[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101120437B1 - Negative Electrode Coated with Conductive Polymer in Uniform Pattern and Secondary Battery Containing the Same - Google Patents

Negative Electrode Coated with Conductive Polymer in Uniform Pattern and Secondary Battery Containing the Same Download PDF

Info

Publication number
KR101120437B1
KR101120437B1 KR1020060102642A KR20060102642A KR101120437B1 KR 101120437 B1 KR101120437 B1 KR 101120437B1 KR 1020060102642 A KR1020060102642 A KR 1020060102642A KR 20060102642 A KR20060102642 A KR 20060102642A KR 101120437 B1 KR101120437 B1 KR 101120437B1
Authority
KR
South Korea
Prior art keywords
negative electrode
current collector
conductive polymer
secondary battery
monomer
Prior art date
Application number
KR1020060102642A
Other languages
Korean (ko)
Other versions
KR20080036261A (en
Inventor
현정은
류지헌
신영준
이한호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020060102642A priority Critical patent/KR101120437B1/en
Publication of KR20080036261A publication Critical patent/KR20080036261A/en
Application granted granted Critical
Publication of KR101120437B1 publication Critical patent/KR101120437B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 음극 활물질, 바인더 및 도전재를 포함하는 것으로 구성된 음극 합제가 집전체 상에 도포된 상태로 밀착되어 있는 음극으로서, 집전체에 대한 음극 합제의 결합력과 전기 전도성을 향상시킬 수 있도록, 집전체 상에 도전성 고분자를 균일한 패턴으로 얇게 코팅하고, 상기 코팅층상에 음극 합제를 도포하여 제조되는 것을 특징으로 하는 이차전지용 음극을 제공하는 바, 이러한 음극은 집전체와 합제 사이의 전기전도성을 유지하면서, 집전체에 대한 음극 합제의 결합력을 향상시킬 수 있는 효과가 있다. The present invention is a negative electrode that is in close contact with a negative electrode mixture composed of a negative electrode active material, a binder and a conductive material coated on the current collector, to improve the binding strength and electrical conductivity of the negative electrode mixture to the current collector, It provides a negative electrode for a secondary battery, characterized in that the thin coating of the conductive polymer in a uniform pattern on the whole, and is applied by applying a negative electrode mixture on the coating layer, the negative electrode maintains the electrical conductivity between the current collector and the mixture At the same time, there is an effect of improving the bonding strength of the negative electrode mixture to the current collector.

Description

도전성 고분자가 균일한 패턴으로 코팅되어 있는 음극 및 이를 포함하고 있는 이차전지 {Negative Electrode Coated with Conductive Polymer in Uniform Pattern and Secondary Battery Containing the Same}Negative Electrode Coated with Conductive Polymer in Uniform Pattern and Secondary Battery Containing the Same}

도 1은 본 발명의 하나의 실시예에 따른 음극에서 고분자층과 합제층을 형성하는 제조과정에 대한 모식도이다;1 is a schematic diagram of a manufacturing process for forming a polymer layer and a mixture layer in the negative electrode according to an embodiment of the present invention;

도 2a 내지 2c는 도 1의 음극에서 예시적으로 사용될 수 있는 이형지의 평면도들이다.2A-2C are plan views of release paper that may be used as an example in the cathode of FIG. 1.

본 발명은 도전성 고분자가 균일한 패턴으로 코팅되어 있는 음극에 관한 것으로, 더욱 상세하게는 음극 활물질, 바인더 및 도전재를 포함하는 것으로 구성된 음극 합제가 집전체 상에 도포된 상태로 밀착되어 있는 음극으로서, 집전체에 대한 음극 합제의 결합력과 전기 전도성을 향상시킬 수 있도록, 집전체 상에 도전성 고분자를 균일한 패턴으로 얇게 코팅하고, 상기 코팅층상에 음극 합제를 도포하여 제 조되는 것을 특징으로 하는 이차전지용 음극, 및 이러한 음극을 포함하는 것으로 구성된 이차전지를 제공한다.The present invention relates to a negative electrode in which a conductive polymer is coated in a uniform pattern, and more particularly, to a negative electrode in which a negative electrode mixture composed of a negative electrode active material, a binder, and a conductive material is adhered to a current collector and adhered thereto. To improve the bonding strength and electrical conductivity of the negative electrode mixture to the current collector, the secondary polymer, characterized in that the thin coating of a conductive polymer in a uniform pattern on the current collector, and the negative electrode mixture on the coating layer A negative electrode for a battery, and a secondary battery comprising such a negative electrode are provided.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 방전 전압의 리튬 이차전지에 대해 많은 연구가 행해졌고 또한 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices have increased, the demand for secondary batteries as energy sources has been rapidly increasing. Many researches have been conducted on lithium secondary batteries with high energy density and discharge voltage among such secondary batteries. .

일반적으로 리튬 이차전지에서는, 음극 활물질로서의 흑연계 탄소 등에 도전재 및 결착제를 혼합한 전극 합제를, 구리 등의 집전체에 도포한 후 가압하여 부착시킨 것으로 제조되는 음극을 사용하고 있다. In general, a lithium secondary battery uses a negative electrode produced by applying an electrode mixture obtained by mixing a conductive material and a binder with graphite carbon as a negative electrode active material to a current collector such as copper, and then pressing the electrode mixture.

그러나, 상기와 같은 구조의 음극에서는, 전지의 반복되는 충방전시 부피 변화로 인하여, 집전체의 표면에 부착되어 있는 전극 합제가 박리되는 문제점이 발생한다. 이러한 박리 현상은 전지의 성능 및 안전성을 저하시키는 주요한 원인 중의 하나이다. 특히, 집전체와 전극 합제의 밀착은 주로 합제에 포함되어 있는 결착제에 의존하며, 이러한 결착제로서 일반적으로 사용되는 PVdF는 물리적 결합에 의해 접착력을 발휘하므로, 결착제의 약한 결합력에 따른 문제점을 해결하기 위한 방안이 요구되고 있다.However, in the negative electrode having the above structure, the electrode mixture adhering to the surface of the current collector is peeled off due to the volume change during repeated charging and discharging of the battery. This peeling phenomenon is one of the main causes of deterioration of battery performance and safety. In particular, the adhesion between the current collector and the electrode mixture mainly depends on the binder contained in the mixture, and PVdF, which is generally used as the binder, exhibits adhesive strength by physical bonding, and thus has a problem due to the weak bonding strength of the binder. There is a need for a solution.

한편, 이차전지의 계속적 발전으로 인해, 음극 활물질로서의 천연 흑연계 물질이 그것의 이론적 최대 용량인 372 mAh/g(844 mAh/cc)에 거의 도달함에 따라 용량 증대에 한계가 있으므로, 빠르게 변모하는 차세대 모바일 기기의 에너지원으로서의 충분한 역할을 감당하기는 어려운 실정이다. On the other hand, due to the continuous development of secondary batteries, the natural graphite-based material as a negative electrode active material reaches its theoretical maximum capacity of 372 mAh / g (844 mAh / cc) almost to increase the capacity, there is a limit, so the next generation that changes rapidly It is difficult to play a sufficient role as an energy source of mobile devices.

따라서, 실리콘(silicon), 주석(tin), 또는 이들의 합금이 리튬과의 화합물 형성반응을 통해 다량의 리튬을 가역적으로 흡장 및 방출할 수 있음이 알려지면서, 이에 대한 많은 연구가 최근에 진행되고 있다. 예를 들어, 실리콘은 이론적 최대 용량이 약 4020 mAh/g(9800 mAh/cc, 비중 2.23)으로서 흑연계 물질에 비해서 매우 크기 때문에, 고용량 음극재료로서 유망하다. Therefore, it is known that silicon, tin, or alloys thereof can reversibly occlude and release a large amount of lithium through a compound formation reaction with lithium, and much research has recently been conducted. have. For example, silicon is promising as a high capacity cathode material because the theoretical maximum capacity is about 4020 mAh / g (9800 mAh / cc, specific gravity 2.23), which is much larger than graphite-based materials.

그러나, 실리콘, 주석, 이들의 합금 등은, 충방전시 리튬과의 반응에 의한 부피 변화가 200 내지 300%로서 매우 크므로, 계속적인 충방전시 음극 활물질이 집전체로부터 탈리되거나 음극 활물질 상호간 접촉 계면의 큰 변화에 따른 저항 증가로 인해, 충방전 사이클이 진행됨에 따라 용량이 급격하게 저하되어 사이클 수명이 짧아지는 문제점을 가지고 있다. 이러한 문제점으로 인해, 기존의 흑연계 음극 활물질용 바인더(binder), 즉, 폴리비닐리덴 플로라이드(polyvinylidene fluoride), 스티렌-부타디엔 고무(styrene butadiene rubber) 등을 실리콘계 또는 주석계 음극 활물질에 그대로 사용하는 경우에는 소망하는 효과를 얻을 수 없다. 또한, 충방전시 부피변화를 줄이기 위하여 과량의 고분자를 바인더로 사용하게 되면, 집전체로부터 활물질의 탈리를 약간 감소시킬 수는 있으나 바인더인 전기절연성 고분자에 의해 음극의 전기 저항이 높아지며, 상대적으로 활물질의 양이 감소함으로 인해 용량 감소 등의 문제점이 대두된다. However, since silicon, tin, and alloys thereof have a large volume change of 200 to 300% due to reaction with lithium during charging and discharging, the negative electrode active material detaches from the current collector or contacts the negative electrode active materials during continuous charge and discharge. Due to the increase in resistance due to a large change in the interface, as the charge and discharge cycle proceeds, there is a problem that the capacity is drastically lowered and the cycle life is shortened. Due to these problems, conventional binders for graphite-based negative electrode active materials, that is, polyvinylidene fluoride, styrene-butadiene rubber, etc. are used as they are for silicon-based or tin-based negative electrode active materials. In case you do not get the desired effect. In addition, when an excessive polymer is used as a binder to reduce volume change during charging and discharging, the detachment of the active material from the current collector may be slightly reduced, but the electrical resistance of the negative electrode is increased by the electrically insulating polymer as a binder, and the active material is relatively high. As the amount of is reduced, problems such as a decrease in capacity arise.

따라서, 기존의 카본계 리튬 이차전지에 있어서, 활물질과 집전체 사이 및 활물질들 상호간 접착력을 확보하여 전지의 용량을 향상시킬 수 있고, 실리콘 또는 주석계 음극 활물질을 사용하는 리튬 이차전지에서 충방전시 음극 활물질의 큰 부 피 변화를 견딜 수 있는 접착력 및 기계적 특성이 우수한 바인더 또는 전극 구성에 대한 개발의 필요성이 절실한 실정이다.Therefore, in the conventional carbon-based lithium secondary battery, it is possible to improve the capacity of the battery by securing the adhesion between the active material and the current collector and the active materials, and when charging and discharging in a lithium secondary battery using a silicon or tin-based negative electrode active material There is an urgent need for development of a binder or electrode composition having excellent adhesion and mechanical properties capable of withstanding large volume changes of the negative electrode active material.

이러한 문제점을 해결하기 위한 방법들로는, 예를 들어, 구리 집전체의 표면을 에칭하여 미세한 요철을 형성함으로써 전극 합제와의 결합력을 높이는 방법이 있다. 이러한 방법은 간단한 공정에 의해 높은 비표면적의 구리 집전체가 얻어질 수 있는 장점이 있지만, 에칭 처리로 인해 구리 집전체의 수명이 저하되는 문제점을 가지고 있다. As a method for solving this problem, for example, there is a method of increasing the bonding strength with the electrode mixture by etching the surface of the copper current collector to form fine unevenness. This method has the advantage that a high specific surface area copper current collector can be obtained by a simple process, but has a problem in that the life of the copper current collector decreases due to the etching process.

또 다른 방법으로서, 한국 등록특허 제0362281호 및 한국 등록특허 제0573098호에서는, 집전체의 표면에 도전성 고분자를 코팅하여 전극 합제와의 결합력을 향상시키는 방법이 제시되어 있다. 그러나, 이러한 도전성 고분자는 집전체와 전극 합제의 결합력을 향상시킬 수 있는 장점이 있지만, 집전체와 전극 합제 사이의 전기전도성을 저하시키는 단점을 가지고 있다. 즉, 집전체와 전극 합제 사이에 도전성 고분자가 코팅되어 있을 경우, 집전체와 전극 합제 사이의 전기전도성은 집전체와 전극 합제가 직접 접해있는 경우보다 감소된다. 특히, 상기의 기술에서처럼 집전체의 표면 전체에 도전성 고분자가 도포되어 있을 경우, 전기전도성의 저하 정도는 더욱 심각해진다.As another method, Korean Patent No. 0362281 and Korean Patent No. 0573098 disclose a method of improving a bonding force with an electrode mixture by coating a conductive polymer on the surface of a current collector. However, the conductive polymer has an advantage of improving the bonding strength between the current collector and the electrode mixture, but has a disadvantage of lowering the electrical conductivity between the current collector and the electrode mixture. That is, when the conductive polymer is coated between the current collector and the electrode mixture, the electrical conductivity between the current collector and the electrode mixture is reduced than when the current collector and the electrode mixture are in direct contact. In particular, when the conductive polymer is applied to the entire surface of the current collector as in the above technique, the degree of decrease in electrical conductivity becomes more serious.

따라서, 집전체와 합제 사이의 전기전도성을 손상시키지 않으면서 결합력을 향상시킬 수 있는 기술에 대한 필요성이 높은 실정이다. Therefore, there is a high demand for a technology capable of improving the bonding strength without compromising the electrical conductivity between the current collector and the mixture.

본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-described problems of the prior art and the technical problems required from the past.

본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 음극 활물질, 바인더 및 도전재를 포함하는 것으로 구성된 음극 합제가 집전체 상에 도포되어 있는 음극에 있어서, 상기 집전체 상에 도전성 고분자를 균일한 패턴으로 얇게 코팅하고, 상기 코팅층상에 음극 합제를 도포하였을 경우, 집전체와 합제 사이의 전기전도성을 상당히 유지하면서, 집전체에 대한 음극 합제의 결합력을 향상시킬 수 있음을 발견하고, 본 발명을 완성하기에 이르렀다.After extensive research and various experiments, the inventors of the present application have applied a conductive polymer on a current collector in a negative electrode on which a negative electrode mixture composed of a negative electrode active material, a binder, and a conductive material is applied onto a current collector. When a thin coating in a uniform pattern and the application of the negative electrode mixture on the coating layer, it was found that it is possible to improve the bonding strength of the negative electrode mixture to the current collector, while maintaining a significant electrical conductivity between the current collector and the mixture, The invention has been completed.

따라서, 본 발명에 따른 음극은, 음극 활물질, 바인더 및 도전재를 포함하는 것으로 구성된 음극 합제가 집전체 상에 도포된 상태로 밀착되어 있는 음극으로서, 집전체에 대한 음극 합제의 결합력과 전기 전도성을 향상시킬 수 있도록, 집전체 상에 도전성 고분자를 균일한 패턴으로 얇게 코팅하고, 상기 패턴 코팅층 상에 음극 합제를 도포하여 제조되는 것으로 구성되어 있다.Accordingly, the negative electrode according to the present invention is a negative electrode in which a negative electrode mixture composed of a negative electrode active material, a binder, and a conductive material is adhered to a current collector and is in close contact with each other. In order to improve, the conductive polymer is thinly coated in a uniform pattern on the current collector, and the negative electrode mixture is coated on the pattern coating layer.

즉, 본 발명에 따른 음극은, 도전성 고분자가 코팅되어 있는 부분에서 집전체에 대한 음극 합제의 결합력을 높일 수 있고, 도전성 고분자가 코팅되어 있지 않는 부분에서 전극 합제가 집전체에 직접 접함으로써, 전기전도성의 저하를 최소화할 수 있다.That is, the negative electrode according to the present invention can increase the bonding strength of the negative electrode mixture to the current collector at the portion where the conductive polymer is coated, and the electrode mixture directly contacts the current collector at the portion where the conductive polymer is not coated, The fall of conductivity can be minimized.

상기 도전성 고분자는 전기전도성을 가지는 고분자라면 특별히 제한되지 않 고 다양할 수 있으며, 바람직하게는, 폴리아세틸렌, 폴리피롤, 폴리아닐린, 및 폴리티오펜으로 이루어진 군에서 선택되는 하나 또는 둘 이상일 수 있다.The conductive polymer is not particularly limited so long as it is a polymer having electrical conductivity, and preferably, may be one or two or more selected from the group consisting of polyacetylene, polypyrrole, polyaniline, and polythiophene.

상기 도전성 고분자의 패턴 코팅층은, 집전체와 음극 합제의 결합을 안정적으로 유지하면서 전기전도성을 저하시키지 않고 완성된 전지의 전체 부피에 악영향을 미치지 않는 범위로서, 바람직하게는, 1 내지 100 ㎛의 두께 및 집전체 면적 대비 20 내지 80%의 면적으로 형성될 수 있다. 즉, 패턴 코팅층의 두께가 너무 얇거나 코팅 면적이 적으며, 도전성 고분자 층의 형성에 따른 결합력 향상을 기대하기 어렵고, 반대로 패턴 코팅층이 너무 두텁거나 코팅 면적이 크면, 내부 저항 상승의 폭이 커져 전지의 성능이 저하될 수 있다.The pattern coating layer of the conductive polymer is a range that does not adversely affect the overall volume of the finished battery without deteriorating the electrical conductivity while maintaining a stable bond between the current collector and the negative electrode mixture, preferably, 1 to 100 ㎛ thickness And an area of 20 to 80% of the current collector area. That is, if the thickness of the pattern coating layer is too thin or the coating area is too small, it is difficult to expect the improvement of the bonding strength due to the formation of the conductive polymer layer. On the contrary, if the pattern coating layer is too thick or the coating area is large, the internal resistance increase becomes large. May degrade performance.

하나의 바람직한 예에서, 상기 패턴 코팅층은 도전성 고분자를 포함하는 혼합물을 집전체상에 도포한 후 건조하는 것으로 형성될 수 있다. 이때, 상기 코팅층의 도포방법은 특별히 제한되지 않고 다양할 수 있으며, 대표적인 예로는 스프레이 코팅법을 들 수 있다. 또한, 상기 혼합물은 도전성 고분자 이외에, 도전성 고분자가 집전체의 표면에 용이하게 밀착될 수 있도록 계면활성제 등을 포함할 수 있으며, 상기 도전성 고분자와 계면활성제 등을, 예를 들어, NMP 등의 용액에 녹이는 것으로 제조될 수 있다.In one preferred example, the pattern coating layer may be formed by applying a mixture containing a conductive polymer on the current collector and then drying. At this time, the coating method of the coating layer is not particularly limited and may be various, a representative example may be a spray coating method. In addition to the conductive polymer, the mixture may include a surfactant or the like such that the conductive polymer can be easily adhered to the surface of the current collector, and the conductive polymer and the surfactant may be, for example, in a solution such as NMP. It can be prepared by melting.

또 다른 바람직한 예에서, 상기 코팅층은 도전성 고분자 형성용 모노머 및 개시제를 포함하는 혼합물에 집전체를 넣고 상기 집전체상에서 모노머의 중합반응으로 도전성 고분자가 합성되는 것으로 형성될 수 있다. 이때, 상기 도전성 고분자의 합성 속도를 빠르게 하기 위하여, 상기 집전체에 전류를 인가할 수도 있다. 더욱 구체적으로, 상기 도전성 고분자 형성용 모노머와 개시제를 포함하는 혼합물을 전해액으로 하고, 예를 들어 구리 집전체와 백금을 작동전극과 대극으로 하여, 도전성 고분자 합성용 전기화학 셀을 제조한 다음, 상기 구리 집전체와 백금전극에 전류를 인가하는 것으로, 상기 도전성 고분자를 전기화학적으로 합성할 수 있다. 즉, 상기 도전성 고분자의 모노머는 인가된 전류에 의하여 애노딕 폴라리제이션(anodic polarization)되어 상기 집전체의 표면에 도전성 고분자로 코팅될 수 있다. 앞서 설명한 예에서와 마찬가지로, 상기 혼합물은, 도전성 고분자가 집전체의 표면에 용이하게 밀착될 수 있도록 계면활성제 등을 포함할 수 있으며, 상기 도전성 고분자 형성용 모노머와 개시제, 및 계면활성제 등을, 예를 들어, NMP 등의 용액에 녹이는 것으로 제조될 수 있다.In another preferred example, the coating layer may be formed by putting a current collector in a mixture containing a conductive polymer forming monomer and an initiator and the conductive polymer is synthesized by the polymerization of the monomer on the current collector. In this case, in order to speed up the synthesis rate of the conductive polymer, a current may be applied to the current collector. More specifically, a mixture containing the monomer for forming the conductive polymer and the initiator is used as an electrolyte, and an electrochemical cell for synthesizing the conductive polymer is prepared by using, for example, a copper current collector and platinum as the counter electrode. By applying a current to the copper current collector and the platinum electrode, the conductive polymer can be electrochemically synthesized. That is, the monomer of the conductive polymer may be anodized polarization by an applied current to be coated with the conductive polymer on the surface of the current collector. As in the above-described example, the mixture may include a surfactant and the like so that the conductive polymer can be easily adhered to the surface of the current collector, and the monomer and initiator for forming the conductive polymer, and the surfactant, for example For example, it may be prepared by dissolving in a solution such as NMP.

상기의 예에서, 상기 모노머는 중합반응에 의해 도전성 고분자를 합성할 수 있는 것이라면 특별히 제한되지 않고 다양할 수 있으며, 바람직하게는, 아세틸렌 모노머, 피롤 모노머, 아닐린 모노머, 및 티오펜 모노머로 이루어진 군에서 선택되는 하나 또는 둘 이상일 수 있다.In the above example, the monomer is not particularly limited as long as it can synthesize the conductive polymer by a polymerization reaction, and may vary. Preferably, in the group consisting of acetylene monomer, pyrrole monomer, aniline monomer, and thiophene monomer It may be one or more than one selected.

본 발명에서는, 상기 도전성 고분자를 균일한 패턴으로 얇게 코팅하기 위하여 이형지를 이용할 수 있으며, 그러한 이형지의 종류는 다양할 수 있는 바, 예를 들어, 줄무늬(도 2a), 섬무늬(도 2b), 또는 벌집무늬(도 2c) 등이 있다. 상기의 이형지를 사용하여 도전성 고분자를 패터닝하는 예시적인 방법은, 음극의 제조과정이 모식적으로 도시되어 있는 도 1에서 더욱 용이하게 확인할 수 있다.In the present invention, release paper may be used to thinly coat the conductive polymer in a uniform pattern, and the type of such release paper may be varied, for example, stripes (FIG. 2A), islands (FIG. 2B), Or honeycomb patterns (FIG. 2C). An exemplary method of patterning a conductive polymer using the release paper may be more easily confirmed in FIG. 1, in which a manufacturing process of a negative electrode is schematically illustrated.

도 1을 보면, 음극(100)은, 구리 집전체(110: a)상에 이형지(120)를 부착한 상태(b)에서, 도전성 고분자를 포함하는 혼합물(130)을 도포 및 건조하고(c), 이형지(120)를 제거한 다음(c), 음극 활물질과 바인더 및 도전재를 포함하는 음극 합제(140)를 도포하는 것으로 제조될 수 있다.Referring to FIG. 1, in the state in which the release paper 120 is attached on the copper current collector 110 a, the cathode 100 is coated and dried with a mixture 130 containing a conductive polymer (c). ), The release paper 120 may be removed (c), and then the negative electrode mixture 140 including the negative electrode active material, the binder, and the conductive material may be coated.

상기의 예는 비록 이형지가 부착된 구리 집전체에 도전성 고분자를 도포하는 것으로 설명되어 있지만, 앞서의 예에서와 같이, 도전성 고분자의 중합 반응계에 이형지 부착 구리 집전체를 사용하여 패턴 코팅층을 형성할 수 있음은 물론이다. Although the above example is described as applying the conductive polymer to the copper current collector with release paper, it is possible to form a pattern coating layer by using the copper current collector with release paper in the polymerization reaction system of the conductive polymer as in the above example. Of course.

상기 음극 활물질의 예로는, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3 (0≤x≤1), LixWO2 (0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.Examples of the negative electrode active material include carbon such as hardly graphitized carbon and graphite carbon; Li x Fe 2 O 3 (0≤x≤1), Li x WO 2 (0≤x≤1), Sn x Me 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, Group 1, 2, 3 of the periodic table) Metal composite oxides such as a group element, halogen, 0 <x ≦ 1, 1 ≦ y ≦ 3, 1 ≦ z ≦ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co-Ni-based materials and the like, but are not limited to these.

본 발명에 따르면, 특히, 높은 용량을 가지지만 충방전시 부피 변화가 큰 규소계 화합물, 주석계 화합물, 주석-규소계 화합물, 규소-탄소계 화합물 등이 음극 활물질로 사용하는 경우에 더욱 바람직하다.According to the present invention, a silicon-based compound, a tin-based compound, a tin-silicon-based compound, a silicon-carbon-based compound, etc., which have a high capacity but have a large volume change during charging and discharging, are more preferable. .

상기 바인더는 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 음극 활물질을 포함하는 혼합물 전체 중량을 기준으로 5 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐 알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding the active material and the conductive agent to the current collector, and is generally added in an amount of 5 to 30 wt% based on the total weight of the mixture including the negative electrode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.

상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 시판되고 있는 도전제의 구체적인 예로는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케트젠블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등이 있다.The conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery. Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used. Specific examples of commercially available conducting agents include acetylene black Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack, EC series (Armak Company), Vulcan XC-72 (Cabot Company), and Super P (Timcal).

본 발명에서는, 필요에 따라 상기 음극 합제에 충진제가 더 첨가되기도 한다. 그러한 충진제는 음극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬 유, 탄소섬유 등의 섬유상 물질이 사용된다.In the present invention, a filler may be further added to the negative electrode mixture as necessary. Such a filler is optionally used as a component that suppresses the expansion of the negative electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery. Examples thereof include olefinic polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.

상기 음극 합제는 NMP 등의 용매에 첨가되어 슬러리로 제조된 후, 도전성 고분자가 코팅되어 있는 집전체상에 도포되어 건조 및 압축과정을 거쳐 음극으로 제조될 수 있다.The negative electrode mixture may be added to a solvent such as NMP, prepared as a slurry, and then coated on a current collector having a conductive polymer coated thereon, followed by drying and compression to prepare a negative electrode.

상기 음극용 전류 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The current collector for the cathode is generally made of a thickness of 3 to 500 ㎛. Such an anode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and may be formed of a material such as copper, stainless steel, aluminum, nickel, titanium, fired carbon, surface of copper or stainless steel A surface treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used. In addition, like the positive electrode current collector, fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.

본 발명은 또한, 상기와 같은 음극을 포함하는 것으로 구성된 리튬 이차전지를 제공한다. The present invention also provides a lithium secondary battery comprising such a negative electrode.

본 발명에 따른 리튬 이차전지는 상기와 같은 방법으로 제조된 음극과, 양극, 분리막, 및 리튬염 함유 비수 전해질로 구성되어 있다.The lithium secondary battery according to the present invention is composed of a negative electrode, a positive electrode, a separator, and a lithium salt-containing nonaqueous electrolyte prepared by the above method.

양극은 전류 집전체 상에 양극 재료를 도포하고 건조 및 압축하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.The positive electrode is manufactured by applying, drying, and compressing a positive electrode material on a current collector, and, as necessary, may further include components as described above.

상기 양극용 전류 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이 러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다. The current collector for the positive electrode is generally made to a thickness of 3 to 500 ㎛. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface may be used. The current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.

상기 양극재료는 예를 들어, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.The positive electrode material may be, for example, a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + x Mn 2-x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2, and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 and the like; Ni-site type lithium nickel oxide represented by the formula LiNi 1-x M x O 2 , wherein M = Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and x = 0.01 to 0.3; Formula LiMn 2-x M x O 2 (wherein M = Co, Ni, Fe, Cr, Zn or Ta and x = 0.01 to 0.1) or Li 2 Mn 3 MO 8 (wherein M = Fe, Co, Lithium manganese composite oxide represented by Ni, Cu or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions; Disulfide compounds; Fe 2 (MoO 4 ) 3 , and the like. However, the present invention is not limited to these.

상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강 도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.The separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally from 0.01 to 10 ㎛ ㎛, thickness is generally 5 ~ 300 ㎛. As such a separator, for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used. When a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.

리튬염 함유 비수계 전해질은, 비수 전해질과 리튬 염으로 이루어져 있다. 비수 전해질로는 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다. The lithium salt-containing non-aqueous electrolyte consists of a nonaqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, a non-aqueous electrolyte, a solid electrolyte, an inorganic solid electrolyte and the like are used.

상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the nonaqueous electrolytic solution include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, But are not limited to, lactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, Nitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives , Tetrahydrofuran derivatives, ether, methyl pyrophosphate, ethyl propionate and the like can be used.

상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.Examples of the organic solid electrolyte include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, Polymers containing ionic dissociation groups, and the like can be used.

상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.

상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.

또한, 비수계 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.In addition, for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, etc. Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride, etc. It may be. In some cases, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further added to impart nonflammability, or a carbon dioxide gas may be further added to improve high-temperature storage characteristics.

하나의 바람직한 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조 할 수 있다.In one preferred embodiment, lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC as a highly dielectric solvent and DEC, DMC or EMC as a low viscosity solvent. The lithium salt-containing non-aqueous electrolyte can be prepared by adding to a mixed solvent of linear carbonate.

이하, 본 발명을 다음의 실시예에 의거하여 더욱 상세하게 설명하지만, 본 발명의 범주가 그것에 의에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples, but the scope of the present invention is not limited thereto.

[실시예 1]Example 1

1-1.1-1. 양극의 제조Manufacture of anode

양극 활물질로서 LiCoO2 94.5 중량%, Super-P(도전재) 2.5 중량%, 및 PVDF(결합제) 2.5 중량%를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 합제용 슬러리를 제조한 후, 알루미늄 호일 상에 도포, 건조 및 압착하여 양극을 제조하였다.94.5% by weight of LiCoO 2 , 2.5% by weight of Super-P (conductor), and 2.5% by weight of PVDF (binder) were added to NMP (N-methyl-2-pyrrolidone) as a positive electrode active material to prepare a slurry for positive electrode mixture. After that, an anode was prepared by applying, drying and pressing on aluminum foil.

1-2.1-2. 음극의 제조Preparation of Cathode

폴리피롤 20 중량%와 계면활성제로서 PluronicTM F127(BASF 제품) 0.5 중량%를 NMP 용액에 첨가하여 도전성 고분자를 포함하는 혼합물을 제조하였다. 집전체 면적 대비 40%의 크기로 스트라이프 이형지가 도 2a에서와 같이 규칙적으로 부착된 구리 호일 상에 상기 혼합물을 도포 및 건조한 후 상기 이형지를 제거하는 것으로, 구리 호일 상에 도전성 고분자를 코팅하였다. 그런 다음, 음극 활물질로서 인조흑연 95 중량%, Super-P(도전재) 2.5 중량%, 및 PVDF(결합제) 2 중량%를 용제인 NMP에 첨가하여 음극 합제를 제조한 후, 도전성 고분자가 코팅된 구리 호일 상에 코 팅, 건조 및 압착하여 음극을 제조하였다.20% by weight polypyrrole and 0.5% by weight Pluronic F127 (BASF) as a surfactant were added to the NMP solution to prepare a mixture comprising the conductive polymer. Striped release paper with a size of 40% of the current collector area was coated and dried on a copper foil to which the stripe release paper was regularly attached as shown in FIG. 2A, and then the release paper was removed, and a conductive polymer was coated on the copper foil. Then, 95% by weight of artificial graphite, 2.5% by weight of Super-P (conductive material), and 2% by weight of PVDF (binder) were added to NMP as a solvent to prepare a negative electrode mixture, and then the conductive polymer was coated. The negative electrode was prepared by coating, drying and pressing on copper foil.

1-3.1-3. 전해액의 제조Preparation of Electrolyte

전해액으로는 1M LiPF6의 리튬염을 함유한 EC/EMC계 용액을 사용하였다.As the electrolyte solution, an EC / EMC solution containing a lithium salt of 1M LiPF 6 was used.

1-4.1-4. 전지의 제조Manufacture of batteries

상기 1-1 및 1-2에서 각각 제조된 양극과 음극 사이에 다공성 분리막(셀가드TM)을 위치시키고 상기 1-3에서 제조한 비수성 전해액을 넣어서 리튬 이차전지를 제조하였다.A porous separator (Celgard TM ) was placed between the positive electrode and the negative electrode prepared in 1-1 and 1-2, respectively, and a non-aqueous electrolyte prepared in 1-3 was prepared to manufacture a lithium secondary battery.

[실시예 2][Example 2]

피롤 모노머 25 중량%, 개시제로서 2 중량%, 및 계면활성제로서 PluronicTM F127(BASF 제품) 0.5 중량%를 NMP 용액에 첨가하여 도전성 고분자 형성용 모노머를 포함하는 혼합물을 제조하였고, 상기 혼합물에 이형지가 부착되어 있는 구리 호일과 백금을 담근 상태에서 0.5 Ma/cm2의 전류를 인가한 다음, 상기 구리 집전체를 꺼내어 이형지를 제거하는 것으로, 구리 집전체상에 도전성 고분자를 코팅하였다는 점을 제외하고는, 상기 실시예 1과 같은 방법으로 음극 및 전지를 제조하였다. 25% by weight of pyrrole monomer, 2% by weight of initiator and 0.5% by weight of Pluronic F127 (from BASF) as a surfactant were added to the NMP solution to prepare a mixture comprising a monomer for forming a conductive polymer, and the release paper contained Applying a current of 0.5 Ma / cm 2 in a state of immersing the copper foil and platinum attached, remove the release paper by removing the copper current collector, except that the conductive polymer was coated on the copper current collector Was prepared in the same manner as in Example 1, the negative electrode and the battery.

[실시예 3]Example 3

음극 활물질로서, 실리콘-탄소재료 복합체(Si-C) 88 중량%, 바인더로서 PVA- 26(평균중합도 2600, 검화도 99% 이상) 10 중량% 및 도전재로서 카본블랙 분말 2 중량%를 DMSO에 혼합하고 약 15 분간 교반하여 음극 합제용 슬러리를 제조하고, 이를 사용하여 음극을 제조하였다는 점을 제외하고는 실시예 1과 같은 방법으로 음극 및 전지를 제조하였다.88% by weight of a silicon-carbon composite (Si-C) as a negative electrode active material, 10% by weight of PVA-26 (average degree of polymerization of 2600, saponification degree of 99% or more) as a binder, and 2% by weight of carbon black powder as a conductive material to DMSO. A negative electrode and a battery were prepared in the same manner as in Example 1 except for mixing and stirring for about 15 minutes to prepare a slurry for negative electrode mixture, and using the same to prepare a negative electrode.

[비교예 1]Comparative Example 1

구리 호일에 도전성 고분자를 코팅하지 않고, 바로 음극 합제용 슬러리를 도포, 건조 및 압착하였다는 점을 제외하고는, 상기 실시예 1과 같은 방법으로 음극 및 전지를 제조하였다.A negative electrode and a battery were manufactured in the same manner as in Example 1, except that the slurry for negative electrode mixture was applied, dried, and pressed without coating the conductive polymer on the copper foil.

[비교예 2]Comparative Example 2

구리 호일의 전면에 도전성 고분자를 코팅한 후, 음극 합제용 슬러리를 도포, 건조 및 압착하였다는 점을 제외하고는, 상기 실시예 1과 같은 방법으로 음극 및 전지를 제조하였다.After the conductive polymer was coated on the entire surface of the copper foil, a negative electrode and a battery were manufactured in the same manner as in Example 1, except that the slurry for negative electrode mixture was applied, dried, and pressed.

[비교예 3]Comparative Example 3

구리 호일에 패턴 코팅층을 형성하지 않고, 바로 음극 합제용 슬러리를 도포, 건조 및 압착하였다는 점을 제외하고는, 상기 실시예 3과 같은 방법으로 음극 및 전지를 제조하였다.A negative electrode and a battery were manufactured in the same manner as in Example 3, except that the slurry for negative electrode mixture was applied, dried, and compressed without directly forming a pattern coating layer on the copper foil.

[실험예 1]Experimental Example 1

상기 실시예 1 내지 3과 비교예 1 내지 3에 따른 음극에서, 집전체에 대한 음극 합제의 결합력을 비교하기 위하여, 제조된 각각의 음극 표면을 일정한 크기로 잘라 슬라이드 글라스에 고정시킨 후, 구리 호일을 벗겨 내며 180 벗김 강도를 측정하였고, 그 결과를 하기 표 1에 나타내었다. 상기 벗김 강도는 실시예들 및 비교예들에 따라 각각 제조된 전지를 50 회 연속 충방전하고, 상기 전지를 분해하여 그로부터 분리된 음극에서 측정된 값이다. 이때, 상기 음극은 전해액을 완전히 제거한 상태이다.In the negative electrode according to Examples 1 to 3 and Comparative Examples 1 to 3, in order to compare the bonding strength of the negative electrode mixture to the current collector, each of the prepared negative electrode surface was cut to a fixed size and fixed to the slide glass, copper foil Stripping strength was measured by peeling off 180, and the results are shown in Table 1 below. The peeling strength is a value measured at a negative electrode separated from the battery by discharging and discharging the battery 50 times continuously according to Examples and Comparative Examples. In this case, the cathode is in a state where the electrolyte is completely removed.

<표 1>TABLE 1

Figure 112006076061785-pat00001
Figure 112006076061785-pat00001

상기 표 1에서 보는 바와 같이, 본 발명에 따른 실시예 1 및 2와 비교예 2의 음극에서는, 도전성 고분자가 코팅되어 있지 않은 비교예 1의 음극에 비하여 높은 전극 접착력을 나타내었다. 즉, 도전성 고분자에 의하여 집전체에 대한 음극 합제의 결합력이 향상되었음을 알 수 있다. 비교예 3의 음극에서는 많은 바인더의 사용으로 비교예 1에 비해 높은 전극 접착력을 나타내었으나, 실시예 3에 비교해서는 크게 떨어짐을 알 수 있다. As shown in Table 1, the negative electrodes of Examples 1 and 2 and Comparative Example 2 according to the present invention showed a higher electrode adhesion than the negative electrode of Comparative Example 1 is not coated with a conductive polymer. That is, it can be seen that the bonding strength of the negative electrode mixture to the current collector is improved by the conductive polymer. In the negative electrode of Comparative Example 3, the use of a large number of binders showed a high electrode adhesive force compared to Comparative Example 1, it can be seen that greatly falls compared to Example 3.

[실험예 2]Experimental Example 2

실시예 1 내지 3과 비교예 2에 따른 음극에서 집전체와 음극 합제 사이의 전기전도성을 비교하기 위하여, 제조된 음극의 저항을 측정하였고, 그 결과를 하기 표 2에 나타내었다.In order to compare the electrical conductivity between the current collector and the negative electrode mixture in the negative electrode according to Examples 1 to 3 and Comparative Example 2, the resistance of the prepared negative electrode was measured, and the results are shown in Table 2 below.

<표 2>TABLE 2

Figure 112006076061785-pat00002
Figure 112006076061785-pat00002

상기 표 2에서 보는 바와 같이, 본 발명에 따른 실시예 1 내지 3의 음극에서는, 도전성 고분자가 패턴 형상으로 코팅되어 있어서, 전면에 도전성 고분자가 코팅되어 있는 경우와 비교할 때, 내부 저항의 훨씬 작음을 알 수 있다. As shown in Table 2, in the cathodes of Examples 1 to 3 according to the present invention, since the conductive polymer is coated in a pattern shape, compared with the case where the conductive polymer is coated on the entire surface, the internal resistance is much smaller. Able to know.

이상에서 설명한 바와 같이, 본 발명에 따른 음극은 집전체와 합제 사이의 전기전도성을 상당히 유지하면서, 집전체에 대한 음극 합제의 결합력을 향상시킬 수 있는 효과가 있다.As described above, the negative electrode according to the present invention has the effect of improving the bonding strength of the negative electrode mixture to the current collector, while maintaining a significant electrical conductivity between the current collector and the mixture.

본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Those skilled in the art to which the present invention pertains will be able to perform various applications and modifications within the scope of the present invention based on the above contents.

Claims (11)

음극 활물질, 바인더 및 도전재를 포함하는 것으로 구성된 음극 합제가 집전체 상에 도포된 상태로 밀착되어 있는 음극으로서, 집전체에 대한 음극 합제의 결합력과 전기 전도성을 향상시킬 수 있도록, 집전체 상에 도전성 고분자를 균일한 패턴으로 코팅하고, 상기 패턴 코팅층 상에 음극 합제를 도포하여 제조되며 상기 패턴 코팅층은 1 내지 100 ㎛의 두께인 것을 특징으로 하는 이차전지용 음극.A negative electrode in which the negative electrode mixture composed of a negative electrode active material, a binder, and a conductive material is adhered to the current collector in close contact with the current collector, so that the binding strength and electrical conductivity of the negative electrode mixture to the current collector can be improved. Coating a conductive polymer in a uniform pattern, is prepared by applying a negative electrode mixture on the pattern coating layer and the pattern coating layer is a negative electrode for a secondary battery, characterized in that the thickness of 1 to 100 ㎛. 제 1 항에 있어서, 상기 도전성 고분자는 폴리아세틸렌, 폴리피롤, 폴리아닐린, 및 폴리티오펜으로 이루어진 군에서 선택되는 하나 또는 둘 이상인 것을 특징으로 하는 이차전지용 음극.The negative electrode of claim 1, wherein the conductive polymer is one or two or more selected from the group consisting of polyacetylene, polypyrrole, polyaniline, and polythiophene. 삭제delete 제 1 항에 있어서, 상기 패턴 코팅층은 집전체의 면적을 기준으로 20 내지 80%의 코팅 면적으로 도포되어 있는 것을 특징으로 하는 이차전지용 음극.The negative electrode of claim 1, wherein the pattern coating layer is coated with a coating area of 20 to 80% based on the area of the current collector. 제 1 항에 있어서, 상기 패턴 코팅층은 도전성 고분자를 포함하는 혼합물을, 패턴 형상으로 이형지가 부착되어 있는 집전체상에 도포하고 건조한 후, 상기 이형 지를 제거하여 형성되는 것을 특징으로 하는 이차전지용 음극.The negative electrode for a secondary battery of claim 1, wherein the pattern coating layer is formed by applying a mixture containing a conductive polymer onto a current collector having a release paper attached thereto in a pattern shape and drying the sheet, and then removing the release paper. 제 1 항에 있어서, 상기 패턴 코팅층은 도전성 고분자 형성용 모노머 및 개시제를 포함하는 혼합물에, 패턴 형상으로 이형지가 부착되어 있는 집전체를 넣고, 상기 집전체상에서 모노머의 중합반응으로 도전성 고분자를 합성한 후, 상기 이형지를 제거하여 형성되는 것을 특징으로 하는 이차전지용 음극.The method of claim 1, wherein the pattern coating layer is a mixture containing a monomer for forming a conductive polymer and an initiator, the current collector is attached to the release paper in a pattern shape, and the conductive polymer is synthesized by the polymerization reaction of the monomer on the current collector After that, the secondary battery negative electrode, characterized in that formed by removing the release paper. 제 6 항에 있어서, 상기 모노머는 아세틸렌 모노머, 피롤 모노머, 아닐린 모노머, 및 티오펜 모노머로 이루어진 군에서 선택되는 하나 또는 둘 이상인 것을 특징으로 하는 이차전지용 음극.The negative electrode of claim 6, wherein the monomer is one or two or more selected from the group consisting of an acetylene monomer, a pyrrole monomer, an aniline monomer, and a thiophene monomer. 제 1 항에 있어서, 상기 음극 활물질은 결정질 탄소, 비정질 탄소, 규소계 화합물, 주석계 화합물, 주석-규소계 화합물 및 규소-탄소계 화합물로 이루어진 군에서 선택되는 것을 특징으로 하는 이차전지용 음극.The negative electrode of claim 1, wherein the negative electrode active material is selected from the group consisting of crystalline carbon, amorphous carbon, silicon compound, tin compound, tin-silicon compound, and silicon-carbon compound. 제 8 항에 있어서, 상기 음극 활물질은 규소계 화합물, 주석계 화합물, 주석-규소계 화합물 및 규소-탄소계 화합물로 이루어진 군에서 선택되는 것을 특징으로 하는 이차전지용 음극.The negative electrode of claim 8, wherein the negative electrode active material is selected from the group consisting of a silicon compound, a tin compound, a tin-silicon compound, and a silicon-carbon compound. 제 1 항, 제 2 항 및 제 4 항 내지 제 9 항 중 어느 하나에 따른 음극을 포함하는 것으로 구성된 이차전지.A secondary battery comprising the negative electrode according to any one of claims 1, 2 and 4 to 9. 제 10 항에 있어서, 상기 전지는 리튬 이차전지인 것을 특징으로 하는 이차전지.The secondary battery of claim 10, wherein the battery is a lithium secondary battery.
KR1020060102642A 2006-10-23 2006-10-23 Negative Electrode Coated with Conductive Polymer in Uniform Pattern and Secondary Battery Containing the Same KR101120437B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060102642A KR101120437B1 (en) 2006-10-23 2006-10-23 Negative Electrode Coated with Conductive Polymer in Uniform Pattern and Secondary Battery Containing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060102642A KR101120437B1 (en) 2006-10-23 2006-10-23 Negative Electrode Coated with Conductive Polymer in Uniform Pattern and Secondary Battery Containing the Same

Publications (2)

Publication Number Publication Date
KR20080036261A KR20080036261A (en) 2008-04-28
KR101120437B1 true KR101120437B1 (en) 2012-03-13

Family

ID=39574702

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060102642A KR101120437B1 (en) 2006-10-23 2006-10-23 Negative Electrode Coated with Conductive Polymer in Uniform Pattern and Secondary Battery Containing the Same

Country Status (1)

Country Link
KR (1) KR101120437B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157873A1 (en) * 2012-04-18 2013-10-24 주식회사 엘지화학 Electrode for secondary battery, and secondary battery comprising same
WO2013157863A1 (en) * 2012-04-18 2013-10-24 주식회사 엘지화학 Electrode and secondary battery including same
WO2013180434A1 (en) * 2012-05-30 2013-12-05 주식회사 엘지화학 Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
KR20170006693A (en) * 2015-07-09 2017-01-18 주식회사 엘지화학 Negative electrode for secondary battery and secondary battery comprising the same
US9812705B2 (en) 2012-05-30 2017-11-07 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
US9941520B2 (en) 2014-02-24 2018-04-10 Samsung Electronics Co., Ltd. Negative electrode for secondary battery and secondary battery including the negative electrode

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843194B1 (en) 2011-10-21 2018-04-11 삼성전기주식회사 Electric Double Layer Capacitor
KR101741030B1 (en) 2012-03-08 2017-05-29 삼성에스디아이 주식회사 Secondary battery
KR101327283B1 (en) * 2012-03-20 2013-11-11 한국과학기술연구원 Manufacturing Method of Silicon Based Electrode Using Polymer Pattern on the Current Collector and Manufacturing Method of Negative Rechargeable Lithium Battery Including the Same
KR102172070B1 (en) 2017-01-09 2020-10-30 주식회사 엘지화학 Patterning of Lithium metal and electrochemical device prepared thereby
KR20210033721A (en) 2019-09-19 2021-03-29 주식회사 엘지화학 Electrode Current Collector Comprising a Resistive Layer Between Two or More Metal Foils, Electrode Comprising the Same, and Lithium Secondary Battery
WO2022041194A1 (en) * 2020-08-31 2022-03-03 宁德新能源科技有限公司 Electrode plate, electrochemical apparatus, and electronic apparatus
KR20220137256A (en) * 2021-04-02 2022-10-12 주식회사 엘지에너지솔루션 Positive electrode and lithium secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172573A (en) 1996-12-13 1998-06-26 Furukawa Electric Co Ltd:The Lithium secondary battery negative electrode, its manufacture, and secondary battery using negative electrode
JPH1173947A (en) 1997-08-29 1999-03-16 Ricoh Co Ltd Electrode for battery and its manufacture
KR20080015162A (en) * 2006-08-14 2008-02-19 주식회사 엘지화학 A positive electrode coated with a conductive polymer in a uniform pattern and a secondary battery comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172573A (en) 1996-12-13 1998-06-26 Furukawa Electric Co Ltd:The Lithium secondary battery negative electrode, its manufacture, and secondary battery using negative electrode
JPH1173947A (en) 1997-08-29 1999-03-16 Ricoh Co Ltd Electrode for battery and its manufacture
KR20080015162A (en) * 2006-08-14 2008-02-19 주식회사 엘지화학 A positive electrode coated with a conductive polymer in a uniform pattern and a secondary battery comprising the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101793270B1 (en) * 2012-04-18 2017-11-02 주식회사 엘지화학 The Electrodes and the Secondary Battery Comprising the Same
US10153480B2 (en) 2012-04-18 2018-12-11 Lg Chem, Ltd. Electrode for secondary battery and secondary battery including the same
WO2013157873A1 (en) * 2012-04-18 2013-10-24 주식회사 엘지화학 Electrode for secondary battery, and secondary battery comprising same
CN104185915A (en) * 2012-04-18 2014-12-03 株式会社Lg化学 Electrode for secondary battery, and secondary battery comprising same
JP2015515722A (en) * 2012-04-18 2015-05-28 エルジー・ケム・リミテッド Electrode and secondary battery including the same
US9508993B2 (en) 2012-04-18 2016-11-29 Lg Chem, Ltd. Electrode for secondary battery and secondary battery including the same
US9786916B2 (en) 2012-04-18 2017-10-10 Lg Chem, Ltd. Electrode and secondary battery including the same
WO2013157863A1 (en) * 2012-04-18 2013-10-24 주식회사 엘지화학 Electrode and secondary battery including same
WO2013180434A1 (en) * 2012-05-30 2013-12-05 주식회사 엘지화학 Negative pole active material for lithium secondary battery and lithium secondary battery comprising same
US9812705B2 (en) 2012-05-30 2017-11-07 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
US9601760B2 (en) 2012-05-30 2017-03-21 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
US9941520B2 (en) 2014-02-24 2018-04-10 Samsung Electronics Co., Ltd. Negative electrode for secondary battery and secondary battery including the negative electrode
KR20170006693A (en) * 2015-07-09 2017-01-18 주식회사 엘지화학 Negative electrode for secondary battery and secondary battery comprising the same
KR102014115B1 (en) 2015-07-09 2019-08-26 주식회사 엘지화학 Negative electrode for secondary battery and secondary battery comprising the same

Also Published As

Publication number Publication date
KR20080036261A (en) 2008-04-28

Similar Documents

Publication Publication Date Title
KR101120437B1 (en) Negative Electrode Coated with Conductive Polymer in Uniform Pattern and Secondary Battery Containing the Same
KR100898706B1 (en) A positive electrode coated with a conductive polymer in a uniform pattern and a secondary battery comprising the same
KR101041829B1 (en) A lithium secondary battery comprising a negative electrode material composition comprising a polyacrylonitrile-acrylic acid copolymer and a binder, a method of manufacturing the same, and a negative electrode material composition thereof
KR100800969B1 (en) Electrode mixture containing polyvinyl alcohol as a binder and a lithium secondary battery based on the same
KR100893229B1 (en) Lithium Secondary Battery Containing Surfactant in Electrode Active Material
KR101540618B1 (en) Electrode for Secondary Battery and Method of Preparing the Same
KR100801637B1 (en) Positive electrode active material and lithium secondary battery containing the same
KR100907621B1 (en) A positive electrode mixture containing a conductive material of two components and a lithium secondary battery composed of it
KR101031179B1 (en) Electrochemical device with improved safety against internal short circuit
KR101481993B1 (en) Electrode Comprising Compound Having Cyano group and Lithium Secondary Battery Comprising The Same
KR101159104B1 (en) Electrode Material Containing Conductive Polymer with Excellent Dispersibility as Binder and Lithium Secondary Battery Employed with the Same
KR100781051B1 (en) Mixture for Anode of Improved Adhesive Strength and Lithium Secondary Battery Containing the Same
KR101588624B1 (en) Electrode of Improved Electrode Conductivity and Method For Manufacturing The Same
KR20160126840A (en) Cathode Active Material Particles Comprising One or More Coating Layer and Method for Preparation of the Same
KR101093242B1 (en) Mixed anode material for lithium secondary battery and high output lithium secondary battery comprising same
KR101049465B1 (en) Manufacture of the anode material including poly(acrylonitrile-acrylic acid), and binder, manufacture of the lithium battery anode comprising the same
KR100846073B1 (en) Lithium secondary battery containing hydrophilic-lipophilic block copolymer in electrolyte
KR101438419B1 (en) Cathode for Lithium Secondary Battery Including Binder Capable of Providing Improved Life Characteristics and Lithium Secondary Battery Comprising the Same
KR101115390B1 (en) Mixed anode material for lithium secondary battery and high output lithium secondary battery comprising same
KR101156614B1 (en) Electrode material including high degree of polymerization of polyacrylonitrile binder, method of the electrode material and rechargeable lithium battery comprising electrode material
KR100861711B1 (en) Secondary battery containing negative additive to prevent over discharge
KR20070021040A (en) Positive electrode active material and lithium secondary battery containing the same
KR101595605B1 (en) Slurry comprising graphene for secondary battery and secondary battery comprising the same
KR101128666B1 (en) Cathode Material for Secondary Battery with Improved Conductivity and Secondary Battery Containing the Same
KR100963977B1 (en) Advanced Lithium Secondary Battery

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20061023

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20090713

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20061023

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20110503

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20111222

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20120220

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20120220

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20150119

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20160128

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20160128

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20170216

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20180116

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20190116

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20210216

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20211220

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20221226

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20231226

Start annual number: 13

End annual number: 13