키고 공시체에 충격을 주지 않도록 일정한 속도로 하중을 가해서 압축강도를 측정하였다.
Place the specimen in accordance with KS F 2405 `` Concrete Compressive Strength Test Method '' so that the central axis of the specimen coincides with the center of the platen, and then press the test plate directly to the end face of the specimen and load it at a constant speed so as not to impact the specimen. The compressive strength was measured.
휨강도 측정Flexural strength measurement
KS F 2408「콘크리트의 휨강도 시험방법」에 따라 공시체를 콘크리트를 몰드에 채웠을 때 옆면을 상하면으로 하여 베어링나비의 중앙에 놓고 지간 3등분점에 상부 가압장치를 접촉시킨 후, 공시체가 인장쪽 표면 지간방향 중심선의 3등분점 사이에서 파괴하여 휨강도를 측정하였다.
In accordance with KS F 2408, Test Method of Flexural Strength of Concrete, when the specimen is filled with concrete, the upper and lower sides of the specimen are placed in the center of the bearing butterfly with the upper and lower sides of the specimen, and the upper presser is brought into contact with the third point. The flexural strength was measured by breaking between the three points of the direction center line.
부착강도 측정Bond strength measurement
KS F 2386 「도로 포장체 부착면의 인장 접착 시험방법」에 따라 300mm×300mm×100mm의 밑판위에 시험체를 50mm두께로 타설한다. 28일 재령 후, Φ100mm 코어채취기로 시험체를 관통시켜 밑판의 일부까지 절단하고 인장 접착판을 시험체에 설치하였다. 설치된 인장 접착판을 인장시험기에 장착하여 0.1MPa/s의 속도로 유압을 가하면서 시험체를 인발하여 시험하였다.
In accordance with KS F 2386 "Test Method for Tensile Adhesion of Road Pavement Attachment Surface", the test specimen shall be placed on the base plate of 300mm × 300mm × 100mm in 50mm thickness. After 28 days of age, the specimen was penetrated with a Φ 100 mm core taker to cut a portion of the base plate, and a tensile adhesive plate was installed on the specimen. The tensile adhesive plate installed was mounted on a tensile tester, and the test piece was drawn and tested while applying hydraulic pressure at a speed of 0.1 MPa / s.
하기의 표 2에서 확인할 수 있는 바와 같이, 비닐아세테이트 분말수지의 사용이 다른 메탈크릴산메틸 아크릴산프틸 분말수지, 스티렌 부틸아크릴레이트분말수지 보다 휨강도와 부착강도를 향상시킴을 알 수 있었다.
As can be seen in Table 2 below, it was found that the use of vinyl acetate powder resin improved the flexural strength and the adhesion strength than other methyl methacrylate acrylate powder resins and styrene butyl acrylate powder resins.
<실시예 2><Example 2>
폴리비닐알콜 섬유를 사용한 콘크리트의 균열저항성능 측정Measurement of crack resistance performance of concrete using polyvinyl alcohol fiber
본 발명의 폴리비닐알콜 섬유의 표면의 거칠기를 도 1에 나타내었으며, 성능은 하기의 표 3에 나타내었다.Roughness of the surface of the polyvinyl alcohol fiber of the present invention is shown in Figure 1, the performance is shown in Table 3 below.
본 발명의 비닐아세테이트 섬유(VA 섬유), 셀룰로오스 섬유, 폴리프로필렌 섬유(PP 섬유)를 각각 결합재인 시멘트 100중량%에 대하여 1중량% 사용하고 기타 성분은 하기의 표 4와 같이하여 콘크리트를 제조하여 다음과 같이 콘크리트의 28일 압축강도, 휨강도, 부착강도, 슬럼프, 균열폭을 측정하였다.Using vinyl acetate fiber (VA fiber), cellulose fiber, polypropylene fiber (PP fiber) of the present invention 1% by weight relative to 100% by weight of cement as a binder, and other components as shown in Table 4 to produce concrete The 28-day compressive strength, flexural strength, bond strength, slump and crack width of concrete were measured as follows.
대조군으로 상기 섬유를 사용하지 않은 일반콘크리트를 제조하였다.General concrete without the fiber was prepared as a control.
그 결과를 하기의 표 4에 나타내었다.
The results are shown in Table 4 below.
슬럼프 측정Slump measurement
KS F 2402「콘크리트의 슬럼프 시험방법」에 따라 바닥면 안지름 20cm, 윗면 안지름 10cm, 높이 30cm 및 두께 1.5mm 이상인 슬럼프 콘에 콘크리트를 1/3씩 25회 봉 다짐을 하여 채워 넣고 슬럼프 콘을 수직으로 들어 올린 후 콘크리트의 중앙부에서 공시체 높이와의 차를 5mm 단위로 측정하였다.
According to KS F 2402 "Test method of concrete slump", slump cone with 20cm inside diameter, 10cm inside diameter, 30cm height and 1.5mm thickness is filled with 25 rods of concrete 1/3 times, and the slump cone is vertically After lifting, the difference from the specimen height in the center of the concrete was measured in 5 mm units.
압축강도 측정Compressive strength measurement
KS F 2405「콘크리트의 압축강도 시험방법」에 따라 공시체를 그 중심축이 가압판의 중심과 일치하도록 놓은 후, 시험기의 가압판과 공시체의 끝면은 직접 밀착시키고 공시체에 충격을 주지 않도록 일정한 속도로 하중을 가해서 압축강도를 측정하였다.
Place the specimen in accordance with KS F 2405 `` Concrete Compressive Strength Test Method '' so that the central axis of the specimen coincides with the center of the platen, and then press the test plate directly to the end face of the specimen and load it at a constant speed so as not to impact the specimen. The compressive strength was measured.
휨강도 측정Flexural strength measurement
KS F 2408「콘크리트의 휨강도 시험방법」에 따라 공시체를 콘크리트를 몰드에 채웠을 때 옆면을 상하면으로 하여 베어링나비의 중앙에 놓고 지간 3등분점에 상부 가압장치를 접촉시킨 후, 공시체가 인장쪽 표면 지간방향 중심선의 3등분점 사이에서 파괴하여 휨강도를 측정하였다.
In accordance with KS F 2408, Test Method of Flexural Strength of Concrete, when the specimen is filled with concrete, the upper and lower sides of the specimen are placed in the center of the bearing butterfly with the upper and lower sides of the specimen, and the upper presser is brought into contact with the third point. The flexural strength was measured by breaking between the three points of the direction center line.
균열폭 측정Crack width measurement
ASTM C 1581 「콘크리트의 균열발생 저항성 평가방법」에 따라 표준 강재 링 은 내부 직경:두께 12.7mm ± 0.4mm, 외부 직경: 305mm, 그리고 높이 152 mm을 갖는다. 내부링과 외부링 사이에 콘크리트 시험체를 타설하고 양생 후, 외부 강재를 탈형하였다. 시험체를 온도 21℃ ± 1.7℃, 상대습도 50 ± 4%로 일정하게 유지하며 재령 56일 동안 건조추숙으로 인한 균열발생 유무를 조사하고 균열 발생 시 균열폭 측정기를 사용하여 그 폭을 측정하였다.
According to ASTM C 1581 "Method of Evaluation of Crack Initiation Resistance of Concrete", a standard steel ring has an inner diameter of 12.7 mm ± 0.4 mm, an outer diameter of 305 mm, and a height of 152 mm. After the concrete test specimen was placed between the inner and outer rings and cured, the outer steel was demolded. The specimens were kept constant at a temperature of 21 ° C. ± 1.7 ° C. and a relative humidity of 50 ± 4%, and were examined for crack incidence due to dry aging for 56 days.
하기의 표 4에서 확인할 수 있는 바와 같이, 폴리비닐알콜 섬유를 사용한 콘크리트가 가장 작은 균열폭을 보임을 알 수 있었다.
As can be seen in Table 4 below, it was found that the concrete using polyvinyl alcohol fibers showed the smallest crack width.
<실시예 3><Example 3>
하기의 표 5와 같은 조성으로 본 발명의 분말수지 2.5중량%와 폴리머파이버 1중량%를 포함하는 시멘트계 결합재를 사용한 라텍스 개질 콘크리트 조성물을 제조하였다.
To prepare a latex modified concrete composition using a cement-based binder containing 2.5% by weight of the powder resin and 1% by weight of the polymer fiber in the composition as shown in Table 5.
<비교예 1>≪ Comparative Example 1 &
하기의 표 5와 같은 조성으로 기존의 라텍스 개질 콘크리트를 제조하였다.
Existing latex modified concrete was prepared in the composition shown in Table 5 below.
<비교예 2>Comparative Example 2
하기의 표 5와 같은 조성으로 본 발명의 분말수지 2.5중량%와 폴리머파이버 1중량%를 포함하는 시멘트계 결합재를 사용한 콘크리트를 제조하였다.
To prepare a concrete using a cement-based binder containing 2.5% by weight of the powder resin and 1% by weight of the polymer fiber in the composition as shown in Table 5.
<시험예 1>≪ Test Example 1 >
상기 실시예 3과 비교예 1 및 2에 대하여 다음과 시험방법에 따라 슬럼프, 공기량, 압축강도, 휨강도, 부착강도를 측정하였다.For Example 3 and Comparative Examples 1 and 2, the slump, air volume, compressive strength, flexural strength, and adhesive strength were measured according to the following test methods.
그 결과를 하기의 표 6에 나타내었다.
The results are shown in Table 6 below.
슬럼프 측정Slump measurement
KS F 2402「콘크리트의 슬럼프 시험방법」에 따라 바닥면 안지름 20cm, 윗면 안지름 10cm, 높이 30cm 및 두께 1.5mm 이상인 슬럼프 콘에 콘크리트를 1/3씩 25회 봉 다짐을 하여 채워 넣고 슬럼프 콘을 수직으로 들어 올린 후 콘크리트의 중앙부에서 공시체 높이와의 차를 5mm 단위로 측정하였다.
According to KS F 2402 "Test method of concrete slump", slump cone with 20cm inside diameter, 10cm inside diameter, 30cm height and 1.5mm thickness is filled with 25 rods of concrete 1/3 times, and the slump cone is vertically After lifting, the difference from the specimen height in the center of the concrete was measured in 5 mm units.
공기량 측정Air volume measurement
S F 2421「압력법에 의한 굳지않은 콘크리트의 공기량 시험방법」에 따라 콘크리트를 1/3씩 25회 봉 다짐 및 용기 옆면을 나무망치로 10회씩 두드리며 채워 넣고 표면을 고르게 한 후 덮개를 부착하고 공기가 새지 않도록 조인 후 모든 밸브를 닫고 공기 핸드 펌프로 공기실의 압력을 초기 압력보다 크게 하고, 조절 밸브를 열어 압력계의 바늘을 초기압력의 눈금에 바르게 일치시킨 후 작동밸브를 열어 공기량을 측정하였다.
According to SF 2421 `` Testing method of air volume of concrete not hardened by pressure method '', compact the concrete 25 times every 1/3 times and tap the sides of the container 10 times with a wooden hammer. After tightening all the valves, all the valves were closed, and the air pressure was increased by the air hand pump to increase the pressure in the air chamber above the initial pressure.
압축강도 측정Compressive strength measurement
KS F 2405「콘크리트의 압축강도 시험방법」에 따라 공시체를 그 중심축이 가압판의 중심과 일치하도록 놓은 후, 시험기의 가압판과 공시체의 끝면은 직접 밀착시키고 공시체에 충격을 주지 않도록 일정한 속도로 하중을 가해서 압축강도를 측정하였다.
Place the specimen in accordance with KS F 2405 `` Concrete Compressive Strength Test Method '' so that the central axis of the specimen coincides with the center of the platen, and then press the test plate directly to the end face of the specimen and load it at a constant speed so as not to impact the specimen. The compressive strength was measured.
휨강도 측정Flexural strength measurement
KS F 2408「콘크리트의 휨강도 시험방법」에 따라 공시체를 콘크리트를 몰드에 채웠을 때 옆면을 상하면으로 하여 베어링나비의 중앙에 놓고 지간 3등분점에 상부 가압장치를 접촉시킨 후, 공시체가 인장쪽 표면 지간방향 중심선의 3등분점 사이에서 파괴하여 휨강도를 측정하였다.
In accordance with KS F 2408, Test Method of Flexural Strength of Concrete, when the specimen is filled with concrete, the upper and lower sides of the specimen are placed in the center of the bearing butterfly with the upper and lower sides of the specimen, and the upper presser is brought into contact with the third point. The flexural strength was measured by breaking between the three points of the direction center line.
부착강도 측정Bond strength measurement
KS F 2386 「도로 포장체 부착면의 인장 접착 시험방법」에 따라 300mm×300mm×100mm의 밑판위에 시험체를 50mm 두께로 타설하였다. 28일 재령 후, Φ100mm 코어채취기로 시험체를 관통시켜 밑판의 일부까지 절단하고 인장 접착판을 시험체에 설치하였다. 설치된 인장 접착판을 인장시험기에 장착하여 0.1MPa/s의 속도로 유압을 가하면서 시험체를 인발하여 시험하였다.
In accordance with KS F 2386 "Test Method for Tensile Adhesion of Road Pavement Attachment Surface", a test piece was cast to a thickness of 50 mm on a base plate of 300 mm x 300 mm x 100 mm. After 28 days of age, the specimen was penetrated with a Φ 100 mm core taker to cut a portion of the base plate, and a tensile adhesive plate was installed on the specimen. The tensile adhesive plate installed was mounted on a tensile tester, and the test piece was drawn and tested while applying hydraulic pressure at a speed of 0.1 MPa / s.
하기의 표 6에서 확인할 수 있는 바와 같이, 실시예 3의 본 발명의 조성물을 사용한 콘크리트가 비교예 1의 기존 라텍스 개질 콘크리트, 비교예 2의 분말수지 및 섬유를 사용한 콘크리트보다 동일한 배합에서 더 높은 압축강도, 휨 강도 및 부착강도를 보이는 것을 알 수 있었다.
As can be seen in Table 6 below, the concrete using the composition of the present invention of Example 3 is higher compression in the same formulation than the concrete using the conventional latex modified concrete of Comparative Example 1, powdered resin of Comparative Example 2 and fibers It can be seen that the strength, the bending strength and the bond strength are shown.
<시험예 2>≪ Test Example 2 &
상기 실시예 3과 비교예 1 및 2에 대하여 시간에 따른 콘크리트의 길이변화율을 KS F 2424 「모르타르 및 콘크리트의 길이 변화 시험 방법」에 따라 공시체 제작 후 주변의 온도를 20℃ 습도를 60%로 유지하고 온도 및 습도를 유지한 상태에서 0.001mm감도를 가진 LVDT를 사용하여 시편의 길이변화를 측정한 후 길이변화율을 하기 산출식에 의하여 구하였다. The length change rate of the concrete with time for Example 3 and Comparative Examples 1 and 2 was maintained according to KS F 2424 "Testing method for changing the length of mortar and concrete" after the specimen was manufactured to maintain the ambient temperature at 20 ° C and 60% humidity. After measuring the change in the length of the specimen using LVDT having a sensitivity of 0.001mm under the condition of maintaining temperature and humidity, the rate of change of length was calculated by the following formula.
그 결과를 하기의 표 7 및 도 3에 나타내었다.
The results are shown in Table 7 and FIG. 3.
하기의 표 7 및 도 3에서 확인할 수 있는 바와 같이, 실시예 3의 본 발명의 콘크리트의 시간에 따른 콘크리트 건조수축 정도는 비교예 1 및 2에 비하여 낮음을 알 수 있었다.As can be seen in Table 7 and FIG. 3 below, the degree of concrete dry shrinkage with time of the concrete of the present invention of Example 3 was found to be lower than that of Comparative Examples 1 and 2. FIG.
이러한 사실로부터 실시예 3의 건조수축의 저감은 콘크리트 균열발생을 억제하는데 우수한 효능을 가짐을 알 수 있었다.
From this fact, it can be seen that the reduction of the dry shrinkage of Example 3 has an excellent effect of suppressing the occurrence of concrete cracking.
<시험예 3><Test Example 3>
상기 실시예 3과 비교예 1 및 2에 대하여 KS F2711에 규정한 전기전도도에 의한 콘크리트의 염소이온 침투저항성 방법으로 염소이온침투저항성능을 측정하였다.In Example 3 and Comparative Examples 1 and 2, the chlorine ion permeation resistance performance of the concrete by the electrical conductivity specified in KS F2711 was measured.
그 결과를 하기의 표 7에 나타내었다.
The results are shown in Table 7 below.
하기의 표 7에서 확인할 수 있는 바와 같이, 통과전하량이 4000 이상이면 염소이온의 투과정도가 매우 높아 침투 저항성은 불량한 수준이고, 2000~4000 이면 염소이온의 투과정도가 보통수준이며, 1000~2000이면 염소이온의 투과정도가 낮은수준이고, 100~1000이면 염소이온의 투과정도가 매우 낮은 수준이며, 100 이하이면 염소이온이 투과되지 않는 수준으로 평가하는데, 실시예 3의 본 발명의 콘크리트 조성물은 분말수지, 섬유, 라텍스를 동시에 사용하기 때문에 염소이온침투가 비교예 1의 기존의 라텍스 개질 콘크리트와 동등하며, 비교예 2의 분말수지를 사용한 콘크리트보다 방수성능이 높음을 알 수 있었다.
As can be seen in Table 7 below, the permeation resistance of chlorine ions is very high when the passing charge is 4000 or more, and the permeation resistance is poor. The permeability of chlorine ions is low level, 100 to 1000, the permeability of chlorine ions is very low, and the chlorine ion permeation level is less than 100, the concrete composition of the present invention of Example 3 powder Since resin, fiber, and latex are used at the same time, chlorine ion permeation is equivalent to the conventional latex modified concrete of Comparative Example 1, and the waterproof performance was higher than that of the concrete using the powder resin of Comparative Example 2.
Claims (5)
상기 시멘트계 결합재는 시멘트계 결합재 100중량%에 대하여 보통포틀랜드시멘트 60~96중량%, 팽창재 1~10중량%, 슬래그분말 1~20중량%, 분말수지 0.1~5중량%, 폴리파이버(Polyfiber) 0.01~2.0중량% 및 감수제 1~3중량%로 구성되는 것을 특징으로 하는 분말수지 및 폴리파이버를 사용한 라텍스 개질 콘크리트 조성물.
In the latex modified concrete composition comprising 15 to 20% by weight of cement-based binder, 40 to 45% by weight of fine aggregate, 30 to 35% by weight of coarse aggregate, 5 to 10% by weight of water and 1 to 3% by weight of liquid latex.
The cement-based binder is usually 60 to 96% by weight of the Portland cement, 1 to 10% by weight of the expansion material, 1 to 20% by weight of the slag powder, 0.1 to 5% by weight of the powder resin, polyfiber 0.01 ~ Latex modified concrete composition using a powdered resin and polyfiber, characterized in that composed of 2.0% by weight and 1 to 3% by weight of a reducing agent.
상기 분말수지는 비닐아세테이트(Vinyl acetate), 메탈크릴산메틸 아크릴산프틸(Methyl methacrylate-butyl acrylate), 스티렌 부틸아크릴레이트(styrene butyl acrylate) 중 어느 하나를 포함하는 것을 특징으로 하는 분말수지 및 폴리파이버를 사용한 라텍스 개질 콘크리트 조성물.
The method of claim 2,
The powdered resin is a vinyl resin (Vinyl acetate), methyl methacrylate (methyl methacrylate-butyl acrylate), styrene butyl acrylate (styrene butyl acrylate) comprising a powdered resin and polyfiber Used latex modified concrete composition.
상기 폴리파이버는 폴리비닐 알콜(Polyvinyl alcohol)인 것을 특징으로 하는 분말수지 및 폴리파이버를 사용한 라텍스 개질 콘크리트 조성물.
The method of claim 2,
The polyfiber is a polyvinyl alcohol (Polyvinyl alcohol), characterized in that the latex modified concrete composition using a powder resin and polyfiber.
상기 분말수지는 액상수지 100중량%에 대하여 비닐 아세테이트 단량체(Vinyl acetate monomer) 35~40중량%, 폴리비닐알코올(Polyvinyl alcohol) 0.5~2중량%, 2-페녹시에탄올(2-Phenoxyethanol) 1~5중량% 및 물 55~60중량%를 혼합하여 제조된 액상수지를 고형화 시킨 고형분인 것을 특징으로 하는 분말수지 및 폴리파이버를 사용한 라텍스 개질 콘크리트 조성물.The method of claim 2,
The powdered resin is 35 to 40% by weight of vinyl acetate monomer, 0.5 to 2% by weight of polyvinyl alcohol, and 2-phenoxyethanol to 1 to 100% by weight of liquid resin. A latex modified concrete composition using a powdered resin and polyfiber, characterized in that the solid content of the liquid resin prepared by mixing 5% by weight and 55 to 60% by weight of water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120041311A KR101176823B1 (en) | 2012-04-20 | 2012-04-20 | Latex modified concrete composition used polyfiber and polymer powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120041311A KR101176823B1 (en) | 2012-04-20 | 2012-04-20 | Latex modified concrete composition used polyfiber and polymer powder |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101176823B1 true KR101176823B1 (en) | 2012-08-24 |
Family
ID=46887752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20120041311A KR101176823B1 (en) | 2012-04-20 | 2012-04-20 | Latex modified concrete composition used polyfiber and polymer powder |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101176823B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058566A (en) * | 2013-01-15 | 2013-04-24 | 逄鲁锋 | Autogenous curing agent for cement-based material and preparation method thereof |
KR102010278B1 (en) | 2019-01-03 | 2019-08-13 | 지엘기술주식회사 | Concrete experiment equipment used for road pavement using Latex Modified Concrete, Road pavement using Latex Modified Concrete, Repair method of road pavement using Latex Modified Concrete |
KR102150334B1 (en) * | 2020-07-10 | 2020-09-01 | 주식회사 에이스머티리얼즈 | Functional blast furnace slag composition with improved compressive strength and constructability |
KR102168419B1 (en) * | 2020-07-10 | 2020-10-21 | 주식회사 에이스머티리얼즈 | Functional blast furnace slag composition with improved grinding efficiency and initial strength |
KR102253333B1 (en) * | 2020-11-11 | 2021-05-20 | 주식회사 정우 | Manufacturing method of pedestrian-vehicle passage block and thereof product |
CN113716906A (en) * | 2021-09-22 | 2021-11-30 | 宁波佳凝新材料有限公司 | Concrete with crack resistance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100769853B1 (en) | 2006-06-02 | 2007-10-24 | 주식회사 웸 | Self-leveling mortar composition |
KR100884355B1 (en) | 2008-06-10 | 2009-02-17 | 양희용 | Concrete composite contained textile polymer, concrete cross surface pavement using it and repair method of concrete structure |
KR101038538B1 (en) | 2010-09-07 | 2011-06-02 | 주식회사 이콘스 | Road paving material composition enhanced water permeability and relentivity using pva fiber and latex, road paving method using the same |
-
2012
- 2012-04-20 KR KR20120041311A patent/KR101176823B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100769853B1 (en) | 2006-06-02 | 2007-10-24 | 주식회사 웸 | Self-leveling mortar composition |
KR100884355B1 (en) | 2008-06-10 | 2009-02-17 | 양희용 | Concrete composite contained textile polymer, concrete cross surface pavement using it and repair method of concrete structure |
KR101038538B1 (en) | 2010-09-07 | 2011-06-02 | 주식회사 이콘스 | Road paving material composition enhanced water permeability and relentivity using pva fiber and latex, road paving method using the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058566A (en) * | 2013-01-15 | 2013-04-24 | 逄鲁锋 | Autogenous curing agent for cement-based material and preparation method thereof |
KR102010278B1 (en) | 2019-01-03 | 2019-08-13 | 지엘기술주식회사 | Concrete experiment equipment used for road pavement using Latex Modified Concrete, Road pavement using Latex Modified Concrete, Repair method of road pavement using Latex Modified Concrete |
KR102150334B1 (en) * | 2020-07-10 | 2020-09-01 | 주식회사 에이스머티리얼즈 | Functional blast furnace slag composition with improved compressive strength and constructability |
KR102168419B1 (en) * | 2020-07-10 | 2020-10-21 | 주식회사 에이스머티리얼즈 | Functional blast furnace slag composition with improved grinding efficiency and initial strength |
KR102253333B1 (en) * | 2020-11-11 | 2021-05-20 | 주식회사 정우 | Manufacturing method of pedestrian-vehicle passage block and thereof product |
CN113716906A (en) * | 2021-09-22 | 2021-11-30 | 宁波佳凝新材料有限公司 | Concrete with crack resistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101176823B1 (en) | Latex modified concrete composition used polyfiber and polymer powder | |
KR101193390B1 (en) | Polymer modified early strength cement concrete composite and repairing method of concrete structure using the composite | |
KR101355406B1 (en) | Early strength type concrete composite with excellent durability and repairing method of road pavement using the composite | |
KR100792015B1 (en) | Self leveling polymer-modified mortar composition having improved strength and durability | |
KR101672700B1 (en) | Cement concrete composite with high performance and self-repairing and repair method for concrete structure using the composite | |
Mallat et al. | Mechanical investigation of two fiber-reinforced repair mortars and the repaired system | |
Li et al. | Properties of polymer modified steel fiber-reinforced cement concretes | |
Cui et al. | Bond Stress between Steel‐Reinforced Bars and Fly Ash‐Based Geopolymer Concrete | |
CN110668762A (en) | Cement-based waterborne epoxy mortar and preparation method and application thereof | |
KR101720034B1 (en) | A high early strength cement concrete composition having the self-healing for road pavement and a repairing method of road pavement using the same | |
KR102423871B1 (en) | Crack resisting hybrid fiber-reinforced cementitious mortar composition having excellent repairing method using the same | |
KR101168966B1 (en) | Ultra rapid harding latex modified concrete composition used poly fiber and polymer powder | |
Salih et al. | Effect of polypropylene fibers on properties of mortar containing crushed bricks as aggregate | |
KR100927377B1 (en) | A method for producing high performance concrete | |
CN111087203B (en) | High-damping concrete and preparation method thereof | |
Palson et al. | Mechanical properties of latex modified concrete with silica fume | |
Sierra Beltran et al. | Performance of SHCC with bacteria for concrete patch repair | |
CN107406323B (en) | SBS latex for concrete modification | |
CN106747056B (en) | Ultrahigh-strain high-strength thermal insulation material and preparation method thereof | |
Li et al. | Static and dynamic behavior of extruded sheets with short fibers | |
Nabavi et al. | Experimental investigation on mix design and mechanical properties of polymer (Latex) modified concrete | |
KR101665486B1 (en) | Overlay pavement and reinforcing method for bridge deck by synthetic latex modified concrete based acrylate for concrete confusion | |
Hamedanimojarrad et al. | Development of shrinkage resistant microfibre-reinforced cement-based composites | |
CN115215598A (en) | Ultrahigh-ductility concrete and preparation method thereof | |
Wu et al. | Properties and microstructure of polymer emulsions modified fibers reinforced cementitious composites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150603 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160624 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170613 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190812 Year of fee payment: 8 |