[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101116755B1 - SiC/C/SiO2 composite powders fabricated by sol-gel process, and fabrication method of reaction bonded silicon carbide with high purity and high strength using them - Google Patents

SiC/C/SiO2 composite powders fabricated by sol-gel process, and fabrication method of reaction bonded silicon carbide with high purity and high strength using them Download PDF

Info

Publication number
KR101116755B1
KR101116755B1 KR1020090047381A KR20090047381A KR101116755B1 KR 101116755 B1 KR101116755 B1 KR 101116755B1 KR 1020090047381 A KR1020090047381 A KR 1020090047381A KR 20090047381 A KR20090047381 A KR 20090047381A KR 101116755 B1 KR101116755 B1 KR 101116755B1
Authority
KR
South Korea
Prior art keywords
silicon carbide
carbon
silica
powder
silicon
Prior art date
Application number
KR1020090047381A
Other languages
Korean (ko)
Other versions
KR20100128777A (en
Inventor
박상환
정훈
조경선
김규미
조영철
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020090047381A priority Critical patent/KR101116755B1/en
Publication of KR20100128777A publication Critical patent/KR20100128777A/en
Application granted granted Critical
Publication of KR101116755B1 publication Critical patent/KR101116755B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

본 발명은 졸-젤 공정으로 제조된 탄화규소/카본/실리카 복합분말과, 이 복합분말을 사용한 고순도 및 고강도의 반응소결 탄화규소의 제조방법에 관한 것이다.The present invention relates to a silicon carbide / carbon / silica composite powder produced by a sol-gel process, and to a method for producing high purity and high strength reaction-sintered silicon carbide using the composite powder.

본 발명이 제조하는 반응소결 탄화규소는 고순도 및 고강도 특성을 동시에 갖고 있으므로 차세대 반도체 고온 공정용 반응소결 탄화규소(RBSC) 치구류, 고온 진공장치용 부품 및 반도체 공정용 히터 소재 등으로 다양하게 적용된다.Since the reaction sintered silicon carbide prepared by the present invention has high purity and high strength at the same time, it is variously applied to reaction sintered silicon carbide (RBSC) fixtures for next-generation semiconductor high temperature processes, components for high temperature vacuum devices, and heater materials for semiconductor processes. .

복합분말, 반응소결, 탄화규소, 고순도, 고강도 Composite powder, reaction sintering, silicon carbide, high purity, high strength

Description

졸-젤 공정으로 제조된 탄화규소/카본/실리카 복합분말과, 이 복합분말을 사용한 고순도 및 고강도의 반응소결 탄화규소의 제조방법 {SiC/C/SiO2 composite powders fabricated by sol-gel process, and fabrication method of reaction bonded silicon carbide with high purity and high strength using them}Silicon carbide / carbon / silica composite powder prepared by sol-gel process and method for producing high purity and high strength reaction sintered silicon carbide using this composite powder {SiC / C / SiO2 composite powders fabricated by sol-gel process, and fabrication method of reaction bonded silicon carbide with high purity and high strength using them}

본 발명은 저온에서 졸-젤 공정으로 제조된 탄화규소/카본/실리카 복합분말과, 이 복합분말을 사용한 고순도 및 고강도의 반응소결 탄화규소의 제조방법에 관한 것이다.The present invention relates to a silicon carbide / carbon / silica composite powder prepared by a sol-gel process at low temperature, and a method for producing high purity and high strength reaction-sintered silicon carbide using the composite powder.

반응소결 탄화규소(Reaction Bonded Silicon Carbide)는 내열, 내부식 및 기계적 특성이 우수할 뿐만 아니라 소결 후 성형체의 원래의 치수와 형상을 유지할 수 있기 때문에 최소한의 가공만으로 원하는 형태의 탄화규소 제품을 제조할 수 있고, 비교적 낮은 온도에소 소결이 가능하기 때문에 특히 대형 제품은 상업적 가치가 높은 것으로 평가되고 있다. 고순도 특성을 갖는 반응소결 탄화규소는 반도체 고온 공정에 사용되는 반응관, 서셉터(susceptor) 및 히터(heater)용 소재로 개 발되어 사용되고 있다.Reaction Bonded Silicon Carbide not only has excellent heat, corrosion and mechanical properties, but also maintains the original dimensions and shape of the molded body after sintering, making it possible to produce silicon carbide products of the desired shape with minimal processing. In particular, large products are considered to be of high commercial value because they can be sintered at relatively low temperatures. Reaction sintered silicon carbide having high purity characteristics has been developed and used as a material for reaction tubes, susceptors and heaters used in semiconductor high temperature processes.

반응소결 탄화규소는 우수한 고온 강도와 내열충격성 및 규소 웨이퍼와 유사한 열팽창계수를 갖고 있기 때문에, 300 ㎜ 규소 웨이퍼를 사용하는 반도체 고온 공정에서 치구 소재로 쿼츠(Quartz)를 대체하여 폭넓게 사용되고 있다. 규소 웨이퍼의 대구경화(450 ㎜) 및 초미세 선폭화(30 ㎚)가 이루어질 차세대 반도체 제조공정에서는 반도체 고온 공정용 반응소결 탄화규소 치구를 개발하기 위해서는 반응소결 탄화규소의 고강도화 및 고순도화가 요구된다.Since reaction sintered silicon carbide has excellent high temperature strength, thermal shock resistance, and thermal expansion coefficient similar to that of a silicon wafer, it is widely used to replace quartz as a jig material in a semiconductor high temperature process using a 300 mm silicon wafer. In the next-generation semiconductor manufacturing process that will achieve large diameter (450 mm) and ultra fine line width (30 nm) of silicon wafers, high-strength and high purity of reaction-sintered silicon carbide is required to develop reaction-sintered silicon carbide fixtures for semiconductor high temperature processes.

일반적인 반도체 고온 공정용 고순도 반응소결 탄화규소 제조공정 기술에서는, 고순도의 탄화규소 분말과 탄소원을 원료로 사용하고 세라믹 제조공정에서 사용되는 분말 혼합공정 및 성형공정을 수행하여 탄화규소 및 카본으로 이루어진 성형체를 제조하였고, 불순물을 제거하기 위하여 제조된 성형체를 고온에서 고순도화 처리한 후 규소(Si)의 융점이상의 온도에서 성형체에 용융 규소(Si)를 침윤시켜 반응소결 탄화규소를 제조하였다.In general, high-purity reaction-sintered silicon carbide manufacturing process technology for semiconductor high temperature process uses a high purity silicon carbide powder and a carbon source as raw materials, and performs a powder mixing process and a molding process used in a ceramic manufacturing process to form a molded body made of silicon carbide and carbon. In order to remove impurities, reacted silicon carbide was prepared by subjecting the formed article to high purity at high temperature and infiltrating molten silicon (Si) at a temperature above the melting point of silicon (Si).

미국등록특허 제6,627,169호에는 평균 입자크기가 1 ~ 50 μm인 고순도 탄화규소를 사용하여 불순물 함량이 0.01 ppm 이하인 반도체 고온 공정용 고순도 반응소결 탄화규소를 제조하는 방법이 개시되어 있다.US Patent No. 6,627,169 discloses a method for producing high purity reaction sintered silicon carbide for semiconductor high temperature processes having an impurity content of 0.01 ppm or less using high purity silicon carbide having an average particle size of 1 to 50 μm.

일본공개특허 제2000-119079호 및 미국등록특허 제6,699,401호에는 Fe가 0.05 ppm 이하이고 Ni, Cu, Ca, Cr, K의 합계가 0.05 ppm 이하인 고순도 탄화규소 분말과 성형용 바인더의 혼련공정, 상기 혼련된 원료로부터 성형체를 만드는 성형공정, 상기 성형체를 가소하는 공정, 상기에서 사용된 가소제를 순화시키는 고순도 화 공정, 및 상기 고순도화 처리된 성형체에 유도가열 방식으로 용융 규소(Si)를 고온에서 침윤시키는 공정을 수행하여 고순도 반응소결 탄화규소를 제조하는 방법이 개시되어 있다.Japanese Patent Application Laid-Open No. 2000-119079 and U.S. Patent No. 6,699,401 disclose a kneading process of a high purity silicon carbide powder and a molding binder in which Fe is 0.05 ppm or less and Ni, Cu, Ca, Cr, and K are 0.05 ppm or less. Molding process for forming a molded body from kneaded raw material, process for calcining the molded body, high purity process for purifying the plasticizer used in the above, and infiltration of molten silicon (Si) at high temperature to the high-purified molded body at induction heating method A method of producing a high purity reaction sintered silicon carbide is disclosed.

미국등록특허 제6,632,761호에는 크기가 조절된 고순도 탄화규소 분말을 용매에 잘 분산시킨 후 유기 바인더와 질소화합물을 혼합하여 탄화규소 혼합 분말 슬러리(slurry)를 제조하여 몰드에 부은 후 건조시켜 성형체를 제조하고, 제조된 성형체를 진공 또는 불활성 가스(inert gas) 분위하에서 규소(Si)의 융점 이상의 온도에서 용융 규소를 침윤시켜 반응소결 탄화규소를 제조하는 방법이 개시되어 있다.In US Patent No. 6,632,761, a highly purified silicon carbide powder having a controlled size is dispersed in a solvent and then mixed with an organic binder and a nitrogen compound to prepare a silicon carbide mixed powder slurry, which is poured into a mold and dried to prepare a molded product. In addition, a method for producing reaction-sintered silicon carbide is disclosed by infiltration of molten silicon at a temperature equal to or higher than the melting point of silicon (Si) under vacuum or an inert gas atmosphere.

이상에서 살펴본 바와 같이, 기존의 반응소결 탄화규소 제조공정은 탄화규소 분말에 용융 규소(Si)를 침윤시키기 위해 별도의 탄소원을 사용하고 있고, 탄소원과 탄화규소 분말이 균질하게 혼합하여 반응소결 탄화규소가 균일한 미세구조를 갖도록 하는 혼합공정이 반드시 필요하였다. 하지만, 현재까지 알려진 방법은 탄화규소 분말과 탄소원의 균일한 혼합이 어려워 균일한 미세구조를 갖는 고강도 반응소결 탄화규소의 제조가 어려웠다. 또한, 고온에서 제조되는 고순도 탄화규소를 이용하여 제조되는 고순도 반응소결 탄화규소의 제조 단가가 높을 뿐만 아니라 99.999% 이상의 순도를 갖는 고순도 탄화규소 분말의 구입이 불가능한 실정이다. As described above, the conventional reaction sintered silicon carbide manufacturing process uses a separate carbon source to infiltrate molten silicon (Si) in the silicon carbide powder, and the reaction source sintered silicon carbide by homogeneously mixing the carbon source and silicon carbide powder A mixing process was necessary to have a uniform microstructure. However, the method known to date is difficult to uniformly mix the silicon carbide powder and the carbon source, it was difficult to produce high-strength reaction-sintered silicon carbide having a uniform microstructure. In addition, the production cost of high-purity reaction-sintered silicon carbide manufactured using high-purity silicon carbide produced at high temperature is not only high, but it is also impossible to purchase high-purity silicon carbide powder having a purity of 99.999% or more.

이에, 기존의 고순도 반응소결 탄화규소 제조공정을 대체할 수 있는 고순도 및 고강도 특성을 갖는 반응소결 탄화규소의 새로운 저가의 제조공정이 절실히 필 요하다.Therefore, there is an urgent need for a new low-cost manufacturing process of reaction-sintered silicon carbide having high purity and high strength properties that can replace the existing high-purity reaction-sintered silicon carbide manufacturing process.

본 발명은 반응소결 탄화규소 제조에 사용되는 탄화규소로 이루어진 복합분말 내에 미반응 상태로 잔류하는 카본 및 실리카의 함량이 조절된 탄화규소/카본/실리카 복합분말을 이용한 반응소결 탄화규소의 제조방법을 제공하는 것을 발명이 해결하고자 하는 과제로 한다.The present invention provides a method for producing reaction-sintered silicon carbide using a silicon carbide / carbon / silica composite powder in which the content of carbon and silica remaining unreacted in a composite powder composed of silicon carbide used for the production of reaction-sintered silicon carbide It is an object of the present invention to provide.

본 발명은 탄화규소 분말 또는 탄화규소/카본 복합분말을 형성시키는 온도(대략 1700℃ 이상) 보다 낮은 온도(1600℃ 이하)에서 제조된 탄화규소/카본/실리카 복합분말을 이용함으로써 원료의 제조단가를 낮추는 효과를 얻고 있는, 반응소결 탄화규소의 제조방법을 제공하는 것을 발명이 해결하고자 하는 과제로 한다.The present invention utilizes a silicon carbide / carbon / silica composite powder prepared at a temperature lower than about 1700 ° C. to form a silicon carbide powder or a silicon carbide / carbon composite powder. It is a problem to be solved by the present invention to provide a process for producing reaction-sintered silicon carbide which has a lowering effect.

본 발명은 고순도 반응소결 탄화규소 소결체 제조에서 요구되는 탄화규소 분말과 탄소원의 혼합공정 및 고순도화 처리공정을 생략하므로 공정 단순화에 의한 제품 단가를 낮출 수 있는 경제성이 높은 반응소결 탄화규소의 제조방법을 제공하는 것을 발명이 해결하고자 하는 과제로 한다.The present invention eliminates the step of mixing the silicon carbide powder and carbon source and the high purity treatment process required in the production of high purity reaction sintered silicon carbide sintering process to produce a highly economical reaction sintered silicon carbide that can reduce the cost of the product by simplifying the process It is an object of the present invention to provide.

본 발명은 상기한 고순도 탄화규소/카본/실리카 복합분말을 이용함으로써, 고순도 및 고강도 특성을 갖는 반응소결 탄화규소를 낮은 가격에 제공하는 것을 발명이 해결하고자 하는 과제로 한다.The present invention is to provide a reaction-sintered silicon carbide having high purity and high strength characteristics at a low price by using the above-described high-purity silicon carbide / carbon / silica composite powder to solve the problem.

본 발명은 베타상 탄화규소(β-SiC/C) 분말과, 탄소원이 열분해되어 생성된 카본 분말과, 그리고 액상의 규소원이 탄소원과 반응하고 미반응 상태로 남아 있는 실리카 분말이 균질하게 분산되어 있는 탄화규소/카본/실리카 복합분말을 제공함으로써, 본 발명의 과제를 해결한다.The present invention provides homogeneous dispersion of beta-phase silicon carbide (β-SiC / C) powder, carbon powder produced by thermal decomposition of carbon source, and silica powder in which liquid silicon source reacts with carbon source and remains unreacted. By providing a silicon carbide / carbon / silica composite powder, the problem of the present invention is solved.

또한, 본 발명은 규소원소 1 몰에 대한 카본원소의 몰비(C/Si)가 1.8~ 3.0 범위가 되도록, 규소원과 탄소원을 알콜 용매를 사용하여 혼합하는 과정; 상기 혼합물에 가수분해 촉매를 상기 규소원 1 몰을 기준으로 0.05 ~ 0.14 몰비로 첨가하고 젤화 및 경화하여 경화된 젤 분말을 제조하는 과정; 상기 경화된 젤 분말을 질소(N2) 분위기에서 900 ~ 1200℃ 온도 범위로 0.5 ~ 6시간 동안 열처리하여 실리카(silica, SiO2)와 카본으로 이루어진 탄화규소 전구체(precursor) 분말을 제조하는 과정; 상기 제조된 탄화규소 전구체 분말을 불활성 또는 진공분위기하에서 2 ~ 5 ℃/분의 속도로 승온하고, 1300 ~ 1600℃ 온도에서 열처리하여 베타상의 탄화규소/카본/실리카(β-SiC/C/SiO2) 복합분말을 제조하는 과정; 을 포함하여 이루어진 탄화규소/카본/실리카 복합분말의 제조방법을 제공함으로써, 본 발명의 과제를 해결한다.The present invention also provides a process for mixing a silicon source and a carbon source using an alcohol solvent so that the molar ratio (C / Si) of the carbon element to 1 mol of the silicon element is in the range of 1.8 to 3.0; Adding a hydrolysis catalyst to the mixture at a molar ratio of 0.05 to 0.14 based on 1 mole of the silicon source, gelling and curing to prepare a cured gel powder; Heat-treating the cured gel powder in a nitrogen (N 2 ) atmosphere at a temperature ranging from 900 to 1200 ° C. for 0.5 to 6 hours to produce a silicon carbide precursor (precursor) powder consisting of silica (SiO 2 ) and carbon; The prepared silicon carbide precursor powder was heated at a rate of 2 to 5 ° C./min in an inert or vacuum atmosphere, and heat-treated at a temperature of 1300 to 1600 ° C. to form beta-like silicon carbide / carbon / silica (β-SiC / C / SiO 2). A process for preparing a composite powder; By providing a method for producing a silicon carbide / carbon / silica composite powder comprising a, to solve the problem of the present invention.

또한, 본 발명은 상기한 탄화규소/카본/실리카 복합분말 100 중량부와 바인더 2 ~ 5 중량부를 혼합한 후 가압하여, 판상의 탄화규소/카본/실리카 성형체를 제조하는 과정; 및 상기 탄화규소/카본/실리카 성형체에 1450 ~ 1600℃ 온도 및 10-2 ~ 10-1 torr 압력 조건에서 용융 규소를 침윤시켜 반응소결 탄화규소를 제조하는 과정; 을 포함하여 이루어지는 고순도 및 고강도의 반응소결 탄화규소의 제조방법을 제공함으로써, 본 발명의 과제를 해결한다.In addition, the present invention is a process for producing a plate-like silicon carbide / carbon / silica molded body by pressing after mixing 100 parts by weight of the silicon carbide / carbon / silica composite powder and 2 to 5 parts by weight of the binder; And producing reaction-sintered silicon carbide by infiltration of molten silicon into the silicon carbide / carbon / silica molded body at a temperature of 1450 to 1600 ° C. and a pressure of 10 −2 to 10 −1 torr; By providing a method for producing a high purity and high strength reaction sintered silicon carbide comprising a, the problem of the present invention is solved.

또한, 본 발명은 상대밀도가 2.8 ~ 3.01 g/cm3 범위이고, 최대 파괴강도가 530 MPa이며, 유도결합 프라즈마 분광분석(ICP) 방법으로 측정된 순도는 99.999% 이상인 고순도 및 고강도의 반응소결 탄화규소를 제공함으로써, 본 발명의 과제를 해결한다.In addition, the present invention has a relative density ranging from 2.8 to 3.01 g / cm 3 , the maximum breaking strength is 530 MPa, and the purity measured by inductively coupled plasma spectroscopy (ICP) method is 99.999% or higher, high purity and high strength reaction sintering carbonization. By providing silicon, the subject of this invention is solved.

본 발명은 반응소결 탄화규소 제조용 원료로서 저온에서 합성된 균질한 분포를 갖는 고순도 탄화규소/카본/실리카 복합분말을 사용함으로써, 고순도 및 고강도 반응소결 탄화규소 제품의 제조단가를 낮추는 효과가 있다.The present invention has the effect of lowering the production cost of high purity and high strength reaction sintered silicon carbide products by using a high purity silicon carbide / carbon / silica composite powder having a homogeneous distribution synthesized at low temperature as a raw material for producing reaction sintered silicon carbide.

본 발명은 C/Si 원소 몰비로 정의된 탄소원과 규소원의 사용량 조절, 탄화규소 복합분말 내에 잔류하는 카본과 실리카의 함량 조절에 의해 저가의 고순도 및 고강도를 갖는 반응소결 탄화규소의 제공이 가능한 효과를 갖고 있다.According to the present invention, it is possible to provide reaction-sintered silicon carbide having low purity, high purity and high strength by controlling the amount of carbon source and silicon source defined by the C / Si element molar ratio, and controlling the content of carbon and silica remaining in the silicon carbide composite powder. Have

본 발명에 따른 탄화규소/카본/실리카 복합분말의 제조방법을 구체적으로 설명하면 다음과 같다. Hereinafter, the method for preparing the silicon carbide / carbon / silica composite powder according to the present invention will be described in detail.

본 발명에서 탄화규소/카본/실리카 복합분말을 합성하기 위하여 사용된 출발 원료는 반도체 고온 공정에서 불순물로 유입될 수 있는 금속 원소의 함량이 0.05 ppm 이하이거나 포함되어 있지 않은 고순도 물질을 원료로 사용한다. 규소원으로 실리콘 알콕사이드(예를 들면, 메톡시실란, 트리에톡시실란, 디메톡시디에톡시실란, 테트라메틸 오르쏘실리케이트, 테트라에틸 오르쏘실리케이트), 알킬실란(예를 들면, 에틸실란, 테트라에틸실란) 등의 고순도 액상의 규소 화합물을 사용한다. 탄소원으로는 고순도 페놀 수지를 사용한다. 가수분해 촉매로는 p-톨루엔술폰산(p-TSA), 질산, 올레익산, 말레익산, 아크릴산, 염산 등의 산을 사용한다. 규소원과 탄소원은 용매를 사용하여 혼합하는데, 이때 용매로는 지방족 알콜(예를 들면, 메탄올, 에탄올, 이소프로판올)을 사용한다.In the present invention, the starting material used for synthesizing the silicon carbide / carbon / silica composite powder uses a high-purity material that contains or does not contain 0.05 ppm or less of a metallic element which can be introduced into impurities in a semiconductor high temperature process. . Silicon alkoxides (e.g. methoxysilane, triethoxysilane, dimethoxydiethoxysilane, tetramethyl orthosilicate, tetraethyl orthosilicate) as the silicon source, alkylsilanes (e.g. ethylsilane, tetra High purity liquid silicon compounds such as ethylsilane) are used. A high purity phenolic resin is used as a carbon source. Acids such as p-toluenesulfonic acid (p-TSA), nitric acid, oleic acid, maleic acid, acrylic acid and hydrochloric acid are used as the hydrolysis catalyst. The silicon source and the carbon source are mixed using a solvent, in which an aliphatic alcohol (for example, methanol, ethanol, isopropanol) is used.

먼저, 규소원과 탄소원은 알콜 용매를 사용하여 혼합하며, 이때 규소원소 1 몰에 대한 카본원소의 몰비(C/Si)가 1.8 ~ 3.0 범위가 되도록 조절한다. 상기 혼합물에 가수분해 촉매를 첨가하며, 가수분해 촉매는 상기 규소원 1 몰을 기준으로 0.05 ~ 0.14 몰비 범위로 첨가한다. 그런 다음, 균일하게 혼합될 수 있도록 40 ~ 60℃의 온도에서 2 ~ 24시간동안 교반하면서 젤(gel)화시켜 규소원과 탄소원을 가교화시킨 후 분말화 한 후, 50 ~ 200℃의 항온 건조기에서 8 ~ 24시간 동안 완전히 경화시켜 경화된 젤 분말을 만든다. 경화된 젤 분말을 고순도 쿼츠 반응관내에서 질소(N2) 분위기하에서 900 ~ 1200℃ 온도 범위로 0.5 ~ 6시간 동안 열처리하여 실리카(silica, SiO2)와 카본으로 이루어진 탄화규소 전구 체(precursor) 분말을 제조한다. 제조된 탄화규소 전구체 분말을 고순도 그라파이트 밀폐 용기에 담아 진공을 유지하면서 상온(20℃)으로부터 승온속도 2 ~ 5 ℃/분의 속도로 승온한 후, 1300 ~ 1600℃의 온도범위에서 아르곤(Ar) 등과 같은 불활성 분위기 또는 진공 하에서 0.5 ~ 3시간 동안 열처리하여 베타상의 탄화규소/카본/실리카(β-SiC/C/SiO2) 복합분말을 제조한다.First, the silicon source and the carbon source are mixed using an alcohol solvent, and at this time, the molar ratio (C / Si) of the carbon element to 1 mol of the silicon element is adjusted to be in the range of 1.8 to 3.0. A hydrolysis catalyst is added to the mixture, and the hydrolysis catalyst is added in a range of 0.05 to 0.14 molar ratio based on 1 mole of the silicon source. Then, the mixture is gelled while stirring for 2 to 24 hours at a temperature of 40 to 60 ° C. so as to be uniformly mixed to crosslink the silicon source and the carbon source, and then powdered, followed by a constant temperature dryer at 50 to 200 ° C. The cured gel powder is then cured completely for 8 to 24 hours. The cured gel powder was heat treated in a high purity quartz reaction tube under a nitrogen (N 2 ) atmosphere at a temperature ranging from 900 to 1200 ° C. for 0.5 to 6 hours to form a silicon carbide precursor powder composed of silica (SiO 2 ) and carbon. To prepare. The silicon carbide precursor powder was placed in a high purity graphite hermetically sealed container and heated at a rate of temperature increase from 2 ° C. to 5 ° C./min from room temperature (20 ° C.) while maintaining a vacuum, and then argon (Ar) in a temperature range of 1300 ° C. to 1600 ° C. A beta-phase silicon carbide / carbon / silica (β-SiC / C / SiO 2 ) composite powder is prepared by heat treatment under an inert atmosphere or vacuum for 0.5 to 3 hours.

본 발명의 제조방법으로 제조된 탄화규소/카본/실리카 복합분말은 베타상 탄화규소(β-SiC/C) 분말과, 탄소원이 열분해되어 생성된 카본(C) 분말과, 그리고 액상의 규소원이 탄소원과 낮은 온도에서 반응하여 미반응 상태로 남아 있는 실리카(SiO2) 분말이 고르게 분산되어 있다. 베타상의 탄화규소(β-SiC) 분말은 그 평균입자 크기가 5.0 μm 이하, 구체적으로는 0.1 ~ 5.0 μm이고, 카본(C) 분말은 그 평균입자 크기가 1.0 μm 이하, 구체적으로는 0.01 ~ 1.0 μm이며, 그리고 실리카(SiO2) 분말은 평균입자 크기가 1.0 μm 이하, 구체적으로는 0.01 ~ 1.0 μm이다.The silicon carbide / carbon / silica composite powder prepared by the production method of the present invention is a beta-phase silicon carbide (β-SiC / C) powder, carbon (C) powder produced by thermal decomposition of a carbon source, and a liquid silicon source. Silica (SiO 2 ) powder, which remains unreacted by reacting with a carbon source at low temperature, is evenly dispersed. Beta-phase silicon carbide (β-SiC) powder has an average particle size of 5.0 μm or less, specifically 0.1 to 5.0 μm, and carbon (C) powder has an average particle size of 1.0 μm or less, specifically 0.01 to 1.0 μm, and the silica (SiO 2 ) powder has an average particle size of 1.0 μm or less, specifically 0.01 to 1.0 μm.

또한, 본 발명의 제조방법으로 제조된 탄화규소/카본/실리카 복합분말은 복합분말내 잔류 카본 함량이 15 ~ 36 중량% 이고, 실리카 함량이 9 ~ 27 중량% 범위로 조절되어 있다. 복합분말내 잔류 카본 함량은 탄화규소/카본/실리카 복합분말을 700℃에서 3시간 산화시킨 후 무게 감소량으로부터 측정하였다. 그리고, 복합분말내 실리카 함량은 산화시킨 분말을 불활성분위기 하에서 1800℃에서 3시간 가열하여 실리카를 결정화시킨 후 XRD 정량분석방법으로 측정하였다. In addition, the silicon carbide / carbon / silica composite powder prepared by the production method of the present invention is 15 to 36% by weight of the residual carbon content in the composite powder, the silica content is adjusted to the range of 9 to 27% by weight. The residual carbon content in the composite powder was measured from the weight loss after oxidizing the silicon carbide / carbon / silica composite powder at 700 ° C. for 3 hours. The silica content in the composite powder was measured by XRD quantitative analysis after crystallizing the silica by heating the oxidized powder at 1800 ° C. under an inert atmosphere for 3 hours.

본 발명은 탄화규소/카본/실리카 복합분말을 이용하여 제조되는 반응소결 탄화규소의 제조방법을 특징으로 하는 바, 반응소결 탄화규소의 제조방법을 구체적으로 설명하면 다음과 같다.The present invention is characterized by a method for producing reaction-sintered silicon carbide produced using a silicon carbide / carbon / silica composite powder. The method for producing reaction-sintered silicon carbide will be described in detail as follows.

상기에서 제조된 탄화규소/카본/실리카 복합분말 100 중량부에 바인더로서 페놀 수지 2 ~ 5 중량부를 혼합한 후 10 ~ 30 MPa 압력으로 일축 가압한 후에, 80 ~ 150 MPa 압력으로 정수압 가압(cold isostatic pressing)하여, 판상의 탄화규소/카본/실리카 성형체를 제조한다.After mixing 2 to 5 parts by weight of a phenol resin as a binder to 100 parts by weight of the silicon carbide / carbon / silica composite powder prepared above, uniaxially pressurizing at 10 to 30 MPa pressure, and hydrostatic pressure to 80 to 150 MPa pressure (cold isostatic pressing) to prepare a plate-shaped silicon carbide / carbon / silica molded body.

그리고, 제조된 탄화규소/카본/실리카 성형체를 고순도 그라파이트 밀폐 용기에 위치시킨 후 1450 ~ 1600℃ 온도 및 10-1 torr 이하의 압력, 바람직하기로는 10-2 ~ 10-1 torr의 진공 상태를 유지하면서 용융 규소를 탄화규소/카본 성형체에 침윤시켜 반응소결 탄화규소를 제조한다. 상기 용융 규소는 반도체급 초고순도 금속 규소의 용융물이다. 용융 규소 침윤공정에 사용되는 규소(Si)의 총 사용량은, 탄화규소/카본/실리카 성형체 내에 포함된 탄소원을 기준으로 110 ~ 130 몰%와 성형체의 기공 부피를 채울 수 있는 규소양의 110 ~ 130 중량%의 합량을 사용한다. The silicon carbide / carbon / silica molded article thus prepared is placed in a high purity graphite hermetically sealed container, and then maintained at a temperature of 1450 to 1600 ° C. and a pressure of 10 −1 torr or less, preferably 10 −2 to 10 −1 torr. While the molten silicon is infiltrated into the silicon carbide / carbon molded body to produce the reaction-sintered silicon carbide. The molten silicon is a melt of semiconductor grade ultra high purity metal silicon. The total amount of silicon (Si) used in the molten silicon infiltration process is 110 to 130 mol% based on the carbon source contained in the silicon carbide / carbon / silica molding and 110 to 130 of the amount of silicon that can fill the pore volume of the molding. A sum of weight percent is used.

이로써, 외부로부터 공급된 용융 규소가 탄화규소/카본/실리카 성형체에 침윤되면서 성형체 내부에 균질하게 분산된 카본 분말과 반응하여 탄화규소가 합성되며, 탄화규소 합성시 발생되는 열에 의해 성형체내에 균질하게 분산된 실리카 분말과 카본이 낮은 온도에서도 반응하여 탄화규소를 형성하게 되며, 여분의 용융 규소 는 성형체 내부 빈공간 내부로 활성 침윤되어, 기공이 없는 치밀한 미세구조를 갖으면서 규소와 탄화규소만으로 이루어진 반응소결 탄화규소 소결체를 제조하게 된다. As a result, the molten silicon supplied from the outside is infiltrated into the silicon carbide / carbon / silica molded body and reacts with the carbon powder homogeneously dispersed in the molded body, thereby synthesizing the silicon carbide and homogeneously in the molded body by the heat generated during the synthesis of silicon carbide. The dispersed silica powder and carbon react at low temperatures to form silicon carbide, and the extra molten silicon is actively infiltrated into the voids inside the molded body, and the reaction is made of silicon and silicon carbide with a dense microstructure without pores. Sintered silicon carbide sintered body is produced.

상기한 바와 같은 방법으로 제조된 반응소결 탄화규소 소결체의 상대밀도는 2.8 ~ 3.01 g/cm3 범위이며, 최대 파괴강도는 530 MPa 이다. 반응소결 탄화규소의 순도는 유도결합 프라즈마 분광분석(ICP) 방법으로 측정하였으며, 순도는 99.999% 이상이었다. The relative density of the reaction-sintered silicon carbide sintered body manufactured by the method described above is in the range of 2.8 to 3.01 g / cm 3 , and the maximum breaking strength is 530 MPa. The purity of the reaction-sintered silicon carbide was measured by inductively coupled plasma spectroscopy (ICP) method, and the purity was more than 99.999%.

이상에서 설명한 바와 같은 본 발명은 다음의 실시예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 이들 실시예에 의해 한정되는 것은 아니다.The present invention as described above will be described in more detail based on the following examples, but the present invention is not limited to these examples.

[실시예][Example]

실시예 1Example 1

1) 탄화규소/카본/실리카 복합분말의 제조1) Preparation of Silicon Carbide / Carbon / Silica Composite Powder

규소원으로 액상의 테트라에틸 오르쏘실리케이트(TEOS)를 사용하고, 탄소원으로 고상의 페놀 수지를 사용하고, 가수분해 촉매로 말레익 산을 사용하였다. 액상의 규소원과 고상의 탄소원은 에탄올을 사용하여 C/Si의 원소 몰비가 2.3, 2.5, 2.7, 3.0 및 4.2 되도록 각각 혼합한 후에, 가수분해 촉매를 규소원 1 몰을 기준으로 0.1 몰비로 각각 첨가하였다. 액상의 규소원과 탄소원이 균일하게 혼 합될 수 있도록 40℃의 온도에서 12시간동안 교반하면서 젤(gel)화 시켜 규소원과 탄소원을 가교화시킨 후 분말화 한 후, 100℃의 항온 건조기에서 12시간 동안 완전히 경화시켜 경화 젤 분말을 제조하였다. 경화된 젤 분말을 고순도 쿼츠 반응관내에서 질소(N2) 분위기하에서 900℃ 온도 범위로 2시간 동안 열처리하여 실리카(silica, SiO2)와 카본으로 이루어진 탄화규소 전구체(precursor) 분말을 제조하였다. 제조된 탄화규소 전구체 분말을 고순도 그라파이트 밀폐 용기에 담아 상온에서 800℃ 까지는 진공을 유지하면서 5 ℃/min의 속도로 승온시켰고, 1600℃ 온도에서 아르곤(Ar) 분위기 하에서 4시간 동안 열처리하여 베타상의 탄화규소/카본/실리카 복합분말을 제조하였다.Liquid tetraethyl orthosilicate (TEOS) was used as the silicon source, solid phenol resin was used as the carbon source, and maleic acid was used as the hydrolysis catalyst. The liquid silicon source and the solid carbon source were mixed with ethanol so that the elemental molar ratios of C / Si were 2.3, 2.5, 2.7, 3.0 and 4.2, respectively, and the hydrolysis catalyst was added at 0.1 molar ratio based on 1 mole of silicon source. Added. In order to uniformly mix the liquid silicon source and the carbon source, the mixture was gelled while stirring at a temperature of 40 ° C. for 12 hours to crosslink the silicon source and the carbon source, followed by powdering, and then in a constant temperature dryer at 100 ° C. Curing gel powder was prepared by fully curing for hours. The cured gel powder was heat-treated at 900 ° C. for 2 hours under a nitrogen (N 2 ) atmosphere in a high purity quartz reaction tube to prepare a silicon carbide precursor (precursor) powder made of silica (SiO 2 ) and carbon. The prepared silicon carbide precursor powder was placed in a high purity graphite hermetically sealed container and heated at a rate of 5 ° C./min while maintaining a vacuum from room temperature to 800 ° C., and heat-treated at 1600 ° C. under an argon (Ar) atmosphere for 4 hours to be carbonized in beta phase. A silicon / carbon / silica composite powder was prepared.

상기한 방법으로 제조된 베타상의 탄화규소/카본/실리카 복합분말은 베타상의 탄화규소 분말과 카본 분말과 실리카 분말이 고루 분산된 복합분말로 얻었다. 또한, 상기한 방법으로 제조된 베타상의 탄화규소/카본/실리카 복합분말내에 잔류하는 카본 함량과 실리카 함량을 측정하기 위하여, 탄화규소/카본/실리카 복합분말을 700℃에서 3시간 산화시킨 후 무게 감소량으로부터 카본 함량을 측정하였으며, 그리고 산화시킨 분말을 불활성분위기 하에서 1800℃에서 3시간 가열하여 실리카를 결정화시킨 후 XRD 정량분석방법으로 실리카 함량을 측정하였다. 측정된 잔류 카본 함량과 잔류 실리카 함량은 하기 표 1에 각각 나타내었다.The beta phase silicon carbide / carbon / silica composite powder prepared by the above method was obtained as a composite powder in which beta phase silicon carbide powder, carbon powder and silica powder were evenly dispersed. In addition, in order to measure the carbon content and silica content remaining in the beta-phase silicon carbide / carbon / silica composite powder prepared by the above method, the weight loss amount after oxidizing the silicon carbide / carbon / silica composite powder at 700 ℃ for 3 hours The carbon content was measured, and the oxidized powder was heated at 1800 ° C. for 3 hours under an inert atmosphere to crystallize the silica, and the silica content was measured by XRD quantitative analysis. The measured residual carbon content and residual silica content are shown in Table 1, respectively.

2) 반응소결 탄화규소의 제조2) Preparation of Reaction Sintered Silicon Carbide

상기에서 제조된 탄화규소/카본/실리카 복합분말 100 중량부에 바인더로 고순도 페놀 수지 5 중량부를 혼합한 후, 20 MPa 압력으로 일축가압 후에 120 MPa 압력으로 정수압가압(cold isostatic pressing)하는 방법으로 20× 50× 5 mm 크기의 판상의 탄화규소/카본/실리카 성형체를 제조하였다. 그라파이트 진공로를 사용하여 고순도 그라파이트 밀폐 용기에 제조된 탄화규소/카본/실리카 성형체를 위치시킨 후, 반도체급 초고순도 규소 덩어리(ingot)를 사용하여 1550℃의 온도 및 10-1 torr 이하의 진공 상태에서 1시간동안 용융 규소를 탄화규소/카본 성형체에 침윤시켜 반응소결 탄화규소를 제조하였다. 이때, 용융 규소 침윤공정에 사용된 규소(Si)의 사용량은 탄화규소/카본/실리카 성형체내에 포함된 탄소원을 기준으로 110 몰%와 성형체의 기공 부피를 채울 수 있는 규소양의 120 중량%를 합한 양을 사용하였다. After mixing 5 parts by weight of a high-purity phenolic resin with a binder to 100 parts by weight of the silicon carbide / carbon / silica composite powder prepared above, and then uniaxially pressurized to 20 MPa pressure and 20 to 20 MPa hydrostatic pressure (cold isostatic pressing) A plate-shaped silicon carbide / carbon / silica molded body of size 50 × 5 mm was prepared. After using a graphite vacuum furnace to place the silicon carbide / carbon / silica moldings produced in a high purity graphite hermetically sealed container, using a semiconductor grade ultra high purity silicon ingot, the temperature of 1550 ° C. and a vacuum of 10 −1 torr or less Reaction-sintered silicon carbide was prepared by infiltrating molten silicon into a silicon carbide / carbon molded body for 1 hour at. At this time, the amount of silicon (Si) used in the molten silicon infiltration process is 110 mol% based on the carbon source contained in the silicon carbide / carbon / silica molded body and 120% by weight of the amount of silicon that can fill the pore volume of the molded body Combined amounts were used.

상기한 방법으로 제조된 반응소결 탄화규소의 상대밀도 및 3점 굽힘강도를 측정하여 하기 표 1에 나타내었다.The relative density and three-point bending strength of the reaction-sintered silicon carbide prepared by the above method were measured and shown in Table 1 below.


C/Si몰비

C / Si molar ratio
β-SiC/C/SiO2 복합분말β-SiC / C / SiO 2 Composite Powder 반응소결 탄화규소Reaction Sintered Silicon Carbide
잔류 카본 함량Residual carbon content 잔류 실리카 함량Residual silica content 상대밀도Relative density 3점 굽힘강도3-point bending strength 2.32.3 18.04 중량% 18.04 wt% 10.9 중량%10.9 wt% 2.89 g/cm3 2.89 g / cm 3 470 MPa470 MPa 2.52.5 24.98 중량%24.98 wt% 10.8 중량%10.8 wt% 3.0 g/cm3 3.0 g / cm 3 515 MPa515 MPa 2.72.7 29.3 중량%29.3 wt% 10.1 중량%10.1 wt% 3.01 g/cm3 3.01 g / cm 3 530 MPa530 MPa 3.03.0 36 중량%36 wt% 9.8 중량%9.8 wt% 2.82 g/cm3 2.82 g / cm 3 330 MPa330 MPa 4.24.2 46.9 중량%46.9 wt% 9.7 중량%9.7 wt% 2.7 g/cm3 2.7 g / cm 3 260 MPa260 MPa

상기 표 1의 결과에 의하면 탄소원과 규소원의 C/Si 몰비가 증가함에 따라, 잔류 카본 분말의 함량은 증가하는 경향을 나타내고 있고, 잔류 실리카 분말의 함량은 감소하는 경향을 나타내고 있다. C/Si 몰비가 2.3 ~ 4.2일 때, 반응소결 탄화규소 소결체의 상대밀도는 2.7 ~ 3.01 g/cm3 범위, 3점 굽힘강도는 260 ~ 530 MPa 범위로, 상대밀도 및 기계적 강도는 복합분말내의 잔류 카본 및 실리카의 함량과 밀접한 관련이 있음을 알 수 있다. 또한, 본 발명이 제안한 잔류 카본 함량을 초과하여 46.9 중량%로 과다하게 많이 포함된 복합분말을 사용하여 제조된 반응소결 탄화규소에서는 반응소결시 일어나는 탄화규소 합성에 따른 과도한 부피 팽창으로 균열이 발생되었다. 제조된 반응소결 탄화규소의 순도는 ICP 방법으로 측정되었으며 순도 99.999% 이상이었으며, 순도는 잔류 카본 및 잔류 실리카의 함량에 크게 영향을 나타내지 않았다. According to the results of Table 1, as the C / Si molar ratio of the carbon source and the silicon source increases, the content of the residual carbon powder tends to increase, and the content of the residual silica powder tends to decrease. When the C / Si molar ratio is 2.3 to 4.2, the relative density of the reaction-sintered silicon carbide sintered body is in the range of 2.7 to 3.01 g / cm 3 , the three-point bending strength is in the range of 260 to 530 MPa, and the relative density and mechanical strength are in the composite powder. It can be seen that it is closely related to the content of residual carbon and silica. In addition, in the reaction-sintered silicon carbide prepared using a composite powder containing 46.9% by weight in excess of the residual carbon content proposed by the present invention, cracking occurred due to excessive volume expansion due to the synthesis of silicon carbide during reaction sintering. . The purity of the prepared reaction-sintered silicon carbide was measured by ICP method, and the purity was more than 99.999%, and the purity did not significantly affect the content of residual carbon and residual silica.

실시예 2Example 2

1) 탄화규소/카본 복합분말의 제조1) Preparation of Silicon Carbide / Carbon Composite Powder

규소원으로 액상의 테트라에틸 오르쏘실리케이트(TEOS)를 사용하고, 탄소원으로 고상의 페놀 수지를 사용하고, 가수분해 촉매로 질산을 사용하였다. 액상의 규소원과 탄소원은 에탄올을 사용하여 C/Si 몰비가 2.3, 2.7 및 3.0 되도록 각각 혼합한 후에, 가수분해 촉매를 규소원 1 몰을 기준으로 0.08 몰비로 각각 첨가하였다. 액상의 규소원과 탄소원이 균일하게 혼합될 수 있도록 40℃의 온도에서 12시간동안 교반하면서 젤(gel)화 시켜 규소원과 탄소원을 가교화시킨 후 분말화 한 후, 100℃의 항온 건조기에서 20시간 동안 완전히 경화시켜 경화 젤 분말을 제조하였다. 경화된 젤 분말을 고순도 쿼츠 반응관내에서 질소(N2) 분위기하에서 900℃ 온도 범위로 2시간 동안 열처리하여 실리카(silica, SiO2) 및 카본으로 이루어진 탄화규소 전구체(precursor) 분말을 제조하였다. 제조된 탄화규소 전구체 분말을 고순도 그라파이트 밀폐 용기에 담아 상온에서 800℃ 까지는 진공을 유지하면서 5 ℃/min의 속도로 승온시켰고, 1400℃ 온도에서 아르곤(Ar) 분위하기 하에서 6시간 동안 열처리하여 베타상의 탄화규소/카본/실리카 복합분말을 제조하였다.Liquid tetraethyl orthosilicate (TEOS) was used as the silicon source, solid phenol resin was used as the carbon source, and nitric acid was used as the hydrolysis catalyst. The liquid silicon source and the carbon source were mixed with ethanol so that the C / Si molar ratios were 2.3, 2.7 and 3.0, respectively, and then a hydrolysis catalyst was added at 0.08 molar ratios based on 1 mole of the silicon source. In order to uniformly mix the liquid silicon source and the carbon source, the mixture was gelled while stirring at a temperature of 40 ° C. for 12 hours to crosslink the silicon source and the carbon source, followed by powdering, and then, in a constant temperature dryer at 100 ° C. Curing gel powder was prepared by fully curing for hours. The cured gel powder was heat-treated at 900 ° C. for 2 hours under a nitrogen (N 2 ) atmosphere in a high purity quartz reaction tube to prepare a silicon carbide precursor (precursor) powder composed of silica (SiO 2 ) and carbon. The prepared silicon carbide precursor powder was placed in a high-purity graphite sealed container and heated at a rate of 5 ° C./min while maintaining a vacuum from room temperature to 800 ° C., and heat-treated at 1400 ° C. under argon (Ar) for 6 hours to form a beta phase. Silicon carbide / carbon / silica composite powders were prepared.

상기한 방법으로 제조된 베타상의 탄화규소/카본/실리카 복합분말은 베타상의 탄화규소 분말과, 카본 분말과, 그리고 실리카 분말이 고루 분산된 복합분말로 얻어졌다. 또한, 상기한 방법으로 제조된 베타상의 탄화규소/카본/실리카 복합분말내에 잔류하는 카본 함량과 실리카 함량을 측정하기 위하여, 탄화규소/카본/실리카 복합분말을 700℃에서 3시간 산화시킨 후 무게 감소량으로부터 카본 함량을 측정하였으며, 그리고 산화시킨 분말을 불활성분위기 하에서 1800℃에서 3시간 가열하여 실리카를 결정화시킨 후 XRD 정량분석방법으로 실리카 함량을 측정하였다. 측정된 잔류 카본 함량과 잔류 실리카 함량은 하기 표 2에 각각 나타내었다.The beta phase silicon carbide / carbon / silica composite powder prepared by the above method was obtained as a composite powder in which beta phase silicon carbide powder, carbon powder, and silica powder were evenly dispersed. In addition, in order to measure the carbon content and silica content remaining in the beta-phase silicon carbide / carbon / silica composite powder prepared by the above method, the weight loss amount after oxidizing the silicon carbide / carbon / silica composite powder at 700 ℃ for 3 hours The carbon content was measured, and the oxidized powder was heated at 1800 ° C. for 3 hours under an inert atmosphere to crystallize the silica, and the silica content was measured by XRD quantitative analysis. The measured residual carbon content and residual silica content are shown in Table 2 below, respectively.

2) 반응소결 탄화규소의 제조2) Preparation of Reaction Sintered Silicon Carbide

상기에서 제조된 탄화규소/카본/실리카 복합분말 100 중량부에 바인더로서 페놀 수지 3 중량부를 혼합한 후 20 MPa 압력으로 일축가압 후에 120 MPa 압력으로 정수압가압(cold isostatic pressing)하는 방법으로 20× 50× 5 mm 크기의 판상의 탄화규소/카본/실리카 성형체를 제조하였다. 그라파이트 진공로를 사용하여 고순도 그라파이트 밀폐 용기에 제조된 탄화규소/카본/실리카 성형체를 위치시킨 후, 반도체급 초고순도 규소 덩어리(ingot)를 사용하여 1500℃의 온도 및 10-1 torr 이하의 진공 상태에서 1시간동안 용융 규소를 탄화규소/카본 성형체에 침윤시켜 반응소결 탄화규소를 제조하였다. 이때, 용융 규소 침윤공정에 사용된 규소(Si)의 사용량은 탄화규소/카본/실리카 성형체내에 포함된 탄소원을 기준으로 110 몰%와 성형체의 기공 부피를 채울 수 있는 규소양의 130 중량%를 합한 양을 사용하였다. 상기한 방법으로 제조된 반응소결 탄화규소의 상대밀도 및 3점 굽힘강도를 측정하여 하기 표 2에 나타내었다.After mixing 3 parts by weight of the phenol resin as a binder to 100 parts by weight of the silicon carbide / carbon / silica composite powder prepared as described above, 20 × 50 by a method of cold isostatic pressing at 120 MPa pressure after uniaxial pressure at 20 MPa pressure A plate-shaped silicon carbide / carbon / silica molded body of size 5 mm was prepared. After using a graphite vacuum furnace to place the silicon carbide / carbon / silica moldings produced in a high purity graphite hermetically sealed container, using a semiconductor grade ultra high purity silicon ingot and a temperature of 1500 ° C. and a vacuum of 10 −1 torr or less Reaction-sintered silicon carbide was prepared by infiltrating molten silicon into a silicon carbide / carbon molded body for 1 hour at. At this time, the amount of silicon (Si) used in the molten silicon infiltration process is 110 mol% based on the carbon source contained in the silicon carbide / carbon / silica molded body and 130% by weight of the amount of silicon that can fill the pore volume of the molded body Combined amounts were used. The relative density and three-point bending strength of the reaction-sintered silicon carbide prepared by the above method were measured and shown in Table 2 below.


C/Si몰비

C / Si molar ratio
β-SiC/C/SiO2 복합분말β-SiC / C / SiO 2 Composite Powder 반응소결 탄화규소Reaction Sintered Silicon Carbide
잔류 카본 함량Residual carbon content 잔류 실리카 함량Residual silica content 상대밀도Relative density 3점 굽힘강도3-point bending strength 2.32.3 27.6 중량%27.6 wt% 27 중량%27 wt% 2.9 g/cm3 2.9 g / cm 3 430 MPa430 MPa 2.52.5 34.6 중량%34.6 wt% 26.2 중량%26.2 wt% 2.98 g/cm3 2.98 g / cm 3 450 MPa450 MPa 3.03.0 45.1 중량%45.1 wt% 25.8 중량%25.8 wt% 2.82 g/cm3 2.82 g / cm 3 320 MPa320 MPa

상기 표 2의 결과에 의하면 탄소원과 규소원의 C/Si 몰비가 증가함에 따라, 잔류 카본 분말의 함량은 증가하는 경향을 나타내고 있고, 잔류 실리카 분말의 함량은 감소하는 경향을 나타내고 있다. C/Si 몰비가 2.3 ~ 3.0일 때, 반응소결 탄화규소 소결체의 상대밀도는 2.82 ~ 2.98 g/cm3 범위, 3점 굽힘강도는 320 ~ 450 MPa 범위로, 상대밀도 및 기계적 강도는 복합분말내의 잔류 카본 및 실리카의 함량과 밀접한 관련이 있음을 알 수 있다.According to the results of Table 2, as the C / Si molar ratio of the carbon source and the silicon source increases, the content of the residual carbon powder tends to increase, and the content of the residual silica powder tends to decrease. When the C / Si molar ratio is 2.3 to 3.0, the relative density of the reaction-sintered silicon carbide sintered body is in the range of 2.82 to 2.98 g / cm 3 , the three-point bending strength is in the range of 320 to 450 MPa, and the relative density and mechanical strength in the composite powder It can be seen that it is closely related to the content of residual carbon and silica.

본 발명의 제조방법으로 제조된 반응소결 탄화규소는 고강도 및 고순도 특성이 있으므로 차세대 반도체 고온 공정용 반응소결 탄화규소(RBSC) 치구류, 고온 진공장치용 부품 및 반도체 공정용 히터 소재 등으로 적용될 수 있다.Since the reaction sintered silicon carbide produced by the manufacturing method of the present invention has high strength and high purity, it can be applied to reaction sintered silicon carbide (RBSC) fixtures for next-generation semiconductor high temperature processes, components for high temperature vacuum devices, and heater materials for semiconductor processes. .

Claims (7)

베타상 탄화규소(β-SiC/C) 분말; Beta phase silicon carbide (β-SiC / C) powder; 탄소원이 열분해되어 생성된 카본 분말; 및 Carbon powder produced by pyrolysis of a carbon source; And 액상의 규소원이 탄소원과 반응하고 미반응 상태로 남아 있는 실리카 분말; Silica powder in which a liquid silicon source reacts with a carbon source and remains unreacted; 이 균질하게 분산되어 있는 것을 특징으로 하는 탄화규소/카본/실리카 복합분말.A silicon carbide / carbon / silica composite powder, which is homogeneously dispersed. 제 1 항에 있어서, 상기 복합분말내 잔류 카본 함량이 15 ~ 36 중량% 이고 실리카 함량이 9 ~ 27 중량%인 것을 특징으로 하는 탄화규소/카본/실리카 복합분말.The silicon carbide / carbon / silica composite powder according to claim 1, wherein the composite powder has a residual carbon content of 15 to 36% by weight and a silica content of 9 to 27% by weight. 규소원소 1 몰에 대한 카본원소의 몰비(C/Si)가 1.8 ~ 3.0 범위가 되도록, 규소원과 탄소원을 알콜 용매에서 혼합하여 혼합물을 제조하는 과정;Preparing a mixture by mixing the silicon source and the carbon source in an alcohol solvent so that the molar ratio (C / Si) of the carbon element to 1 mol of the silicon element is in the range of 1.8 to 3.0; 상기 혼합물에 가수분해 촉매를 상기 규소원 1 몰을 기준으로 0.05 ~ 0.14 몰비로 첨가하고 젤화 및 경화하여 경화된 젤 분말을 제조하는 과정;Adding a hydrolysis catalyst to the mixture at a molar ratio of 0.05 to 0.14 based on 1 mole of the silicon source, gelling and curing to prepare a cured gel powder; 상기 경화된 젤 분말을 질소(N2) 분위기에서 열처리하여 실리카(silica, SiO2)와 카본으로 이루어진 탄화규소 전구체(precursor) 분말을 제조하는 과정; 및Heat-treating the cured gel powder in a nitrogen (N 2 ) atmosphere to produce a silicon carbide precursor (precursor) powder composed of silica (Silica, SiO 2 ) and carbon; And 상기 탄화규소 전구체(precursor) 분말을 불활성 또는 진공 분위기에서 2 ~ 5 ℃/분의 속도로 승온하고, 1300 ~ 1600℃ 온도에서 열처리하여 베타상의 탄화규소/카본/실리카(β-SiC/C/SiO2) 복합분말을 제조하는 과정;The silicon carbide precursor (precursor) powder is heated at a rate of 2 ~ 5 ℃ / min in an inert or vacuum atmosphere, and heat-treated at a temperature of 1300 ~ 1600 ℃ beta phase silicon carbide / carbon / silica (β-SiC / C / SiO) 2 ) preparing a composite powder; 을 포함하여 이루어지는 것을 특징으로 하는 탄화규소/카본/실리카 복합분말의 제조방법.Method for producing a silicon carbide / carbon / silica composite powder comprising a. 제 3 항에 있어서, 상기 규소원은 실리콘 알콕사이드 및 알킬실란 중에서 선택되는 액상의 규소 화합물인 것을 특징으로 하는 탄화규소/카본/실리카 복합분말의 제조방법.The method of claim 3, wherein the silicon source is a liquid silicon compound selected from silicon alkoxides and alkylsilanes. 제 3 항에 있어서, 상기 탄소원은 페놀 수지인 것을 특징으로 하는 탄화규소/카본/실리카 복합분말의 제조방법.The method of claim 3, wherein the carbon source is a phenol resin. 제 3 항에 있어서, 상기 가수분해 촉매가 p-톨루엔술폰산(p-TSA), 질산, 올레익산, 말레익산, 아크릴산 및 염산 중에서 선택된 1종 또는 2종 이상의 산인 것 을 특징으로 하는 탄화규소/카본/실리카 복합분말의 제조방법.4. The silicon carbide / carbon according to claim 3, wherein the hydrolysis catalyst is one or two or more acids selected from p-toluenesulfonic acid (p-TSA), nitric acid, oleic acid, maleic acid, acrylic acid and hydrochloric acid. / Silica composite powder production method. 상기 청구항 1 또는 2항 중에서 선택된 어느 한 항의 탄화규소/카본/실리카 복합분말 100 중량부와 바인더 2 ~ 5 중량부를 혼합한 후 가압하여, 판상의 탄화규소/카본/실리카 성형체를 제조하는 과정; 및Preparing a plate-like silicon carbide / carbon / silica molded body by mixing 100 parts by weight of the silicon carbide / carbon / silica composite powder of any one of claims 1 or 2 with 2 to 5 parts by weight of the binder and then pressing the mixture; And 상기 탄화규소/카본/실리카 성형체에 1450 ~ 1600℃ 온도 및 10-2 ~ 10-1 torr 압력 조건에서 용융 규소를 침윤시켜 반응소결 탄화규소를 제조하는 과정;Preparing a reaction-sintered silicon carbide by infiltration of molten silicon in the silicon carbide / carbon / silica molded body at a temperature of 1450 to 1600 ° C. and a pressure of 10 −2 to 10 −1 torr; 을 포함하여 이루어지는 것을 특징으로 하는 반응소결 탄화규소의 제조방법.Method for producing a reaction sintered silicon carbide comprising a.
KR1020090047381A 2009-05-29 2009-05-29 SiC/C/SiO2 composite powders fabricated by sol-gel process, and fabrication method of reaction bonded silicon carbide with high purity and high strength using them KR101116755B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090047381A KR101116755B1 (en) 2009-05-29 2009-05-29 SiC/C/SiO2 composite powders fabricated by sol-gel process, and fabrication method of reaction bonded silicon carbide with high purity and high strength using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090047381A KR101116755B1 (en) 2009-05-29 2009-05-29 SiC/C/SiO2 composite powders fabricated by sol-gel process, and fabrication method of reaction bonded silicon carbide with high purity and high strength using them

Publications (2)

Publication Number Publication Date
KR20100128777A KR20100128777A (en) 2010-12-08
KR101116755B1 true KR101116755B1 (en) 2012-02-22

Family

ID=43505620

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090047381A KR101116755B1 (en) 2009-05-29 2009-05-29 SiC/C/SiO2 composite powders fabricated by sol-gel process, and fabrication method of reaction bonded silicon carbide with high purity and high strength using them

Country Status (1)

Country Link
KR (1) KR101116755B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678622B1 (en) 2015-09-21 2016-11-23 한국과학기술연구원 - - A porous composite of silicon dioxide-carbon and a method for preparing granules of -phase silicon carbide powder with a high purity by using it
KR101678624B1 (en) * 2015-09-14 2016-11-23 한국과학기술연구원 A method for preparing silicon carbide powder of ultra-high purity

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101112986B1 (en) * 2011-06-08 2012-02-24 주식회사 데크 Method for manufacturing refractory composite using liquid silicon infiltration
KR101981309B1 (en) * 2018-01-10 2019-05-22 강릉원주대학교산학협력단 Manufacturing method of low-temperature heating element using SiC powder synthesized with metal silicon
CN112062573B (en) * 2020-09-11 2022-09-06 郑州大学 Sheet SiC-SiO2 composite material and preparation method thereof
KR102691250B1 (en) * 2021-09-14 2024-08-05 주식회사 에프에스티 Pellicle Frame for EUV(extreme ultraviolet) Lithography and Manufacturing Method of the Same
CN115072723B (en) * 2022-07-18 2024-02-27 陕西煤业化工技术研究院有限责任公司 Method for preparing nano silicon carbide by sol-gel method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289744A (en) 2004-03-31 2005-10-20 Toshiba Corp Method for manufacturing reaction sintered silicon carbide structure
JP2007191364A (en) 2006-01-20 2007-08-02 Tokai Carbon Co Ltd METHOD FOR PRODUCING HIGH PURITY SiC FINE POWDER
JP2007320787A (en) 2006-05-30 2007-12-13 Bridgestone Corp Silicon carbide sintered compact and its manufacturing method
JP2009051705A (en) 2007-08-28 2009-03-12 Covalent Materials Corp Silicon/silicon carbide composite material, its manufacturing process, and its method of evaluation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289744A (en) 2004-03-31 2005-10-20 Toshiba Corp Method for manufacturing reaction sintered silicon carbide structure
JP2007191364A (en) 2006-01-20 2007-08-02 Tokai Carbon Co Ltd METHOD FOR PRODUCING HIGH PURITY SiC FINE POWDER
JP2007320787A (en) 2006-05-30 2007-12-13 Bridgestone Corp Silicon carbide sintered compact and its manufacturing method
JP2009051705A (en) 2007-08-28 2009-03-12 Covalent Materials Corp Silicon/silicon carbide composite material, its manufacturing process, and its method of evaluation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101678624B1 (en) * 2015-09-14 2016-11-23 한국과학기술연구원 A method for preparing silicon carbide powder of ultra-high purity
US10106423B2 (en) 2015-09-14 2018-10-23 Korea Institute Of Science And Technology Method for preparing ultrahigh-purity silicon carbide powder
KR101678622B1 (en) 2015-09-21 2016-11-23 한국과학기술연구원 - - A porous composite of silicon dioxide-carbon and a method for preparing granules of -phase silicon carbide powder with a high purity by using it
US20170081197A1 (en) * 2015-09-21 2017-03-23 Korea Institute Of Science And Technology Porous silicon dioxide-carbon composite and method for preparing high-purity granular beta-phase silicon carbide powder with using the same
US9994454B2 (en) * 2015-09-21 2018-06-12 Korea Institute Of Science And Technology Porous silicon dioxide-carbon composite and method for preparing high-purity granular beta-phase silicon carbide powder with using the same

Also Published As

Publication number Publication date
KR20100128777A (en) 2010-12-08

Similar Documents

Publication Publication Date Title
KR101116755B1 (en) SiC/C/SiO2 composite powders fabricated by sol-gel process, and fabrication method of reaction bonded silicon carbide with high purity and high strength using them
KR101678624B1 (en) A method for preparing silicon carbide powder of ultra-high purity
KR101678622B1 (en) - - A porous composite of silicon dioxide-carbon and a method for preparing granules of -phase silicon carbide powder with a high purity by using it
KR100620493B1 (en) Silicon carbide sinter and process for producing the same
KR101152628B1 (en) SiC/C composite powders and a high purity and high strength reaction bonded SiC using the same
KR20130135364A (en) Ceramic sintered body and method for producing ceramic sintered body
EP1691398B1 (en) Ceramic heater unit
WO2003033434A1 (en) Process for producing silicon carbide sinter and silicon carbide sinter obtained by the process
KR102149834B1 (en) A method for manufacturing of a porous silicon carbide sintered body by carbothermal reduction process
JPH07215780A (en) Highly heat resistant composite material
JP5303103B2 (en) Silicon carbide sintered body and method for producing the same
KR101084711B1 (en) A method for manufacturing SiC micro-powder with high purity at low temperature
KR101040761B1 (en) Low-resistivity silicon carbide ceramics, Compositions thereof and Process for producing the Same
JP4619118B2 (en) Sputtering target and manufacturing method thereof
JP2008143748A (en) Silicon carbide sintered compact free from warp and method for producing the same
JP2007320778A (en) High-denseness silicon carbide ceramic and its production method
JP2001048651A (en) Silicon carbide sintered body and its production
JP5130099B2 (en) Method for producing sintered silicon carbide
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JPH10316469A (en) Powdery magnesium silicide nitride and its production
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JP2003081682A (en) Method of producing silicon-impregnated silicon carbide ceramic
JP2004149328A (en) Process for manufacturing silicon nitride sintered compact
JP2000063180A (en) Hexagonal boron nitride sintered product and its production
JPH1171178A (en) Heat-resistant member

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150205

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160127

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170125

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee