[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101156017B1 - Cytochrome P450 gene of giant embryonic rice and rice plant comprising the same - Google Patents

Cytochrome P450 gene of giant embryonic rice and rice plant comprising the same Download PDF

Info

Publication number
KR101156017B1
KR101156017B1 KR1020090015067A KR20090015067A KR101156017B1 KR 101156017 B1 KR101156017 B1 KR 101156017B1 KR 1020090015067 A KR1020090015067 A KR 1020090015067A KR 20090015067 A KR20090015067 A KR 20090015067A KR 101156017 B1 KR101156017 B1 KR 101156017B1
Authority
KR
South Korea
Prior art keywords
rice
ala
gene
cytochrome
leu
Prior art date
Application number
KR1020090015067A
Other languages
Korean (ko)
Other versions
KR20100095981A (en
Inventor
박동수
이기환
한상익
남민희
송송이
왕회정
박수권
이봉춘
송유천
강항원
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020090015067A priority Critical patent/KR101156017B1/en
Publication of KR20100095981A publication Critical patent/KR20100095981A/en
Application granted granted Critical
Publication of KR101156017B1 publication Critical patent/KR101156017B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 거대배를 갖는 벼 식물체에 관한 것으로, 사이토크롬 P450의 아미노산 서열을 코드하며, 번역 후에 395번째 아미노산으로 류신을 코드하는 염기서열을 포함하는 거대배를 갖는 벼의 사이토크롬 P450 유전자 및 이를 갖는 벼 식물체를 제공한다. The present invention relates to a rice plant having a giant pear, which encodes the amino acid sequence of cytochrome P450, and has a cytochrome P450 gene of rice having a giant pear comprising a nucleotide sequence encoding leucine as the 395th amino acid after translation, and the same. It provides a rice plant having.

Description

거대배를 갖는 벼의 사이토크롬 피450 유전자 및 이를 함유하는 벼 식물체{Cytochrome P450 gene of giant embryonic rice and rice plant comprising the same}Cytochrome P450 gene of giant embryonic rice and rice plant comprising the same}

본 발명은 거대배를 갖는 벼 식물체에 관한 것으로, 보다 상세하게는 현미내 씨눈의 무게비율이 기존 거대배 품종 보다 무거우며, 아연, 철 등의 무기성분도 많이 함유되어 있어 영양이 강화된 벼를 제공할 수 있어 벼의 새로운 수요를 창출하고 쌀 산업의 경쟁력을 제고할 수 있는 거대배를 갖는 벼의 사이토크롬 P450 유전자 및 이를 함유하는 벼 식물체에 관한 것이다.The present invention relates to a rice plant having a giant pear, and more particularly, the weight ratio of the seed of brown rice is heavier than the existing giant pear varieties, and also contains a lot of inorganic components such as zinc and iron to provide rice with enhanced nutrition. The present invention relates to a cytochrome P450 gene of rice and a rice plant containing the same, which has a huge pear capable of creating new demand for rice and enhancing competitiveness of the rice industry.

현재까지 거대배 벼 품종은 주로 벼종자에 돌연변이 물질인 MNU(홍 등, 2006; Hirosh 등, 2001) 또는 방사선의 일종인 감마선(Kageyama 등, 2001) 등을 종자에 처리하여 개발되었다. 거대배 유전자는 벼의 7번 염색체에 위치하고 있으며 (Nagasawa, 2002; Koh, 1996) 사이토크롬 P450 유전자 특정 염기서열의 돌연변이에 의해 발생하는 것으로 알려져 있다(Cahoon 등, US Patent No Us 2003/0126645 A1).To date, giant cultivar rice varieties have been developed mainly by treating seeds with MNU (Hong et al., 2006; Hirosh et al., 2001), which is a mutant to rice seeds, or gamma rays (Kageyama et al., 2001), a kind of radiation. Giant embryo genes are located on chromosome 7 of rice (Nagasawa, 2002; Koh, 1996) and are known to be caused by mutations in cytochrome P450 gene specific sequences (Cahoon et al., US Patent No Us 2003/0126645 A1). .

하지만 이와 같이 현재까지 알려진 거대배 벼 품종들은 배의 크기가 충분히 크지 않으며 취반특성 및 관능성에서 다소 떨어지는 단점이 있고, 아연, 철 등의 무기성분도 충분하지 않아 영양가치의 면에서도 다소 떨어지는 문제를 안고 있다. However, the huge pear rice varieties known to date have a disadvantage that the size of the pear is not large enough, and it is somewhat inferior in cooking characteristics and sensuality, and also inferior in terms of nutritional value due to insufficient inorganic ingredients such as zinc and iron. have.

본 발명은 현미내 씨눈의 무게비율이 기존 거대배 품종 보다 무거우며, 아연, 철 등의 무기성분도 많이 함유되어 있어 영양이 강화된 벼를 제공할 수 있어 벼의 새로운 수요를 창출하고 쌀 산업의 경쟁력을 제고할 수 있는 거대배를 갖는 벼의 사이토크롬 P450 유전자 및 이를 함유하는 벼식물체를 제공함에 있다.In the present invention, the weight ratio of the seed grain in brown rice is heavier than the existing giant pear varieties, and also contains abundant inorganic components such as zinc and iron, which can provide rice with enhanced nutrition, thereby creating new demand for rice and competitiveness of the rice industry. The present invention provides a cytochrome P450 gene of rice having a giant pear and a rice plant containing the same.

상기한 바와 같은 기술적 과제는 본 발명에 따른 다음과 같은 구성에 의해 달성된다.The technical problem as described above is achieved by the following configuration according to the present invention.

(1) 사이토크롬 P450의 아미노산 서열을 코드하며, 번역 후에 395번째 아미노산으로 류신을 코드하는 염기서열을 포함하는 거대배를 갖는 벼의 사이토크롬 P450 유전자. (1) A cytochrome P450 gene of rice having a giant embryo, which encodes an amino acid sequence of cytochrome P450 and which contains a nucleotide sequence encoding leucine as the 395th amino acid after translation.

(2) 상기 1항에 있어서, 상기 염기서열로 구성되는 유전자는 사이토크롬 P450을 코드하는 cDNA 서열이고, 이 중 1195번째 염기가 T인 것을 특징으로 하는 사이토크롬 P450 유전자.(2) The cytochrome P450 gene according to item 1, wherein the gene consisting of the nucleotide sequence is a cDNA sequence encoding cytochrome P450, of which the 1195th base is T.

(3) 상기 1항에 있어서, 상기 염기서열로 구성되는 유전자는 서열번호 1로 나타내는 게놈 유전자인 사이토크롬 P450 유전자.(3) The cytochrome P450 gene according to the above 1, wherein the gene consisting of the nucleotide sequence is a genomic gene represented by SEQ ID NO: 1.

(4) 상기 1항에 있어서, 상기 염기서열로 구성되는 유전자는 서열번호 2로 나타내는 cDNA 유전자인 사이토크롬 P450 유전자.(4) The cytochrome P450 gene according to the above 1, wherein the gene consisting of the nucleotide sequence is a cDNA gene represented by SEQ ID NO: 2.

(5) 상기 1항에 있어서, 상기 염기서열은 서열번호 3으로 나타내는 사이토크롬 P450의 아미노산 서열을 코드하는 유전자를 포함하는 사이토크롬 P450 유전자.(5) The cytochrome P450 gene according to the above 1, wherein the nucleotide sequence comprises a gene encoding an amino acid sequence of cytochrome P450 represented by SEQ ID NO: 3.

(6) 상기 1항에 의한 유전자를 함유하는 재조합 벡터. (6) A recombinant vector containing the gene according to 1 above.

(7) 상기 6항에 의한 재조합 벡터로 형질전환된 거대배를 갖는 벼식물체.(7) Rice plants having a giant embryo transformed with the recombinant vector according to the above 6.

(8) 사이토크롬 P450의 아미노산 서열을 코드하며, 번역 후에 395번째 아미노산으로 류신을 코드하는 염기서열을 포함하는 사이토크롬 P450 유전자를 갖는 거대배를 갖는 벼식물체.(8) A rice plant having a giant embryo having a cytochrome P450 gene which codes for the amino acid sequence of cytochrome P450 and which contains a nucleotide sequence encoding leucine as the 395th amino acid after translation.

(9) 상기 8항에 있어서, 거대배를 갖는 벼는 찰벼 식물체인 YR23517Acp79인 것을 특징으로 하는 거대배 찰벼 식물체. (9) The huge pear rice plant according to the above 8, wherein the rice having a huge pear is YR23517Acp79, which is a rice plant.

본 발명의 상기 구성에 의하면, 현미내 씨눈의 무게비율이 기존 거대배 품종 보다 무거우며, 아연, 철 등의 무기성분도 많이 함유되어 있어 영양이 강화된 벼를 제공할 수 있어 벼의 새로운 수요를 창출하고 쌀 산업의 경쟁력을 제고할 수 있다.According to the above configuration of the present invention, the weight ratio of the seeds in brown rice is heavier than the existing giant pear varieties, and also contains a lot of inorganic components such as zinc and iron, which can provide rice with enhanced nutrition, thereby creating new demand for rice. This will enhance the competitiveness of the rice industry.

이하, 본 발명의 내용을 도면을 참조하여 보다 상세하게 설명하기로 한다.Hereinafter, the content of the present invention will be described in detail with reference to the drawings.

본 발명은 벼의 사이토크롬 P450의 아미노산 서열을 코드하며, 번역 후에 395번째 아미노산으로 류신을 코드하는 염기서열을 포함하는 거대배를 갖는 벼의 사이토크롬 P450 유전자를 포함한다.The present invention encodes the amino acid sequence of cytochrome P450 of rice, and includes the cytochrome P450 gene of rice having a huge embryo comprising a nucleotide sequence encoding leucine to the 395th amino acid after translation.

상기 본 발명에 따른 유전자는 서열번호 1로 표시되는 유전자를 들 수 있다. 서열번호 1로 표시되는 유전자는 본 발명에 따른 거대배 찰벼 식물체로부터 분리한 게놈 DNA 중 특정 대립유전자로서 염기서열의 상동성 분석결과 사이토크롬 P450을 코드하는 유전자를 포함하는 것으로 확인되었다.The gene according to the present invention may be a gene represented by SEQ ID NO: 1. The gene represented by SEQ ID NO: 1 was identified as a specific allele of genomic DNA isolated from the giant embryonic rice plant according to the present invention, and found to include a gene encoding cytochrome P450 as a result of homology analysis of the nucleotide sequence.

상기 서열번호 1로 표시되는 유전자는 오픈리딩프레임(ORF) 뿐만 아니라 업스트림과 다운스트림에 부가서열정보를 포함하고 있으며, 오픈리딩프레임내에는 인트론이 포함되어 있다.The gene represented by SEQ ID NO: 1 includes additional sequence information upstream and downstream as well as an open reading frame (ORF), and includes an intron in the open reading frame.

상기 서열번호 1의 유전자는 본 발명에 포함된 거대배 찰벼 식물체 「YR23517Acp79」의 게놈 DNA로부터 클로닝 방법으로 얻을 수 있는데, 예를 들면 서열 1의 염기서열을 이용하여 적절하게 프라이머를 합성한 후 통상적인 PCR 방법을 수행하는 것이다.The gene of SEQ ID NO: 1 can be obtained by cloning method from genomic DNA of giant embryonic rice plant "YR23517Acp79" included in the present invention. For example, after primers are appropriately synthesized using the nucleotide sequence of SEQ ID NO: 1, To perform the PCR method.

본 발명은 서열번호 2로 표시되는 서열번호 1의 게놈 염기서열에 포함된 ge t 유전자(cDNA)의 염기서열이다. 데이터베이스 검색결과에 따르면, 상기 서열번호 2의 유전자는 Os07g0603700(http://www.ncbi.nlm.nih.gov/)및 LOC_Os07g41240 (http://www.gramene.org/)에 위치하고 있다. 상동성 조사에 따르면, 상기 서열 2의 유전자는 식물에서 발견되는 사이토크롬 P450과 뉴클레오티드 서열 및 아미노산 서열에 있어 각각 99.92%, 99%의 동일성을 보인다. 따라서, 본 발명의 유전자는 사이토크롬 P450에 속하는 신규 대립유전자로 판단된다.The present invention is a nucleotide sequence of ge t gene (cDNA) contained in the genome nucleotide sequence of SEQ ID NO: 1 shown in SEQ ID NO: 2. According to a database search result, the gene of SEQ ID NO: 2 is located at Os07g0603700 (http://www.ncbi.nlm.nih.gov/) and LOC_Os07g41240 (http://www.gramene.org/). According to homology studies, the gene of SEQ ID NO: 2 shows 99.92% and 99% identity to cytochrome P450 found in plants and nucleotide and amino acid sequences, respectively. Therefore, the gene of the present invention is judged to be a novel allele belonging to cytochrome P450.

상기 본 발명에 따른 ge t 유전자의 1184번째 염기는 T인 것을 특징으로 한 다. 이는 지금까지 알려진 다른 사이토크롬 P450 유전자에서는 발견되지 않는 것이다. 이와 같은 염기의 변이로 인해 사이토크롬 P450의 395번째 아미노산이 트립토판(W)에서 류신(L)로 변형되는 결과가 초래된다.The 1184th base of the ge t gene according to the present invention is characterized in that T. This is not found in other cytochrome P450 genes known to date. This variation in base results in the transformation of the 395th amino acid of cytochrome P450 from tryptophan (W) to leucine (L).

상기 서열번호 2의 유전자는 본 발명에 포함된 거대배 찰벼 식물체 「YR23517Acp79」의 유숙기 종실중 배아로부터 추출한 RNA로부터 RT-PCR 및 클로닝 방법으로 얻을 수 있는데, 예를 들면 서열번호 1과 2의 염기서열을 이용하여 적절하게 프라이머를 합성한 후 통상적인 PCR 또는 RT-PCR 방법을 수행하는 것이다. The gene of SEQ ID NO: 2 can be obtained by RT-PCR and cloning method from RNA extracted from embryos of the embryonic seed of the giant embryonic rice plant "YR23517Acp79" included in the present invention. The primer is appropriately synthesized using the sequence, followed by conventional PCR or RT-PCR methods.

또한 본 발명은 서열번호 3으로 표시되는 서열번호 2의 cDNA에 의해 코드되는 사이토크롬 P450의 아미노산 서열이다. 서열번호 3의 오픈리딩프레임(ORF)은 520개의 아미노산으로 구성되며, 사이토크롬 P450의 395번째 아미노산이 트립토판(W)에서 류신(L)로 변형됨에 따른 돌연변이로서 이러한 유전자를 가진 벼는 씨눈의 크기가 커진 거대배가 된다. 이는 지금까지 알려진 거대배 돌연변이체의 사이토크롬 P450 아미노산 서열과는 다른 대립유전자인 것으로 확인되었다.In addition, the present invention is the amino acid sequence of cytochrome P450 encoded by the cDNA of SEQ ID NO: 2 represented by SEQ ID NO: 3. The open reading frame (ORF) of SEQ ID NO: 3 is composed of 520 amino acids, and the mutation of the 395th amino acid of cytochrome P450 is changed from tryptophan (W) to leucine (L). Becomes a huge ship. This was found to be an allele different from the cytochrome P450 amino acid sequence of the giant embryonic mutant known to date.

상기한 바와 같은 본 발명에 따른 ge t 유전자는 향후 거대배 벼 육종시 실용적인 선발 표지로 이용할 수 있으며 거대배 찰벼 식물체는 곡립뿐만 아니라 벼의 씨눈 및 씨눈 함유성분을 이용한 제품생산의 재료로도 이용할 수 있다.The ge t gene according to the present invention as described above can be used as a practical selection marker for future breeding of giant pear rice and the giant pear rice plant can be used as a material for producing products using not only grain but also seed and seed-containing components of rice. have.

상기 본 발명에 따른 거대배 찰벼 식물체는 다음과 같은 과정에 의해 선발할 수 있다. 먼저Giant pear rice plant according to the present invention can be selected by the following process. first

1) 벼품종 화청벼를 모본으로 하고 상주찰벼를 부본으로 하여 인공교배한 교 잡식물체(YR23517)를 재배한다. 1) Rice Varieties Cultivated hybrid plants (YR23517) were artificially bred using Hwacheong Paddy as a model and Sangju Sticky Paddy as a copy.

2) 그런 다음 1핵기 초ㆍ중기의 화분발육상태를 보이는 이삭을 채취한 후 통상적인 방법에 따라 약배양을 수행하여 이삭을 채취한다.2) Then, the ear which shows pollen development status of the early and the middle stage of the first nuclear stage is collected, and then the ear is collected by carrying out the cultivation according to the conventional method.

3) 채취한 이삭을 2ppm NAA, 0.2ppm 카이네틴 등이 포함된 N6-Y2 배지에 치상한 후 15일간 저온처리한 후 25℃에서 30~40일간 배양하여 캘러스를 유기한다. 3) The collected ear is soaked in N 6 -Y 2 medium containing 2ppm NAA, 0.2ppm cinetin, etc., and then low-temperature treatment for 15 days, followed by incubation at 25 ° C for 30-40 days to induce callus.

4) 유기된 캘러스는 0.2ppm IAA, 2ppm 카이네틴 등이 포함된 N6-Y2 배지로 옮긴 후 약 30일간 배양하여 식물체를 재분화한다. 4) The transferred callus is transferred to N 6 -Y 2 medium containing 0.2 ppm IAA, 2 ppm cinetin, etc., and cultured for about 30 days to regenerate the plant.

5) 식물체를 배양병으로 이식하여 뿌리발생을 유도한 후 토양에 이앙하여 각 식물체의 종자를 수확한다. 5) Plants are transplanted into culture bottles to induce root development and transfer to the soil to harvest seeds of each plant.

6) 수확한 종자를 다시 토양에 이앙하여 각 식물체의 곡립특성을 분석하여 씨눈이 큰 거대배 찰벼 식물체를 선발할 수 있다.6) The harvested seeds are transferred back to the soil, and the grain characteristics of each plant can be analyzed to select a giant pear-rice plant.

본 발명에 따른 거대배 찰벼 식물체는 한 포기에 여러 분얼(tiller)을 가지고 있는 바, 상기 거대배 찰벼 식물체의 분얼을 인위적으로 분리하여 다시 옮겨 심는 방법을 통해 무성번식할 수 있으며 종자를 이용한 번식을 통해서도 특성의 변화 없이 증식이 가능하다.Giant pear rice plant according to the present invention has several tillers in a single bar, can be asexual propagation through the method of artificially separating and re-planting the grains of the giant pear rice plant, and breeding using seeds Proliferation is also possible without a change in properties.

본 발명에서는 상기 거대벼 찰벼 식물체를 식물체간 인공교배에 의해 얻어지는 식물체 중에서 선발하는 것에 의해 기술하고 있지만, 유전자 재조합 발명을 이용하여 식물체를 형징전환시켜 제조하는 것도 가능하다.In the present invention, the above-mentioned rice paddy plant is described by selecting from plants obtained by artificial breeding between plants, but it is also possible to manufacture by transforming a plant using a genetic recombinant invention.

벼의 형질전환을 위하여 채택될 수 있는 방법은 특별한 한정을 요하지는 않 으며, 예를 들어 체외 배양체 또는 현탁세포의 미량투사 충격투입법 및 직접적 유전자 흡수법 또는 원형질체의 전기 천공법 등을 들 수 있다. Methods that can be adopted for the transformation of rice do not require special limitations, and include, for example, microprojection bombardment of in vitro cultures or suspension cells and direct gene uptake or electroporation of protoplasts. .

이러한 형질전환체의 제조를 위해 사용될 수 있는 재조합벡터는 공지된 상법에 따라 실시하면 충분하다. 이들 재조합 유전자를 높게 또는 적절한 수준으로 발현시키는 것으로 이미 공지된 조절서열이 본 발명에서도 사용될 수 있다. 이와 같은 조절서열은 식물 또는 식물 바이러스로부터 얻어지거나 또는 화학적 방법으로 합성될 수 있다. 이러한 조절서열은 전사를 지휘하는 프로모터를 들 수 있다. 발현율을 높이기 위한 프로모터로서는 특히 이들에 한정되지 않지만 브라시카 나퍼스의 CruA 프로모터와 같은 저장 단백질 유전자의 프로모터(Ryan et al., 1989)또는 구조적 발현 유전자의 프로모터 예컨대 CaMV(Cauliflower Mosaic Virus)의 35S 프로모터(Guilley et al., 1982) 등이 있다. 다른 조절서열은 종결서열 및 폴리아데닐화 시그날 그리고 식물에서 이와 같은 기능을 하는 모든 서열 등이 여기에 포함될 수 있다. 구체적인 예로서는 아그로박테리움 투마파시엔의 노팔린 신타아제 유전자의 3'측위 영역 또는 브라시카 나퍼스의 CurA유전자의 3'측위 영역 등이 있다. 또한 조절서열에서는 CaMV의 35S프로모터에서 발견되는 것과 같은 인핸서서열, AIMV(Alfalfa Mosaic Virus) RNA4의 리더 서열과 같은 mRNA안정화 서열(Brederode et al., 1980)또는 이와 같은 기능을 하는 기타 서열 등이 포함될 수 있다.Recombinant vectors that can be used for the production of such transformants are sufficient to carry out according to known commercial methods. Regulatory sequences already known to express these recombinant genes at high or appropriate levels can also be used in the present invention. Such regulatory sequences may be obtained from plants or plant viruses or synthesized by chemical methods. Such regulatory sequences may include promoters that direct transcription. Examples of promoters for increasing the expression rate include, but are not limited to, promoters of storage protein genes such as the CruA promoter of Brassica napus (Ryan et al., 1989) or promoters of structural expression genes such as the 35S promoter of CaMV (Cauliflower Mosaic Virus). (Guilley et al., 1982). Other regulatory sequences may include termination sequences and polyadenylation signals and all sequences that function in plants. Specific examples include the 3 'locus of the nopaline synthase gene of Agrobacterium tumafaciene or the 3' locus of the CurA gene of Brassica napus. Regulatory sequences may also include enhancer sequences such as those found in the 35S promoter of CaMV, mRNA stabilization sequences (Brederode et al., 1980), or other sequences that function such as AIMV (Alfalfa Mosaic Virus) RNA4 leader sequences. Can be.

상기 본 발명의 적합한 유전자 구성체의 모든 부분(프로모터, 조절서열, 안정화서열, 시그날 서열 또는 종결서열)은 필요하다면 공지 기술을 사용하여 이들의 조절 특성이 변하도록 변이 될 수 있다.All parts (promoter, regulatory sequence, stabilization sequence, signal sequence or termination sequence) of suitable gene constructs of the present invention can be mutated to change their regulatory properties using known techniques, if necessary.

이하 본 발명의 내용을 실시예를 참조하여 보다 상세하게 설명하고자 한다. 다만 하기 예시된 실시예는 본 발명의 이해를 돕기 위해 제시되는 것일 뿐 이에 의해 본 발명의 권리범위가 한정되는 것으로 해석되어서는 아니된다.Hereinafter, the content of the present invention will be described in more detail with reference to Examples. However, the following illustrated examples are only presented to aid the understanding of the present invention and should not be construed as limiting the scope of the present invention.

<실시예 1> 약배양에 의한 거대배 벼 YR23517Acp79 선발Example 1 Selection of Giant Rice YR23517Acp79 by Medicine Culture

벼품종 화청벼와 상주찰벼는 정상적인 크기의 배를 가진 품종이다. 화청벼를 모본으로 하고 상주찰벼를 부본으로 하여 인공교배한 교잡식물체(YR23517)를 재배하였다. 1핵기 초ㆍ중기의 화분발육상태를 보이는 이삭을 채취한 후 통상적인 방법에 따라 약배양을 수행하였다. 채취한 이삭을 2ppm NAA, 0.2ppm 카이네틴 등이 포함된 N6-Y2 배지에 치상한 후 15일간 저온처리한 후 25℃에서 30~40일간 배양하여 캘러스를 유기하였다. Rice varieties Hwacheong rice and Sangjuchal rice are varieties with normal sized pears. The hybrid plants (YR23517), which were artificially crossed, were grown using Hwachung rice as a model and Sangjuchal rice as a copy. Ears showing pollen development in the early and mid-nuclear stage were harvested and then cultured according to the conventional method. The collected ear was soaked in N 6 -Y 2 medium containing 2ppm NAA, 0.2ppm cinetin, and the like for 15 days, and then incubated at 25 ° C. for 30-40 days to induce callus.

유기된 캘러스는 0.2ppm IAA, 2ppm 카이네틴 등이 포함된 N6-Y2 배지로 옮긴 후 약 30일간 배양하여 식물체를 재분화하였다. 식물체를 배양병으로 이식하여 뿌리발생을 유도하고 토양에 이앙한 후 각 식물체의 종자를 수확하였다. 수확한 종자를 다시 토양에 이앙하여 각 식물체의 곡립특성을 분석한 결과 씨눈이 큰 거대배 찰벼 식물체 「YR23517Acp79」을 선발하고 이를 경기도 수원시 권선구 서둔동 소재 국립농업과학원 농업유전자원센터에 2009년 2월 12일자로 기탁번호 KACC 98006P로 기탁하였다.The callus was transferred to N 6 -Y 2 medium containing 0.2ppm IAA, 2ppm cinetin and the like, and cultured for about 30 days to re-differentiate the plant. Plants were transplanted into culture bottles to induce root development, seeded in soil and harvested seeds of each plant. As a result of analyzing the grain characteristics of each plant by transferring the harvested seeds back to the soil, we selected the YR23517Acp79, a giant pear rice plant with large eyes, and sent it to the Agricultural Genetic Resource Center, National Agricultural Science Institute, Seodun-dong, Suwon-si, Gyeonggi-do. Deposited with accession number KACC 98006P as of date.

거대배 찰벼 식물체 「YR23517Acp79」의 곡립은 도 1A 및 도 1C에서 보는 바 와 같이 씨눈의 크기가 일반벼(도 1B)에 비해 현저히 크다. 또한 「YR23517Acp79」는 현미내 씨눈의 무게비율이 16.5%로 일반 거대배 품종 「큰눈」보다 무거웠고 아연, 철 등의 무기성분도 「큰눈」에 비해 많이 함유하였다(표 1).The grain size of the giant pear rice plant "YR23517Acp79" is significantly larger than that of ordinary rice (Fig. 1B), as shown in Figs. 1A and 1C. In addition, `` YR23517Acp79 '' had a weight ratio of 16.5% of brown rice seeds, which was heavier than the general giant pear `` big eyes '' and contained more inorganic components such as zinc and iron than `` big eyes '' (Table 1).

<표 1> 거대배 찰벼 식물체 「YR23517Acp79」와 일반 거대배 품종 「큰눈」의 곡립 및 성분 비교<Table 1> Composition and composition of giant pear rice plant "YR23517Acp79" and general giant pear variety "big eyes"

구분division 립수Lip count 씨눈무게(A)Seaweed weight (A) 배유무게(B)Oil drainage weight (B) A/B(%)A / B (%) 무기성분Inorganic ingredients 비고Remarks ZnZn FeFe YR23517Acp79YR23517Acp79 400400 0.758g0.758 g 4.597g4.597 g 16.516.5 42ppm42 ppm 33ppm33 ppm 찰벼Rice 큰눈Big eyes 400400 0.558g0.558 g 6.209g6.209 g 9.09.0 27ppm27 ppm 24ppm24 ppm 메벼Buckwheat

<실시예 2: ge t 유전자의 클로닝 및 서열분석>Example 2: Cloning and sequencing of ge t genes

본 발명에서 벼품종 화청벼와 상주찰벼의 교잡식물체(YR23517)를 약배양한 후대에서 선발한 거대배 찰벼 식물체 「YR23517Acp79」로부터 씨눈의 크기에 관련된 유전자인 사이토크롬 P450(Cytochrome P450) (LOC_Os07g41240) 게놈 유전자를 분리하였다.Cytochrome P450 (LOC_Os07g41240) genome, which is a gene related to seed size, from the giant cultivar rice plant `` YR23517Acp79 '', which was selected from the later generations of the cultivated rice varieties of hwacheong and sangju rice in the present invention. Gene was isolated.

PCR을 통한 유전자 분리를 위해 NCBI 데이터베이스(http://www.ncbi.nlm.nih.gov/)를 통해 얻어진 사이토크롬 P450 게놈 염기서열을 이용하여 인트론을 중심으로 두개의 DNA절편으로 나눈 후 각 DNA 절편의 염기 서열에 따라 적절히 프라이머를 합성하고 5M의 베타인(Betaine)이 5㎕(sigma, USA) 첨가된 조건에서 통상적인 PCR 방법을 수행하였다. PCR 반응 조건은 DNA 20ng, 500mM 베타인, 1×Ex Taq 버퍼, 0.2mM dNTP, 0.5 unit Ex Taq 폴리머레이즈(Takara, Japan) 및 프라이머 1uM 포함하는 50㎕의 혼합물을 어닐링 온도 55℃조 건에서 35번 증폭하였다. 상기 PCR에서 사용된 프라이머는 아래와 같다.Using DNA cytochrome P450 genome sequence obtained through NCBI database (http://www.ncbi.nlm.nih.gov/) for gene isolation by PCR, each DNA was divided into two DNA fragments around introns. Primers were synthesized appropriately according to the nucleotide sequence of the fragments, and the conventional PCR method was performed under the condition that 5 μl of betaine (5 μg) was added (sigma, USA). PCR reaction conditions were 50 μl of a mixture containing 20 ng of DNA, 500 mM betaine, 1 × Ex Taq buffer, 0.2 mM dNTP, 0.5 unit Ex Taq polymerase (Takara, Japan), and 1 uM of primers. Amplified times. Primers used in the PCR are as follows.

서열번호 4: P450F1 5‘-TAGCTTCTCTCCACGTCTT-3’(전방향 프라이머)SEQ ID NO: P450F1 5'-TAGCTTCTCTCCACGTCTT-3 '(forward primer)

서열번호 5: P450R1 5'-GCCATGGACGTTTCCTTCTC-3'(역방향 프라이머)SEQ ID NO: P450R1 5'-GCCATGGACGTTTCCTTCTC-3 '(reverse primer)

서열번호 6: P450F2 5'-TCTCCTCGTCGTCGTCTTC-3' (전방향 프라이머)SEQ ID NO: P450F2 5'-TCTCCTCGTCGTCGTCTTC-3 '(forward primer)

서열번호 7: P450R2 5'-TGATGTTTCACAACTAATGCCTCG-3' (역방향 프라이머)SEQ ID NO: P450R2 5'-TGATGTTTCACAACTAATGCCTCG-3 '(reverse primer)

상기 4개의 프라이머로 증폭된 2개의 게놈 DNA를 pGEM-T Easy Vector(Promega Co, USA)에 접합(ligation)한 후 대장균 E. coli JM109 세포에 재조합벡터를 형질전환하였다. 재조합벡터가 삽입된 형질전환 대장균들을 항생제 저항성 마커(엠피실린)와 베타 갈락토시다아제 효소를 이용한 색깔 선발(푸른색)을 통해서 1차 선발하고 선발된 대장균을 다시 DNA 미니프렙 과정을 거쳐서 삽입된 벡터를 추출하여 2차 확인하였다. 이러한 일련의 과정을 통해 각 사이토크롬 P450 유전자의 게놈 염기서열이 삽입된 형질전환 대장균을 확보하였다.Two genomic DNAs amplified with the four primers were conjugated to pGEM-T Easy Vector (Promega Co, USA) and transformed into recombinant E. coli JM109 cells. The transformed E. coli with the recombinant vector was first selected through the color selection (blue) using antibiotic resistance markers (Epicillin) and beta galactosidase enzyme, and the selected E. coli was inserted through DNA miniprep process. The vector was extracted and confirmed secondary. Through such a series of processes, a transgenic E. coli with the genomic sequence of each cytochrome P450 gene was inserted.

벡터에 삽입된 사이토크롬 P450 유전자의 염기서열을 벡터 내에 존재 하는 시퀀싱 프라이머인 T7과 (서열번호 5: 5'-TAATACGACTCACTATAGGG-3')와 SP6(서열번호 6: 5'-ATTTAGGTGACACTATAG-3')를 이용하여 사이토크롬 P450 게놈 DNA의 염기서열을 분석하였다. 상기 염기서열 분석 작업은 시퀀싱 에러를 제거하기 위하여 독립적으로 얻은 10개의 재조합 DNA를 각각 2반복 염기서열 분석하여 얻어진 결과로서 매우 정확한 결과임을 확신하였다.The nucleotide sequence of the cytochrome P450 gene inserted into the vector was identified by the sequencing primers T7 (SEQ ID NO: 5: 5'-TAATACGACTCACTATAGGG-3 ') and SP6 (SEQ ID NO: 6: 5'-ATTTAGGTGACACTATAG-3'). The nucleotide sequence of cytochrome P450 genomic DNA was analyzed. The sequencing work was confirmed to be a very accurate result obtained by performing two sequencing of each of the 10 recombinant DNAs obtained independently to eliminate sequencing errors.

시퀀싱 분석을 통해서 얻어진 게놈 DNA의 염기서열에서 인트론(intron)부분 을 제거하고 엑손(exon)으로만 이루어진 유전자(cDNA) 및 아미노산 서열에 대해 화청벼(모본)과 상주찰벼(부본), 니뽄바래(Nipponbare) 및 동진벼(Donjin)에서 발견되는 사이토크롬 P450과의 상동성 조사를 실시하였다.The intron portion of the genomic DNA obtained through the sequencing analysis was removed, and for the gene and the amino acid sequence consisting of exons (cDNA), sangcheong rice (the model), sangjujub rice (the copy), and the nibbarae ( The homology with cytochrome P450 found in Nipponbare) and Dongjin rice was investigated.

상기 서열분석에 대한 결과는 도 2에서 나타낸 바와 같이 거대배 찰벼 식물체는 정상적인 배크기를 가지는 니뽄바래, 화청벼, 상주찰벼 및 동진벼의 사이토크롬 P450 게놈 DNA에서 1195번째 염기가 G(guanine)에서 T(thymine)으로 변형됨에 따라 395번째 아미노산이 트립토판(W)에서 류신(L)으로 변형되어 있음을 확인하였다. 따라서 이 유전자(cDNA)를 사이토크롬 P450 유전자(cDNA)의 신규 대립유전자인 ge t로 명명하였다. 상기 ge t 유전자를 가진 벼는 씨눈의 크기가 커진 거대배이다.As shown in FIG. 2, the results of the sequencing analysis showed that the 1195th base in the cytochrome P450 genomic DNA of the nibbarae, hwacheong rice, sangju rice, and dongjin rice had the normal size. As the (thymine) it was confirmed that the 395th amino acid is modified from tryptophan (W) to leucine (L). Therefore, this gene (cDNA) was named ge t , a new allele of the cytochrome P450 gene (cDNA). The rice with the ge t gene is a giant embryo with an increased size of seed.

상기와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the appended claims. It can be understood that

도 1은 본 발명에 따른 거대배 찰벼 식물체 「YR23517Acp79」의 곡립과 일반벼의 곡립의 비교사진이다.1 is a comparative photograph of a grain of a giant pear rice plant "YR23517Acp79" according to the present invention and a grain of ordinary rice.

도 2는 본 발명에 따른 거대배 찰벼 식물체 「YR23517Acp79」의 유전자의 변이부위를 타 식물체의 그것과 대비하여 보여주는 염기서열 비교도이다.Figure 2 is a comparative sequence showing the mutated site of the gene of the giant pear rice plant "YR23517Acp79" according to the present invention compared with that of other plants.

<110> REPUBLIC OF KOREA(MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION) <120> Cytochrome P450 gene of giant embryonic rice and rice plant comprising the same <160> 7 <170> KopatentIn 1.71 <210> 1 <211> 2301 <212> DNA <213> Rice plant <220> <221> gene <222> (1)..(2301) <223> genomic DNA of cytochrome P450 <400> 1 gccattatta tgtagtccta tatttaagga agaaactaat gatatatacg cagatattgt 60 taataatgac cctttgatta cgctatcatt actgacaatg acatgtgggg ctagagtgtc 120 agataattgg aggtccaaat ttttggagtg gcaaaatggt ctatttaaag caccaggtgt 180 ttattagctt ctctccacgt cttcttcctc ccaagaaaac tcctctcact tcgcgaacgc 240 ttcccatggc gctctcctcc atggccgcgg cgcaagagag ctccctcctc ctcttcctcc 300 tcccgacgtc ggccgcctcc gtgttcccgc cgctcatctc cgtggtcgtc ctcgccgcgc 360 tcctcctgtg gctctcgccg ggtggccccg cgtgggcgct gtcccgttgc cgtggcacgc 420 cgccgccgcc gggcgtggcg gggggcgcgg ccagcgcgct gtccggccct gccgcgcacc 480 gcgtgctcgc cgggatttcg cgcgccgtcg agggcggcgc ggcggtgatg tcgctctccg 540 tcggcctcac ccgcctcgtc gtggcgagcc ggccggagac ggcgagggag atcctcgtca 600 gcccggcgtt cggcgaccgc cccgtgaagg acgcggcgag gcagctgctg ttccaccgcg 660 ccatggggtt cgccccgtcg ggcgacgcgc actggcgcgg gctccgccgc gcctccgcgg 720 cgcacctctt cggcccgcgc cgcgtggccg ggtccgcgcc cgagcgcgag gccatcggcg 780 cccgcatagt cggcgacgtc gcctccctca tgtcccgccg cggcgaggtc cccctccgcc 840 gcgtccttca cgccgcgtcg ctcggccacg tcatggcgac cgtcttcggc aagcggcacg 900 gcgacatctc gatccaggac ggcgagctcc tggaggagat ggtcaccgaa gggtacgacc 960 tcctcggcaa gttcaactgg gccgaccacc tgccattgct caggtggctc gacctccagg 1020 gcatccgccg ccggtgcaac aggctagtcc agaaggtgga ggtgttcgtc ggaaagatca 1080 tacaggagca caaggcgaag cgagctgccg gaggcgtcgc cgtcgccgac ggcgtcttgg 1140 gcgacttcgt cgacgtcctc ctcgacctcc agggagagga gaagatgtca gactccgaca 1200 tgatcgctgt tctttgggta agtctcctcg tcgtcgtctt cgtcgtaaag cttgagaagg 1260 aaacgtccat ggcgttttca tggattggtt tcttgttttt ttcttcagga gatgatcttt 1320 agagggacgg acacggtggc gatcttgatg gagtgggtga tggcgaggat ggtgatgcac 1380 ccggagatcc aggcgaaggc gcaggcggag gtggacgccg ccgtgggggg acgccgcggc 1440 cgcgtcgccg acggcgacgt ggcgagcctc ccctacatcc agtccatcgt gaaggagacg 1500 ctgcgcatgc acccgccggg cccgctcctg tcgtgggcgc gcctcgccgt gcacgacgcg 1560 cgcgtcggtg gccacgccgt ccccgccggg acgacggcga tggtgaacat gtgggcgatc 1620 gcccacgacg ccgccgtctg gccggagccg gatgcgttcc gcccggagcg cttctcggag 1680 ggggaggacg tcggcgtgct cggcggcgac ctccgcctcg cgccgttcgg cgccggccgc 1740 cgcgtctgcc ctggcaggat gctggcgctc gccaccgccc acctctggct cgcccagctg 1800 ctgcacgcct tcgactggtc ccccaccgcc gccggcgtcg acctgtccga gcgcctcggc 1860 atgtcgctgg agatggcggc gccgctcgtg tgcaaggccg tggctagggc ctgagcccta 1920 gccgccgccg ccgccattat tgccattgat gtggctagcg acgttgtcgt gctcgcatcc 1980 atactcctcc ataggcaact cgtctagcca atgaagaaag ctactatcta tctatctatc 2040 aagctagctg ctactatcac aaaccgcatt tcggcatcat cttaaattag ctcttagggg 2100 tgtaggcgat tttggtttcc cccaaaaatt tgctttgcca gtcttttggt ttaaatcgag 2160 gcattagttg tgaaacatca tgagaagtta tttaaatctg aggaattttg tttgaacctt 2220 ttctggtgtg ctaaatggat cgtgctttga gtatcttatt attctgaatg tgttatgtag 2280 ctacactctc ctgaatcatg t 2301 <210> 2 <211> 1563 <212> DNA <213> Rice plant <220> <221> gene <222> (1)..(1560) <223> cDNA of cytochrome P450 <400> 2 atggccgcgg cgcaagagag ctccctcctc ctcttcctcc tcccgacgtc ggccgcctcc 60 gtgttcccgc cgctcatctc cgtggtcgtc ctcgccgcgc tcctcctgtg gctctcgccg 120 ggtggccccg cgtgggcgct gtcccgttgc cgtggcacgc cgccgccgcc gggcgtggcg 180 gggggcgcgg ccagcgcgct gtccggccct gccgcgcacc gcgtgctcgc cgggatttcg 240 cgcgccgtcg agggcggcgc ggcggtgatg tcgctctccg tcggcctcac ccgcctcgtc 300 gtggcgagcc ggccggagac ggcgagggag atcctcgtca gcccggcgtt cggcgaccgc 360 cccgtgaagg acgcggcgag gcagctgctg ttccaccgcg ccatggggtt cgccccgtcg 420 ggcgacgcgc actggcgcgg gctccgccgc gcctccgcgg cgcacctctt cggcccgcgc 480 cgcgtggccg ggtccgcgcc cgagcgcgag gccatcggcg cccgcatagt cggcgacgtc 540 gcctccctca tgtcccgccg cggcgaggtc cccctccgcc gcgtccttca cgccgcgtcg 600 ctcggccacg tcatggcgac cgtcttcggc aagcggcacg gcgacatctc gatccaggac 660 ggcgagctcc tggaggagat ggtcaccgaa gggtacgacc tcctcggcaa gttcaactgg 720 gccgaccacc tgccattgct caggtggctc gacctccagg gcatccgccg ccggtgcaac 780 aggctagtcc agaaggtgga ggtgttcgtc ggaaagatca tacaggagca caaggcgaag 840 cgagctgccg gaggcgtcgc cgtcgccgac ggcgtcttgg gcgacttcgt cgacgtcctc 900 ctcgacctcc agggagagga gaagatgtca gactccgaca tgatcgctgt tctttgggag 960 atgatcttta gagggacgga cacggtggcg atcttgatgg agtgggtgat ggcgaggatg 1020 gtgatgcacc cggagatcca ggcgaaggcg caggcggagg tggacgccgc cgtgggggga 1080 cgccgcggcc gcgtcgccga cggcgacgtg gcgagcctcc cctacatcca gtccatcgtg 1140 aaggagacgc tgcgcatgca cccgccgggc ccgctcctgt cgttggcgcg cctcgccgtg 1200 cacgacgcgc gcgtcggtgg ccacgccgtc cccgccggga cgacggcgat ggtgaacatg 1260 tgggcgatcg cccacgacgc cgccgtctgg ccggagccgg atgcgttccg cccggagcgc 1320 ttctcggagg gggaggacgt cggcgtgctc ggcggcgacc tccgcctcgc gccgttcggc 1380 gccggccgcc gcgtctgccc tggcaggatg ctggcgctcg ccaccgccca cctctggctc 1440 gcccagctgc tgcacgcctt cgactggtcc cccaccgccg ccggcgtcga cctgtccgag 1500 cgcctcggca tgtcgctgga gatggcggcg ccgctcgtgt gcaaggccgt ggctagggcc 1560 tga 1563 <210> 3 <211> 520 <212> PRT <213> Rice plant <220> <221> PEPTIDE <222> (1)..(520) <223> Cytochrome P450 <400> 3 Met Ala Ala Ala Gln Glu Ser Ser Leu Leu Leu Phe Leu Leu Pro Thr 1 5 10 15 Ser Ala Ala Ser Val Phe Pro Pro Leu Ile Ser Val Val Val Leu Ala 20 25 30 Ala Leu Leu Leu Trp Leu Ser Pro Gly Gly Pro Ala Trp Ala Leu Ser 35 40 45 Arg Cys Arg Gly Thr Pro Pro Pro Pro Gly Val Ala Gly Gly Ala Ala 50 55 60 Ser Ala Leu Ser Gly Pro Ala Ala His Arg Val Leu Ala Gly Ile Ser 65 70 75 80 Arg Ala Val Glu Gly Gly Ala Ala Val Met Ser Leu Ser Val Gly Leu 85 90 95 Thr Arg Leu Val Val Ala Ser Arg Pro Glu Thr Ala Arg Glu Ile Leu 100 105 110 Val Ser Pro Ala Phe Gly Asp Arg Pro Val Lys Asp Ala Ala Arg Gln 115 120 125 Leu Leu Phe His Arg Ala Met Gly Phe Ala Pro Ser Gly Asp Ala His 130 135 140 Trp Arg Gly Leu Arg Arg Ala Ser Ala Ala His Leu Phe Gly Pro Arg 145 150 155 160 Arg Val Ala Gly Ser Ala Pro Glu Arg Glu Ala Ile Gly Ala Arg Ile 165 170 175 Val Gly Asp Val Ala Ser Leu Met Ser Arg Arg Gly Glu Val Pro Leu 180 185 190 Arg Arg Val Leu His Ala Ala Ser Leu Gly His Val Met Ala Thr Val 195 200 205 Phe Gly Lys Arg His Gly Asp Ile Ser Ile Gln Asp Gly Glu Leu Leu 210 215 220 Glu Glu Met Val Thr Glu Gly Tyr Asp Leu Leu Gly Lys Phe Asn Trp 225 230 235 240 Ala Asp His Leu Pro Leu Leu Arg Trp Leu Asp Leu Gln Gly Ile Arg 245 250 255 Arg Arg Cys Asn Arg Leu Val Gln Lys Val Glu Val Phe Val Gly Lys 260 265 270 Ile Ile Gln Glu His Lys Ala Lys Arg Ala Ala Gly Gly Val Ala Val 275 280 285 Ala Asp Gly Val Leu Gly Asp Phe Val Asp Val Leu Leu Asp Leu Gln 290 295 300 Gly Glu Glu Lys Met Ser Asp Ser Asp Met Ile Ala Val Leu Trp Glu 305 310 315 320 Met Ile Phe Arg Gly Thr Asp Thr Val Ala Ile Leu Met Glu Trp Val 325 330 335 Met Ala Arg Met Val Met His Pro Glu Ile Gln Ala Lys Ala Gln Ala 340 345 350 Glu Val Asp Ala Ala Val Gly Gly Arg Arg Gly Arg Val Ala Asp Gly 355 360 365 Asp Val Ala Ser Leu Pro Tyr Ile Gln Ser Ile Val Lys Glu Thr Leu 370 375 380 Arg Met His Pro Pro Gly Pro Leu Leu Ser Leu Ala Arg Leu Ala Val 385 390 395 400 His Asp Ala Arg Val Gly Gly His Ala Val Pro Ala Gly Thr Thr Ala 405 410 415 Met Val Asn Met Trp Ala Ile Ala His Asp Ala Ala Val Trp Pro Glu 420 425 430 Pro Asp Ala Phe Arg Pro Glu Arg Phe Ser Glu Gly Glu Asp Val Gly 435 440 445 Val Leu Gly Gly Asp Leu Arg Leu Ala Pro Phe Gly Ala Gly Arg Arg 450 455 460 Val Cys Pro Gly Arg Met Leu Ala Leu Ala Thr Ala His Leu Trp Leu 465 470 475 480 Ala Gln Leu Leu His Ala Phe Asp Trp Ser Pro Thr Ala Ala Gly Val 485 490 495 Asp Leu Ser Glu Arg Leu Gly Met Ser Leu Glu Met Ala Ala Pro Leu 500 505 510 Val Cys Lys Ala Val Ala Arg Ala 515 520 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> forward primer P450F1 <400> 4 tagcttctct ccacgtctt 19 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of P450R1 <400> 5 gccatggacg tttccttctc 20 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> forward primer of P450F2 <400> 6 tctcctcgtc gtcgtcttc 19 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of P450R2 <400> 7 tgatgtttca caactaatgc ctcg 24 <110> REPUBLIC OF KOREA (MANAGEMENT: RURAL DEVELOPMENT ADMINISTRATION) <120> Cytochrome P450 gene of giant embryonic rice and rice plant          configuring the same <160> 7 <170> Kopatentin 1.71 <210> 1 <211> 2301 <212> DNA <213> Rice plant <220> <221> gene (222) (1) .. (2301) <223> genomic DNA of cytochrome P450 <400> 1 gccattatta tgtagtccta tatttaagga agaaactaat gatatatacg cagatattgt 60 taataatgac cctttgatta cgctatcatt actgacaatg acatgtgggg ctagagtgtc 120 agataattgg aggtccaaat ttttggagtg gcaaaatggt ctatttaaag caccaggtgt 180 ttattagctt ctctccacgt cttcttcctc ccaagaaaac tcctctcact tcgcgaacgc 240 ttcccatggc gctctcctcc atggccgcgg cgcaagagag ctccctcctc ctcttcctcc 300 tcccgacgtc ggccgcctcc gtgttcccgc cgctcatctc cgtggtcgtc ctcgccgcgc 360 tcctcctgtg gctctcgccg ggtggccccg cgtgggcgct gtcccgttgc cgtggcacgc 420 cgccgccgcc gggcgtggcg gggggcgcgg ccagcgcgct gtccggccct gccgcgcacc 480 gcgtgctcgc cgggatttcg cgcgccgtcg agggcggcgc ggcggtgatg tcgctctccg 540 tcggcctcac ccgcctcgtc gtggcgagcc ggccggagac ggcgagggag atcctcgtca 600 gcccggcgtt cggcgaccgc cccgtgaagg acgcggcgag gcagctgctg ttccaccgcg 660 ccatggggtt cgccccgtcg ggcgacgcgc actggcgcgg gctccgccgc gcctccgcgg 720 cgcacctctt cggcccgcgc cgcgtggccg ggtccgcgcc cgagcgcgag gccatcggcg 780 cccgcatagt cggcgacgtc gcctccctca tgtcccgccg cggcgaggtc cccctccgcc 840 gcgtccttca cgccgcgtcg ctcggccacg tcatggcgac cgtcttcggc aagcggcacg 900 gcgacatctc gatccaggac ggcgagctcc tggaggagat ggtcaccgaa gggtacgacc 960 tcctcggcaa gttcaactgg gccgaccacc tgccattgct caggtggctc gacctccagg 1020 gcatccgccg ccggtgcaac aggctagtcc agaaggtgga ggtgttcgtc ggaaagatca 1080 tacaggagca caaggcgaag cgagctgccg gaggcgtcgc cgtcgccgac ggcgtcttgg 1140 gcgacttcgt cgacgtcctc ctcgacctcc agggagagga gaagatgtca gactccgaca 1200 tgatcgctgt tctttgggta agtctcctcg tcgtcgtctt cgtcgtaaag cttgagaagg 1260 aaacgtccat ggcgttttca tggattggtt tcttgttttt ttcttcagga gatgatcttt 1320 agagggacgg acacggtggc gatcttgatg gagtgggtga tggcgaggat ggtgatgcac 1380 ccggagatcc aggcgaaggc gcaggcggag gtggacgccg ccgtgggggg acgccgcggc 1440 cgcgtcgccg acggcgacgt ggcgagcctc ccctacatcc agtccatcgt gaaggagacg 1500 ctgcgcatgc acccgccggg cccgctcctg tcgtgggcgc gcctcgccgt gcacgacgcg 1560 cgcgtcggtg gccacgccgt ccccgccggg acgacggcga tggtgaacat gtgggcgatc 1620 gcccacgacg ccgccgtctg gccggagccg gatgcgttcc gcccggagcg cttctcggag 1680 ggggaggacg tcggcgtgct cggcggcgac ctccgcctcg cgccgttcgg cgccggccgc 1740 cgcgtctgcc ctggcaggat gctggcgctc gccaccgccc acctctggct cgcccagctg 1800 ctgcacgcct tcgactggtc ccccaccgcc gccggcgtcg acctgtccga gcgcctcggc 1860 atgtcgctgg agatggcggc gccgctcgtg tgcaaggccg tggctagggc ctgagcccta 1920 gccgccgccg ccgccattat tgccattgat gtggctagcg acgttgtcgt gctcgcatcc 1980 atactcctcc ataggcaact cgtctagcca atgaagaaag ctactatcta tctatctatc 2040 aagctagctg ctactatcac aaaccgcatt tcggcatcat cttaaattag ctcttagggg 2100 tgtaggcgat tttggtttcc cccaaaaatt tgctttgcca gtcttttggt ttaaatcgag 2160 gcattagttg tgaaacatca tgagaagtta tttaaatctg aggaattttg tttgaacctt 2220 ttctggtgtg ctaaatggat cgtgctttga gtatcttatt attctgaatg tgttatgtag 2280 ctacactctc ctgaatcatg t 2301 <210> 2 <211> 1563 <212> DNA <213> Rice plant <220> <221> gene (222) (1) .. (1560) <223> cDNA of cytochrome P450 <400> 2 atggccgcgg cgcaagagag ctccctcctc ctcttcctcc tcccgacgtc ggccgcctcc 60 gtgttcccgc cgctcatctc cgtggtcgtc ctcgccgcgc tcctcctgtg gctctcgccg 120 ggtggccccg cgtgggcgct gtcccgttgc cgtggcacgc cgccgccgcc gggcgtggcg 180 gggggcgcgg ccagcgcgct gtccggccct gccgcgcacc gcgtgctcgc cgggatttcg 240 cgcgccgtcg agggcggcgc ggcggtgatg tcgctctccg tcggcctcac ccgcctcgtc 300 gtggcgagcc ggccggagac ggcgagggag atcctcgtca gcccggcgtt cggcgaccgc 360 cccgtgaagg acgcggcgag gcagctgctg ttccaccgcg ccatggggtt cgccccgtcg 420 ggcgacgcgc actggcgcgg gctccgccgc gcctccgcgg cgcacctctt cggcccgcgc 480 cgcgtggccg ggtccgcgcc cgagcgcgag gccatcggcg cccgcatagt cggcgacgtc 540 gcctccctca tgtcccgccg cggcgaggtc cccctccgcc gcgtccttca cgccgcgtcg 600 ctcggccacg tcatggcgac cgtcttcggc aagcggcacg gcgacatctc gatccaggac 660 ggcgagctcc tggaggagat ggtcaccgaa gggtacgacc tcctcggcaa gttcaactgg 720 gccgaccacc tgccattgct caggtggctc gacctccagg gcatccgccg ccggtgcaac 780 aggctagtcc agaaggtgga ggtgttcgtc ggaaagatca tacaggagca caaggcgaag 840 cgagctgccg gaggcgtcgc cgtcgccgac ggcgtcttgg gcgacttcgt cgacgtcctc 900 ctcgacctcc agggagagga gaagatgtca gactccgaca tgatcgctgt tctttgggag 960 atgatcttta gagggacgga cacggtggcg atcttgatgg agtgggtgat ggcgaggatg 1020 gtgatgcacc cggagatcca ggcgaaggcg caggcggagg tggacgccgc cgtgggggga 1080 cgccgcggcc gcgtcgccga cggcgacgtg gcgagcctcc cctacatcca gtccatcgtg 1140 aaggagacgc tgcgcatgca cccgccgggc ccgctcctgt cgttggcgcg cctcgccgtg 1200 cacgacgcgc gcgtcggtgg ccacgccgtc cccgccggga cgacggcgat ggtgaacatg 1260 tgggcgatcg cccacgacgc cgccgtctgg ccggagccgg atgcgttccg cccggagcgc 1320 ttctcggagg gggaggacgt cggcgtgctc ggcggcgacc tccgcctcgc gccgttcggc 1380 gccggccgcc gcgtctgccc tggcaggatg ctggcgctcg ccaccgccca cctctggctc 1440 gcccagctgc tgcacgcctt cgactggtcc cccaccgccg ccggcgtcga cctgtccgag 1500 cgcctcggca tgtcgctgga gatggcggcg ccgctcgtgt gcaaggccgt ggctagggcc 1560 tga 1563 <210> 3 <211> 520 <212> PRT <213> Rice plant <220> <221> PEPTIDE (222) (1) .. (520) <223> Cytochrome P450 <400> 3 Met Ala Ala Ala Gln Glu Ser Ser Leu Leu Leu Phe Leu Leu Pro Thr   1 5 10 15 Ser Ala Ala Ser Val Phe Pro Pro Leu Ile Ser Val Val Val Leu Ala              20 25 30 Ala Leu Leu Leu Trp Leu Ser Pro Gly Gly Pro Ala Trp Ala Leu Ser          35 40 45 Arg Cys Arg Gly Thr Pro Pro Pro Pro Gly Val Ala Gly Gly Ala Ala      50 55 60 Ser Ala Leu Ser Gly Pro Ala Ala His Arg Val Leu Ala Gly Ile Ser  65 70 75 80 Arg Ala Val Glu Gly Gly Ala Ala Val Met Ser Leu Ser Val Gly Leu                  85 90 95 Thr Arg Leu Val Val Ala Ser Arg Pro Glu Thr Ala Arg Glu Ile Leu             100 105 110 Val Ser Pro Ala Phe Gly Asp Arg Pro Val Lys Asp Ala Ala Arg Gln         115 120 125 Leu Leu Phe His Arg Ala Met Gly Phe Ala Pro Ser Gly Asp Ala His     130 135 140 Trp Arg Gly Leu Arg Arg Ala Ser Ala Ala His Leu Phe Gly Pro Arg 145 150 155 160 Arg Val Ala Gly Ser Ala Pro Glu Arg Glu Ala Ile Gly Ala Arg Ile                 165 170 175 Val Gly Asp Val Ala Ser Leu Met Ser Arg Arg Gly Glu Val Pro Leu             180 185 190 Arg Arg Val Leu His Ala Ala Ser Leu Gly His Val Met Ala Thr Val         195 200 205 Phe Gly Lys Arg His Gly Asp Ile Ser Ile Gln Asp Gly Glu Leu Leu     210 215 220 Glu Glu Met Val Thr Glu Gly Tyr Asp Leu Leu Gly Lys Phe Asn Trp 225 230 235 240 Ala Asp His Leu Pro Leu Leu Arg Trp Leu Asp Leu Gln Gly Ile Arg                 245 250 255 Arg Arg Cys Asn Arg Leu Val Gln Lys Val Glu Val Phe Val Gly Lys             260 265 270 Ile Ile Gln Glu His Lys Ala Lys Arg Ala Ala Gly Val Ala Val         275 280 285 Ala Asp Gly Val Leu Gly Asp Phe Val Asp Val Leu Leu Asp Leu Gln     290 295 300 Gly Glu Glu Lys Met Ser Asp Ser Asp Met Ile Ala Val Leu Trp Glu 305 310 315 320 Met Ile Phe Arg Gly Thr Asp Thr Val Ala Ile Leu Met Glu Trp Val                 325 330 335 Met Ala Arg Met Val Met His Pro Glu Ile Gln Ala Lys Ala Gln Ala             340 345 350 Glu Val Asp Ala Ala Val Gly Gly Arg Arg Gly Arg Val Ala Asp Gly         355 360 365 Asp Val Ala Ser Leu Pro Tyr Ile Gln Ser Ile Val Lys Glu Thr Leu     370 375 380 Arg Met His Pro Pro Gly Pro Leu Leu Ser Leu Ala Arg Leu Ala Val 385 390 395 400 His Asp Ala Arg Val Gly Gly His Ala Val Pro Ala Gly Thr Thr Ala                 405 410 415 Met Val Asn Met Trp Ala Ile Ala His Asp Ala Ala Val Trp Pro Glu             420 425 430 Pro Asp Ala Phe Arg Pro Glu Arg Phe Ser Glu Gly Glu Asp Val Gly         435 440 445 Val Leu Gly Gly Asp Leu Arg Leu Ala Pro Phe Gly Ala Gly Arg Arg     450 455 460 Val Cys Pro Gly Arg Met Leu Ala Leu Ala Thr Ala His Leu Trp Leu 465 470 475 480 Ala Gln Leu Leu His Ala Phe Asp Trp Ser Pro Thr Ala Ala Gly Val                 485 490 495 Asp Leu Ser Glu Arg Leu Gly Met Ser Leu Glu Met Ala Ala Pro Leu             500 505 510 Val Cys Lys Ala Val Ala Arg Ala         515 520 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> forward primer P450F1 <400> 4 tagcttctct ccacgtctt 19 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of P450R1 <400> 5 gccatggacg tttccttctc 20 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> forward primer of P450F2 <400> 6 tctcctcgtc gtcgtcttc 19 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of P450R2 <400> 7 tgatgtttca caactaatgc ctcg 24  

Claims (9)

서열번호 2로 표시되며, 1184번째 염기가 T로 치환되어 번역 후에 395번째 아미노산으로 류신을 코드하는 염기서열로 이루어지는 거대배를 갖는 벼의 사이토크롬 P450 유전자. A cytochrome P450 gene of rice represented by SEQ ID NO: 2 and having a huge fold consisting of a nucleotide sequence encoding leucine with a 395th amino acid after translation of the 1184th base into T. 청구항 1에 의한 유전자를 함유하는 재조합 벡터. Recombinant vector containing the gene according to claim 1. 청구항 2에 의한 재조합 벡터로 형질전환된 거대배를 갖는 벼식물체.Rice plant having a giant embryo transformed with the recombinant vector according to claim 2. 제 3항에 있어서, 거대배를 갖는 벼는 찰벼 식물체인 YR23517Acp79 (KACC 98006P)인 것을 특징으로 하는 벼식물체.4. The rice plant according to claim 3, wherein the rice having a giant pear is YR23517Acp79 (KACC 98006P), which is a waxy plant. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020090015067A 2009-02-23 2009-02-23 Cytochrome P450 gene of giant embryonic rice and rice plant comprising the same KR101156017B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090015067A KR101156017B1 (en) 2009-02-23 2009-02-23 Cytochrome P450 gene of giant embryonic rice and rice plant comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090015067A KR101156017B1 (en) 2009-02-23 2009-02-23 Cytochrome P450 gene of giant embryonic rice and rice plant comprising the same

Publications (2)

Publication Number Publication Date
KR20100095981A KR20100095981A (en) 2010-09-01
KR101156017B1 true KR101156017B1 (en) 2012-06-27

Family

ID=43003789

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090015067A KR101156017B1 (en) 2009-02-23 2009-02-23 Cytochrome P450 gene of giant embryonic rice and rice plant comprising the same

Country Status (1)

Country Link
KR (1) KR101156017B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105165601B (en) * 2015-09-29 2017-10-31 浙江大学 A kind of selection of the special giant embryo rice varieties of rice with remained germ
CN113322347A (en) * 2021-07-15 2021-08-31 上海市农业科学院 Rice giant embryo allele, molecular marker and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NCBI Genebank Accesion No. ABU48658(2007.08.21) *
NCBI Genebank Accesion No. ABU48658(2007.08.21)*
Sci China C Life Sci vol. 45, No. 5, Pages 512-517(2002.10.) *
Sci China C Life Sci vol. 45, No. 5, Pages 512-517(2002.10.)*

Also Published As

Publication number Publication date
KR20100095981A (en) 2010-09-01

Similar Documents

Publication Publication Date Title
Li et al. Enhancement of grain number per spike by RNA interference of cytokinin oxidase 2 gene in bread wheat
CA2919816C (en) Gene capable of increasing seed protein content and method of use thereof
CN108822194B (en) Plant starch synthesis related protein OsFLO10, and coding gene and application thereof
CN102725414B (en) In conversion process, BBM is induced to provide the method for fertile plants for passing through
CN109988231B (en) Application of rice gene OsGRF4 in improving cold resistance of plants
CN110540582B (en) Application of protein OrC1 in regulating color of rice husk and awn
KR101156017B1 (en) Cytochrome P450 gene of giant embryonic rice and rice plant comprising the same
KR101201436B1 (en) A black waxy giant embryo rice plant &#39;Milyang 263&#39; harboring giant embryonic gene and breeding method thereof
CN106589085B (en) Plant starch synthesis related protein OsFLO8, and coding gene and application thereof
CN114106129A (en) Application of rape SWEET15 sugar transporter gene in improving rape yield
CN105602967B (en) Rice qGL3.2 gene is for improveing the application in rice grain shape and thousand grain weight properties
CN112342235A (en) Application of GmDGAT2A in increasing soybean oil content and linoleic acid content
CN107573411B (en) Application of wheat TaZIM1-7A protein in regulation and control of crop heading period
CN112279904B (en) Application of protein GL12.2 in regulation and control of rice yield
WO2017049834A1 (en) Photo-thermo-sensitive genic male sterile line development method by using npu gene mutation and application of photo-thermo-sensitive genic male sterile line
CN102154311B (en) Gene GE1 for controlling size of paddy embryo and use thereof
CN104561040B (en) Genes For Plant Tolerance hot radical is because of HTT3 and its application
CN109112137B (en) Gene SNG1 for controlling size and weight of rice grains and application thereof
CN101993484B (en) Stress tolerance associated protein and coded gene and application thereof
US20120180156A1 (en) Genes homologous to the flowering locus t (ft) gene and the use thereof for modulating tuberization
CN112391403B (en) Application of TGW10 gene in improvement of crop grain type traits
CN113912689B (en) Application of OsSGD1 protein in improving disease resistance of rice sheath blight
CN113801885B (en) Rice large grain gene LG1 and application thereof
CN113817750B (en) Rice endosperm flour related gene OsDAAT1 and encoding protein and application thereof
CN110229801B (en) Gene for controlling rice leaf senescence and protein coded by same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant