[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101163335B1 - 수신신호강도의 거리 추정 방식에 의거한 실내 무선 측위 방법 및 이 방법을 실시하기 위한 프로그램이 기록된 기록매체 - Google Patents

수신신호강도의 거리 추정 방식에 의거한 실내 무선 측위 방법 및 이 방법을 실시하기 위한 프로그램이 기록된 기록매체 Download PDF

Info

Publication number
KR101163335B1
KR101163335B1 KR1020110033443A KR20110033443A KR101163335B1 KR 101163335 B1 KR101163335 B1 KR 101163335B1 KR 1020110033443 A KR1020110033443 A KR 1020110033443A KR 20110033443 A KR20110033443 A KR 20110033443A KR 101163335 B1 KR101163335 B1 KR 101163335B1
Authority
KR
South Korea
Prior art keywords
estimated
distance
distances
tetrahedron
error
Prior art date
Application number
KR1020110033443A
Other languages
English (en)
Inventor
김성철
이정규
박주현
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020110033443A priority Critical patent/KR101163335B1/ko
Application granted granted Critical
Publication of KR101163335B1 publication Critical patent/KR101163335B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0263Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

실내에서 무선으로 위치를 추정함에 있어서 범위기반 위치추정방식으로 분류되는 삼변측량의 위치 추정 정확도 향상을 위한 방법이 개시된다. 삼변측량을 사용하여 위치를 추정할 때 상대적으로 큰 위치 추정 오차를 발생시킬 수 있는 경우를 사면체를 위한 헤론의 공식을 적용하여 분류한다. 분류과정에서 얻어진 부피의 절댓값을 이용하여 측정된 추정 거리를 신뢰성 있는 추정 거리로 변환한다. 그렇게 변환된 추정 거리는 오차가 크게 감소된 것이므로, 그 추정 거리를 이용하여 삼변측량을 하여 위치 추정을 하면 보다 정확한 위치 추정이 가능하다.

Description

수신신호강도의 거리 추정 방식에 의거한 실내 무선 측위 방법 및 이 방법을 실시하기 위한 프로그램이 기록된 기록매체 {Wireless localization method based on RSSI at indoor environment and a recording medium in which a program for the method is recorded}
본 발명은 실내 무선 측위 기술에 관한 것으로서, 보다 상세하게는 무선 측위 방법 중의 하나인 범위기반 위치추정방식(range based approach)에 의거한 수신신호강도(Received Signal Strength Indicator: RSSI) 방법을 이용한 무선 측위 방법의 정확도 개선에 관한 것이다.
최근 스마트 폰에 대한 관심이 폭발적으로 증가하면서 증강현실과 같은 위치기반 서비스(LBS, Location Based Service)가 큰 주목을 받고 있다. 위치기반 서비스는 서비스를 요구하는 사용자의 위치에 대한 측위가 정확하게 이루어져야 가능하다.
현재까지 제안된 대표적인 무선 측위 방법으로는 범위무제한 위치추정방식(Range free approach)과 범위기반 위치추정방식(Range based approach)이 있다. 사용자의 위치를 추정함에 있어서 송신단과 수신단 사이의 거리에 대한 정보 없이 위치를 추정하는 접근 방법이 범위무제한 위치추정방식이고, Cell-ID와 RFID방식이 여기에 속한다. 반면에 범위기반 위치추정방식은 수신단과 송신단 사이의 거리에 대한 정보를 바탕으로 위치를 추정하는 방법이며, GPS, 삼변측량 그리고 최소제곱법 등이 이 방식에 속한다.
GPS 방식은 옥외 환경에서는 일정수준 이상의 정확도로 위치정보를 제공하지만, 위성을 이용하여 위치정보를 얻기 때문에 실내에서의 측위는 어렵고, 단말기가 고가라는 단점도 있다. 이러한 이유로 '실내'에서의 무선 측위를 위해 무선랜(Wireless Local Area Network: WLAN), 초광대역(UWB, Ultra Wide Band)통신 그리고 무선센서네트워크(Wireless Sensor Network: WSN) 등의 방식이 제안되고 많은 연구가 진행되었다. 그 중 WSN은 크기가 작은 센서 노드(Sensor Node)를 많이 확보하여 측위에 이용하는 방법이다. 이러한 WSN을 활용하기 위해서는 저가의 센서 노드를 확보하고, 측위가 필요한 공간에 많은 수의 센서 노드를 설치하는 것이 중요하다. 지그비(Zigbee) 기술은 IEEE 802. 15. 4 기반의 저가, 저전력, 저속의 근거리 무선통신 기술이다. 매우 간단한 하드웨어 구조를 지니고 있어 초저가의 센서 네트워크를 구성할 수 있으며 하나의 네트워크에 많은 노드를 연결할 수 있게 만들어졌다.
범위기반 위치추정방식에 사용되는 송신단과 수신단의 거리를 추정하는 방법으로는 수신신호강도(Received Signal Strength Indicator: RSSI)와 도래시간(Time of Arrival: ToA) 등을 이용한 방법이 있다. RSSI방식은 수신된 신호의 세기를 바탕으로 거리를 추정하는 방법으로 신호의 통과손실(Pass loss) 모델을 사용한다. 이 방법은 송수신단의 동기화와 같은 복잡한 방법을 거치지 않기 때문에 간단하지만, 신호의 특성상 비가시거리(NLOS, None Line of Sight)가 형성되어 있는 지역에서는 정확도가 떨어진다. 하지만 지그비와 같은 저가의 노드를 사용할 경우 다수의 센서 노드를 좁은 지역에 위치시켜 네트워크를 구성하면 각 노드들이 가시거리(LOS, Line of Sight)를 형성할 수 있는 환경을 만들 수 있다. 이러한 환경적 요소를 이용하여 도 1과 같이 나뭇가지 구조(Tree Topology) 네트워크를 구성하면 실내 환경에서 RSSI를 이용하여 위치를 추정할 수 있는 최적의 환경으로 만들 수 있다.
RSSI와 같은 방법으로 추정된 송수신단의 거리를 이용하여 사용자의 위치를 추정하는 기본적인 방법으로 삼변측량이 널리 이용된다. 삼변측량을 이용한 정확한 측위를 위해서는 위치를 알고 있는 노드(이를 앵커노드(Anchor node)라 함)를 중심으로 하고, RSSI 등의 방식으로 추정된 거리를 반지름으로 하는 3개의 원들이 교직선을 형성해야 하고, 이러한 교직선들이 도 2와 같이 하나의 교점을 형성해야 한다. 송수신단의 거리를 추정함에 있어 큰 오차가 포함되면 거리가 매우 크거나 작게 추정되어 1개의 원이 다른 원과 완전히 분리 되거나, 1개의 원이 다른 원을 완전히 포함하는 경우 즉, 도 3과 같이 3개의 원이 교직선을 형성하지 못하는 경우가 실질적인 환경에서는 발생할 수도 있다. 1개의 원이 다른 원과 완전히 분리되어 있거나, 다른 원을 완전하게 포함하는 경우 그렇지 않은 경우에 비해 상대적으로 큰 위치 추정 오차를 갖게 된다.
본 발명자는 RSSI를 이용한 삼변측량을 이용하여 무선 위치추정을 함에 있어서, 3개의 원이 교직선을 형성하지 못하는 경우(본 발명에서는 이를 비교차 케이스(None Intersection Case: NIC)로 정의하며, 1개의 원이 완전히 분리되어 있는 경우와 다른 원을 완전히 포함하는 경우가 있다) 및 그 NIC와 반대되는 경우인 교차 케이스(Intersection Case: IC)를 사면체를 위한 헤론의 공식을 이용하여 분류할 수 있고, 그렇게 분류된 NIC에서 사면체를 위한 헤론의 공식을 이용해 얻은 부피의 절댓값과 위치 추정 오차 거리가 양의 상관관계를 갖는다는 점을 알아냈다. 그리고 그러한 오차 거리와 부피의 절댓값 간의 양의 상관관계를 이용하여 실제 환경에서 확인할 수 없는 추정위치의 신뢰도를 부피의 절댓값의 크기로 확인할 수 있음도 알아냈다. 나아가, 이러한 양의 상관관계를 이용하여 NIC로 분류된 경우에 추정된 거리 값을 부피의 절댓값을 이용하여 가공하고, 이를 통해 삼변측량의 성능을 개선할 수 있는 방법을 알아냈다.
이러한 연구 성과를 바탕으로 한, 본 발명은 RSSI를 기반으로 삼변측량을 사용하여 브라인드 노드의 위치 추정을 할 때 상대적으로 큰 위치 추정 오차를 발생시킬 수 있는 경우를 판별해내어 추정 거리의 오차를 줄여줌으로써 삼변측량에 의한 위치 추정의 정확도를 향상시킬 수 있는 무선 측위 방법과 이 무선 측위 방법을 실현하기 위한 프로그램이 기록된 기록매체를 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 위치를 알고 있는 3개의 앵커 노드와 위치를 알고자 하는 1개의 브라인드 노드, 그리고 무선측위서버를 적어도 포함하는 무선 네트워크에서 상기 무선측위서버에 의해 실행되는 무선측위방법 있어서, 상기 3개의 앵커노드로부터 제공받은 수신신호세기(RSSI)를 이용하여 각 앵커노드로부터 상기 브라인드 노드까지의 3개의 추정 거리를 산출하고, 상기 3개의 앵커노드의 위치 정보를 이용하여 그들 간의 3개의 실제 거리를 산출하는 제1 단계; 상기 3개의 추정 거리와 상기 3개의 실제 거리를 이용하여 상기 3개의 앵커 노드와 상기 1개의 브라인드 노드가 형성하는 사면체의 부피를 추정하는 제2단계; 추정 된 부피를 헤론의 공식을 통해 오차의 크기를 판별하여 소정 기준 이상으로 큰 오차를 포함하는 경우에는 상기 3개의 추정 거리에 관한 오차의 크기를 보정하는 제3단계; 및 상기 제3단계에서의 오차 보정이 반영된 3개의 최종 추정 거리를 이용하여 삼변측량법으로 상기 브라인드 노드의 추정 위치를 산출하는 제4단계를 구비하는 것을 특징으로 하는 무선 측위 방법이 제공된다.
상기 무선 측위 방법에 있어서, 상기 제3단계에서 상기 오차의 크기는 사면체 부피 산출을 위한 헤론의 공식을 이용하여 판별하며, 또한 사면체가 형성되지 못하는 경우와 사면체가 형성되는 경우로 나누어 사면체가 형성 되지 못하는 경우가 상기 3개의 추정 거리에 상기 큰 오차가 포함된 것으로 판단한다.
상기 제3단계에서의 추정 거리에 관한 오차 보정은, 부피의 크기를 이용하여 추정 거리가 짧아서 사면체를 형성하지 못하는 경우에는 사면체를 형성시키지 못하는 원인이 되는 가장 작은 추정거리를 증가시켜 사면체를 형성 할 수 있게 만들어 주고, 반면에 추정 거리가 길어서 사면체를 형성하지 못하는 경우에는 그 원인이 되는 가장 긴 추정 거리를 감소시켜 사면체를 형성 할 수 있게 만들어 주는 방식으로 이루어진다.
상기 무선 측위 방법의 상기 제3단계는, 상기 3개의 추정 거리를 반지름으로 하는 3개의 원(C1, C2, C3)이 모두 상호 교차관계인 경우이면 상기 3개의 추정 거리에 관한 오차 보정을 하지 않는 제3-1단계; 및 그 외의 경우(비 교차관계인 경우)에는 가장 작은 원(C1)과 가장 큰 원(C3)의 기하학적 위치관계를 판별하여 그 위치관계가 분리관계이면 상기 3개의 추정 거리 중에서 최소값의 추정 거리는 증가시키고 상기 분리관계가 아니라 상기 가장 작은 원(C1)이 상기 가장 큰 원(C3)에 포함되거나 서로 교차하는 관계이면 최대값의 추정 거리는 감소시켜 오차 보정을 하는 제3-2단계를 포함한다.
상기 추정 거리에 관한 오차 보정을 하는 한 가지 방법은, 상기 가장 작은 추정거리에 대해서는 소정의 보정용 가중치
Figure 112011026449944-pat00001
를 곱하는 것과 상기 가장 긴 추정 거리에 대해서는 상기 소정의 보정용 가중치
Figure 112011026449944-pat00002
를 나누어 주는 것에 의해 이루어진다.
상기 보정용 가중치
Figure 112011026449944-pat00003
Figure 112011026449944-pat00004
로 정해질 수 있다. 여기서 V는 상기 사면체의 부피이고, A는 상기 3개의 앵커 노드가 형성하는 삼각형의 넓이이다.
상기 무선 측위 방법은, 상기 사면체의 부피의 절댓값이 그 사면체의 밑면을 이루는, 상기 3개의 앵커 노드가 이루는 삼각형의 넓이보다 큰 경우에만 상기 제3단계의 오차 보정을 수행하는 것이 바람직하다.
한편, 본 발명의 상기 목적을 달성하기 위한 다른 측면에 따르면, 위치를 알고 있는 3개의 앵커 노드와 위치를 알고자 하는 1개의 브라인드 노드, 그리고 무선측위서버를 적어도 포함하는 무선 네트워크에서, 무선측위 프로그램이 기록되고 상기 무선측위서버로 읽을 수 있는 매체가 제공된다. 상기 무선측위 프로그램은, 상기 3개의 앵커노드로부터 제공받은 수신신호세기(RSSI)를 이용하여 각 앵커노드로부터 상기 브라인드 노드까지의 3개의 추정 거리를 산출하고, 상기 3개의 앵커노드의 위치 정보를 이용하여 그들 간의 3개의 실제 거리를 산출하는 제1 기능; 상기 3개의 추정 거리와 상기 3개의 실제 거리를 이용하여 상기 3개의 앵커 노드와 상기 1개의 브라인드 노드가 형성하는 사면체의 부피를 추정하는 제2 기능; 추정 된 부피를 헤론의 공식을 통해 오차의 크기를 판별하여 소정 기준 이상으로 큰 오차를 포함하는 경우에는 상기 3개의 추정 거리에 관한 오차의 크기를 보정하는 제3 기능; 및 상기 제3단계에서의 오차 보정이 반영된 3개의 최종 추정 거리를 이용하여 삼변측량법으로 상기 브라인드 노드의 추정 위치를 산출하는 제4 기능을 상기 무선측위서버에 실현시키기 위한 것이다.
본 발명에 의하면, 삼변측량을 이용한 무선측위를 함에 있어서 상대적으로 큰 추정오차를 포함하는 추정 거리를 찾아내어 그 추정 거리에 포함된 오차를 감소시킴으로써 삼변측량으로 구하는 브라인드 노드의 추정 위치의 정확도를 크게 개선할 수 있다.
도 1은 RSSI를 이용하여 위치를 추정할 수 있는 최적의 환경을 설명하기 위한 네트워크의 나뭇가지 구조를 도시하며,
도 2는 삼변측량의 교차 케이스(Intersection Case)의 예를 도시하며,
도 3은 삼변측량의 비교차 케이스(None Intersection Case)의 예를 도시하며,
도 4는 삼변측량을 설명하기 위한 사면체를 도시하며,
도 5는 부피의 절댓값과 위치 추정 오차거리의 상관관계를 나타내는 그래프이며,
도 6은 쉐도잉과 오차거리의 상관관계를 나타내는 그래프이고,
도 7은 쉐도잉과 부피의 절댓값 간의 상관관계를 나타내는 그래프이며,
도 8은 사면체의 높이와 오차거리의 확률밀도함수를 나타내는 그래프이고,
도 9는 본 발명에 따른 무선 측위 방법을 실시하기 위한 시스템의 개략적 구성을 도시하며,
도 10은 본 발명의 제1 실시예에 따른 무선 측위 방법을 설명하기 위한 흐름도이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 실시할 수 있도록 보다 구체적으로 설명할 것이다.
(1) 우선, 본 발명의 배경이론이 되는 RSSI를 이용한 거리 추정방법과 그렇게 추정 거리를 이용하여 위치추정을 하는 삼변측량에 관한 이해를 돕기 위한 이론 설명을 한다.
(1.1) RSSI 방식
본 발명에 따른 무선 측위 방법은 RSSI 방식을 이용한다. RSSI방식은 수신단에서 수신된 신호의 세기만을 이용하여 송수신단의 거리를 추정하는 방식이다.
무선통신 시스템에서는 오차를 유발하는 2가지 환경적인 요인인 멀티패스 페이딩(다양한 경로를 통과한 신호들이 각각 다른 크기와 다른 페이저를 갖고 수신단에 들어오면서 해당 주파수에 보강간섭 또는 상쇄간섭으로 합쳐져서 생기는 오차유발현상)과 쉐도잉(환경적인 요인으로 인해 수신되는 신호에 손실이 발생하는 현상) 중에서 멀티패스 페이딩은 매우 적은 영향을 미친다. 그러므로 무선 측위에서 RSSI를 이용하여 거리를 추정할 때는 멀티패스 페이딩에 대한 영향은 무시하고, 쉐도잉의 영향만을 고려한다.
송신된 신호의 세기는 송신단과 수신단의 거리에 비례하게 감소된다는 것이 알려져 있다. 위에서 언급한 쉐도잉의 랜덤한 특성 때문에 수신 신호의 세기는 특정한 평균값을 갖고, 그 평균값을 중심으로 가우시안 분포를 따르게 된다.(송신단과 수신단의 거리가 일정한 경우). 가우시안 모델을 사용할 경우
Figure 112011026449944-pat00005
번째 앵커노드(위치를 알고 있는 노드)와
Figure 112011026449944-pat00006
번째 브라인드 노드(blind node: 위치를 알고자하는 노드)로부터 수신한 신호의 세기는 아래와 같이 표현된다.
Figure 112011026449944-pat00007
여기서
Figure 112011026449944-pat00008
는 수신신호의 평균세기(
Figure 112011026449944-pat00009
),
Figure 112011026449944-pat00010
는 쉐도잉의 표준편차를 의미한다. 송신단과 수신단 사이의 거리가
Figure 112011026449944-pat00011
로 주어졌을 때, 수신신호의 평균 세기는 아래와 같이 주어진다.
Figure 112011026449944-pat00012
여기서
Figure 112011026449944-pat00013
는 기준 거리
Figure 112011026449944-pat00014
에서 수신된 신호의 세기를 의미하며,
Figure 112011026449944-pat00015
는 환경에 따라 변하는 경로손실지수(path loss exponent)를 의미하고 일반적으로 2~4사이의 값을 갖는다. 위의 값을 바탕으로 수신된 신호의 세기를 이용하여 위치를 추정하는 데 필요한 거리를 계산하면 아래와 같다.
Figure 112011026449944-pat00016
위와 같이 RSSI를 이용하여 거리를 추정하는 데 있어서 오차가 발생하는 이유는 크게 3가지가 있다. 하드웨어와 관련된 오차, 거리추정 알고리즘의 한계 그리고 환경적인 요소이다. 하드웨어와 관련된 오차는 일반적인 지그비(ZigBee)소자에서 약 3dB ~ 4dB정도의 오차가 발생한다고 알려져 있다.
위의 식에서 RSSI(dBm)는 수신신호세기를 이용하여 측정된 값이므로 1m에서의 파워 손실인
Figure 112011026449944-pat00017
와 경로 손실 지수(Path loss Exponent)인
Figure 112011026449944-pat00018
값을 실험측정을 통해 검증해야한다. 이는 수신신호세기로부터 정확한 거리를 추정하기 위해 반드시 선행되어야 하는 작업이다. 본 발명에서는 RSSI에 사용되는 소자의 일예로 지그비를 이용하여 일반적인 실내 환경에서 실험적으로 구한
Figure 112011026449944-pat00019
값과
Figure 112011026449944-pat00020
값을 사용하며, 지그비의 환경에 맞게 시뮬레이션을 수행하여 결과를 얻었다.
(1.2) 삼변측량(Trilateration)
삼변측량방법은 추정된 거리를 바탕으로 위치를 추정하는 방법으로서, 이 방법은 3개의 앵커노드(위치를 알고 있는 노드임)를 이용하여 브라인드 노드(위치를 알고자 하는 노드임)를 추정하는 데 사용되는 범위기반 위치추정방식의 가장 기본적인 방법이다. 즉, 브라인드 노드에서 방사된 무선신호를 3개의 앵커노드에서 수신하여 식 (2.2)를 이용하여 그 수신된 무선신호의 세기를 알아낸 다음, 그 무선신호의 세기를 식 (2.3)에 적용하여 각 앵커노드로부터 브라인드 노드까지의 거리를 추정하는 방법이다. 그리고 그 추정된 3개의 앵커노드에서 브라인드 노드까지의 추정 거리를 반지름으로 하는 3개의 원의 방정식을 이용하면 브라인드 노드의 위치를 추정할 수 있다.
삼변측량을 기하학적으로 설명하면 아래와 같다. 3개의 앵커노드(AN1, AN2, AN3)와 브라인드 노드간의 거리가 정확하게 추정되면, 도 2와 같이 3개의 원(12, 14, 16)이 1개의 점(10)에서 만나게 된다. 이렇게 1개의 점에서 3개의 원이 만나는 경우는 정확한 거리측정에 따른 매우 정확한 위치추정이 이루어지는 경우이다. 하지만 앵커노드와 브라인드 노드 간의 추정 거리에 오차가 포함되어 있으면, 3개의 원이 1개의 점에서 만나지 않는다. 예컨대 앵커노드 AN3에서 브라인드 노드까지의 추정거리가 부정확한 경우, 점선(18)과 같이 원이 형성되는 경우가 발생한다. 이러한 경우 기존의 삼변측량법에 따르면, 도시된 바와 같이 2개의 원 (12, 18)과 또 다른 2개의 원(14, 18)이 형성하는 두 직선(22, 24)의 교점(20)이 추정된 위치가 된다. 2개의 원이 교차하지 않도록 거리가 추정되면(즉, 하나의 원(12)이 다른 하나의 원(26)에 포함되도록 추정되면), 그 두 원의 방정식을 풀면 하나의 직선(32)의 방정식이 얻어진다. 그러면 도 3과 같이 그 직선(32)과 또 다른 두 원(12, 14)의 두 교점을 지나는 직선(30)의 교점이 추정된 위치가 된다.
삼변 측량 방식을 이용하여 위치를 추정하는 방법을 수학적으로 간단하게 수식으로 살펴보면 아래와 같다. 우선 3개의 앵커노드의 위치(원의 중심)와 3개의 추정된 거리
Figure 112011026449944-pat00021
(반지름)를 이용하여 3개의 원의 방정식을 구한다.
Figure 112011026449944-pat00022
위의 세 번째 식에서 두 번째 식과 첫 번째 식을 빼면 아래의 (2.5)와 같이 2개의 직선의 방정식이 얻어진다.
Figure 112011026449944-pat00023
위의 식을 행렬형태로 표현하면 아래와 같다.
Figure 112011026449944-pat00024
여기서
Figure 112011026449944-pat00025
,
Figure 112011026449944-pat00026
,
Figure 112011026449944-pat00027
이다. 이를 행렬의 역함수를 이용하여 풀면 아래와 같이 브인드 노드의 위치를 찾을 수 있다.
Figure 112011026449944-pat00028
(2) 실시예
이 실시예는 3개의 앵커노드를 이용하여 브라인드 노드의 위치를 무선 측위 하는 것에 관한 것이다. 이 실시예의 기본 아이디어는 RSSI 방식을 이용하여 구한 각 앵커노드에서 브라인드 노드까지의 추정 거리에 큰 오차가 포함되는 경우를 헤론의 공식을 이용하여 분류해내고, 그 분류된 추정 거리의 오차를 보정하는 것이다. 오차가 보정된 추정 거리를 이용하여 삼변측량법에 의해 브라인드 노드의 위치를 추정하므로 브라인드 노드의 측위의 정확도가 종래에 비해 훨씬 개선될 수 있다.
(2.1) 비교차의 기하학적 관계 및 정의(Geometric Relation and Definition of None Intersection Case)
추정 거리에 큰 오차가 포함되어 있는 경우와 그렇지 않는 경우를 구별하기 위해, 위해 삼변측량에서 사용될 3개의 원들의 기하학적 관계를 비교차 케이스(None Intersection Case: NIC)와 교차 케이스(Intersection Case: IC)로 분류한다. 일반적으로, 두 원의 기하학적인 위치관계는, (a) 두 개의 원이 서로 분리되어 만나지 않는 분리, (b) 두 개의 원이 2점 또는 1점에서 만나는 교차, 그리고 (c) 한 개의 원이 다른 한 원을 완전히 내포하는 포함의 3가지 경우로 분류할 수 있다. 이러한 두 원의 기하학적인 관계를 3개의 원이 형성하는 기하학적인 관계를 해석하는 데 사용할 수 있다. 3개의 원이 형성하는 모든 기하학적인 관계는 표 1 에서 보여준다. 표 1 에서
Figure 112011026449944-pat00029
은 반지름이 가장 작은 원,
Figure 112011026449944-pat00030
는 반지름이 중간인 원,
Figure 112011026449944-pat00031
는 반지름이 가장 큰 원을 의미한다. 추정된 거리가 작은 수준의 오차를 포함하고 있을 경우 3개의 원은 도 2와 같이 모두 교차하며 이는 표 1 에서 케이스 7에 해당한다. 그러나 추정된 거리가 큰 수준의 오차를 포함하고 있게 되면, 한 개의 원이 다른 두 원으로부터 완전히 분리되거나 포함되는 경우가 발생한다.
Figure 112011026449944-pat00032
표 1 에서 케이스 7을 제외한 모든 케이스가 '완전한 분리'나 '완전한 포함'을 갖고 있다. 이러한 케이스들은 케이스 7에 비해 추정 거리에 있어서 비교적 큰 오차를 포함하고 있다. '완전한 포함' 관계를 갖고 있는 경우, 도 3(표 1의 케이스 8)은 도 2에 비해 상대적으로 큰 위치 추정 오차가 발생함을 보여준다. 본 발명은 상대적으로 추정 거리에 큰 오차를 유발하고 결과적으로 최종 위치를 추정하는 데 있어서 큰 오차가 발생하는 비교차 케이스(None Intersection Case: NIC)를 위의 표에서 케이스 7을 제외한 나머지 모든 케이스로 정의한다. 오차를 최소화하기 위해서는 NIC를 분류하여 추정된 거리를 후 처리할 필요성이 있다.
(2.2) 교차 케이스 분류(Intersection Case Discrimination)
본 발명은 NIC와 IC를 헤론의 공식을 이용하여 수학적으로 분류하는 방법을 제안한다. 3개의 앵커노드(AN1, AN2, AN3)를 이용할 경우, 3개의 앵커노드들 상호 간의 거리 3개(AN1~AN2 간 거리, AN2~AN3 간 거리, 그리고 AN3~AN1 간 거리)와, 각 앵커노드(AN1, AN2, AN3)에서 브라인드 노드(BN)까지의 추정된 거리 3개(AN1~BN 간 거리, AN2~BN 간 거리, AN3~BN 간 거리)를 포함한 6개의 변을 얻을 수 있다. 실제 환경에서 앵커노드 3개(AN1, AN2, AN3)가 형성하는 평면 위에 브라인드 노드(BN)가 위치할 가능성은 거의 없다. 즉, 3개의 앵커노드(AN1, AN2, AN3)와 1개의 브라인드 노드(BN)가 형성하는 6개의 변은 사면체를 형성한다. 그 6개의 변이 형성하는 사면체의 부피는 헤론의 공식의 확장을 통해 구할 수 있다. 이 점을 이용하여 IC와 NIC를 분류한다.
도 4의 사면체를 참고하여 이를 설명한다. 삼각형에 대한 3변의 길이를 알고 있을 경우, 삼각형의 넓이를 구하는 헤론의 공식이 존재한다. 이러한 삼각형의 넓이를 구하는 공식을 확장하여, 사면체의 6변의 길이를 알고 있을 때, 사면체의 부피를 구할 수 있는 공식이 존재한다. 헤론의 공식의 확장을 이용하면 6개의 변의 길이를 이용하여 사면체의 부피를 아래와 같이 구할 수 있다.
Figure 112011026449944-pat00033
여기서
Figure 112011026449944-pat00034
이다. 모든 변의 길이를 알고 있으므로 각각의 cosine값은 cosine 제2법칙을 이용하여 구할 수 있다. 위의 사면체에서 삼각형
Figure 112011026449944-pat00035
를 이용하여 cosine 제 2법칙을 적용하면
Figure 112011026449944-pat00036
,
Figure 112011026449944-pat00037
,
Figure 112011026449944-pat00038
를 아래와 같이 구할 수 있다.
Figure 112011026449944-pat00039
위의 식(3.2)의 cosine값들을 식(3.1)에 대입하면, 사면체의 부피는 사면체의 6개의 변을 이용하여 구할 수 있다.
헤론의 공식을 통해 구해진 부피의 값이 실수를 갖는 경우를 생각해보면, 식(3.1)의 근호(root)안 값이 양수인 경우이다. 이러한 조건을 만족하기 위한 최소한의 조건은 모든 cosine값의 절댓값이 1보다 작아야 한다는 것이다(
Figure 112011026449944-pat00040
,
Figure 112011026449944-pat00041
,
Figure 112011026449944-pat00042
). 이러한 조건일 때 3개의 원의 관계는 표 1의 케이스 7에 해당된다. 즉, 위의 부피 값이 양수인 경우는 모든 cosine값의 절댓값이 1보다 작은 경우이며, 이는 표 1의 케이스 7에 해당된다. 두 개의 원이 형성하는 기하학적인 관계가 교차인 경우 중심사이의 거리와 추정된 두변이 만들어내는 cosine의 절댓값은 1보다 작다. 하지만 두 개의 원이 교차 이외의 기하학적인 관계를 형성하는 '포함'이나 '분리'는 cosine의 절댓값이 1보다 크다. 포함관계는 한 개의 변이 매우 큰 상황에서 발생하는데, 이때의 cosine값은 1보다 크다. 분리관계는 세 개의 변이 모두 작은 상황에서 발생하는데, 이때의 cosine값은 -1보다 작다. cosine의 절댓값이 1보다 큰 상황에서는 헤론의 공식을 이용한 부피의 값이 허수가 발생된다. 이는 부피를 위한 헤론의 공식인 식 (3.1)이 추정된 거리가 IC에 해당되지 않는 경우를 분류해 낼 수 있음을 의미한다.
나아가, 사면체에 대한 헤론의 공식을 사용하면, 3개의 원이 교차하더라도 그 3개의 원 모두에 의해 공유되는 영역(intersection area)이 형성하지 않는 경우를 분류해 낼 수 있다. 이 공식은 NIC와 IC를 분류하기 위해서 사용되고, 삼변측량을 사용하기 때문에 단순히 판별식의 용도로 사용할 수 있다.
사면체를 위한 헤론의 공식을 이용한 분류를 통해 NIC에 해당하는 경우에, 위치추정오차의 크기는 부피의 절댓값과 양의 상관관계가 있다. 즉, 1개의 추정된 거리가 큰 오차를 포함하고 있으면, 위의 공식을 통해 얻어진 부피의 절댓값의 크기가 크게 나타나고, 추정 위치 오차 또한 크게 나타난다. 도 5는 RSSI로 거리를 추정할 때 쉐도잉의 표준편차가 3dB일 경우 부피의 절댓값과 추정 위치 오차의 관계를 시뮬레이션을 통해 얻은 결과이다. 도 5의 그래프에 나타낸 바와 같이 사면체를 위한 헤론의 공식을 통해 얻은 부피 값이 허수이면서 그 절댓값이 커지면 위치 추정 오차가 커지는 경향이 분명하다.
(2.3) 부피의 절댓값과 오차거리 간의 관계
사면체 부피의 절댓값과 오차거리 간의 양의 상관관계를 수학적으로 살펴본다. 이는 거리를 추정하는 데 영향을 주는 쉐도잉과 오차거리 그리고 부피의 절댓값의 관계에 대해서 수학적으로 살펴보는 것과 같다. 오차거리와 부피는 3개의 실제 거리와 각각의 거리 값에 영향을 주는 쉐도잉 값에 의해 결정된다. 여기서, 실제거리가 가장 큰 값에 대해서만 쉐도잉이 발생하였다고 가정하여 쉐도잉과 오차거리와 부피의 절댓값에 대한 상관관계를 분석한다. 삼변측량과 최소제곱법의 성능을 평가하기 위해 사용하는 오차거리의 공식은 아래와 같다.
Figure 112011026449944-pat00043
여기서
Figure 112011026449944-pat00044
는 추정된 위치,
Figure 112011026449944-pat00045
는 실제 위치, (
Figure 112011026449944-pat00046
,
Figure 112011026449944-pat00047
)는 추정된 위치의 좌표, (
Figure 112011026449944-pat00048
,
Figure 112011026449944-pat00049
)는 실제 위치의 좌표를 의미한다. 삼변측량의 공식 (2.7)을 통해 얻어진 추정 위치의 좌표를 위의 식에 대입하고, 이를 가장 긴 변이라고 가정한
Figure 112011026449944-pat00050
에 대해 정리하면 아래와 같다.
Figure 112011026449944-pat00051
여기서
Figure 112011026449944-pat00052
는 가장 큰 거리인
Figure 112011026449944-pat00053
에 반영되는 쉐도잉이다. 여기서
Figure 112011026449944-pat00054
,
Figure 112011026449944-pat00055
,
Figure 112011026449944-pat00056
는 모두 상수이며, 3개의 앵커노드의 위치와 브라인드 노드와 앵커노드사이의 거리인
Figure 112011026449944-pat00057
,
Figure 112011026449944-pat00058
에 의해 결정된다.
본 발명에서 제시한 부피의 공식인 (3.1)의 모든 Cosine값을 거리에 대한 식으로 적용하여 대입하고
Figure 112011026449944-pat00059
에 대해 정리하면 아래와 같다.
Figure 112011026449944-pat00060
여기서
Figure 112011026449944-pat00061
,
Figure 112011026449944-pat00062
,
Figure 112011026449944-pat00063
는 모두 상수이며 각 앵커노드사이의 거리와 브라인드 노드와 앵커노드사이의 거리인
Figure 112011026449944-pat00064
,
Figure 112011026449944-pat00065
에 의해 결정된다.
부피에 대한 식 (3.5)와 오차거리에 대한 식 (3.4)가 각 차수의 상수만 다르고 같은 형태임을 확인할 수 있다. 이는 부피가 음수인 경우, 부피가 커짐에 따라 오차 거리가 커지는 것을 설명할 수 있는 충분한 이유가 된다. 쉐도잉과 오차거리, 부피의 절댓값에 대한 상관관계에 대한 함수는 위와 같이 표현할 수 있으며, 여러 개의 변수에 의해 함수 값이 결정되므로 쉽게 그래프를 확인할 수 없다. 이에 대한 그래프를 시뮬레이션을 통해 그려보면 도 6 및 7과 같다. 시뮬레이션은 여러 개의 변수 중 가장 큰 거리 값인
Figure 112011026449944-pat00066
의 쉐도잉만 변한다고 가정하여 수행하였다. 3개의 앵커노드가 AN1(2, 2), AN2(7.5, 2), AN3(8, 8)이고 브라인드 노드를 BN(3, 3) 로 하고,
Figure 112011026449944-pat00067
Figure 112011026449944-pat00068
에 오차가 발생하지 않는 상황에서 수행되었다. AN3과 BN간의 거리가 가장 길며, 이 거리에서 쉐도잉 값이 발생한다고 가정하고, 쉐도잉 값을 -10에서 10까지 변화하며, 쉐도잉과 오차거리, 부피사이의 그래프를 그렸다.
도 6과 도 7에서 확인할 수 있듯이 쉐도잉과 오차거리의 상관관계와 쉐도잉과 부피의 절댓값에 대한 상관관계가 유사하다. 헤론의 공식을 이용하여 얻어진 부피의 절댓값과 추정위치의 오차거리는 스케일에서 큰 차이를 보인다. 헤론의 공식을 통해 얻어진 부피의 절댓값을 아래의 식과 같은 일반적인 사면체의 부피를 이용하여 가상의 사면체의 높이를 얻을 수 있다.
Figure 112011026449944-pat00069
위의 공식을 이용하여 구한 가상의 사면체의 높이의 확률 밀도 함수와 추정 오차거리에 대한 확률 밀도 함수를 도 8에 함께 나타내었다. 도 8은 사면체의 높이와 오차거리가 확률적으로도 유사한 분포를 이룬다는 것을 보여준다. 이와 같은 관계를 이용하여 실제 환경에서 브라인드 노드의 실제 위치를 모르고 있는 상태에서 위치 추정값의 신뢰도를 부피의 절댓값을 이용하여 부여할 수 있다.
(2.4) 거리추정의 오차를 감소시키기 위한 방법
본 발명의 실시예는 위에서 분류된 NIC를 부피의 절댓값과 위치추정오차 간의 양의 상관관계를 이용하여, RSSI를 통해 얻어진 오차를 포함한 거리의 추정 값의 오차를 줄이기 위해 보다 적절한 값으로 바꾼다. 그리고 그 보정된 추정 거리를 삼변측량법에 적용하여 브라인드 노드의 위치를 추정한다. 3개의 앵커노드 각각에서 브라인드 노드까지의 3개의 추정 거리 중 1개가 큰 오차를 포함할 확률이 3개 모두가 큰 오차를 포함할 확률 보다 높다. 그리고 가장 큰 거리값, 또는 가장 작은 거리값에 오차가 포함되어 있을 경우의 오차거리가 확률적으로 볼 때 그 이외의 거리값에 오차가 포함되어 있는 경우의 오차거리보다 크다. 그러므로 본 발명에서는 3개의 추정거리 중 가장 큰 값이나 가장 작은 값에 대해서 후 처리를 통해 변환한다. 이런 처리를 통해 브라인드 노드의 보다 정확한 위치 정보를 획득할 수 있다.
도 9는 본 발명의 실시예를 실행하기 위한 무선 측위 시스템(100)의 개략적인 구성을 도시한다. 무선 측위 시스템(100)은 위치를 알고 있는 적어도 3개의 앵커 노드(AN1, AN2, AN3)와 위치를 알고자 하는 측위대상 단말기 즉, 브라인드 노드(BN)를 포함하는 무선 네트워크(110)와, 측위보정 애플리케이션(130)을 실행하여 무선 네트워크(110)로부터 제공된 RSS 정보를 처리하여 브라인드 노드(BN)의 위치 정보를 정확하게 산출하는 무선네트워크 측위서버(120)를 포함한다.
측위서버(120)에서 실행되는 측위보정 애플리케이션(130)은 본 발명자가 제안하는 다음과 같은 알고리즘이 반영된 프로그램이다. 이 프로그램은 CD, DVD, 하드디스크, 비휘발성 메모리 등과 같은 컴퓨터 가독형 기록매체에 기록되고, 측위서버(120)와 같은 컴퓨터 장치에 연결되어 실행될 수 있다.
도 10은 이 측위보정 애플리케이션(130)을 설명하기 위한 흐름도인데, 이를 참조하여 실시예에 따른 무선측위방법을 설명한다.
먼저, 측위서버(120)는 3개의 앵커노드와 1개의 브라인드 노드가 이루는 사면체의 부피 추정을 위해 그 사면체의 6개의 변의 길이를 구해야 한다. 이를 위해, 측위서버(120)는 무선네트워크(110)의 각 노드로부터 수신신호강도(RSS) 값을 제공받은 다음(S10 단계), 3개의 앵커 노드(AN1, AN2, AN3)와 측위 대상 단말기인 브라인드 노드(BN)를 선택한다(S12 단계). 그리고 사면체의 밑면을 이루는 삼각형의 세 변의 길이를 구한다(S14 단계). 삼각형의 세변은 선택된 3개의 앵커 노드(AN1, AN2, AN3)의 상호간의 거리 즉, AN1~AN2 간, AN2~AN3 간, 그리고 AN3~AN1 간의 거리에 해당한다. 앵커 노드들(AN1, AN2, AN3)의 위치 정보(좌표)는 이미 알고 있는 값이고 측위서버(120)에 미리 제공해둠으로써, 삼각형의 세 변의 길이는 쉽게 계산될 수 있다. 또한, 각 앵커 노드(AN1, AN2, AN3)와 브라인드 노드(BN) 간의 3개의 추정 거리를 식 (2.3)을 이용하여 구한다(S16 단계). 이 추정 거리는 각 앵커 노드에 수신된 브라인드 노드(BN)의 신호를 이용하여 구할 수 있음은 앞에서 설명한 바와 같다.
이렇게 사면체의 6개의 변의 길이가 구해지면, 그 구해진 변의 길이를 헤론의 공식(위에서 언급한 식 (3.1)과 식 (3.2a), (3.2b), (3.2c))에 적용하여 사면체의 추정 부피를 계산한다(S18 단계). 그런 다음, 그 계산된 사면체의 추정 부피를 이용하여 삼변측량에서 사용될 3개의 원들(C1, C2, C3)의 기하학적 관계가 NIC에 해당하는지 아니면 IC에 해당하는지를 앞서 설명한 부피에 관한 헤론의 공식인 식 (3.1)을 이용하여 판별하여 분류한다(S20 단계).
S20단계에서 IC로 분류된 경우에는 각 앵커 노드(AN1, AN2, AN3)와 브라인드 노드(BN) 간의 3개의 추정 거리를 그에 대한 별도의 오차 보정 없이 그대로 삼변측량법에 따라 브라인드 노드(BN)의 위치를 추정하면 된다(S22 단계). 하지만, S20단계에서 NIC로 분류된 경우에는 각 앵커 노드(AN1, AN2, AN3)와 브라인드 노드(BN) 간의 추정 거리에 포함된 오차를 보정한다.
추정 거리에 관한 오차 보정은 다음과 같이 이루어진다. 헤론의 공식을 통해 분류 된 NIC에 대하여 가장 크게 추정된 거리값을 이용하여 형성된 원인
Figure 112011026449944-pat00070
와 가장 작게 추정된 거리를 통해 형성된 원인
Figure 112011026449944-pat00071
의 기하학적인 관계를 이용하여 다시 분류를 한다(S28 단계). 두 원의 기하학적인 위치관계는 앞에서 언급하였듯이 원의 중심사이의 거리와 두 원의 반지름을 이용해서 분류할 수도 있지만, 부피를 구하기 위해 얻은 Cosine값을 이용해서 분류할 수도 있다. 반지름이 가장 큰 원과 반지름이 가장 작은 원의 기하학적인 관계가 분리(표 1의 케이스 1, 2, 3)일 경우는 식 (3.2)에서 얻은 Cosine값이 -1 보다 작다. 이런 경우는 최소 거리가 작게 추정되었다고 볼 수 있다. 그러므로 최대 크기의 원과 최소 크기의 원이 '분리관계'일 경우 최소로 추정된 값을 증가시켜야 한다. 이와 비슷하게 두 원이 '포함관계'에 있는 경우에 식 (3.2)의 Cosine값은 1보다 크게 되며, 이러한 경우 최댓값이 크게 추정되었다고 볼 수 있다. 두 원의 기하학적인 관계가 '교차관계'인 경우, 포함관계와 마찬가지로 최댓값이 크게 추정되었다고 볼 수 있다. 즉, 두 원의 기하학적 관계가 '포함관계' 또는 '교차관계'인 경우, 최댓값이 크게 추정되었다고 보았으므로 최대로 추정된 값을 감소시킨다. 즉, NIC에 포함되면서
Figure 112011026449944-pat00072
Figure 112011026449944-pat00073
의 위치관계가 '교차관계'인 경우와 '포함관계'인 경우는 최댓값이 크게 추정되었다고 본다. 결국,
Figure 112011026449944-pat00074
Figure 112011026449944-pat00075
의 위치관계를 분리인 경우와 그렇지 않은 경우로 분류하여, 위치관계가 '분리관계'인 경우 최소값을 증가시킨다(S30 단계). 반면에, 분리관계가 아닌 경우 즉, '포함관계' 또는 '교차관계'인 경우에는 최댓값을 감소하도록 후 처리를 한다(S32 단계). S30 단계와 S32 단계에서 최솟값과 최댓값을 증가 및 감소시키는 처리는 각각 식 (3.7a)와 식 (3.7b)를 이용하여 수행한다.
Figure 112011026449944-pat00076
Figure 112011026449944-pat00077
여기서
Figure 112011026449944-pat00078
는 추정된 거리의 증가량과 감소량을 결정하는 후처리 가중치이다. 후처리 가중치
Figure 112011026449944-pat00079
는 일예로서 아래 식 (3.8)을 이용하여 구할 수 있다(S26 단계).
Figure 112011026449944-pat00080
여기서
Figure 112011026449944-pat00081
는 사면체를 위한 헤론의 공식을 통해 얻은 부피의 값이며,
Figure 112011026449944-pat00082
는 3개의 앵커노드(AN1, AN2, AN3)가 형성하는 삼각형이다. 앞에서 부피의 절댓값과 위치추정오차가 양의 상관관계가 있다는 것을 알았으므로, 최댓값과 최솟값을 후 처리할 때 부피의 값을 반영하도록 한다. 크게 추정된 거리와 작게 추정된 거리가 결과적으로 부피의 공식에서 높이에 해당되는 값에 영향을 주기 때문에, 위의 공식에서와 같이 부피 값을 통해 높이 값을 얻어 이 값을 후 처리 가중치에 이용하는 것이 바람직하다. 하지만 후처리 가중치를 다른 방법으로 구할 수 있음은 물론이다.
또한 사면체의 부피의 절댓값이 큰 경우, 부피의 절댓값과 추정 위치 오차의 상관관계가 명확하기 때문에 사면체의 부피의 절댓값이 그 사면체의 밑면을 이루는 삼각형(이 삼각형은 3개의 앵커 노드가 이루는 삼각형이기도 함)의 넓이보다 큰 경우, 즉
Figure 112011026449944-pat00083
인 경우에 한해서만 후 처리를 하는 것이 바람직하다(S24 단계). 가장 크게 추정된 거리 값을 후 처리할 때
Figure 112011026449944-pat00084
인 조건에 대해서 후 처리를 수행하면, 항상
Figure 112011026449944-pat00085
의 조건을 만족할 수 있다. 식 (3.5)에서 가장 크게 추정된 거리와 부피의 상관관계를 확인할 수 있으며, 가장 크게 추정된 거리와 부피는 거리의 제곱에 관한 식으로 상관관계가 있으므로 부피의 값에 제곱근을 이용하여 가중치를 계산한다.
이상의 과정을 통해 비교차 케이스에 해당하면서 큰 오차를 포함하고 있는 추정 거리는 가중치의 적용으로 적절히 보정될 수 있다. 그리고 그 보정된 추정 거리 및/또는 오차 보정이 필요 없는 경우에는 원래의 추정 거리를 이용하여 삼변측량법에 의해 브라인드 노드(BN)의 추정 위치를 계산함으로써(S22 단계) 3개의 앵커노드를 이용한 브라인드 노드의 위치 추정이 가능하다.
측위서버(120)가 이런 과정을 통해 브라인드 노드(BN)의 정확한 추정 위치를 산출한 후에는, 그 산출된 추정 위치를 브라인드 노드(BN)에 무선 전송해준다.
이처럼 실시예에 따른 무선 측위 방법은 삼변측량의 성능을 개선하는 방법이다. 상대적으로 큰 추정오차를 유발하는 비교차 케이스(NIC)를 정의하고 이를 사면체의 부피를 위한 헤론의 공식을 통해 분류한다. 분류 과정에서 얻어진 사면체 부피의 절댓값과 추정오차가 양의 상관관계에 있다는 점을 이용하여 추정된 값들 중 최댓값과 최솟값을 후 처리 하여 전체적인 삼변측량의 성능을 개선한다.
(3) 삼변측량의 성능 개선
여러 가지 시뮬레이션을 통해 삼변측량의 성능이 개선될 수 있음을 확인하였다. 아래 표 2는 본 발명에 따른 후처리 삼변측량과 종래의 삼변측량의 총 평균 오차를 시뮬레이션을 통해 얻을 것을 정리한 것이다. 후처리 삼변측량이 추정 위치에 대한 상당한 오차 개선을 가져다줌을 알 수 있다. 예컨대, 표준편차가 3.5dB 일 때, 후 처리를 통한 삼변측량의 평균오차가 기존의 삼변측량에 대한 평균오차에 비해 31.85% 정도의 개선되었음을 확인할 수 있었다.
Figure 112011026449944-pat00086
본 발명은 적어도 3개의 앵커노드가 있는 무선 센서 네트워크에서 RSSI를 이용하여 그 네트워크 내의 브라인드 노드의 위치를 무선으로 추정하는 데 널리 이용될 수 있다.

Claims (9)

  1. 위치를 알고 있는 3개의 앵커 노드와 위치를 알고자 하는 1개의 브라인드 노드, 그리고 무선측위서버를 적어도 포함하는 무선 네트워크에서 상기 무선측위서버에 의해 실행되는 무선측위방법 있어서,
    상기 3개의 앵커노드로부터 제공받은 수신신호세기(RSSI)를 이용하여 각 앵커노드로부터 상기 브라인드 노드까지의 3개의 추정 거리를 산출하고, 상기 3개의 앵커노드의 위치 정보를 이용하여 그들 간의 3개의 실제 거리를 산출하는 제1 단계;
    상기 3개의 추정 거리와 상기 3개의 실제 거리를 이용하여 상기 3개의 앵커 노드와 상기 1개의 브라인드 노드가 형성하는 사면체의 부피를 추정하는 제2단계;
    추정 된 부피를 헤론의 공식을 통해 오차의 크기를 판별하여 소정 기준 이상으로 큰 오차를 포함하는 경우에는 상기 3개의 추정 거리에 관한 오차의 크기를 보정하는 제3단계; 및
    상기 제3기능에서의 오차 보정이 반영된 3개의 최종 추정 거리를 이용하여 삼변측량법으로 상기 브라인드 노드의 추정 위치를 산출하는 제4단계를 구비하는 것을 특징으로 하는 무선 측위 방법.
  2. 제1항에 있어서, 상기 제3단계에서 사면체가 형성되지 못하는 경우와 사면체가 형성되는 경우로 나누어 사면체가 형성 되지 못하는 경우를 상기 3개의 추정 거리에 상기 큰 오차가 포함된 것으로 판단하는 것을 특징으로 하는 무선 측위 방법.
  3. 제2항에 있어서, 상기 제3단계에서 상기 추정 거리에 관한 오차의 크기 보정은, 부피의 크기를 이용하여 추정 거리가 짧아서 사면체를 형성하지 못하는 경우에는 사면체를 형성시키지 못하는 원인이 되는 가장 작은 추정거리를 증가시켜 사면체를 형성 할 수 있게 만들어 주며, 추정 거리가 길어서 사면체를 형성하지 못하는 경우에는 그 원인이 되는 가장 긴 추정 거리를 감소시켜 사면체를 형성 할 수 있게 만들어 주는 방식으로 이루어지는 것을 특징으로 하는 무선 측위 방법.
  4. 제1항에 있어서, 상기 제3단계는 상기 3개의 추정 거리를 반지름으로 하는 3개의 원(C1, C2, C3)이 모두 상호 교차관계인 경우이면 상기 3개의 추정 거리에 관한 오차 보정을 하지 않는 제3-1단계; 및 그 외의 경우(비 교차관계인 경우)에는 가장 작은 원(C1)과 가장 큰 원(C3)의 기하학적 위치관계를 판별하여 그 위치관계가 분리관계이면 상기 3개의 추정 거리 중에서 최소값의 추정 거리는 증가시키고 상기 분리관계가 아니라 상기 가장 작은 원(C1)이 상기 가장 큰 원(C3)에 포함되거나 서로 교차하는 관계이면 최대값의 추정 거리는 감소시켜 오차 보정을 하는 제3-2단계를 포함하는 것을 특징으로 하는 무선 측위 방법.
  5. 제3항 또는 제4항에 있어서, 상기 추정 거리에 관한 오차 보정은 상기 가장 작은 추정거리에 대해서는 소정의 보정용 가중치
    Figure 112011026449944-pat00087
    를 곱하는 것과 상기 가장 긴 추정 거리에 대해서는 상기 소정의 보정용 가중치
    Figure 112011026449944-pat00088
    를 나누어 주는 것에 의해 이루어지는 것을 특징으로 하는 무선 측위 방법.
  6. 제5항에 있어서, 상기 보정용 가중치
    Figure 112011026449944-pat00089
    Figure 112011026449944-pat00090
    로 정해지며, 여기서 V는 상기 사면체의 부피이고, A는 상기 3개의 앵커 노드가 형성하는 삼각형의 넓이인 것을 특징으로 하는 무선 측위 방법.
  7. 제1항에 있어서, 상기 사면체의 부피의 절댓값이 그 사면체의 밑면을 이루는, 상기 3개의 앵커 노드가 이루는 삼각형의 넓이보다 큰 경우에만 상기 제3단계의 오차 보정을 수행하는 것을 특징으로 하는 무선 측위 방법.
  8. 위치를 알고 있는 3개의 앵커 노드와 위치를 알고자 하는 1개의 브라인드 노드, 그리고 무선측위서버를 적어도 포함하는 무선 네트워크에서, 무선측위 프로그램이 기록되고 상기 무선측위서버로 읽을 수 있는 매체로서,
    상기 무선측위 프로그램은,
    상기 3개의 앵커노드로부터 제공받은 수신신호세기(RSSI)를 이용하여 각 앵커노드로부터 상기 브라인드 노드까지의 3개의 추정 거리를 산출하고, 상기 3개의 앵커노드의 위치 정보를 이용하여 그들 간의 3개의 실제 거리를 산출하는 제1 기능;
    상기 3개의 추정 거리와 상기 3개의 실제 거리를 이용하여 상기 3개의 앵커 노드와 상기 1개의 브라인드 노드가 형성하는 사면체의 부피를 추정하는 제2 기능;
    추정 된 부피를 헤론의 공식을 통해 오차의 크기를 판별하여 소정 기준 이상으로 큰 오차를 포함하는 경우에는 상기 3개의 추정 거리에 관한 오차의 크기를 보정하는 제3 기능; 및
    상기 제3기능에서의 오차 보정이 반영된 3개의 최종 추정 거리를 이용하여 삼변측량법으로 상기 브라인드 노드의 추정 위치를 산출하는 제4 기능을 포함하며, 상기 무선측위서버에 의해 실행될 수 있는 것을 특징으로 하는 무선측위 프로그램이 기록된 매체.
  9. 제8항에 있어서, 상기 제3기능은 상기 3개의 추정 거리를 반지름으로 하는 3개의 원(C1, C2, C3)이 모두 상호 교차관계인 경우이면 상기 3개의 추정 거리에 관한 오차 보정을 하지 않는 기능; 및 그 외의 경우(비 교차관계인 경우)에는 가장 작은 원(C1)과 가장 큰 원(C3)의 기하학적 위치관계를 판별하여 그 위치관계가 분리관계이면 상기 3개의 추정 거리 중에서 최소값의 추정 거리는 증가시키고 상기 분리관계가 아니라 상기 가장 작은 원(C1)이 상기 가장 큰 원(C3)에 포함되거나 서로 교차하는 관계이면 최대값의 추정 거리는 감소시켜 오차 보정을 하는 기능을 포함하는 것을 특징으로 하는 컴퓨터로 읽을 수 있고 무선측위 프로그램이 기록된 매체.
KR1020110033443A 2011-04-11 2011-04-11 수신신호강도의 거리 추정 방식에 의거한 실내 무선 측위 방법 및 이 방법을 실시하기 위한 프로그램이 기록된 기록매체 KR101163335B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110033443A KR101163335B1 (ko) 2011-04-11 2011-04-11 수신신호강도의 거리 추정 방식에 의거한 실내 무선 측위 방법 및 이 방법을 실시하기 위한 프로그램이 기록된 기록매체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110033443A KR101163335B1 (ko) 2011-04-11 2011-04-11 수신신호강도의 거리 추정 방식에 의거한 실내 무선 측위 방법 및 이 방법을 실시하기 위한 프로그램이 기록된 기록매체

Publications (1)

Publication Number Publication Date
KR101163335B1 true KR101163335B1 (ko) 2012-07-09

Family

ID=46716379

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110033443A KR101163335B1 (ko) 2011-04-11 2011-04-11 수신신호강도의 거리 추정 방식에 의거한 실내 무선 측위 방법 및 이 방법을 실시하기 위한 프로그램이 기록된 기록매체

Country Status (1)

Country Link
KR (1) KR101163335B1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530058B1 (ko) * 2012-12-10 2015-06-18 동명대학교산학협력단 무선 센서 네트워크에서의 위치 측정 방법
US9069055B2 (en) 2012-11-30 2015-06-30 Soongsil University Research Consortium Techno-Park Wireless positioning method and apparatus using wireless sensor network
KR101544315B1 (ko) 2014-04-23 2015-08-13 서울대학교산학협력단 무선 네트워크에서의 삼변측량법을 이용한 효과적인 3차원 위치 추정 방법 및 이를 실시하기 위한 프로그램이 기록된 기록 매체
KR20180087519A (ko) * 2017-01-24 2018-08-02 고려대학교 산학협력단 레이저 거리 센서의 측정 거리에 대해 추정된 거리 유형의 신뢰성을 평가하는 방법 및 이를 이용한 이동 로봇의 위치 추정 방법
CN111929668A (zh) * 2020-06-30 2020-11-13 湖南华诺星空电子技术有限公司 基于量化区间统计的无线电侦测的测距方法及系统
KR20210108743A (ko) * 2020-02-26 2021-09-03 (주)비피앤솔루션 태그 기반의 이동체 위치 산출 장치 및 이를 포함하는 시스템, 태그 기반의 이동체 위치 산출 방법
CN113573231A (zh) * 2021-06-17 2021-10-29 浙江工业大学 一种基于改进三边测量法的室内rssi多点定位方法
WO2022234294A1 (en) * 2021-05-07 2022-11-10 Forkbeard Technologies AS Determining locations of mobile devices from wireless signals
CN117425124A (zh) * 2023-12-08 2024-01-19 长春理工大学 一种基于海伦公式面积法的uwb定位方法及系统

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069055B2 (en) 2012-11-30 2015-06-30 Soongsil University Research Consortium Techno-Park Wireless positioning method and apparatus using wireless sensor network
KR101530058B1 (ko) * 2012-12-10 2015-06-18 동명대학교산학협력단 무선 센서 네트워크에서의 위치 측정 방법
KR101544315B1 (ko) 2014-04-23 2015-08-13 서울대학교산학협력단 무선 네트워크에서의 삼변측량법을 이용한 효과적인 3차원 위치 추정 방법 및 이를 실시하기 위한 프로그램이 기록된 기록 매체
WO2015163542A1 (ko) * 2014-04-23 2015-10-29 서울대학교산학협력단 무선 네트워크에서의 삼변측량법을 이용한 효과적인 3차원 위치 추정 방법 및 이를 실시하기 위한 프로그램이 기록된 기록 매체
KR20180087519A (ko) * 2017-01-24 2018-08-02 고려대학교 산학협력단 레이저 거리 센서의 측정 거리에 대해 추정된 거리 유형의 신뢰성을 평가하는 방법 및 이를 이용한 이동 로봇의 위치 추정 방법
KR101888295B1 (ko) * 2017-01-24 2018-08-14 고려대학교 산학협력단 레이저 거리 센서의 측정 거리에 대해 추정된 거리 유형의 신뢰성을 평가하는 방법 및 이를 이용한 이동 로봇의 위치 추정 방법
KR102334550B1 (ko) * 2020-02-26 2021-12-03 (주)비피앤솔루션 태그 기반의 이동체 위치 산출 장치 및 이를 포함하는 시스템, 태그 기반의 이동체 위치 산출 방법
KR20210108743A (ko) * 2020-02-26 2021-09-03 (주)비피앤솔루션 태그 기반의 이동체 위치 산출 장치 및 이를 포함하는 시스템, 태그 기반의 이동체 위치 산출 방법
CN111929668A (zh) * 2020-06-30 2020-11-13 湖南华诺星空电子技术有限公司 基于量化区间统计的无线电侦测的测距方法及系统
CN111929668B (zh) * 2020-06-30 2023-09-19 华诺星空技术股份有限公司 基于量化区间统计的无线电侦测的测距方法及系统
WO2022234294A1 (en) * 2021-05-07 2022-11-10 Forkbeard Technologies AS Determining locations of mobile devices from wireless signals
CN113573231A (zh) * 2021-06-17 2021-10-29 浙江工业大学 一种基于改进三边测量法的室内rssi多点定位方法
CN113573231B (zh) * 2021-06-17 2024-04-16 浙江工业大学 一种基于改进三边测量法的室内rssi多点定位方法
CN117425124A (zh) * 2023-12-08 2024-01-19 长春理工大学 一种基于海伦公式面积法的uwb定位方法及系统
CN117425124B (zh) * 2023-12-08 2024-03-22 长春理工大学 一种基于海伦公式面积法的uwb定位方法及系统

Similar Documents

Publication Publication Date Title
KR101163335B1 (ko) 수신신호강도의 거리 추정 방식에 의거한 실내 무선 측위 방법 및 이 방법을 실시하기 위한 프로그램이 기록된 기록매체
KR101213363B1 (ko) 수신신호강도의 거리추정방식에 의거하여 4개 이상의 앵커노드를 이용한 실내 무선 측위 방법 및 이 방법을 실시하기 위한 프로그램이 기록된 기록매체
KR101260647B1 (ko) 무선센서네트워크 상에서 효율적인 다변측량을 이용한 무선측위방법과 이를 실시하기 위한 프로그램이 기록된 기록매체
EP3173807B1 (en) System and method for robust and accurate rssi based location estimation
US9602960B2 (en) Positioning method
CN103118333B (zh) 基于相似度的无线传感器网络移动节点定位方法
CN102364983B (zh) 无线传感网中基于rssi测距的wls节点自定位方法
CN105301560B (zh) 一种基于2点rssi的动态加权进化定位系统及方法
Mukhopadhyay et al. Novel RSSI evaluation models for accurate indoor localization with sensor networks
JP6251930B2 (ja) 位置推定システム
CN104902567A (zh) 基于最大似然估计的质心定位方法
Podevijn et al. Performance comparison of RSS algorithms for indoor localization in large open environments
US9210543B2 (en) Apparatus for determining indoor location and method for determining indoor location in multi-story building using the same
US8797899B2 (en) System and method for probabilistic WLAN positioning
Goonjur et al. Enhanced the weighted centroid localization algorithm based on received strength signal in indoor wireless sensor network
US10547964B2 (en) Method and device for estimating accuracy of a position determination
JP2016520801A (ja) 位置判定を改善する送信機の方向性プルーニング
Guidara et al. A real-time indoor localization platform based on wireless sensor networks
KR101342215B1 (ko) Rfid를 기반으로 한 위치 측정 방법 및 시스템
Zheng et al. The study of RSSI in wireless sensor networks
Zheng et al. Localization algorithm based on RSSI and distance geometry constrain for wireless sensor network
Kim et al. Improved adaptive smoothing filter for indoor localization using RSSI
Zaidi et al. Fast WSN localization method based on three anchors and simple geometric technique: mathematical modeling
KR101459915B1 (ko) 위치인식 방법
KR102275265B1 (ko) 협력적 측위 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160204

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170524

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180521

Year of fee payment: 7