[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101072750B1 - Method of preparation of spherical support for olefin polymerization catalyst - Google Patents

Method of preparation of spherical support for olefin polymerization catalyst Download PDF

Info

Publication number
KR101072750B1
KR101072750B1 KR1020080123250A KR20080123250A KR101072750B1 KR 101072750 B1 KR101072750 B1 KR 101072750B1 KR 1020080123250 A KR1020080123250 A KR 1020080123250A KR 20080123250 A KR20080123250 A KR 20080123250A KR 101072750 B1 KR101072750 B1 KR 101072750B1
Authority
KR
South Korea
Prior art keywords
alcohol
magnesium
metal magnesium
metal
olefin polymerization
Prior art date
Application number
KR1020080123250A
Other languages
Korean (ko)
Other versions
KR20100064693A (en
Inventor
이영주
김은일
박준려
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR1020080123250A priority Critical patent/KR101072750B1/en
Publication of KR20100064693A publication Critical patent/KR20100064693A/en
Application granted granted Critical
Publication of KR101072750B1 publication Critical patent/KR101072750B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6423Component of C08F4/64 containing at least two different metals
    • C08F4/6425Component of C08F4/64 containing at least two different metals containing magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 올레핀 중합 촉매용 구형 담체의 제조방법에 관한 것으로서, 보다 상세하게는, 반응 개시제인 할로겐 화합물을 금속 마그네슘과 먼저 반응시켜 MgX(I)(여기서, X= 할로겐 원자)를 제조한 후, 금속 마그네슘과 알코올을 투입하여 반응시킴으로써 균일한 입자크기분포를 갖는 표면이 매끄러운 구형의 디알콕시마그네슘인 올레핀 중합 촉매용 구형 담체를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a spherical carrier for an olefin polymerization catalyst, and more particularly, to prepare a MgX (I) (here, X = halogen atom) by first reacting a halogen compound as a reaction initiator with metal magnesium, The present invention relates to a method for producing a spherical carrier for an olefin polymerization catalyst having a smooth spherical dialkoxy magnesium having a uniform particle size distribution by adding a metal magnesium and an alcohol.

할로겐 화합물, 올레핀, 중합, 촉매, 담체, 금속 마그네슘, MgX(I), 알코올, 디알콕시마그네슘, 구형 Halogen compound, olefin, polymerization, catalyst, carrier, metal magnesium, MgX (I), alcohol, dialkoxymagnesium, spherical

Description

올레핀 중합 촉매용 구형 담체의 제조방법{METHOD OF PREPARATION OF SPHERICAL SUPPORT FOR OLEFIN POLYMERIZATION CATALYST}Manufacturing method of spherical carrier for olefin polymerization catalyst {METHOD OF PREPARATION OF SPHERICAL SUPPORT FOR OLEFIN POLYMERIZATION CATALYST}

본 발명은 올레핀 중합 촉매용 구형 담체의 제조방법에 관한 것으로서, 보다 상세하게는, 반응 개시제인 할로겐 화합물을 금속 마그네슘과 먼저 반응시켜 MgX(I)(여기서, X= 할로겐 원자)를 제조한 후, 금속 마그네슘과 알코올을 투입하여 반응시킴으로써 균일한 입자크기분포를 갖는 표면이 매끄러운 구형의 디알콕시마그네슘인 올레핀 중합 촉매용 구형 담체를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a spherical carrier for an olefin polymerization catalyst, and more particularly, to prepare a MgX (I) (here, X = halogen atom) by first reacting a halogen compound as a reaction initiator with metal magnesium, The present invention relates to a method for producing a spherical carrier for an olefin polymerization catalyst having a smooth spherical dialkoxy magnesium having a uniform particle size distribution by adding a metal magnesium and an alcohol.

올레핀 중합용 촉매로는 염화마그네슘 담지형 지글러-나타(Ziegler-Natta) 촉매가 현재 가장 널리 사용되고 있다. 이 염화마그네슘 담지형 지글러-나타 촉매는 일반적으로, 마그네슘, 티타늄, 할로겐 및 전자공여성 유기화합물로 구성된 고체 촉매성분이며, 프로필렌과 같은 알파-올레핀 중합에 사용될 때에는, 조촉매인 유기알루미늄 화합물 및 입체규칙성 조절제인 유기실란 화합물과 함께 적절한 비율로 혼합되어 투입되기도 한다. 올레핀 중합용의 담지형 고체촉매는 슬러리중합, 벌크중합, 기상중합 등과 같이 다양한 상업화된 공정에서 적용되기 때문에, 기본적으로 요구되는 촉매의 높은 활성과 입체규칙성 이외에도, 입자형상에 대한 요구조건 들, 즉, 적절한 입자 크기와 모양, 입도분포의 균일성, 거대입자 및 미세입자의 극소화, 높은 겉보기 밀도 등을 충족시켜야만 한다.Magnesium chloride-supported Ziegler-Natta catalysts are the most widely used catalysts for olefin polymerization. This magnesium chloride-supported Ziegler-Natta catalyst is generally a solid catalyst component composed of magnesium, titanium, halogens, and electron-donating organic compounds, and when used in alpha-olefin polymerization such as propylene, it is a co-catalyst organoaluminum compound and a steric rule. It may be mixed with the organosilane compound, which is a sex regulator, in an appropriate ratio. Since supported solid catalysts for olefin polymerization are applied in various commercial processes such as slurry polymerization, bulk polymerization, gas phase polymerization, etc., in addition to the high activity and stereoregularity of the catalyst basically required, That is, it must satisfy the appropriate particle size and shape, uniformity of particle size distribution, minimization of macro and fine particles, high apparent density, and the like.

올레핀 중합 촉매용 담체의 입자형상을 개선하기 위한 방법으로, 지금까지는 재결정화 및 재침전 방법, 스프레이건조 방법, 화학적 반응을 이용한 방법 등이 알려져 있으며, 이 중에서 화학적 반응을 이용한 방법의 하나인, 마그네슘과 알코올을 반응시켜 얻어지는 디알콕시마그네슘을 담체로 사용하여 촉매를 제조하는 방법은, 여타의 방법들에 비해 훨씬 높은 활성을 갖는 촉매와 높은 입체규칙성을 갖는 결과 중합체를 제공할 수 있기 때문에, 최근 이에 대한 관심이 커지고 있다.As a method for improving the particle shape of the carrier for an olefin polymerization catalyst, recrystallization and reprecipitation methods, spray drying methods, methods using chemical reactions, and the like are known so far, and among these, magnesium, which is one of methods using chemical reactions, is known. The process for preparing a catalyst using dialkoxymagnesium obtained by reacting with an alcohol as a carrier can provide a catalyst having a much higher activity and a resultant polymer having high stereoregularity than other methods. There is a growing interest in this.

그러나, 일반적으로 금속 마그네슘과 알코올을 반응시켜 디알콕시마그네슘을 제조하는 과정은 알코올과 금속 마그네슘간의 초기단계의 반응속도 제어가 매우 어려우며, 입자간의 응집현상이 일어남에 구형의 입자가 형성되지 않고, 크기가 100㎛ 이상인 거대 입자가 대량 생성된다. 이로 인해 그 결과물로부터 제조된 촉매를 올레핀의 중합에 사용할 경우 중합체의 표면이 매우 불균일하고, 입자크기가 너무 커지거나, 중합열에 의한 입자형상의 파괴현상이 일어나고, 생성되는 중합체의 겉보기 밀도를 저하시키는 등의 문제가 있으며, 특히 많은 양의 거대입자는 중합체의 흐름성을 나쁘게 하여 생산 공장에 적용을 어렵게 할 수 있다. 이와 같이, 디알콕시마그네슘을 담체로 사용하는 경우에는, 담체로 사용되는 디알콕시마그네슘의 입자모양, 입도분포, 겉보기 밀도 등이 촉매 및 중합체의 입자특성에 직접적으로 영향을 미치게 되므로, 마그네슘과 알코올의 반응과정에서 크기가 균일하고 구형이면서 겉보기 밀도가 충분히 높은 디알콕시마그네슘 담체를 제조해야 한다. However, in general, the process of preparing dialkoxy magnesium by reacting metal magnesium with alcohol is very difficult to control the reaction rate of the initial stage between alcohol and metal magnesium, and the coagulation phenomenon between particles does not form spherical particles. A large quantity of large particle | grains whose is 100 micrometers or more are produced | generated. As a result, when the resulting catalyst is used for the polymerization of olefins, the surface of the polymer is very uneven, the particle size becomes too large, or the breakage of the granular shape due to the heat of polymerization occurs, which lowers the apparent density of the resulting polymer. In particular, a large amount of macroparticles may make the polymer poor in flowability, making it difficult to apply to production plants. As such, when dialkoxy magnesium is used as a carrier, the particle shape, particle size distribution, and apparent density of the dialkoxy magnesium used as the carrier directly affect the particle characteristics of the catalyst and the polymer. During the reaction, dialkoxy magnesium carriers of uniform size, spherical shape and sufficiently high apparent density should be prepared.

균일한 형상의 디알콕시마그네슘을 제조하기 위한 여러 가지 방법들이 종래의 기술문헌들에 개시되어 있다. 미국특허 제5,162,277호 및 제5,955,396호에서는, 부정형의 디에톡시마그네슘을 이산화탄소로 카르복실화시켜 만든 마그네슘에틸카보네이트를 여러 종류의 첨가물 및 용매를 사용하여 용액 중에서 재결정하므로써 5~10㎛ 크기의 담체를 제조하는 방법을 제안하고 있다. 또한, 일본국공개특허 평06-87773호에서는, 이산화탄소에 의해 카르복실화된 디에톡시마그네슘의 알코올 용액을 스프레이 건조하고, 이를 탈카르복실화하여 구형의 입자를 제조하는 방법을 개시하고 있다. 그러나, 이러한 종래의 방법들은, 많은 종류의 원료를 사용하는 복잡한 과정을 요구할 뿐만 아니라, 담체의 입자크기 및 형태를 만족할 만한 수준으로 제공하지 못하고 있다.Various methods for producing dialkoxy magnesium of uniform shape are disclosed in the prior art documents. In US Pat. Nos. 5,162,277 and 5,955,396, a carrier having a size of 5 to 10 µm is prepared by recrystallizing magnesium ethyl carbonate obtained by carboxylating an amorphous diethoxy magnesium with carbon dioxide using various additives and solvents. I'm suggesting how. In addition, Japanese Laid-Open Patent Publication No. 06-87773 discloses a method of spray-drying an alcohol solution of diethoxy magnesium carboxylated with carbon dioxide and decarboxylating it to produce spherical particles. However, these conventional methods not only require a complicated process using many kinds of raw materials, but also do not provide a satisfactory level of particle size and shape of the carrier.

한편, 일본국공개특허 평03-74341호, 평04-368391호 및 평08-73388호에 의하면, 요오드의 존재하에서 금속마그네슘을 에탄올과 반응시켜 구형 또는 타원형의 디에톡시마그네슘을 합성하는 방법이 제공되고 있다. 그러나, 이 방법에 의해서 제조되는 디에톡시마그네슘은 반응과정에서 많은 반응열과 함께 다량의 수소가 발생하면서 반응이 매우 급격히 일어나기 때문에 반응속도를 적절하게 조절하는데 어려움이 있을 뿐 아니라, 결과물인 디에톡시마그네슘 담체에 다량의 미세입자 또는 여러 개의 입자가 응집된 이형의 거대입자를 다량 포함하고 있는 문제가 있다. On the other hand, according to Japanese Patent Application Laid-Open Nos. 03-74341, 04-368391 and 08-73388, a method for synthesizing spherical or elliptical diethoxy magnesium by reacting metal magnesium with ethanol in the presence of iodine is provided. It is becoming. However, the diethoxy magnesium prepared by this method is difficult to properly control the reaction rate because a large amount of hydrogen is generated with a lot of heat of reaction during the reaction, and the reaction occurs very rapidly, and the resulting diethoxy magnesium carrier There is a problem in that a large amount of fine particles or a plurality of particles contain a large amount of agglomerated large particles.

상기의 결과물 담체로부터 제조된 촉매를 올레핀의 중합에 그대로 사용할 경우 중합체의 입자크기가 과도하게 커지거나 중합과정의 중합열에 의한 입자형상의 파괴현상에 의해 공정상에 심각한 장애를 야기하는 등의 문제가 있다.When the catalyst prepared from the resultant carrier is used as it is for the polymerization of olefins, problems such as excessively large particle size of the polymer or serious disruption of the process due to the destruction of the particle shape by the heat of polymerization during the polymerization process are caused. have.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 반응 개시제를 직접 사용하는 기존의 방법보다 반응을 보다 안정적으로 수행하여 거대입자수를 감소시켜, 균일한 크기의 표면이 매끄러운 구형의 입자모양을 갖는 디알콕시마그네슘 담체를 제조함으로써 슬러리중합, 벌크중합, 기상중합 등과 같은 상용 올레핀 중합공정에서 요구하는 입자특성을 충분히 만족시킬 수 있는 촉매의 제조에 사용하기에 적합한 올레핀 중합 촉매용 구형 담체의 제조방법을 제공하는 것이다.The present invention has been made to solve the above problems, the object of the present invention is to carry out the reaction more stably than the conventional method using the reaction initiator directly to reduce the number of large particles, the surface of the uniform size Olefin polymerization catalyst suitable for use in the preparation of a catalyst capable of sufficiently satisfying the particle characteristics required in commercial olefin polymerization processes such as slurry polymerization, bulk polymerization, gas phase polymerization, etc. by preparing a dialkoxy magnesium carrier having a smooth spherical particle shape. It is to provide a method for producing a spherical carrier.

본 발명에 따른 올레핀 중합 촉매용 구형 담체의 제조방법은, 반응 개시제로서 할로겐 화합물을 금속 마그네슘과 먼저 반응시켜 MgX(I)(여기에서, X= 할로겐 원자)를 제조한 후, 이 MgX의 존재하에 금속 마그네슘과 알코올을 투입하여, 상기 금속 마그네슘과 알코올을 반응시키는 것을 특징으로 한다.In the method for producing a spherical carrier for an olefin polymerization catalyst according to the present invention, a halogen compound is first reacted with a metal magnesium as a reaction initiator to prepare MgX (I) (here, X = halogen atom), and then in the presence of MgX. Metal magnesium and alcohol are added to the metal magnesium and the alcohol is reacted.

본 발명의 담체의 제조방법에 사용되는 상기 금속마그네슘은 입자의 형태에는 크게 제한이 없으나, 그 크기에 있어서는 평균입경이 10~300㎛인 분말상인 것이 바람직하며, 50~200㎛인 분말상인 것이 보다 바람직한데, 금속 마그네슘의 평균입경이 10㎛ 미만이면 생성물인 담체의 평균 입자크기가 너무 미세해지고, 300㎛를 초과하면 담체의 평균입자크기가 너무 커져 바람직하지 않고, 담체의 모양이 균일한 구형의 형태로 되기 어려워지므로 바람직하지 않다.The metal magnesium used in the preparation method of the carrier of the present invention is not particularly limited in the form of particles. However, the metal magnesium is preferably in the form of a powder having an average particle diameter of 10 to 300 µm and more preferably in the form of a powder of 50 to 200 µm. If the average particle diameter of the metal magnesium is less than 10 mu m, the average particle size of the carrier which is a product becomes too fine. If the average particle size of the metal magnesium exceeds 300 mu m, the average particle size of the carrier is too large. It is not preferable because it becomes difficult to form.

본 발명의 담체 제조방법에서 반응개시제로서 사용되는 상기 할로겐 화합물로는, 예를 들면, I2, Br2, IBr 등과 같은 할로겐 분자, CH3I, CH3Br, CH3CH2Br, BrCH2CH2Br 등과 같은 알킬할라이드 화합물, CH3COCl, PhCOCl(Ph=페닐), Ph(COCl)2 등과 같은 아실할라이드 화합물, LiCl, LiBr, LiI, MgCl2, MgBr2, MgI2, CaCl2, CaBr2, CaI2 등과 같은 알칼리 금속 또는 알칼리토금속 할라이드 화합물, TiCl4, TiBr4, TiI4, ZrCl4, ZrBr4, ZrI4, HfCl4, HfBr4, HfI4, CrCl3, MoCl3, WCl3, FeCl2, FeBr2, NiCl2, NiBr2, NiI2, PdCl2, PdBr2, PdI2, PtCl2, PtBr2, PtI2, ZnCl2, AgCl2, AgBr2, AgI2, CuCl2, CuBr2, CuI2, HgCl2 등과 같은 전이금속 할라이드 화합물 및 LaCl3, LaBr3, LaI3, CeCl3, CeBr3, CeI3, PrCl3, PrBr3, PrI3, NdCl3, NdBr3, NdI3, PmCl3, PmBr3, PmI3, SmCl3, SmI3, SmI2, GaCl3, EuCl3, TbCl3, DyCl3, HoCl3, ErCl3, TmCl3, YbCl3, LuCl3 등의 란탄족 및 악틴족 금속을 포함하는 금속 할라이드 화합물, 일반식 AlClm(OR)3-m(여기에서, R은 탄소수 1~10의 탄화수소기이고, m은 1~3의 자연수이다)로 표시되는 알루미늄 할라이드 화합물, 및 일반식 SiCln(OR)4-n(여기에서, R은 탄소수 1~10의 탄화수소기이고, n은 1~4의 자연수이다)로 표시되는 실리콘 할라이드 화합물로부터 선택되는 1종 또는 2종 이상을 단독 또는 혼합하여 사용하는 것이 바람직하며, 특히  MgCl2, MgBr2, MgI2 등과 같은 마그네슘할라이드 화합물 을 1종 또는 2종 이상을 단독 또는 혼합하여 사용하는 것이 보다 바람직하다.As the halogen compound used as a reaction initiator in the carrier preparation method of the present invention, for example, halogen molecules such as I 2 , Br 2 , IBr, CH 3 I, CH 3 Br, CH 3 CH 2 Br, BrCH 2 Alkyl halide compounds such as CH 2 Br and the like, acyl halide compounds such as CH 3 COCl, PhCOCl (Ph = phenyl), Ph (COCl) 2 , LiCl, LiBr, LiI, MgCl 2 , MgBr 2 , MgI 2 , CaCl 2 , CaBr 2 , alkali or alkaline earth metal halide compounds such as CaI 2 , TiCl 4 , TiBr 4 , TiI 4 , ZrCl 4 , ZrBr 4 , ZrI 4 , HfCl 4 , HfBr 4 , HfI 4 , CrCl 3 , MoCl 3 , WCl 3 , FeCl 2, FeBr 2, NiCl 2 , NiBr 2, NiI 2, PdCl 2, PdBr 2, PdI 2, PtCl 2, PtBr 2, PtI 2, ZnCl 2, AgCl 2, AgBr 2, AgI 2, CuCl 2, CuBr 2 Transition metal halide compounds such as, CuI 2 , HgCl 2, etc. and LaCl 3 , LaBr 3 , LaI 3 , CeCl 3 , CeBr 3 , CeI 3 , PrCl 3 , PrBr 3 , PrI 3 , NdCl 3 , NdBr 3 , NdI 3 , PmCl 3 , PmBr 3 , PmI 3 , SmCl 3 , SmI 3 , SmI 2 , GaCl 3 , EuCl 3 , TbCl 3 , Metal halide compounds containing lanthanide and actinic metals such as DyCl 3 , HoCl 3 , ErCl 3 , TmCl 3 , YbCl 3 , LuCl 3 , and general formula AlCl m (OR) 3-m , where R is 1 carbon An aluminum halide compound represented by -10 hydrocarbon group, m is a natural number of 1 to 3, and general formula SiCl n (OR) 4-n , wherein R is a hydrocarbon group of 1 to 10 carbon atoms, n Is one or two or more selected from the silicon halide compounds represented by 1 to 4), and preferably a magnesium halide compound such as MgCl 2 , MgBr 2 , MgI 2, or the like. It is more preferable to use species or two or more kinds alone or in combination.

상기 할로겐 화합물의 사용량은, 금속 마그네슘과 반응시켜, MgX(I)가 형성되는 몰수로 사용하여야 하며, 그렇지 않을 경우 반응속도가 너무 느리거나, 또는 생성물의 입자크기가 너무 커지거나 미세입자가 다량 생성될 수 있으므로 바람직하지 않다. 예를 들어, 할로겐 화합물로서 I2, Br2와 같은 할로겐 분자를 사용할 경우에는 Mg 1몰 당 2몰의 할로겐 원자가 반응하게 되므로, Mg 1몰당 0.5몰의 할로겐 분자를 반응시켜야 하고, MgCl2와 같은 할로겐 화합물을 사용하는 경우에는 Mg 1몰당 MgCl2 1몰을 반응시켜야 MgCl(I)가 생성되므로, 이 경우에는 금속마그네슘과 할로겐 화합물을 동일 몰수로 반응시켜야 한다. 사용되는 할로겐 화합물의 종류에 따라, 금속마그네슘과의 반응에 의해 MgX(I)을 얻기 위한 할로겐 화합물의 사용량(몰수)은 당분야의 통상의 지식을 가진 자라면 용이하게 결정할 수 있을 것이다. The amount of the halogen compound should be used as the number of moles in which MgX (I) is formed by reacting with the metal magnesium, otherwise the reaction rate is too slow, or the particle size of the product is too large or a large amount of fine particles are generated. It is not desirable because it can be. For example, when using a halogen molecule such as I 2 or Br 2 as a halogen compound, since 2 mol of halogen atoms react per mol of Mg, 0.5 mol of halogen molecules should be reacted per mol of Mg, and MgCl 2 In the case of using a halogen compound, MgCl 2 is produced only by reacting 1 mol of MgCl 2 per mol of Mg. In this case, the metal magnesium and the halogen compound must be reacted in the same mole number. Depending on the type of halogen compound used, the amount (molar number) of the halogen compound for obtaining MgX (I) by reaction with metal magnesium may be easily determined by those skilled in the art.

본 발명의 담체 제조방법에 있어서, 상기 할로겐 화합물과 금속 마그네슘의 반응은 알코올의 존재하에 수행되는 것이 바람직하고, 상기 할로겐 화합물과 금속 마그네슘을 반응시킬 때의 반응온도는 25~110℃인 것이 바람직하고, 25~75℃인 것이 더욱 바람직한데, 반응온도가 25℃ 미만이면 반응이 너무 느려져 바람직하지 않고, 110℃를 초과하면 반응이 너무 급격하게 일어나 미세입자의 양이 급격히 증가하여 바람직하지 않고, 또한 입자의 뭉침 현상이 일어나 원하는 크기의 균일한 구형 담체를 얻을 수 없어 바람직하지 않다. In the carrier production method of the present invention, the reaction of the halogen compound and the metal magnesium is preferably carried out in the presence of alcohol, the reaction temperature of the reaction of the halogen compound and the metal magnesium is preferably 25 ~ 110 ℃. It is more preferable that the reaction temperature is less than 25 ° C, but the reaction is too slow because the reaction temperature is less than 25 ° C. Agglomeration of particles occurs, which is not preferable because a uniform spherical carrier of a desired size cannot be obtained.

본 발명의 담체의 제조방법은 상기 할로겐 화합물과 금속 마그네슘의 반응에 의해 MgX(I)(여기서, X= 할로겐 원자)를 생성시킨 후, 금속 마그네슘과 알코올을 다시 투입하여 상기 MgX(I)의 존재하에 금속 마그네슘과 알코올의 반응을 진행하게 되는데, 이 반응에서 상기 MgX(I)는 금속 마그네슘과 알코올과의 반응에 촉매로서 작용하며, 이 때 사용되는 알코올로는, 예를 들면, 메탄올, 에탄올, 노말프로판올, 이소프로판올, 노말부탄올, 이소부탄올, 노말펜탄올, 이소펜탄올, 네오펜탄올, 시클로펜탄올 및 시클로헥산올 등과 같이 일반식 -ROH(여기에서, R은 탄소수 1~6의 알킬기이다)로 표시되는 지방족 알코올 및 페놀과 같은 방향족 알코올로부터 선택되는 1종 이상의 알코올을 혼합하여 사용하는 것이 바람직하고, 메탄올, 에탄올, 프로판올 및 부탄올로부터 선택된 1종 이상을 혼합하여 사용하는 것이 보다 바람직하며, 에탄올을 사용하는 것이 가장 바람직하며, 상기 2종 이상의 알코올의 혼합비율에는 특별한 제한이 없다.In the method for preparing a carrier of the present invention, MgX (I) (herein, X = halogen atom) is generated by the reaction of the halogen compound with the metal magnesium, and then the metal magnesium and the alcohol are added again to present the MgX (I). Under the reaction of the metal magnesium and alcohol, the MgX (I) acts as a catalyst in the reaction between the metal magnesium and the alcohol, for example, methanol, ethanol, General formula -ROH, wherein R is an alkyl group having 1 to 6 carbon atoms, such as normal propanol, isopropanol, normal butanol, isobutanol, normal pentanol, isopentanol, neopentanol, cyclopentanol, and cyclohexanol. It is preferable to use a mixture of one or more alcohols selected from aliphatic alcohols represented by the above and aromatic alcohols such as phenol, and may be selected from methanol, ethanol, propanol and butanol. 1 is more preferable to use a mixture of more thereof, and is most preferable to use ethanol, and there is no particular limitation on the mixing ratio of the two or more kinds of alcohol.

본 발명의 담체의 제조방법에 있어서, 상기 금속 마그네슘과 알코올의 반응시에 사용되는 금속 마그네슘에 대한 상기 알코올의 사용비는, 금속 마그네슘 중량:알코올 부피로 1:5~1:50인 것이 바람직하며, 1:7~1:20인 것이 보다 바람직한데, 상기 사용비가 1:5 미만이면 슬러리의 점도가 급격히 증가하여 균일한 교반이 어렵게 되어 바람직하지 않고, 1:50을 초과하면 생성되는 담체의 겉보기 밀도가 급격히 감소하거나 입자표면이 거칠어지는 문제가 발생하여 바람직하지 않다.In the preparation method of the carrier of the present invention, the use ratio of the alcohol to the metal magnesium used in the reaction of the metal magnesium with the alcohol is preferably 1: 5 to 1:50 in the metal magnesium weight: alcohol volume. , 1: 7 to 1:20, more preferably, the use ratio is less than 1: 5, the viscosity of the slurry is rapidly increased to uniform stirring is difficult, it is not preferable, if the ratio exceeds 1:50 the apparent of the resulting carrier This is undesirable because of the sharp decrease in density or roughness of the particle surface.

상기 금속 마그네슘과 알코올과의 반응온도는 60~110℃인 것이 바람직하며, 70~90℃인 것이 더욱 바람직하고, 또한, 알코올의 끓는점 온도에서 냉각환류시키면서 반응시킬 수도 있다.It is preferable that the reaction temperature of the said metal magnesium and alcohol is 60-110 degreeC, It is more preferable that it is 70-90 degreeC, In addition, it can also make it react, refluxing at the boiling point temperature of alcohol.

본 발명의 담체의 제조방법은 균일한 입도분포의 구형입자모양을 갖고, 5㎛ 이하의 미세입자 및 100㎛ 이상의 거대 입자수를 현격히 감소시켜서, 생성된 담체의 상업적 적용을 가능하게 한다.The preparation method of the carrier of the present invention has a spherical particle shape with a uniform particle size distribution, and greatly reduces the number of microparticles of 5 μm or less and large particles of 100 μm or more, thereby enabling commercial application of the resulting carrier.

이하 실시예 및 비교예에 의해 본 발명을 상세히 설명하나, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

실시예 1Example 1

교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기(반응기 A)를 질소로 충분히 환기시킨 다음, 반응개시제로서 염화마그네슘 3.0g(32mmol), 금속마그네슘(평균입경 100㎛인 분말제품) 0.77g(32mmol), 무수 에탄올 100ml를 투입하고, 교반속도를 200rpm으로 작동하면서 반응기의 온도를 78℃로 올려 에탄올이 환류되는 상태를 유지하였다. 약 5분이 경과하여 MgCl(I)생성 후, 금속 마그네슘(평균입경이 100㎛인 분말형 제품) 20g과 에탄올 200ml를 투입하고 20분간 반응시켰다. 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져 나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지한다. 수소 발생이 끝나면, 금속마그네슘(평균입경 100㎛인 분말제품) 20g을 무수에탄올 500mL에 현탁시켜 농도가 균일해지도록 교반시키면서 매 30분 마다 3회로 나누어 반응기 A에 투입하였다. 반응기 A에 금속마그네슘과 에탄올 혼합물을 투입하기 시작하여 약 5분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져 나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지하였다. 금속 마그네슘과 에탄올의 주입이 모두 끝나면 반응기 A의 온도 및 교반속도를 환류상태로 2시간 동안 유지하였다(숙성처리). 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 278g(수율 98.4%)을 얻었다.Ventilate the 5 L sized reactor (reactor A) equipped with a stirrer, oil heater and cooling reflux with nitrogen sufficiently, and then use magnesium chloride 3.0 g (32 mmol) and metal magnesium (powder product with an average particle diameter of 100 μm) as a reaction initiator. g (32 mmol) and 100 ml of anhydrous ethanol were added thereto, and the temperature of the reactor was raised to 78 ° C. while maintaining the stirring speed at 200 rpm. After about 5 minutes, MgCl (I) was generated, and 20 g of metal magnesium (powder product having an average particle diameter of 100 µm) and 200 ml of ethanol were added and reacted for 20 minutes. Since the hydrogen is generated as the reaction starts, the outlet of the reactor is left open so that the generated hydrogen is released, thereby maintaining the pressure in the reactor at atmospheric pressure. After the generation of hydrogen, 20 g of metal magnesium (powder product having an average particle diameter of 100 µm) was suspended in 500 mL of anhydrous ethanol, and added to Reactor A, which was divided into three times every 30 minutes while stirring to make the concentration uniform. After about 5 minutes of injecting the mixture of metal magnesium and ethanol into the reactor A, the reaction starts and hydrogen is generated. Therefore, the outlet of the reactor was left open so that the generated hydrogen was released, and the pressure was maintained at atmospheric pressure. . After the injection of both metal magnesium and ethanol, the temperature and stirring speed of reactor A were maintained at reflux for 2 hours (aging treatment). After the aging treatment was completed, the resultant was washed three times using 2,000 ml of normal hexane per wash at 50 ° C. The washed resultant was dried under flowing nitrogen for 24 hours to obtain 278 g (yield 98.4%) of a solid white powdery product.

건조된 생성물의 입자 모양을 전자현미경으로 관찰하였고, 겉보기 밀도를 측정하였다. 또한, 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정하여 입자크기의 누적분포도를 얻었고, 이로부터 입자의 평균입경, 입도분포지수 및 거대입자의 함량을 하기와 같이 결정하였다.The particle shape of the dried product was observed by electron microscope and the apparent density was measured. In addition, the particle size of the dried product suspended in normal hexane was measured by a light transmission method using a laser particle analyzer (Mastersizer X: manufactured by Malvern Instruments) to obtain a cumulative distribution of particle size, from which the average particle diameter , The particle size distribution index and the content of the macroparticles were determined as follows.

① 평균입경(D50) : 누적중량 50%에 해당되는 입자의 크기① Average particle size (D 50 ): Size of particles corresponding to 50% cumulative weight

② 입도분포지수(P) : P = (D90-D10)/D50 ② Particle size distribution index (P): P = (D 90 -D 10 ) / D 50

(여기에서, D90은 누적중량 90%에 해당되는 입자의 크기이고, D10은 누적중량 10%에 해당되는 입자의 크기이다)(Wherein D 90 is the particle size equivalent to 90% cumulative weight and D 10 is the size particle equivalent to 10% cumulative weight)

③ 거대입자 함량: 입경이 100㎛ 이상인 입자의 누적중량 퍼센트(%)③ Large Particle Content: Cumulative weight percentage (%) of particles with a particle size of 100㎛ or more

상기의 관찰, 측정 및 결정된 결과들을 표 1에 나타내었다.The above observed, measured and determined results are shown in Table 1.

실시예 2Example 2

반응개시제로서 요오드(I2) 4g(16mmol)을, 금속 마그네슘 0.766g(32 mmol),  무수 에탄올 100ml와 함께 반응기 A에 투입한 것을 제외하고는, 상기의 실시예 1과 동일한 방법으로 실시하여, 흐름성이 매우 좋은 백색 분말상의 고체 생성물 274g(수율 97.0%)을 얻었고, 실시예 1과 동일한 방법으로, 관찰, 측정 및 결정된 결과들을 표 1에 나타내었다.4 g (16 mmol) of iodine (I 2 ) was added to Reactor A together with 0.766 g (32 mmol) of metal magnesium and 100 ml of anhydrous ethanol as the reaction initiator, in the same manner as in Example 1, 274 g (yield 97.0%) of solid product having a very good flowability in white powdery form were obtained, and the results observed, measured and determined in the same manner as in Example 1 are shown in Table 1.

실시예 3Example 3

반응개시제로서 마그네슘브로마이드(MgBr2) 8.0g(32mmol)을,  금속 마그네슘 0.766g(32 mmol), 무수 에탄올 100ml와 함께 반응기 A에 투입한 것을 제외하고는, 상기의 실시예 1과 동일한 방법으로 실시하여, 흐름성이 매우 좋은 백색 분말상의 고체 생성물 270g(수율 95.6%)을 얻었고, 실시예 1과 동일한 방법으로, 관찰, 측정 및 결정된 결과들을 표 1에 나타내었다.As a reaction initiator, 8.0 g (32 mmol) of magnesium bromide (MgBr 2 ) was added to Reactor A together with 0.766 g (32 mmol) of metal magnesium and 100 ml of anhydrous ethanol. Thus, 270 g (yield 95.6%) of solid product having a very good flowability in white powdery form was obtained, and the results observed, measured and determined in the same manner as in Example 1 are shown in Table 1.

실시예 4Example 4

반응개시제로서 브롬(Br2) 2.5g(16mmol)을, 금속 마그네슘 0.766g(32mmol), 무수 에탄올 100ml와 함께 반응기 A에 투입한 것을 제외하고는, 상기의 실시예 1과 동일한 방법으로 실시하여, 유동성이 매우 좋은 백색 분말상의 고체 생성물 272g(수율 96.3%)을 얻었고, 실시예 1과 동일한 방법으로, 관찰, 측정 및 결정된 결과들을 표 1에 나타내었다.In the same manner as in Example 1, except that 2.5 g (16 mmol) of bromine (Br 2 ) was added to Reactor A together with 0.766 g (32 mmol) of metal magnesium and 100 ml of anhydrous ethanol as a reaction initiator. 272 g (yield 96.3%) of solid powder having a very good flowability was obtained, and the results observed, measured and determined in the same manner as in Example 1 are shown in Table 1.

실시예 5Example 5

반응개시제로서 요오드화메탄(CH3I) 4.56g(32mmol)을, 금속 마그네슘 0.766g(32 mmol), 무수 에탄올 100ml와 함께 반응기 A에 투입한 것을 제외하고는,  상기의 실시예 1와 동일한 방법으로 실시하여, 유동성이 매우 좋은 백색 분말상의 고체 생성물 280g(수율 99.1%)을 얻었고, 실시예 1과 동일한 방법으로, 관찰, 측정 및 결정된 결과들을 표 1에 나타내었다.In the same manner as in Example 1, except that 4.56 g (32 mmol) of methane iodide (CH 3 I) was added to the reactor A together with 0.766 g (32 mmol) of metal magnesium and 100 ml of anhydrous ethanol as a reaction initiator. It was carried out to obtain 280 g (yield 99.1%) of a white powdery solid product having very good flowability, and the results observed, measured, and determined in the same manner as in Example 1 are shown in Table 1.

비교예Comparative example

교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, 요오드 3g, 무수 에탄올 1800ml를 투입하고, 교반기를 200rpm으로 작동하면서 반응기의 온도를 78℃로 올려 에탄올이 환류되는 상태를 유지하였다. 다음으로, 에탄올이 환류되고 있는 반응기에 금속 마그네슘(평균입경이 100㎛인 분말형 제품) 120g을 20분 간격으로 20g씩 6번으로 나누어 투입하였다. 금속 마그네슘 120g이 모두 투입된 후에는 에탄올이 환류되는 조건에서 2시간 동안 동일한 교반속도를 유지하였다(숙성처리). 숙성처리가 끝난 후, 40℃에서 세정 1회당 노말헥산 2000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소하에서 24시간 동안 건조시켜 백색 분말상의 고체 생성물 565g(수율 99%)을 얻었고, 실시예 1과 동일한 방법으로, 관찰, 측정 및 결정된 결과들을 표 1에 나타내었다.After fully ventilating a 5L sized reactor equipped with a stirrer, an oil heater and a cooling reflux with nitrogen, add 3 g of iodine (3 g) and 1800 ml of anhydrous ethanol, and operate the stirrer at 200 rpm to raise the temperature of the reactor to 78 ° C. to reflux the ethanol. Was maintained. Next, 120 g of metal magnesium (powdery product having an average particle diameter of 100 µm) was added to the reactor in which ethanol was refluxed, divided into six portions of 20 g at 20 minute intervals. After all 120 g of the metal magnesium was added, the same stirring speed was maintained for 2 hours under the condition of reflux of ethanol (aging treatment). After the aging treatment was completed, the resultant was washed three times using 2000 ml of normal hexane per wash at 40 ° C. The washed product was dried under flowing nitrogen for 24 hours to obtain 565 g (99% yield) of a white powdery solid product, and the same results as in Example 1 were shown in Table 1 for the observed, measured, and determined results.

표 1TABLE 1

  입자모양Particle shape 겉보기 밀도
(g/cc)
Apparent density
(g / cc)
평균입경
(D50, ㎛)
Average particle diameter
(D 50 , μm)
입도분포지수Particle size distribution index 거대입자 양(중량%)
(size>75㎛)
Large particle amount (% by weight)
(size> 75㎛)
실시예 1Example 1 구형rectangle 0.280.28 4242 0.750.75 7.77.7 실시예 2Example 2 구형rectangle 0.300.30 3535 0.690.69 8.38.3 실시예 3Example 3 구형rectangle 0.310.31 2727 0.880.88 5.75.7 실시예 4Example 4 구형rectangle 0.300.30 2222 0.820.82 6.96.9 실시예 5Example 5 구형rectangle 0.270.27 3030 0.960.96 10.310.3 비교예Comparative example 거친구형Rough sphere 0.300.30 3232 1.451.45 25.425.4

표 1에 나타난 바와 같이, 실시예 1~5는 입자모양이 매끄러운 구형이고, 입도분포가 균일하며, 거대입자 함량은 약 5~10중량%로서 거대입자 함량이 25.0중량% 이상인 비교예 보다 현격하게 적음을 알 수 있다.As shown in Table 1, Examples 1 to 5 have a smooth spherical particle shape, uniform particle size distribution, and have a large particle content of about 5 to 10 wt%, which is more noticeable than a comparative example having a large particle content of 25.0 wt% or more. It can be seen that less.

Claims (4)

금속 마그네슘과 알코올을 반응시키는 단계를 포함하는 올레핀 중합 촉매용 구형 담체의 제조방법에 있어서, 반응 개시제로서 할로겐 화합물을 금속 마그네슘과 먼저 반응시켜 MgX(I)(여기에서, X= 할로겐 원자)를 제조한 후, 상기 MgX(I)의 존재하에 금속 마그네슘과 알코올을 투입하여 반응시키는 것을 특징으로 하는 올레핀 중합 촉매용 구형 담체의 제조방법.In the method for producing a spherical carrier for an olefin polymerization catalyst comprising reacting a metal magnesium with an alcohol, a MgX (I) (here, X = halogen atom) is prepared by first reacting a halogen compound with a metal magnesium as a reaction initiator. After that, the method of producing a spherical carrier for an olefin polymerization catalyst, characterized in that the reaction with a metal magnesium and alcohol in the presence of the MgX (I). 제 1항에 있어서, 상기 할로겐 화합물은 할로겐 분자, 알킬할라이드 화합물, 아실할라이드 화합물, 알칼리 금속 또는 알칼리토금속 할라이드 화합물, 전이금속 할라이드 화합물, 란탄족 및 악틴족 금속을 포함하는 금속 할라이드 화합물, 알루미늄 할라이드 화합물, 및 실리콘 할라이드 화합물로부터 선택되는 1종 이상인 것을 특징으로 하는 올레핀 중합 촉매용 구형 담체의 제조방법.The metal halide compound of claim 1, wherein the halogen compound comprises a halogen molecule, an alkyl halide compound, an acyl halide compound, an alkali metal or alkaline earth metal halide compound, a transition metal halide compound, a lanthanide and an actin group metal. And at least one selected from a silicon halide compound. 제 1항에 있어서, 상기 알코올은 일반식 ROH(여기에서, R은 탄소수 1~6의 알킬기이다)로 표시되는 지방족 알코올 및 방향족 알코올로부터 선택되는 1종 이상인 것을 특징으로 하는 올레핀 중합 촉매용 구형 담체의 제조방법.The spherical carrier for an olefin polymerization catalyst according to claim 1, wherein the alcohol is at least one selected from aliphatic alcohols and aromatic alcohols represented by general formula ROH (wherein R is an alkyl group having 1 to 6 carbon atoms). Manufacturing method. 제 1항에 있어서, 상기 금속 마그네슘에 대한 상기 알코올의 사용비는, 금속 마그네슘의 중량:알코올 부피로 1:5~1:50인 것을 특징으로 하는 올레핀 중합 촉매 용 구형 담체의 제조방법.The method for producing a spherical carrier for an olefin polymerization catalyst according to claim 1, wherein the use ratio of the alcohol to the metal magnesium is 1: 5 to 1:50 by weight: alcohol volume of the metal magnesium.
KR1020080123250A 2008-12-05 2008-12-05 Method of preparation of spherical support for olefin polymerization catalyst KR101072750B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080123250A KR101072750B1 (en) 2008-12-05 2008-12-05 Method of preparation of spherical support for olefin polymerization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080123250A KR101072750B1 (en) 2008-12-05 2008-12-05 Method of preparation of spherical support for olefin polymerization catalyst

Publications (2)

Publication Number Publication Date
KR20100064693A KR20100064693A (en) 2010-06-15
KR101072750B1 true KR101072750B1 (en) 2011-10-11

Family

ID=42364261

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080123250A KR101072750B1 (en) 2008-12-05 2008-12-05 Method of preparation of spherical support for olefin polymerization catalyst

Country Status (1)

Country Link
KR (1) KR101072750B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233879A (en) 1999-12-15 2001-08-28 Idemitsu Petrochem Co Ltd Magnesium compound, olefin polymerization catalyst and method for producing olefin polymer
JP2003342215A (en) 2002-05-24 2003-12-03 Idemitsu Petrochem Co Ltd Magnesium compound, solid catalyst component for polymerizing olefin, catalyst for polymerizing olefin and method for producing polyolefin
KR100822610B1 (en) 2006-12-28 2008-04-16 삼성토탈 주식회사 Method for preparation of spherical support for olefin polymerization catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233879A (en) 1999-12-15 2001-08-28 Idemitsu Petrochem Co Ltd Magnesium compound, olefin polymerization catalyst and method for producing olefin polymer
JP2003342215A (en) 2002-05-24 2003-12-03 Idemitsu Petrochem Co Ltd Magnesium compound, solid catalyst component for polymerizing olefin, catalyst for polymerizing olefin and method for producing polyolefin
KR100822610B1 (en) 2006-12-28 2008-04-16 삼성토탈 주식회사 Method for preparation of spherical support for olefin polymerization catalyst

Also Published As

Publication number Publication date
KR20100064693A (en) 2010-06-15

Similar Documents

Publication Publication Date Title
KR100624027B1 (en) Method of preparation of spherical support for olefin polymerization catalyst
KR100807895B1 (en) Method for preparation of spherical support for olefin polymerization catalyst
KR20100007076A (en) Method for controlling size of spherical support for olefin polymerization catalyst
US9505855B2 (en) Catalyst system for the polymerization of olefins
KR100822610B1 (en) Method for preparation of spherical support for olefin polymerization catalyst
KR101140112B1 (en) A preparation method of dialkoxymagnesium support for catalyst for olefin polymerization, a preparation method of catalyst for olefin polymerization using the same and a polymerization method of olefin using the same
US9988475B2 (en) Method for producing one or more ethylene-based polymers
KR101053311B1 (en) Process for producing spherical carrier for olefin polymerization catalyst
KR101262512B1 (en) Method of preparation of spherical support and solid catalyst for olefin polymerization, and method of preparation of propylene polymers using the catalyst
CN102272169B (en) Catalyst components for the polymerization of olefins and catalysts therefrom obtained
KR20120006719A (en) Method of preparation of spherical support and solid catalyst for olefin polymerization, and propylene polymers obtained using the support
KR101072750B1 (en) Method of preparation of spherical support for olefin polymerization catalyst
KR101053297B1 (en) Process for producing spherical carrier for olefin polymerization catalyst
CN109438595A (en) A kind of ethene gas-phase polymerization slurry type catalyst and preparation method thereof
KR100583629B1 (en) Method of preparation of spherical support for olefin polymerization catalyst
JP2010538105A (en) Method for producing spherical carrier for olefin polymerization catalyst
KR101169861B1 (en) Method of preparation of spherical support and solid catalyst for olefin polymerization using the support
KR101309457B1 (en) Method of preparation of spherical support and solid catalyst for olefin polymerization, and method of preparation of propylene polymers using the catalyst
KR100954056B1 (en) Method of preparation of spherical support for olefin polymerization catalyst
KR102071747B1 (en) Modified ziegler natta catalyst for propylene polymerization
KR100833777B1 (en) Method for preparation of spherical support for olefin polymerization catalyst
US20160340453A1 (en) A polyolefin composition and method of producing the same
CN115838447B (en) Catalyst component for olefin polymerization, preparation method and application thereof, catalyst and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160927

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170920

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180905

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190923

Year of fee payment: 9