KR101106262B1 - Transmembrane Delivery Peptide Originated from Human Homeodomain Gene and Protein Transduction Vector - Google Patents
Transmembrane Delivery Peptide Originated from Human Homeodomain Gene and Protein Transduction Vector Download PDFInfo
- Publication number
- KR101106262B1 KR101106262B1 KR1020090083805A KR20090083805A KR101106262B1 KR 101106262 B1 KR101106262 B1 KR 101106262B1 KR 1020090083805 A KR1020090083805 A KR 1020090083805A KR 20090083805 A KR20090083805 A KR 20090083805A KR 101106262 B1 KR101106262 B1 KR 101106262B1
- Authority
- KR
- South Korea
- Prior art keywords
- protein
- vector
- ptd
- hoxa5
- egfp
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/645—Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
- A61K47/6455—Polycationic oligopeptides, polypeptides or polyamino acids, e.g. for complexing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/66—General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Wood Science & Technology (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
본 발명은 단백질 도입 도메인 및 이를 이용한 단백질 도입 벡터에 관한 것으로, 보다 구체적으로는 인간 호메오 단백질 HOXA5 유래의 서열번호 1로 기재되는 아미노산 서열을 갖는 단백질 도입 도메인 및 이를 이용한 단백질 도입 벡터에 관한 것이다.The present invention relates to a protein transduction domain and a protein transduction vector using the same, and more particularly, to a protein transduction domain having an amino acid sequence represented by SEQ ID NO: 1 derived from human homeo protein HOXA5 and a protein transduction vector using the same.
본 발명에 의하면 목적 단백질을 세포 내로 효과적으로 유입시킬 수 있어 단백질, 핵산 또는 거대 분자로 이루어진 약물의 전달에 유용할 뿐 아니라, 인간 유래의 단백질 도입 도메인이므로 면역의 문제를 유발하지 않고 안전하게 사용할 수 있다. According to the present invention, the protein of interest can be efficiently introduced into the cell, which is not only useful for the delivery of drugs consisting of proteins, nucleic acids or macromolecules, but also because it is a protein-derived domain derived from humans, it can be safely used without causing immunity problems.
세포막투과, 펩타이드, 융합단백질, 벡터, 단백질 도입 도메인 Cell membrane, peptide, fusion protein, vector, protein transduction domain
Description
본 발명은 단백질 도입 도메인 및 이를 이용한 단백질 도입 벡터에 관한 것으로, 보다 상세하게는 단백질, DNA, 펩타이드 또는 거대화학 물질을 세포 내로 효과적으로 도입시킬 수 있는 인간 유래의 단백질 도입 도메인 및 이를 이용한 단백질 도입 벡터에 관한 것이다. The present invention relates to a protein transduction domain and a protein transduction vector using the same, and more particularly, to a protein transduction domain derived from humans and a protein transduction vector using the same, which can effectively introduce proteins, DNA, peptides or macrochemicals into cells. It is about.
인간의 유전자는 DNA로 이루어져 있으며, 대개 특정 단백질을 만드는 정보를 가지고 있다. 몸 속의 모든 세포는 세포핵의 염색체 속에 같은 유전자를 가지고 있으며 각 세포는 선택된 유전자만을 mRNA로 복사하는데 이것은 단백질을 만드는 모형의 역할을 한다. 만일 어떤 특정한 유전자가 변이가 되면 단백질을 생산하지 못하거나 기능이 저하된다. 이러한 결함은 세포와 조직의 기능을 교란시키고 질병증세를 일으킬 수 있다. Human genes consist of DNA and usually contain information that makes specific proteins. Every cell in the body has the same gene in the chromosome of the cell nucleus, and each cell copies only the selected gene into the mRNA, which serves as a model for making proteins. If a particular gene is mutated, it can't produce a protein or its function decreases. These defects can disrupt the function of cells and tissues and cause disease.
과거에는 이러한 선천성 유전변이에 의해 유발된 질병에 대해 약물치료만이 시도되어 왔다. 그러나 1970년대 초 유전자의 기능을 알게 되고 많은 유전병과 관련된 유전자를 발견하게 됨으로써 선천적인 질병은 물론 후천성 질병까지 유전자치료가 가능함을 알게 되었다. 또한 결핍된 단백질 자체를 단백질 의약품으로 사용하여 치료에 응용하려는 시도도 활발히 진행되고 있다. 단백질은 3차원적 구조를 갖고 있어 특이성이 매우 높기 때문에 단백질 자체로도 효능은 높고 부작용이 매우 낮은 약물의 개발이 가능하다. 특히, 세포 내 transcriptional factor 및 signal mediator를 이용한 단백질 신약은 세포내의 signal pathway를 조절함으로써 보다 효능이 높고, 부작용이 낮은 신약의 개발이 가능할 것으로 기대되고 있다. 하지만 유전자 치료나 항생제 대체 단백질 의약품 제제의 개발이 성공적으로 이루어진다고 하여도 이들 거대분자를 세포 내로 흡입시키지 못한다면 효용성이 떨어지게 된다. In the past, only drug treatments have been attempted for diseases caused by these inherited genetic mutations. However, in the early 1970s, when they learned about the function of genes and discovered genes related to many genetic diseases, they learned that gene therapy was possible for congenital and acquired diseases. In addition, attempts have been actively made to apply the deficient protein itself as a protein medicine for therapeutic use. The protein has a three-dimensional structure, so the specificity is very high, it is possible to develop drugs with high efficacy and very low side effects by the protein itself. In particular, protein new drugs using intracellular transcriptional factors and signal mediators are expected to be able to develop new drugs with higher efficacy and lower side effects by controlling intracellular signal pathways. However, even if gene therapy or antibiotic replacement protein drug product development is successful, the effectiveness of these macromolecules will not be effective unless they are inhaled into cells.
유전자 치료에서 정상적인 유전자를 결손된 세포로까지 운반하기 위하여 통상 바이러스의 감염성을 이용하여 병원성을 제거한 바이러스를 운반 매체로 주로 사용하고 있다. 바이러스는 그들의 유전물질을 숙주 세포 내로 전달할 수 있도록 수 억 년 동안 진화되어 왔으므로 이들 바이러스를 유전자 전달 매개체로 사용하는 것은 상당히 강력한 기술임에는 틀림없다. 그러나 인간 또한 외부로부터 유입된 물질을 제거하기 위한 방어 기전을 가지고 있기 때문에, 바이러스 벡터에 있는 유전자를 전달하기 위한 노력들도 이들 숙주세포의 면역반응으로 인해 어려움에 직면해 왔다. In gene therapy, in order to transport normal genes to defective cells, viruses that have been removed from pathogenic paths are usually used as a carrier medium. Since viruses have evolved over hundreds of millions of years to transfer their genetic material into host cells, the use of these viruses as gene delivery vehicles must be a fairly powerful technique. However, since humans also have a defense mechanism to remove foreign material, efforts to deliver genes in viral vectors have been challenged by the immune response of these host cells.
PTD(protein transduction domain)로 불리우는 단백질 도입 도메인은 10~16개의 염기성 아미노산으로 구성된 작은 펩타이드로 CPP(cell permeable peptide), MTS(membrane translocating sequences)라고도 불리운다. PTD는 특별한 수용체의 도움없이 자기 자신 혹은 자신과 결합하고 있는 물질들과 함께 plasma membrane을 통과하여 세포 내에 축적되므로 세포 내로의 전달이 어려웠던 Protein, DNA, Peptide 또는 거대화학 물질 등을 효과적으로 세포 내로 전달시키는데 응용할 수 있다. PTD를 이용하는 경우, signal pathway 내에 있는 물질을 직접적으로 세포 내 혹은 핵 내로 전달할 수 있게 됨으로써 보다 특이적인 신호 전달이 가능하다. The protein transduction domain called PTD (protein transduction domain) is a small peptide consisting of 10-16 basic amino acids, also called cell permeable peptide (CPP) and membrane translocating sequences (MTS). PTD, through the plasma membrane, together with the substances that bind to itself or themselves together with the help of special receptors, accumulates in the cells, effectively transferring proteins, DNA, peptides, or macrochemicals, which were difficult to transfer into cells, into cells. It can be applied. In the case of using PTD, it is possible to transfer a substance in a signal pathway directly into a cell or a nucleus, thereby enabling more specific signal transmission.
현재까지 알려진 PTD는 HIV-1 유래 tat 단백질, 초파리(Drosophila) 유래 Antennapedia의 호메오 도메인, HSV 유래 전사 인자(VP22)와 합성 라이신/알기딘 펩타이드 등이 있다. 그러나 기존의 PTD는 모두 바이러스 등 외부 단백질로부터 유래되거나 합성된 펩타이드로 실제 인체에 적용할 경우 면역반응을 유발할 소지가 있다. 따라서 지금까지 알려진 PTD를 대체할 수 있는 새로운 인간 유래의 PTD를 개발하는 것이 요구되어 진다.PTDs known to date include HIV-1-derived tat proteins, Drosophila-derived Antennapedia homeo domains, HSV-derived transcription factors (VP22) and synthetic lysine / algidine peptides. However, all existing PTDs are peptides derived from or synthesized from external proteins such as viruses, and may cause immune responses when applied to humans. Therefore, it is required to develop a new human-derived PTD that can replace the PTD known to date.
이에 본 발명자들은 인간 호메오 단백질 HOXA5의 일부 아미노산 서열이 PTD 역할을 할 가능성이 있는 것을 발견하고, 이를 코딩하는 재조합 벡터를 제조하는 한편 상기 벡터를 이용하여 목적 단백질과 HOXA5-PTD의 융합단백질을 발현시켜 PTD의 기능을 확인하는 것에 의해 본 발명을 완성하였다.Accordingly, the present inventors found that some amino acid sequences of the human homeo protein HOXA5 may play a role of PTD, and produced a recombinant vector encoding the same, while expressing a fusion protein of the target protein and HOXA5-PTD using the vector. The present invention was completed by confirming the function of PTD.
본 발명은 실제 인체에 적용 시 면역 반응을 유발할 우려가 없으면서도 세포내로 목적 단백질을 전달할 수 있는 새로운 인간 유래의 단백질 도입 도메인, 상기 도메인 단백질을 코딩하는 유전자, 상기 유전자와 목적 단백질을 코딩하는 유전자가 융합된 재조합 벡터를 제공하는 것을 목적으로 한다. The present invention provides a novel human-derived protein introduction domain, a gene encoding the domain protein, a gene encoding the gene and the target protein, which can deliver a target protein into cells without fear of inducing an immune response when applied to an actual human body. It is an object to provide a fused recombinant vector.
전술한 목적을 달성하기 위한 본 발명은 인간 호메오 단백질 HOXA5 유래의 서열번호 1로 기재되는 아미노산 서열(RQIKIWFQNRRMKWK)을 갖는 단백질 도입 도메인(PTD) HOXA5-PTD와 이를 코딩하는 유전자에 관한 것이다. 상기 유전자는 특히 서열번호 2의 염기서열을 갖는 것이 바람직하다.The present invention for achieving the above object relates to a protein transduction domain (PTD) HOXA5-PTD having an amino acid sequence (RQIKIWFQNRRMKWK) as set forth in SEQ ID NO: 1 derived from human homeo protein HOXA5 and a gene encoding the same. In particular, the gene preferably has a nucleotide sequence of SEQ ID NO.
또한 본 발명은 상기 유전자를 포함하는 재조합 벡터에 관한 것이다. 상기 벡터에 EGFP 단백질을 코딩하는 유전자를 삽입하여 HOXA5-PTD-EGFP 융합단백질을 제조하여 세포 내 도입을 관측한 결과 EGFP 단백질 자체는 세포 내로 도입되지 않은 반면 융합단백질은 농도 및 처리 시간 의존적으로 세포 내로 도입되어 본 발명의 도메인 단백질이 융합단백질에서 PTD로 작용하는 것을 확인할 수 있었다. 바이러스로부터 유도된 PTD의 경우, 생체 내에서 면역반응을 유도할 가능성이 있지만 본 발명의 벡터는 인간 유래의 PTD로 상기 가능성을 배제할 수 있을 것으로 기대된다.The present invention also relates to a recombinant vector comprising the gene. The gene encoding the EGFP protein was inserted into the vector to prepare a HOXA5-PTD-EGFP fusion protein. As a result, the EGFP protein itself was not introduced into the cell, whereas the fusion protein was introduced into the cell depending on the concentration and processing time. It was confirmed that the domain protein of the present invention acts as PTD in the fusion protein. In the case of PTD derived from virus, there is a possibility of inducing an immune response in vivo, but the vector of the present invention is expected to be able to rule out this possibility with a PTD derived from humans.
상기 재조합 벡터에 다중 클로닝 부위(MCS, multi-cloning site)에 목적 단 백질을 코딩하는 유전자를 삽입시킨 후 이에 의한 형질전환체를 제조하고 발현시키는 것에 의해 목적 단백질과 본 발명에 의한 PTD의 융합단백질을 발현할 수 있다. 이 경우 목적 단백질을 세포 내 혹은 핵 내로 직접적으로 전달할 수 있게 되어 보다 특이적인 신호 전달이 가능하게 된다.A fusion protein of the target protein and PTD according to the present invention by inserting a gene encoding a protein of interest into the multi-cloning site (MCS) into the recombinant vector and then preparing and expressing a transformant therefrom. Can be expressed. In this case, the target protein can be delivered directly into the cell or the nucleus, thereby enabling more specific signal transmission.
이상과 같이 본 발명의 단백질 도입 도메인에 의하면 목적 단백질을 세포 내로 효과적으로 유입시킬 수 있어 단백질, 핵산 또는 거대 분자로 이루어진 약물의 전달에 유용할 뿐 아니라, 인간 유래의 단백질 도입 도메인이므로 면역의 문제를 유발하지 않고 안전하게 사용할 수 있다. As described above, according to the protein introduction domain of the present invention, the protein of interest can be efficiently introduced into cells, which is useful for the delivery of drugs consisting of proteins, nucleic acids, or macromolecules, and is a protein-derived domain derived from humans. It can be used safely.
이하 실시예를 통하여 본 발명을 상세하게 설명한다. 그러나, 이들 실시예는 예시적인 목적일 뿐 본 발명이 이에 한정되는 것은 아니다. The present invention will be described in detail through the following examples. However, these examples are for illustrative purposes only and the present invention is not limited thereto.
실시예Example
실시예 1 : 인간 유전 인자 검색Example 1 Human Genetic Factor Search
인간 유전인자 서열을 갖는 PTD를 검색하기 위하여 Fushi tarazu (노랑초파리)의 PTD의 아미노산 서열 RQIKIWFQNRRMKSK(서열번호 3)을 이용하여 Pubmed의 Basic Local Aligment Search Tool(NCBI Blast)로 검색해 보았다. 그 결과 상기 PTD와 94%의 상동성을 갖는 인간 호메오 단백질 HOXA5의 RQIKIWFQNRRMKWK(서열번호 1) 영역이 PTD로 기능할 가능성이 높다고 판단하였다. 상기 아미노산 서열을 코딩하는 유전자는 HOXA5의 770~817 염기서열로 서열번호 2로 표시된다.In order to search for PTD having a human genetic factor sequence, the amino acid sequence RQIKIWFQNRRMKSK (SEQ ID NO: 3) of PTD of Fushi tarazu (yellow fruit fly) was searched by the Basic Local Aligment Search Tool (NCBI Blast) of Pubmed. As a result, it was determined that the RQIKIWFQNRRMKWK (SEQ ID NO: 1) region of the human homeo protein HOXA5 having 94% homology with the PTD is likely to function as a PTD. The gene encoding the amino acid sequence is represented by SEQ ID NO: 2 in the 770-817 base sequence of HOXA5.
실시예 2 : HOXA5-PTD 발현벡터의 제조Example 2 Preparation of HOXA5-PTD Expression Vector
HOXA5-PTD 발현벡터를 제조하기 위하여 기존의 대장균 단백질 벡터인 pET28b(Novagen) 또는 pET21b(Novagen)에 서열번호 2의 HOXA5-PTD 유전인자(AGACAAATTAAAATCTGGTTCCAAAACCGGAGAATGAAGTGGAAAAAA)를 삽입하였다. To prepare a HOXA5-PTD expression vector, a HOXA5-PTD gene factor (AGACAAATTAAAATCTGGTTCCAAAACCGGAGAATGAAGTGGAAAAAA) of SEQ ID NO: 2 was inserted into an existing E. coli protein vector, pET28b (Novagen) or pET21b (Novagen).
먼저 48개 뉴클레오티드로 구성된 HOXA5-PTD 유전자의 N-말단과 C-말단에 NdeI과 BamHI의 제한효소 절단부위가 각각 도입된 하기 서열번호 4, 5의 올리고머를 합성하였다. 합성된 두 개의 올리고머들을 50mM NaCl 이 포함된 반응액에서 95℃에서 1분간 변성시킨 후, 온도를 천천히 상온으로 내려서 이중나선 염기서열로 재생하였다. 이후, pET-28b 벡터 또는 pET-21b 벡터를 제한효소 NdeI과 BamHI로 절단한 후, 상기 이중나선 염기서열로 재생된 올리고머를 삽입하였다. 상기 방법에 의해 pET28b 벡터와 pET21b 벡터를 사용하여 구축한 발현벡터를 각각 pHOXJOIN-N1 및 pHOXJOIN-C1 벡터로 명명하였다.First, oligomers of SEQ ID NOs: 4 and 5, wherein restriction enzyme cleavage sites of NdeI and BamHI were introduced at the N-terminus and C-terminus of the 48-nucleotide HOXA5-PTD gene, respectively. The synthesized two oligomers were denatured at 95 ° C. for 1 minute in a reaction solution containing 50 mM NaCl, and the temperature was slowly lowered to room temperature and regenerated as a double helix sequence. Thereafter, the pET-28b vector or pET-21b vector was digested with restriction enzymes NdeI and BamHI, and then the oligomers regenerated by the double helix sequence were inserted. Expression vectors constructed using the pET28b vector and the pET21b vector by the above method were named pHOXJOIN-N1 and pHOXJOIN-C1 vectors, respectively.
서열번호 4 : 5'-ata tga gac aaa tta aaa tct ggt tccaaa acc gga gaa tga agt gga aaa aac gg-3' SEQ ID NO: 4'-ata tga gac aaa tta aaa tct ggt tccaaa acc gga gaa tga agt gga aaa aac gg-3 '
서열번호 5 : 5'-gat ccc gtt ttt tcc act tca ttc tcc ggt ttt gga acc aga ttt taa ttt gtc tc-3' SEQ ID NO: 5'-gat ccc gtt ttt tcc act tca ttc tcc ggt ttt gga acc aga ttt taa ttt gtc tc-3 '
상기 방법에 의해 제조된 벡터를 1% polyacrylamide gel에서 전기영동하여 cDNA를 분리하고 DNA 서열을 확인하고 GENETYX 프로그램을 이용하여 분석하였다. 도 1은 상기 전기영동 결과를 도 2와 도 3은 각각 pHOXJOIN-N1 벡터와 pHOXJOIN-C1 벡터의 개열지도를 나타낸다. 상기 발현벡터는 서열을 알고 있는 유전자와 공지의 벡터를 이용하여 상기 과정에 의해 용이하게 제작할 수 있으므로 별도의 기탁은 생략한다.The vector prepared by the above method was subjected to electrophoresis on 1% polyacrylamide gel to separate cDNA, confirm DNA sequence, and analyze using GENETYX program. Figure 1 shows the results of the electrophoresis Figure 2 and Figure 3 shows the cleavage map of the pHOXJOIN-N1 vector and pHOXJOIN-C1 vector, respectively. Since the expression vector can be easily produced by the above process using a known gene and a known vector, a separate deposit is omitted.
실시예 3 : HOXA5-PTD의 세포 투과성 확인Example 3 Confirmation of Cell Permeability of HOXA5-PTD
1) HOXA5-PTD-EGFP 발현벡터의 제조1) Preparation of HOXA5-PTD-EGFP Expression Vector
HOXA5-PTD벡터가 세포내로 유입되는지 알아보기 위해 먼저 pHOXA5-PTD 발현 벡터를 이용하여 6개의 히스티딘과 HOXA5 형질도입부위(RQIKIWFQNRRMKWKK)와 형광을 나타내는 EGFP가 포함되어 있는 HOXA5-PTD-EGFP 발현벡터를 제조하였다. To determine whether the HOXA5-PTD vector is introduced into the cell, a HOXA5-PTD-EGFP expression vector containing six histidines and a HOXA5 transduction site (RQIKIWFQNRRMKWKK) and fluorescent EGFP was prepared using a pHOXA5-PTD expression vector. It was.
먼저 EcoRI/Xhol 제한효소 서열이 함유된 EGFP 특이적인 서열번호 6과 7의 프라이머를 이용하여 PCR에 의해 pEGFPN1 벡터(Clontech, USA)로부터 EGFP 유전자를 증폭하였다(중합효소연쇄반응조조건; 95℃, 30초, 62℃ 1분, 72℃ 2분, 30사이클). First, the EGFP gene was amplified from the pEGFPN1 vector (Clontech, USA) by PCR using primers of EGFP specific SEQ ID NOs: 6 and 7 containing EcoRI / Xhol restriction enzyme sequences (polymerase chain reaction conditions; 95 ° C, 30 ° C). Sec, 62 ° C. 1 minute, 72 ° C. 2 minutes, 30 cycles).
서열번호 6 : 5'-gga att cga tgg tga gca agg gcg ag SEQ ID NO: 5'-gga att cga tgg tga gca agg gcg ag
서열번호 7 : 5'-ccg ctc gag ctt gta cag ctc gtc SEQ ID NO: 7'-ccg ctc gag ctt gta cag ctc gtc
EcoRI, XhoI 제한효소(TaKaRa)를 사용하여 실시예 2에서 제조한 pHOXJOIN-N1 벡터 또는 pHOXJOIN-C1 벡터를 절단한 다음, 증폭한 EGFP 서열을 삽입하여 pET28b/HOXA5-PTD-EGFP 벡터와 pET21b/HOXA5-PTD-EGFP 벡터를 각각 완성하였다. Using the EcoRI, XhoI restriction enzyme (TaKaRa), the pHOXJOIN-N1 vector or pHOXJOIN-C1 vector prepared in Example 2 was cut, and then the pET28b / HOXA5-PTD-EGFP vector and pET21b / HOXA5 were inserted by inserting the amplified EGFP sequence. -PTD-EGFP vectors were completed respectively.
상기 벡터를 각각 대장균 BL21(DE3)에 형질전환시켜 대장균 형질전환체 BL21(DE3)/pET28b/HOXA5-PTD-EGFP 및 BL21(DE3)/pET21b/HOXA5-PTD-EGFP를 제조하였다. BL21(DE3)/HOXA5-PTD-EGFP은 단백질 정제를 위한 6개의 히스티딘(histidine) 유전인자와, HOXA5-PTD의 유전인자 및 EGFP 유전인자를 포함하고 있는 것을 특징으로 한다. The vectors were transformed into E. coli BL21 (DE3), respectively, to prepare E. coli transformants BL21 (DE3) / pET28b / HOXA5-PTD-EGFP and BL21 (DE3) / pET21b / HOXA5-PTD-EGFP. BL21 (DE3) / HOXA5-PTD-EGFP is characterized by containing six histidine genes for protein purification, HOXA5-PTD genes and EGFP genes.
2) 재조합 HOXA5-PTD-EGFP 융합단백질의 분리 및 정제2) Isolation and Purification of Recombinant HOXA5-PTD-EGFP Fusion Protein
1)에서 제조한 대장균 형질전환체 각각을 Ampicillin (50 μg/ml)이 포함된 LB배지에 도말하여 37℃에서 14~16시간 배양하였다. 하기 공정은 각 형질전환체로부터 융합단백질을 분리, 정제하는 공정이다. 형질전환된 콜로니를 선택하여 상기 Ampicillin이 포함된 LB 배지 10 ml에 첨가하여 37℃에서 종균배양(seed-culture)한 후 역시 상기 Ampicillin(50 μg/ml)이 포함된 LB 배지 1 L에서 A600 값이 0.6~0.8될때까지 37℃에서 배양하였다. OD 값이 0.6~0.8이 되면 1 mM IPTG (isopropylthio-β-D-galactoside)(USB corporation)를 첨가하고 25℃에서 16시간 동안 추가로 배양하여 발현을 유도하였다.Each of the E. coli transformants prepared in 1) was plated in LB medium containing Ampicillin (50 μg / ml) and incubated at 37 ° C. for 14-16 hours. The following process is a process of separating and purifying the fusion protein from each transformant. Transformed colonies were selected and added to 10 ml of LB medium containing Ampicillin and seed-cultured at 37 ° C., followed by A600 value in 1 L of LB medium containing Ampicillin (50 μg / ml). It was incubated at 37 ℃ until 0.6 ~ 0.8. When the OD value was 0.6-0.8, 1 mM IPTG (isopropylthio-β-D-galactoside) (USB corporation) was added, and further cultured at 25 ° C. for 16 hours to induce expression.
배양한 세포를 원심분리하여 모은 뒤 100 ml의 완충용액(500mM NaCl, 50mM Tris pH8.0)을 첨가한 후 초음파(SONICS, VCX-500)로 파쇄하였다. 상기 혼합물을 다시 원심분리한 후 상층액을 취해서 5 ml의 Ni-NTA agarose(Qiagen, cat No : 30210)로 충진된 컬럼(Bio-rad, Cat No : 732-1010)에 부하하였다. 50 mM 이미다졸이 포함되어 있는 완충용액으로 세척한 다음, 500 mM 이미다졸이 포함되어 있는 용출완충액으로 융합단백질을 각각 용출하였다. The cultured cells were collected by centrifugation, and then 100 ml of buffer solution (500 mM NaCl, 50 mM Tris pH8.0) was added, and then disrupted by ultrasound (SONICS, VCX-500). The mixture was centrifuged again and the supernatant was taken and loaded onto a column (Bio-rad, Cat No: 732-1010) filled with 5 ml of Ni-NTA agarose (Qiagen, cat No: 30210). After washing with a buffer containing 50 mM imidazole, the fusion protein was eluted with an elution buffer containing 500 mM imidazole.
도 4의 A는 각 형질전환체를 사용하여 발현된 HOXA5-PTD-EGFP 융합단백질을 정제한 결과를 보여주는 코마시블루 염색사진으로(lane 1: pET28b/HOXA5-PTD-EGFP, lane 2: pET21b/HOXA5-PTD-EGFP), HOXA5-PTD-EGFP 융합단백질의 분자량이 약 32 kDa인 것을 알 수 있다. 정제된 융합단백은 웨스턴블럿분석(도 4의 B)을 통하여 다시 한번 HOXA5-PTD-EGFP 융합단백질임을 확인하였으며, 코마시블루 염색 결과와도 일치하였다. 4A is Coomassie blue staining photograph showing the result of purifying HOXA5-PTD-EGFP fusion protein expressed using each transformant (lane 1: pET28b / HOXA5-PTD-EGFP, lane 2: pET21b /). It can be seen that the molecular weight of HOXA5-PTD-EGFP) and HOXA5-PTD-EGFP fusion protein is about 32 kDa. The purified fusion protein was confirmed to be HOXA5-PTD-EGFP fusion protein once again by Western blot analysis (B of FIG. 4), and was consistent with the Coomassie blue staining result.
용출된 융합단백질은 PD-10 columns(GEHealthcare cat No : 17-0851-01) 에 Desalting 하여 염분을 제거하였다. 염분을 제거한 정제된 HOXA5-PTD-EGFP 융합단백질은 -70℃에 보관하며 사용하였다. SDS-PAGE를 이용하여 코마시블루 염색(coomassie blue staining)을 하여 우혈청 알부빈과 비교함으로써 단백질의 농도를 계산한 후 실시예에 사용되는 농도에 따라 희석하여 사용하였다. 하기 실시예에서는 pET21b/HOXA5-PTD-EGFP의 대장균 형질전환체로부터 발현된 HOXA5-PTD-EGFP를 사용하여 실험한 결과만을 기재하였으나, pET28b/HOXA5-PTD-EGFP의 형질전환체로부터 발현된 HOXA5-PTD-EGFP 역시 동일한 결과를 나타내었다.The eluted fusion protein was desalted on PD-10 columns (GEHealthcare cat No: 17-0851-01) to remove salts. The salt-free purified HOXA5-PTD-EGFP fusion protein was used while stored at -70 ° C. Coomassie blue staining was performed using SDS-PAGE and compared with bovine serum albumin to calculate the protein concentration, and then diluted according to the concentration used in the examples. In the following examples, only the results of experiments using HOXA5-PTD-EGFP expressed from the E. coli transformants of pET21b / HOXA5-PTD-EGFP were described, but HOXA5- expressed from the transformants of pET28b / HOXA5-PTD-EGFP. PTD-EGFP also showed the same result.
3) HOXA5-PTD-EGFP 융합단백질의 세포 내 도입 확인3) Confirmation of introduction of HOXA5-PTD-EGFP fusion protein into cells
(1) 세포 내 도입 확인(1) Confirmation of introduction into cells
HOXA5-PTD-EGFP 융합단백의 세포 내 도입 여부를 확인하기 위해 EGFP 와 HOXA5-PTD-EGFP의 세포 내 유입정도를 웨스턴 블럿(western blot)을 통해 비교하였다. EGFP는 pET28b벡터를 EcoRI/Xhol 제한효소를 사용하여 절단하고 실시예 3에서 증폭한 EGFP 유전자 서열을 삽입하여 얻은 pET28b/EGFP 벡터로 대장균 BL21(DE3)를 형질전환한 후 실시예 3의 2)와 동일한 방법에 의해 발현 및 정제하였다. HOXA5-PTD-EGFP와 EGFP를 각각 혈관 내피 세포(HUVEC, Human Umbilical Vein Endothelial Cell, American type culture collection에서 분양)에 100nM 농도로 1시간 동안 처리한 후 웨스턴 블럿 분석한 결과 도 5에서 확인할 수 있듯이 EGFP단백은 세포 내 유입되지 않는 반면, HOXA5-PTD-EGFP는 세포 내로 유입되는 것을 확인할 수 있었다. EGFP to confirm the introduction of HOXA5-PTD-EGFP fusion protein into cells And the intracellular influx of HOXA5-PTD-EGFP were compared by Western blot. EGFP was transformed into Escherichia coli BL21 (DE3) with pET28b / EGFP vector obtained by cleaving the pET28b vector using EcoRI / Xhol restriction enzyme and inserting the EGFP gene sequence amplified in Example 3. Expression and purification were done by the same method. HOXA5-PTD-EGFP and EGFP were each treated with 100 nM concentration in vascular endothelial cells (HUVEC, Human Umbilical Vein Endothelial Cell, American type culture collection) for 1 hour and Western blot analysis. Protein was not introduced into the cell, while HOXA5-PTD-EGFP was confirmed to be introduced into the cell.
웨스턴 블럿 분석은 다음 같이 행하였다. 세포균질액은 10% SDS폴리아크릴아마이드 젤 전기영동법으로 분리하여 젤에 니크로셀룰로스막으로 전기이동시켰다. 단백질이 이동된 막을 5% 스킴우유로 1시간 처리한 후 5% 스킴 우유에 1:1000의 비율로 희석한 EGFP 및 β-액틴항체(Santa Cruz Biotechnology)를 4℃에서 밤새 반응시킨 후 TBS-T 완충액으로 10분씩 3회 세척하였다. 이차 항체는 polyclonal anti-rabbit과 anti-mouse를 사용하였으며, 5% 스킴 우유에 1:2000으로 희석하여 1시간 반응하였다. 그 후 TBS-T 완충액으로 10분씩 3번 세척한 후 ECL reagent(PIERCE Biotechnology)로 1분간 반응시키고 X-ray film으로 현상하였다.Western blot analysis was performed as follows. Cell homogenates were separated by 10% SDS polyacrylamide gel electrophoresis and electrophoresed to the gel with a microcellulose membrane. After the protein-transferred membrane was treated with 5% skim milk for 1 hour, EGFP and β-actin antibody (Santa Cruz Biotechnology), diluted 1: 1000 in 5% skim milk, were reacted at 4 ° C. overnight, followed by TBS-T. Wash three times with buffer for 10 minutes. Secondary antibodies were used as polyclonal anti-rabbit and anti-mouse, and were reacted for 1 hour by diluting 1: 2000 in 5% skim milk. After washing three times with TBS-T buffer three times each 10 minutes and then reacted with ECL reagent (PIERCE Biotechnology) for 1 minute and developed by X-ray film.
(2) 세포 내 도입의 농도 의존성 확인(2) Confirmation of concentration dependency of introduction into cells
HOXA5-PTD-EGFP 융합단백질을 1 nM에서 200 nM까지 1시간 동안 농도의존적으로 혈관내피세포(HUVECs) 1시간 동안 처리한 후 (1)과 동일한 방법으로 웨스턴 블럿하고 그 결과를 densitometer(Epichemill Darkroom, USA)로 측정하였다. 도 6은 그 결과를 보여주는 그래프로 30 nM 농도부터 세포 내로 도입되기 시작하여 농도 의존적으로 도입되는 것을 확인할 수 있었다.The HOXA5-PTD-EGFP fusion protein was treated for 1 hour at 1 nM to 200 nM in a concentration-dependent manner for 1 hour after vascular endothelial cells (HUVECs), followed by Western blot in the same manner as in (1). USA). 6 is a graph showing the results, it was confirmed that the introduction of the concentration-dependent introduction into the cell from 30 nM concentration.
(3) 세포 내 도입의 시간 의존성 확인(3) Confirmation of time dependence of introduction into cells
HOXA5-PTD-EGFP 융합단백질 100 nM을 1 nM에서 200 nM까지 혈관내피세포(HUVECs)에 1, 5, 15, 30, 60, 120분 동안 처리한 후 (2)과 동일한 방법으로 세포내로 도입된 융합단백질의 양을 분석하고 그 결과를 도 7에 도시하였다. 도 7에서 확인할 수 있듯이 융합단백질은 5분 처리 시부터 세포 내로 유입되기 시작하여 시간 의존적으로 유입되었다.100 nM of HOXA5-PTD-EGFP fusion protein was treated with vascular endothelial cells (HUVECs) from 1 nM to 200 nM for 1, 5, 15, 30, 60, 120 minutes and then introduced into cells in the same manner as in (2). The amount of fusion protein was analyzed and the results are shown in FIG. As can be seen in Figure 7, the fusion protein began to flow into the cell from the 5 minutes after the treatment was introduced in a time-dependent manner.
실시예 4 : 항염증 단백질에 HOXA5-PTD의 적용 Example 4 Application of HOXA5-PTD to Anti-inflammatory Proteins
1) HOXA5-PTD-Ref-1 발현벡터 및 형질전환체의 제조1) Preparation of HOXA5-PTD-Ref-1 Expression Vector and Transformant
실질적인 HOXA5-PTD 단백질 도입 도메인의 응용 가능성을 확인하기 위해 항염증 효과가 있는 ref-1 단백질과 HOXA5-PTD의 융합단백질을 제조하였다. In order to confirm the applicability of the substantial HOXA5-PTD protein transduction domain, a fusion protein of the anti-inflammatory ref-1 protein and HOXA5-PTD was prepared.
먼저, 인간의 ref-1 cDNA는 EcoRI/Xhol 제한 효소 서열을 포함하는 하기 서열번호 8 및 9의 프라이머를 사용하여 pDsRed-Ref-1(Jeon et al, Circ Res, 2004) 으로부터 중합효소연쇄반응을 이용하여 분리하였다(957 bp). First, human ref-1 cDNA was subjected to polymerase chain reaction from pDsRed-Ref-1 (Jeon et al, Circ Res, 2004) using primers of SEQ ID NOs: 8 and 9 including EcoRI / Xhol restriction enzyme sequences. Isolated (957 bp).
서열번호 8 : 5' - cgg aat tcc atg ccg aag cgt ggg aaa aag gga g -3' SEQ ID NO: 8 '-cgg aat tcc atg ccg aag cgt ggg aaa aag gga g -3'
서열번호 9 : 5'- cgc aag ctt tca cag tgc tag gta tag ggt a-'3' SEQ ID NO: 5'- cgc aag ctt tca cag tgc tag gta tag ggt a-'3 '
EcoRI, XhoI 제한효소를 사용하여 실시예 2에서 얻은 pHOXJOIN-N1 벡터 또는 pHOXJOIN-C1 벡터를 절단한 다음, 위에서 얻은 Ref-1 삽입 서열을 삽입하여 pET28b/HOXA5-PTD-Ref-1 및 pET21b/HOXA5-PTD-Ref-1 발현 벡터를 완성하였다. 상기 발현 벡터의 개열지도를 도 8에 도시하였다. The EcoOX, XhoI restriction enzyme was used to cleave the pHOXJOIN-N1 vector or pHOXJOIN-C1 vector obtained in Example 2, and then insert the Ref-1 insertion sequence obtained above to insert pET28b / HOXA5-PTD-Ref-1 and pET21b / HOXA5 -PTD-Ref-1 expression vector was completed. A cleavage map of the expression vector is shown in FIG. 8.
Ref-1 발현 벡터 pET28b/Ref-1은 EcoRI/Xhol 제한효소로 pET28b 벡터를 절단한 후 상기에서 제조된 Ref-1 유전자 서열을 삽입하여 구축하였다. Ref-1 expression vector pET28b / Ref-1 was constructed by cutting the pET28b vector with EcoRI / Xhol restriction enzyme and inserting the Ref-1 gene sequence prepared above.
상기 방법으로 제조한 발현 벡터들을 대장균 BL21(DE3)에 각각 형질전환시켜 각 발현 벡터의 대장균 형질전환체를 제조하였다. 상기 형질전환체를 사용하여 실시예 3과 동일한 방법에 의해 HOXA5-PTD-Ref-1 융합단백질 및 Ref-1을 분리 정제하여 다음 실험에 사용하였다. 하기에서는 pET21b/HOXA5-PTD-Ref-1의 대장균 형질전환체로부터 발현된 HOXA5-PTD-Ref-1을 사용하여 실험한 결과 만을 기재하였으나, pET28b/HOXA5-PTD-Ref-1의 형질전환체로부터 발현된 HOXA5-PTD-EGFP 역시 동일한 결과를 나타내었다.E. coli transformants of each expression vector were prepared by transforming the expression vectors prepared by the above method into E. coli BL21 (DE3). Using the transformant, HOXA5-PTD-Ref-1 fusion protein and Ref-1 were isolated and purified by the same method as Example 3, and used in the next experiment. In the following, only the results of experiments using HOXA5-PTD-Ref-1 expressed from an E. coli transformant of pET21b / HOXA5-PTD-Ref-1 are described, but from the transformant of pET28b / HOXA5-PTD-Ref-1, The expressed HOXA5-PTD-EGFP also showed the same result.
2) HOXA5-PTD-Ref-1 융합 단백질의 항염증 효과 2) Anti-inflammatory Effects of HOXA5-PTD-Ref-1 Fusion Proteins
HUVEC에 HOXA5-PTD-Ref-1 또는 Ref-1을 0, 3, 30, 100 nM 농도로 1 시간 전처리한 후 hTNF-α(15 ng/ml)를 12 시간 처리하여 염증을 유발시키고 단핵구 접합 을 확인하는 실험인 Monocyte adhesion assay(Song, Y.J, et al. (2008), Kim C.S. et al (2006))를 수행하였다. 도 9는 웨스턴 블럿을 통해 확인한 결과를 densitometer를 이용하여 도식화 한 그래프이다. 도 9에서 확인할 수 있듯이 Ref-1 처리군은 염증 반응의 억제 효과가 거의 없는 것에 반하여, HOXA5-PTD-Ref-1 융합단백질은 염증 반응을 농도 의존적으로 유의적으로 억제하였다.HUVEC was pretreated with HOXA5-PTD-Ref-1 or Ref-1 at 0, 3, 30, and 100 nM concentrations for 1 hour and then treated with hTNF-α (15 ng / ml) for 12 hours to induce inflammation and reduce monocyte junctions. Monocyte adhesion assays (Song, YJ, et al. (2008), Kim CS et al (2006)) were performed. 9 is a graph showing the results confirmed by the Western blot using a densitometer. As shown in FIG. 9, the Ref-1 treatment group had little inhibitory effect on the inflammatory response, whereas the HOXA5-PTD-Ref-1 fusion protein significantly inhibited the inflammatory response in a concentration-dependent manner.
도 1은 pHOXJOIN-N1 벡터와 pHOXJOIN-C1 벡터의 전기영동 사진.Figure 1 is an electrophoretic picture of the pHOXJOIN-N1 vector and pHOXJOIN-C1 vector.
도 2는 pHOXJOIN-N1 벡터의 개열지도.2 is a cleavage map of the pHOXJOIN-N1 vector.
도 3은 pHOXJOIN-C1벡터의 개열지도.3 is a cleavage map of the pHOXJOIN-C1 vector.
도 4는 HOXA5-PTD-EGFP 융합단백질의 정제와 웨스턴 블랏 결과를 보여주는 전기영동 사진. Figure 4 is an electrophoresis picture showing the purification and Western blot results of the HOXA5-PTD-EGFP fusion protein.
도 5는 HOXA5-PTD-EGFP 융합단백질이 세포내로 도입되는 것을 보여주는 웨스 턴 블랏 결과 사진 및 그래프. 5 is a photograph and graph of Westton blot results showing the introduction of HOXA5-PTD-EGFP fusion protein into cells.
도 6은 HOXA5-PTD-EGFP 융합단백질이 세포내로 농도 의존적으로 도입되는 것을 보여주는 그래프. 6 is a graph showing the concentration-dependent introduction of HOXA5-PTD-EGFP fusion protein into cells.
도 7은 HOXA5-PTD-EGFP 융합단백질이 세포내로 처리 시간 의존적으로 도입되는 것을 보여주는 그래프. 7 is a graph showing that HOXA5-PTD-EGFP fusion protein is introduced into cells in a treatment time dependent manner.
도 8은 pET28b/HOXA5-PTD-Ref-1 벡터와 pET21b/HOXA5-PTD-Ref-1 벡터의 개열지도.8 is a cleavage map of the pET28b / HOXA5-PTD-Ref-1 vector and the pET21b / HOXA5-PTD-Ref-1 vector.
도 9는 HOXA5-PTD-Ref-1 융합단백질과 Ref-1의 염증억제 효과를 비교하여 보여주는 그래프.9 is a graph showing a comparison of the inhibitory effect of HOXA5-PTD-Ref-1 fusion protein and Ref-1.
<110> The Industry & Academic Cooperation in Chungnam National University (IAC) <120> Transmembrane delivery peptide originated from human homeodomain gene and protein transduction vector <160> 9 <170> KopatentIn 1.71 <210> 1 <211> 15 <212> PRT <213> protein transduction domain(PTD) originated from HOXA5, HOXA5-PTD <400> 1 Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys 1 5 10 15 <210> 2 <211> 48 <212> DNA <213> gene coding of HOXA5-PTD <400> 2 agacaaatta aaatctggtt ccaaaaccgg agaatgaagt ggaaaaaa 48 <210> 3 <211> 15 <212> PRT <213> PTD originated from Fushi tarazu <400> 3 Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Ser Lys 1 5 10 15 <210> 4 <211> 56 <212> DNA <213> oligomer <400> 4 atatgagaca aattaaaatc tggttccaaa accggagaat gaagtggaaa aaacgg 56 <210> 5 <211> 56 <212> DNA <213> oligomer <400> 5 gatcccgttt tttccacttc attctccggt tttggaacca gattttaatt tgtctc 56 <210> 6 <211> 26 <212> DNA <213> primer for amplification of EGFP <400> 6 ggaattcgat ggtgagcaag ggcgag 26 <210> 7 <211> 24 <212> DNA <213> primer for amplification of EGFP <400> 7 ccgctcgagc ttgtacagct cgtc 24 <210> 8 <211> 34 <212> DNA <213> primer for amplification of ref-1 <400> 8 cggaattcca tgccgaagcg tgggaaaaag ggag 34 <210> 9 <211> 31 <212> DNA <213> primer for amplification of ref-1 <400> 9 cgcaagcttt cacagtgcta ggtatagggt a 31 <110> The Industry & Academic Cooperation in Chungnam National University (IAC) <120> Transmembrane delivery peptide originated from human homeodomain gene and protein transduction vector <160> 9 <170> KopatentIn 1.71 <210> 1 <211> 15 <212> PRT <213> protein transduction domain (PTD) originated from HOXA5, HOXA5-PTD <400> 1 Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Trp Lys 1 5 10 15 <210> 2 <211> 48 <212> DNA <213> gene coding of HOXA5-PTD <400> 2 agacaaatta aaatctggtt ccaaaaccgg agaatgaagt ggaaaaaa 48 <210> 3 <211> 15 <212> PRT <213> PTD originated from Fushi tarazu <400> 3 Arg Gln Ile Lys Ile Trp Phe Gln Asn Arg Arg Met Lys Ser Lys 1 5 10 15 <210> 4 <211> 56 <212> DNA <213> oligomer <400> 4 atatgagaca aattaaaatc tggttccaaa accggagaat gaagtggaaa aaacgg 56 <210> 5 <211> 56 <212> DNA <213> oligomer <400> 5 gatcccgttt tttccacttc attctccggt tttggaacca gattttaatt tgtctc 56 <210> 6 <211> 26 <212> DNA <213> primer for amplification of EGFP <400> 6 ggaattcgat ggtgagcaag ggcgag 26 <210> 7 <211> 24 <212> DNA <213> primer for amplification of EGFP <400> 7 ccgctcgagc ttgtacagct cgtc 24 <210> 8 <211> 34 <212> DNA <213> primer for amplification of ref-1 <400> 8 cggaattcca tgccgaagcg tgggaaaaag ggag 34 <210> 9 <211> 31 <212> DNA <213> primer for amplification of ref-1 <400> 9 cgcaagcttt cacagtgcta ggtatagggt a 31
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090083805A KR101106262B1 (en) | 2009-09-07 | 2009-09-07 | Transmembrane Delivery Peptide Originated from Human Homeodomain Gene and Protein Transduction Vector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090083805A KR101106262B1 (en) | 2009-09-07 | 2009-09-07 | Transmembrane Delivery Peptide Originated from Human Homeodomain Gene and Protein Transduction Vector |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110026071A KR20110026071A (en) | 2011-03-15 |
KR101106262B1 true KR101106262B1 (en) | 2012-01-18 |
Family
ID=43933218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090083805A KR101106262B1 (en) | 2009-09-07 | 2009-09-07 | Transmembrane Delivery Peptide Originated from Human Homeodomain Gene and Protein Transduction Vector |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101106262B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11851465B2 (en) | 2019-12-03 | 2023-12-26 | Korea Advanced Institute Of Science And Technology | Method for regulating secretion ability of homeoproteins and their variants having altered secretion ability |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3581207B1 (en) * | 2013-06-11 | 2022-11-02 | PPL (BVI) Limited | Fusion proteins comprising hoxd12 and nemo binding domain and their use |
-
2009
- 2009-09-07 KR KR1020090083805A patent/KR101106262B1/en active IP Right Grant
Non-Patent Citations (2)
Title |
---|
Appl. Microbiol. Biotechnol. vol. 77, No. 5, pp. 1015-1022(2008.01). |
Biochem. Biophys. Res. Commun.vol. 368, No. 1, pp. 68-73(2008.03). |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11851465B2 (en) | 2019-12-03 | 2023-12-26 | Korea Advanced Institute Of Science And Technology | Method for regulating secretion ability of homeoproteins and their variants having altered secretion ability |
Also Published As
Publication number | Publication date |
---|---|
KR20110026071A (en) | 2011-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU737829B2 (en) | Conjugates that contain the homeodomain of antennapedia | |
KR101106262B1 (en) | Transmembrane Delivery Peptide Originated from Human Homeodomain Gene and Protein Transduction Vector | |
EP1268796A1 (en) | Identification of human gaba transporter | |
WO2001083543A1 (en) | Human wingless-like gene | |
US6914125B2 (en) | Scramblase 2 | |
WO2001079269A2 (en) | Lipid binding protein 4 | |
AU2002228077B2 (en) | Histidine phosphatase interacting protein with 240KD | |
WO2001040463A1 (en) | Novel endoplasmic reticulum-localized protein, remedies containing the same for diseases associated with glycoprotein abnormality, dna encoding this protein and gene remedies containing the same for treating diseases associated with glycoprotein abnormality | |
US20050107592A1 (en) | Lipid binding protein 1 | |
WO2001079492A2 (en) | Lipid binding protein 3 | |
EP1305415A1 (en) | Protein inhibitor of apoptosis proteins | |
CA2404496A1 (en) | Calcium binding regulatory subunit | |
EP1266008A2 (en) | Acute neuronal induced calcium binding protein type 1 ligand | |
EP1274843A1 (en) | New lipid binding protein 2 | |
EP1358336A2 (en) | Human serine-threonine kinase | |
WO2001096561A1 (en) | Hunc-2, human member of unc-protein family | |
KR20030085417A (en) | Novel Peptides With Chaperone Activity | |
AU2002328337A1 (en) | Histidine phosphatase interacting protein with 180KD | |
EP1406923A2 (en) | Histidine phosphatase interacting protein with 180kd | |
WO2001081400A1 (en) | Nk-2 homeobox transcription factor | |
WO2002066507A2 (en) | Histidine phosphatase interacting protein of 120 kd | |
EP1315810A2 (en) | Family member of inhibitor of apoptosis proteins | |
EP1307483A2 (en) | Iapl-3 a protein inhibitor of apoptosis proteins | |
AU2002252983A1 (en) | Histidine phosphatase interacting protein of 120KD | |
WO2001085936A1 (en) | F-box containing protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150102 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20151229 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20161227 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20191231 Year of fee payment: 9 |