KR101117550B1 - Method for providing an elastic image - Google Patents
Method for providing an elastic image Download PDFInfo
- Publication number
- KR101117550B1 KR101117550B1 KR1020100068952A KR20100068952A KR101117550B1 KR 101117550 B1 KR101117550 B1 KR 101117550B1 KR 1020100068952 A KR1020100068952 A KR 1020100068952A KR 20100068952 A KR20100068952 A KR 20100068952A KR 101117550 B1 KR101117550 B1 KR 101117550B1
- Authority
- KR
- South Korea
- Prior art keywords
- transducer
- wave
- transmitting
- sound field
- transverse
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000005540 biological transmission Effects 0.000 claims abstract description 14
- 230000005855 radiation Effects 0.000 claims description 11
- 238000002604 ultrasonography Methods 0.000 abstract description 14
- 230000003902 lesion Effects 0.000 abstract description 13
- 238000003384 imaging method Methods 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 abstract 1
- 206010028980 Neoplasm Diseases 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 8
- 210000004872 soft tissue Anatomy 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002405 diagnostic procedure Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
- A61B8/14—Echo-tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4477—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8979—Combined Doppler and pulse-echo imaging systems
- G01S15/8984—Measuring the velocity vector
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Veterinary Medicine (AREA)
- Remote Sensing (AREA)
- Public Health (AREA)
- Radar, Positioning & Navigation (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Acoustics & Sound (AREA)
- Computer Networks & Wireless Communication (AREA)
- Gynecology & Obstetrics (AREA)
- General Physics & Mathematics (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
대상체 조직의 성질을 영상화하는 횡탄성 영상제공을 통하여 병변의 발견을 용이하게 하는 탄성영상 제공방법이 개시되어 있다. 본 발명에 의한 탄성영상 제공방법은 제1 단계로 고출력 초음파의 송신시 음장깊이를 길게 형성하는 방법으로 2차원 평면파인 횡파를 만들어내는 송신용 제1 트랜스듀서를 배치하고, 제2 단계로 상기 송신용 제1 트랜스듀서에서 발생하는 횡파를 수신하여 횡파의 도착시간을 측정하는 수신용 제2 트랜스듀서를 상기 송신용 제1 트랜스듀서와 병렬적으로 배치하고, 제3 단계로 상기 제1 트랜스듀서와 상기 제2 트랜스듀서의 거리를 측정하고, 제4 단계로 상기 제2 단계에서 측정한 횡파의 도착시간과 상기 제3 단계에서 측정한 거리를 통하여 횡파의 속도를 계산하고, 5단계로 상기 제4 단계에서 도출한 횡파의 속도를 CT = = (μ는 횡탄성, ρ는 밀도, E는 종탄성, ν는 포아슨비)에 대입하여 횡탄성값과 종탄성값을 계산하여 제1 결과를 도출한다. 상술한 구성을 통하여 대상체 조직의 성질을 영상화하는 횡탄성 영상제공을 통해서 병변의 발견을 용이하게 할 수 있다. A method of providing an elastic image for facilitating the detection of a lesion by providing a lateral elastic image for imaging a property of an object tissue is disclosed. In the elastic image providing method according to the present invention, a first transducer for transmitting a transverse wave, which is a two-dimensional plane wave, is formed by a method of forming a long sound field depth during transmission of high power ultrasound in a first step, and transmitting the A receiving second transducer for receiving the transverse wave generated from the first credit transducer and measuring the arrival time of the transverse wave is disposed in parallel with the transmitting first transducer, and in a third step, The distance of the second transducer is measured, and the velocity of the shear wave is calculated based on the arrival time of the shear wave measured in the second step and the distance measured in the third step in the fourth step, and the fourth step in the fifth step. The velocity of the shear wave derived in step C T = = (μ is lateral elasticity, ρ is density, E is longitudinal elasticity, ν is Poisson's ratio), and the lateral and final elastic values are calculated to derive the first result. Through the above-described configuration, it is possible to facilitate the discovery of lesions by providing a lateral elastic image for imaging the properties of the object tissue.
Description
본 발명은 탄성 영상 제공방법에 관한 것으로, 더욱 상세하게는 병렬 배치된 선형 트랜스듀서를 구비한 횡탄성 영상 제공방법에 관한 것이다.The present invention relates to an elastic image providing method, and more particularly, to a transverse elastic image providing method having a linear transducer arranged in parallel.
초음파를 이용한 의료용 진단장치는 초음파의 반사, 흡수, 산란하는 특성을 이용하여 대상체에 초음파 신호를 송신하고, 대상체에서 반사되는 초음파 신호를 수신하며, 수신된 초음파 신호를 전기적 신호로 변환하여 초음파 진단결과를 제공한다. 종래의 방법을 통한 초음파 영상 제공방법은 조직 간의 임피던스 차이로 도출되는 반사계수를 이용하였으나, 이는 암이나 종양과 같은 병변은 대상체의 주위 조직에 비하여 반사계수의 차이가 크지 않으므로 초음파 결과를 통하여 용이하게 진단할 수 없는 한계가 있다. The medical diagnostic apparatus using ultrasound transmits an ultrasound signal to an object by using reflection, absorption, and scattering characteristics of the ultrasound, receives an ultrasound signal reflected from the object, and converts the received ultrasound signal into an electrical signal to make an ultrasound diagnosis. To provide. In the conventional method of providing an ultrasound image, a reflection coefficient derived from an impedance difference between tissues is used. However, a lesion such as a cancer or a tumor does not have a large difference in reflection coefficient compared to surrounding tissues of an object, so it is easy to use an ultrasound image. There is a limit that cannot be diagnosed.
본 발명의 기술적 과제는 이러한 종래의 문제점을 해결하기 위한 것으로서, 본 발명의 제1 목적은 대상체 조직의 성질을 영상화하는 횡탄성 영상제공을 통하여 병변의 발견을 용이하게 하고자 함에 있다. The technical problem of the present invention is to solve such a conventional problem, and a first object of the present invention is to facilitate the discovery of lesions by providing a lateral elastic image to image the properties of the subject tissue.
또한, 종래의 방법을 통한 초음파 진단방법은 대상체를 1번만 측정하여 결과를 도출함으로써 측정 장비의 위치에서 오는 오차를 수인하게 되어서 좀 더 세밀하고 정확한 결과를 도출할 수 없는 한계가 있었다. 따라서 본 발명의 기술적 과제는 이러한 종래의 문제점을 해결하기 위한 것으로, 본 발명의 제2 목적은 2개의 트랜스듀서의 역할만 바꾸어 같은 과정을 반복함으로써 얻어지는 결과의 평균값을 제공하여 좀 더 정확한 진단결과를 제공하고자 함에 있다.In addition, the ultrasonic diagnostic method using the conventional method has a limitation that can not derive a more precise and accurate result by accepting the error coming from the position of the measurement equipment by measuring the object only once to derive the result. Therefore, the technical problem of the present invention is to solve this conventional problem, and the second object of the present invention is to provide a more accurate diagnosis result by providing an average value of the result obtained by repeating the same process by changing only the role of two transducers. To provide.
상기 목적을 달성하기 위해서 본 발명의 바람직한 일 실시 예에 따르면, 본 발명인 탄성 영상 제공방법은 제1 단계로 고출력 초음파의 송신시 음장깊이를 길게 형성하는 방법으로 2차원 평면파인 횡파를 만들어내는 송신용 제1 트랜스듀서를 배치하고, 제2 단계로 상기 송신용 제1 트랜스듀서에서 발생하는 횡파를 수신하여 횡파의 도착시간을 측정하는 수신용 제2 트랜스듀서를 상기 송신용 제1 트랜스듀서와 병렬적으로 배치하고, 제3 단계로 상기 제1 트랜스듀서와 상기 제2 트랜스듀서의 거리를 측정하고, 제4 단계로 상기 제2 단계에서 측정한 횡파의 도착시간과 상기 제3 단계에서 측정한 거리를 통하여 횡파의 속도를 계산하고, 5단계로 상기 제4 단계에서 도출한 횡파의 속도를 CT = = (μ는 횡 탄성, ρ는 밀도, E는 종 탄성, ν는 포아슨비)에 대입하여 횡탄성값과 종탄성값을 계산하여 제1 결과를 도출한다.According to a preferred embodiment of the present invention in order to achieve the above object, the present invention provides a method for providing an elastic image for transmitting a transverse wave that is a two-dimensional plane wave by a method of forming a long sound field depth during the transmission of high-power ultrasound in the first step A second transducer for receiving the transverse wave generated by the transmitting first transducer in the second step and measuring the arrival time of the transverse wave in parallel with the first transducer for transmission The distance between the first transducer and the second transducer is measured in a third step, and the arrival time of the transverse wave measured in the second step and the distance measured in the third step are measured in the fourth step. calculate the speed of the transverse wave through, and the speed of the transverse waves obtained in step 4 to step 5 C T = = (μ is the lateral elasticity, ρ is the density, E is the longitudinal elasticity, ν is the Poisson's ratio), and the lateral and final elastic values are calculated to derive the first result.
본 발명의 다른 실시 예에 따르면, 본 발명인 탄성 영상 제공방법은 상기 제1 트랜스듀서 및 상기 제2 트랜스듀서가 서로 송수신 역할을 바꾸어 측정된 값으로 제2 결과를 도출하며, 상기 제1 결과 및 제2 결과의 평균값을 제공한다.According to another embodiment of the present invention, the method for providing an elastic image according to the present invention derives a second result with the measured value by changing the role of transmitting and receiving the first transducer and the second transducer, and the first result and the first 2 Give the mean of the results.
상술한 구성을 통하여 대상체 조직의 성질을 영상화하는 횡 탄성 영상제공을 통해서 병변의 발견을 용이하게 할 수 있다. 즉, 2차원 횡파 평면파를 발생시키고 평면파의 진행 속도를 2차원 평면상에서 동시에 측정함으로써 병변의 횡탄성 영상을 제공할 수 있다. 인체의 연조직에서 암과 같은 종양이 발생하면 종양이 단단해지면서 종양의 탄성 값이 증가하므로, 횡파의 음속도도 증가하게 되는데, 횡파의 음속도를 측정하면 횡탄성값을 알게 되어 병변을 진단할 수 있는 것이다.Through the above-described configuration, it is possible to facilitate the discovery of lesions by providing a lateral elastic image for imaging the properties of the object tissue. That is, by generating a two-dimensional shear wave plane wave and simultaneously measuring the traveling speed of the plane wave on the two-dimensional plane, it is possible to provide a transverse elastic image of the lesion. When a tumor such as cancer occurs in the soft tissues of the human body, the tumor's elasticity value increases as the tumor becomes harder, so the sound velocity of the shear wave increases, and when the sound velocity of the shear wave is measured, the transverse elasticity value is known to diagnose the lesion. It is.
또한, 종래의 방법을 통한 초음파 진단방법이 갖는 오차의 범위를 줄일 수 있다. 즉, 대상체를 1번만 측정하여 이를 최종 결과로 바로 단정짓는 것이 아니라, 측정 장비로 사용된 2개의 트랜스듀서에서 이들의 역할만 바꾸어 같은 과정을 반복함으로써 얻어지는 2번의 결과의 평균값을 제공하여 좀 더 정확한 진단 결과를 제공할 수 있다.In addition, it is possible to reduce the range of the error of the conventional ultrasonic diagnostic method. In other words, instead of measuring the object only once and immediately determining it as the final result, it is more accurate by providing the average value of the two results obtained by repeating the same process only by changing their roles in the two transducers used as measuring equipment. Diagnostic results can be provided.
도 1은 초음파에 의한 음향복사력의 발생을 도시한 개략도이다.
도 2는 음장깊이를 길게 형성하도록 송신함으로써 평면파 횡파가 발생함을 나타낸 개략도이다.
도 3은 선형 트랜스듀서의 모든 소자에서 송신을 함으로써 평면상에서 음향복사력이 발생하는 것을 나타낸 개략도이다.
도 4는 2차원 평면파 횡파가 전달되는 모습을 나타낸 개략도이다.
도 5는 병변이 있는 영역을 지나는 평면파 횡파의 파면이 왜곡되는 현상을 나타낸 개략도이다.1 is a schematic diagram showing generation of acoustic radiation power by ultrasonic waves.
2 is a schematic diagram showing that a plane wave transverse wave is generated by transmitting a sound field depth long.
Figure 3 is a schematic diagram showing that the acoustic radiation is generated on the plane by transmitting from all the elements of the linear transducer.
4 is a schematic diagram showing a state in which a two-dimensional plane wave transverse wave is transmitted.
5 is a schematic diagram illustrating a phenomenon in which a wavefront of a plane wave transverse wave passing through a region having a lesion is distorted.
초음파에 의한 음향복사력의 발생을 도시한 도 1을 참조하여 설명하면, 1MHz 내지 10MHz에 해당하는 고출력의 초음파를 인체의 연조직에 송신하면 초음파의 음압에 의하여 인체의 연조직이 밀려나게 된다. 이러한 힘을 음향복사력(acoustic radiation force)이라고 하며, 그 힘의 크기는 (Ⅰ는 초음파의 음압의 강도(intensity)[W/cm2], α는 조직의 감쇄 계수[NP/m], c는 음속도[m/s])로 주어진다. 이러한 음향복사력에 의해서 인체의 연조직이 이동하면, 송신 음장의 방향과 직각으로 횡파가 발생한다. 인체의 연조직에서 종파의 음속도는 1500m/s정도 되지만, 횡파의 음속도는 1m/s 내지 10m/s 정도의 범위에 있으며, 횡파의 음속도 CT는 횡탄성값(shear modulus)μ와 다음의 관계를 가진다. CT = = (E는 종탄성값, μ는 횡탄성값, ρ는 매질의 밀도, E는 종탄성, ν는 포아슨비) Referring to Figure 1 showing the generation of the acoustic radiation by the ultrasonic waves, when transmitting a high-power ultrasound corresponding to 1MHz to 10MHz to the soft tissues of the human body is the soft tissue of the human body is pushed by the sound pressure of the ultrasonic waves. This force is called acoustic radiation force and its magnitude is (I is the intensity of sound pressure [W / cm 2 ] of the ultrasonic wave, α is the attenuation coefficient of the tissue [NP / m], and c is the sound velocity [m / s]). When the soft tissues of the human body are moved by the acoustic radiation force, shear waves are generated at right angles to the direction of the transmission sound field. In the soft tissues of the human body, the longitudinal sound velocity is about 1500m / s, but the sound velocity of the shear wave is in the range of 1m / s to 10m / s, and the sound velocity C T of the shear wave is the shear modulus μ and Has a relationship with C T = = (E is the final elasticity value, μ is the lateral elasticity value, ρ is the density of the medium, E is the final elasticity, ν is the Poisson's ratio)
인체의 연조직에서 암과 같은 종양이 발생하게 되면, 연조직이 단단해지면서 탄성 값이 증가한다. 따라서 이에 따라 횡파의 음속도도 증가하게 되므로, 횡파의 음속도를 측정하면 조직의 횡탄성값을 알 수 있게 되어 병변을 진단할 수 있다. When a tumor such as cancer occurs in the soft tissues of the human body, the soft tissue becomes hard and the elasticity value increases. Therefore, the sound velocity of the shear wave is also increased accordingly, and by measuring the sound velocity of the shear wave, the transverse elasticity value of the tissue can be known to diagnose the lesion.
본 발명을 실시하기 위한 바람직한 일 실시 예에 의하면, 탄성 영상을 제공하기 위한 제1 단계로 고출력 초음파의 송신시 음장깊이를 길게 형성하는 방법으로 2차원 평면파인 횡파를 만들어내는 송신용 제1 트랜스듀서(A)를 배치한다. 도 2를 참조하여 제1 단계를 설명하면, 평면파 횡파를 발생시키기 위하여 음장깊이가 충분히 길게 형성되도록 고출력 초음파를 송신하며, 트랜스듀서는 송신용 트랜스듀서로서 고출력 초음파를 송신할 때 송신 음장을 제어하여 음장깊이가 길게 형성되도록 송신한다. 음장깊이를 길게 형성하기 위한 방법으로는 수십 밀리세컨드(ms)길이의 버스트(burst)를 송신하는 방법이나 다중초점깊이에 동시에 집속하여 송신하는 방법이 사용된다. 이러한 방법으로 음장의 주사선 방향으로 길이가 긴 음장 깊이에서 음향 복사력을 만들 수 있으므로, 도 2에서 보이는 바와 같이 복사력의 수직방향으로 평면파 횡파를 발생시킬 수 있다. 본 발명의 다른 실시 예에 의한 도 3을 참조하면, 선형 트랜스듀서의 모든 소자에서 동시에 버스트를 송신하면 초음파 음장이 지나는 2차원 평면에서 음향복사력이 발생한다. 이러한 방법에 의해서 도 4에서 보이는 바와 같이 송신 음장이 지나는 평면에서 수직방향으로 양쪽으로 2차원 평면파 횡파가 발생한다. 암과 같은 종양이 있는 병변이 있는 조직에서는 횡파의 측정속도가 빨라지므로, 횡파 평면파가 병변을 통과하면 횡파의 파면이 휘어지게 되어서 더 빨리 병변을 통과하게 된다. 도 5는 이러한 현상이 적용된 병변을 지나는 횡파의 파면을 도시하였다. According to an embodiment of the present invention, as a first step for providing an elastic image, a first transducer for transmission generating a transverse wave, which is a two-dimensional plane wave, by forming a long sound field depth during transmission of high-power ultrasound (A) is placed. Referring to FIG. 2, the first step is to transmit the high power ultrasound so that the sound field depth is long enough to generate the plane wave transverse wave, and the transducer controls the transmission sound field when transmitting the high power ultrasound as a transmission transducer. Transmit so that the sound field depth is formed long. As a method for forming a long sound field depth, a method of transmitting bursts of several tens of milliseconds or a method of simultaneously focusing and transmitting at multiple focal depths is used. In this way, since the acoustic radiation force can be made at a long sound field depth in the direction of the scanning line of the sound field, a plane wave transverse wave can be generated in the vertical direction of the radiation force as shown in FIG. 2. Referring to FIG. 3 according to another embodiment of the present invention, when all the elements of the linear transducer simultaneously transmit bursts, acoustic radiation is generated in a two-dimensional plane through which the ultrasonic sound field passes. By this method, as shown in Fig. 4, a two-dimensional plane wave transverse wave is generated in the vertical direction from the plane through which the transmission sound field passes. In tissues with tumors such as cancer, the measurement of shear waves is faster, so when the shear waves pass through the lesions, the wavefronts of the shear waves bend and pass through the lesions faster. 5 shows the wavefront of the shear wave passing through the lesion to which this phenomenon is applied.
탄성 영상을 제공하기 위한 제2 단계로 송신용 제1 트랜스듀서(A)에서 발생하는 횡파를 수신하여 횡파의 도착시간을 측정하는 수신용 제2 트랜스듀서(B)를 상기 송신용 제1 트랜스듀서(A)와 병렬적으로 배치한다. 도 5를 참조하면, 제1 트랜스듀서(A)는 평면파를 발생시키기 위한 송신용 트랜스듀서이며, 제2 트랜스듀서(B)는 수신용 트랜스듀서로서 횡파의 진행을 관찰하고 측정하기 위하여 제1 트랜스듀서(A)와 병렬로 배치한다. 즉, 송신용 제1 트랜스듀서(A)는 횡파를 발생시킴과 동시에 수신용 제2 트랜스듀서(B)는 고속으로 영상을 획득하여 횡파의 도착시간을 체크한다. 이러한 방법으로 획득된 데이터를 통하여, 조직의 전체 영상에서 횡파가 빨리 도착하는 부분에 병변이 존재함을 확인가능하다. As a second step for providing an elastic image, a receiving second transducer B for receiving a transverse wave generated by the transmitting first transducer A and measuring arrival time of the transverse wave is the first transducer for transmission. Arrange in parallel with (A). Referring to FIG. 5, the first transducer A is a transmission transducer for generating plane waves, and the second transducer B is a reception transducer to observe and measure the progress of the transverse waves. It is arranged in parallel with the producer (A). That is, the transmitting first transducer A generates a shear wave, while the receiving second transducer B acquires an image at high speed and checks the arrival time of the shear wave. Through the data obtained in this way, it is possible to confirm that the lesion exists in the portion where the shear wave arrives quickly in the whole image of the tissue.
탄성 영상을 제공하기 위한 제3 단계로 상기 제1 트랜스듀서(A)와 상기 제2 트랜스듀서(B)의 거리를 측정한다. 두 개의 트랜스듀서의 거리를 통해 횡파의 도착시간으로부터 횡파의 속도를 계산할 수 있으며, 이들 결과를 토대로 횡탄성값과 종탄성값이 계산가능하다.In a third step of providing an elastic image, the distance between the first transducer A and the second transducer B is measured. The distance of the two transducers can be used to calculate the velocity of the shear wave from the arrival time of the shear wave. Based on these results, the transverse and final elastic values can be calculated.
즉, 탄성영상을 제공하기 위한 제4 단계로 제2 단계에서 측정한 횡파의 도착시간과 제3 단계에서 측정한 거리를 통하여, 횡파의 속도를 계산하며, 탄성영상을 제공하기 위한 제5 단계로 제4 단계에서 도출한 횡파의 속도를 CT = = (μ는 횡탄성, ρ는 밀도, E는 종탄성, ν는 포아슨비)에 대입하여 횡탄성값과 종탄성값을 계산하여 제1 결과를 도출한다.That is, as a fourth step for providing an elastic image, a speed of the shear wave is calculated based on the arrival time of the shear wave measured in the second step and the distance measured in the third step. the velocity of a transverse wave derives from step 4 C T = = (μ is lateral elasticity, ρ is density, E is longitudinal elasticity, ν is Poisson's ratio), and the lateral and final elastic values are calculated to derive the first result.
또한, 종래의 초음파 진단방법이 갖는 오차의 범위를 줄이기 위하여, 측정장비로 사용된 제1 트랜스듀서(A) 및 제2 트랜스듀서(B)가 서로 송수신 역할을 바꾸어 측정된 값으로 제2 결과를 도출한다. 이러한 두 번의 측정을 통하여, 제1 결과와 제2 결과의 평균값을 제공함으로써 측정 오차를 감소시킬 수 있다.In addition, in order to reduce the range of the error of the conventional ultrasonic diagnostic method, the first transducer A and the second transducer B used as the measuring device switch the transmission and reception of each other and return the second result to the measured value. To derive. Through these two measurements, the measurement error can be reduced by providing an average of the first and second results.
앞서 설명한 본 발명을 실시하기 위한 구체적인 내용에는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 당업자라면 후술 될 특허청구범위에 기재된 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변형시킬 수 있음을 이해할 수 있을 것이다.
Although the above-described detailed description for carrying out the present invention has been described with reference to a preferred embodiment of the present invention, those skilled in the art without departing from the spirit and scope of the invention described in the claims to be described later It will be appreciated that various modifications and variations can be made.
Claims (4)
상기 송신용 제1 트랜스듀서(A)에서 발생하는 횡파를 수신하여 횡파의 도착시간을 측정하는 수신용 제2 트랜스듀서(B)를 상기 송신용 제1 트랜스듀서(A)와 병렬적으로 배치하는 제2 단계;
상기 측정된 횡파의 도착시간으로부터 제1 트랜스듀서(A)와 상기 제2 트랜스듀서(B)의 거리를 측정하는 제3 단계;
상기 제2 단계에서 측정한 횡파의 도착시간과 상기 제3 단계에서 측정한 거리를 통해, 횡파의 속도를 계산하는 제4 단계; 및
상기 제4 단계에서 도출한 횡파의 속도를 CT = = (μ는 횡탄성, ρ는 밀도, E는 종탄성, ν는 포아슨비)에 대입하여 횡탄성값과 종탄성값을 계산하여 제1 결과를 도출하는 제5 단계를 포함하는 것을 특징으로 하는 탄성 영상 제공방법.In order to form a long sound field depth during the transmission of high power ultrasonic waves, an acoustic radiation force is generated at a long sound field depth in the direction of the scanning line of the sound field, thereby generating a plane wave transverse wave in the vertical direction of the radiation force or simultaneously in all the elements of the linear transducer. A transmitter for transmitting a burst to generate an acoustic radiation force in a two-dimensional plane through which the ultrasonic sound field passes, and for placing a first transducer A for transmission that generates two-dimensional plane wave transverse waves in both vertical directions in the plane through which the transmit sound field passes. Stage 1;
The receiving second transducer B for receiving the transverse wave generated by the transmitting first transducer A and measuring the arrival time of the transverse wave is disposed in parallel with the transmitting first transducer A. Second step;
A third step of measuring a distance between the first transducer A and the second transducer B from the measured arrival time of the transverse wave;
A fourth step of calculating the speed of the shear wave based on the arrival time of the shear wave measured in the second step and the distance measured in the third step; And
The velocity of the shear wave derived in the fourth step is C T = = elasticity, comprising the fifth step of calculating the transverse and final elastic values and substituting (μ for lateral elasticity, ρ for density, E for final elasticity, ν for Poisson's ratio) to derive a first result How to provide video.
상기 제1 트랜스듀서(A) 및 제2 트랜스듀서(B)를 서로 송수신 역할을 바꾸어, 상기 제 2단계 내지 5단계를 거쳐 측정한 값으로 제2결과를 도출하여, 상기 제1결과와 제2결과의 평균값을 제공하는 것을 특징으로 하는 탄성 영상 제공방법. The method of claim 1,
The first transducer A and the second transducer B are exchanged with each other in a role of transmitting and receiving each other, and a second result is derived from the values measured through the second to fifth steps, thereby obtaining the first result and the second. Elastic image providing method characterized in that to provide an average value of the results.
상기 제1 단계의 음장깊이를 길게 형성하는 방법은 밀리세컨드(ms) 길이의 버스트(burst)를 송신하는 것을 특징으로 하는 탄성 영상 제공방법.The method of claim 1,
The method of forming a long sound field depth of the first step is a method of providing an elastic image, characterized in that for transmitting a burst of millisecond (ms) length.
상기 제1 단계의 음장깊이를 길게 형성하는 방법은 다중초점 깊이에 동시에 집속하여 송신하는 것을 특징으로 하는 탄성 영상 제공방법.The method of claim 1,
The method of forming a long sound field depth of the first step is characterized in that the focusing and transmitting at the same time to the multiple focus depth elastic image providing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100068952A KR101117550B1 (en) | 2010-07-16 | 2010-07-16 | Method for providing an elastic image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100068952A KR101117550B1 (en) | 2010-07-16 | 2010-07-16 | Method for providing an elastic image |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120008218A KR20120008218A (en) | 2012-01-30 |
KR101117550B1 true KR101117550B1 (en) | 2012-03-07 |
Family
ID=45613270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100068952A KR101117550B1 (en) | 2010-07-16 | 2010-07-16 | Method for providing an elastic image |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101117550B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150130093A (en) * | 2014-05-13 | 2015-11-23 | 서강대학교산학협력단 | Estimation method and system for shear wave speed and lesion diagnosis method and system in the tissue using the same |
US10292682B2 (en) | 2014-09-29 | 2019-05-21 | Samsung Electronics Co., Ltd. | Method and medical imaging apparatus for generating elastic image by using curved array probe |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101306491B1 (en) * | 2012-06-19 | 2013-09-09 | 대진대학교 산학협력단 | A method for measuring shear modulus of tissue |
US10324065B2 (en) | 2014-01-06 | 2019-06-18 | Samsung Electronics Co., Ltd. | Ultrasound diagnostic apparatus, ultrasound image capturing method, and computer-readable recording medium |
CN106264600B (en) * | 2015-05-18 | 2019-04-19 | 李百祺 | Elastic Distribution Image Generation System |
CN106154251A (en) * | 2016-06-27 | 2016-11-23 | 中国科学院苏州生物医学工程技术研究所 | Ultrasonic beam synthetic method, ultrasonic imaging method and ultrasonic elastograph imaging method |
KR102618496B1 (en) * | 2017-12-21 | 2023-12-27 | 삼성메디슨 주식회사 | Ultrasound diagnostic apparatus for displaying elasticity of the object and method for operating the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001166054A (en) | 1999-12-13 | 2001-06-22 | Toshiba Corp | Computing and measuring device, object traveling speed measuring method, and metal temperature measuring method |
-
2010
- 2010-07-16 KR KR1020100068952A patent/KR101117550B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001166054A (en) | 1999-12-13 | 2001-06-22 | Toshiba Corp | Computing and measuring device, object traveling speed measuring method, and metal temperature measuring method |
Non-Patent Citations (1)
Title |
---|
논문1 : 비파괴검사학회지 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150130093A (en) * | 2014-05-13 | 2015-11-23 | 서강대학교산학협력단 | Estimation method and system for shear wave speed and lesion diagnosis method and system in the tissue using the same |
KR101646623B1 (en) | 2014-05-13 | 2016-08-08 | 서강대학교산학협력단 | Estimation method and system for shear wave speed and lesion diagnosis method and system in the tissue using the same |
US10292682B2 (en) | 2014-09-29 | 2019-05-21 | Samsung Electronics Co., Ltd. | Method and medical imaging apparatus for generating elastic image by using curved array probe |
Also Published As
Publication number | Publication date |
---|---|
KR20120008218A (en) | 2012-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101117550B1 (en) | Method for providing an elastic image | |
KR102134763B1 (en) | Determining material stiffness using multiple aperture ultrasound | |
JP5730978B2 (en) | Ultrasonic diagnostic apparatus and method | |
JP5371386B2 (en) | Ultrasonic diagnostic apparatus having transducers facing each other | |
JP5926193B2 (en) | Ultrasonic diagnostic equipment | |
JP5456047B2 (en) | Ultrasonic diagnostic equipment | |
CN103492855B (en) | Use the ultrasonic vibration measuring of non-focused ultrasound | |
JP5646290B2 (en) | Ultrasonic diagnostic apparatus and method for operating the same | |
RU2576244C2 (en) | Force excitation of ultrasonic acoustic radiation for ultrasonic measurement of properties of material and imaging | |
WO2012105152A1 (en) | Ultrasound diagnostic apparatus and method | |
US9052268B2 (en) | Ultrasound diagnostic apparatus and method of producing ultrasound image | |
KR101646623B1 (en) | Estimation method and system for shear wave speed and lesion diagnosis method and system in the tissue using the same | |
KR20080093281A (en) | Ultrasound Diagnostic Probe | |
KR101014564B1 (en) | Ultrasound System and Method for Forming Elastic Image | |
JP2009056140A (en) | Ultrasonic diagnostic system | |
JP2012239546A (en) | Ultrasound diagnostic apparatus | |
KR101027599B1 (en) | Ultrasound diagnostic system and method for providing high frame rate elastic ultrasound images | |
US20150289837A1 (en) | Ultrasonic apparatus and control method for the same | |
US10980517B2 (en) | Ultrasonic diagnostic apparatus for estimating position of probe and method for controlling the same | |
KR101117545B1 (en) | Ultrasound Diagnostic System and Method For Forming Elasticity Image Using Overlapped Plane Wave | |
US10080550B2 (en) | Ultrasonic apparatus and control method for the same | |
Caron-Grenier et al. | Ergodic encoding for single-element ultrasound imaging in vivo | |
KR101117547B1 (en) | Ultrasound Diagnostic System and Method For Forming Elasticity Image Using Plane Wave | |
JP2013244160A (en) | Ultrasonic diagnostic equipment and method for estimating sound velocity | |
Breyer | Basic physics of ultrasound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20100716 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20110831 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20120201 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20120210 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20120213 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20150309 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20150309 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160122 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20160122 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170206 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20170206 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180207 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20180207 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190131 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20190131 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20200210 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20200210 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20210223 Start annual number: 10 End annual number: 10 |