[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101045163B1 - Method for fabricating silicon antireflection film using metal nano particle - Google Patents

Method for fabricating silicon antireflection film using metal nano particle Download PDF

Info

Publication number
KR101045163B1
KR101045163B1 KR1020100053350A KR20100053350A KR101045163B1 KR 101045163 B1 KR101045163 B1 KR 101045163B1 KR 1020100053350 A KR1020100053350 A KR 1020100053350A KR 20100053350 A KR20100053350 A KR 20100053350A KR 101045163 B1 KR101045163 B1 KR 101045163B1
Authority
KR
South Korea
Prior art keywords
metal
film
metal nanoparticles
antireflection film
silicon
Prior art date
Application number
KR1020100053350A
Other languages
Korean (ko)
Inventor
오범환
김보순
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020100053350A priority Critical patent/KR101045163B1/en
Application granted granted Critical
Publication of KR101045163B1 publication Critical patent/KR101045163B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE: A method for manufacturing a silicon antireflection film using metal nano-particles is provided to control the reflectivity by adjust the sizes of the metal nano-particles. CONSTITUTION: A metal film(101) is formed on a silicon substrate(100) by depositing metal containing god and silver. The thickness of the metal film is between about 1 and 8nm. The diameter of the metal film is between 20 and 60nm. Metal nano-particles are formed based on a self-collecting method by thermally treating the metal film. The silicon substrate is etched using the metal nano-particles as catalyst.

Description

금속 나노 입자를 이용한 실리콘 무반사막의 제조 방법{METHOD FOR FABRICATING SILICON ANTIREFLECTION FILM USING METAL NANO PARTICLE}Method for producing silicon antireflective film using metal nanoparticles {METHOD FOR FABRICATING SILICON ANTIREFLECTION FILM USING METAL NANO PARTICLE}

본 발명의 실시예들은 자가 집합된 금속 나노 입자를 이용한 실리콘 무반사막의 제조 방법에 관한 것이다.Embodiments of the present invention are directed to a method of manufacturing a silicon antireflective film using self-assembled metal nanoparticles.

최근 들어, 태양 전지의 많은 보급과 더불어 빛을 가두는 라이트 트랩 기술에 대한 연구가 널리 진행되고 있다.In recent years, with the widespread use of solar cells, research on the light trap technology that traps light has been widely conducted.

라이트 트랩을 위한 표면의 텍스쳐는 태양 전지에서 광 흡수도의 증가를 향상시키기 위해 사용되며 대부분의 표면 물질로 실리콘이 사용되고 있다. 일반적으로, 폴리싱(polishing)된 실리콘의 표면은 가시광 대역에서 약 50%의 반사율을 가진다. 실리콘의 표면을 가시광의 파장 대역보다 작은 반지름을 가진 주기적인 구조로 가공시켜 가시광 대역에서의 반사율이 거의 0%가 되도록 하여 광 흡수도를 증가시키고, 이렇게 가공된 것을 블랙 실리콘이라 한다.Surface textures for light traps are used to improve the increase in light absorption in solar cells and silicon is used as most surface material. In general, the surface of the polished silicon has a reflectance of about 50% in the visible light band. The surface of the silicon is processed into a periodic structure having a radius smaller than the wavelength band of visible light so that the reflectance in the visible light band is almost 0% to increase the light absorbency, and thus processed is called black silicon.

여기서, 블랙 실리콘의 제조 기술로는 비등방성을 이용한 화학적 습식 식각(chemical wet etching), 레이저 스트럭처링(laser structuring) 등이 있으나, 보다 제조 시간이 적게 소요되고, 용이한 기술로 블랙 실리콘을 생성하는 기술이 필요하다.Here, the manufacturing techniques of black silicon include chemical wet etching using anisotropy, laser structuring, etc., but it takes less manufacturing time and produces black silicon using an easy technique. Skill is needed.

본 발명은 자가 집합된 금속 나노 입자를 촉매로 이용한, 습식 식각을 통해 실리콘 무반사막을 용이하게 제조하는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for easily manufacturing a silicon antireflection film through wet etching using self-assembled metal nanoparticles as a catalyst.

또한, 본 발명은 금속 나노 입자의 크기 조절을 통해, 반사율을 조절하여 실리콘 막을 용이하게 제조하는 방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for easily manufacturing a silicon film by controlling the reflectance through the size control of the metal nanoparticles.

본 발명의 실시예에 따른 금속 나노 입자를 이용한 무반사막의 제조 방법은 실리콘 기판 상에 금속막을 형성하는 단계와, 상기 금속막을 열처리하여, 자가 집합을 통해 금속 나노 입자를 생성하는 단계와, 상기 금속 나노 입자를 이용하여 상기 실리콘 기판을 식각하는 단계를 포함한다.According to an embodiment of the present invention, a method of manufacturing an antireflection film using metal nanoparticles includes forming a metal film on a silicon substrate, heat treating the metal film to generate metal nanoparticles through self-assembly, and the metal Etching the silicon substrate using the nanoparticles.

본 발명의 실시예에 따르면, 자가 집합된 금속 나노 입자를 촉매로 이용한, 습식 식각을 통해 무반사막을 용이하게 제조하는 방법을 제공할 수 있다.According to an embodiment of the present invention, it is possible to provide a method for easily preparing an antireflection film through wet etching using self-assembled metal nanoparticles as a catalyst.

또한, 본 발명의 실시예에 따르면, 금속 나노 입자의 크기 조절을 통해, 반사율을 조절하여 실리콘 막을 용이하게 제조하는 방법을 제공할 수 있다.In addition, according to an embodiment of the present invention, by adjusting the size of the metal nanoparticles, it is possible to provide a method for easily manufacturing a silicon film by controlling the reflectance.

도 1 내지 도 3은 본 발명의 일실시예에 따른 금속 나노 입자를 이용한 무반사막의 제조 방법을 순차적으로 도시한 단면도들이다.
도 4는 금으로 형성된 금속막을 이용한 무반사막을 나타내는 도면이다.
도 5는 은으로 형성된 금속막을 이용한 무반사막을 나타내는 도면이다.
1 to 3 are cross-sectional views sequentially illustrating a method of manufacturing an anti-reflective film using metal nanoparticles according to an embodiment of the present invention.
4 is a view showing an antireflection film using a metal film formed of gold.
5 is a view showing an antireflection film using a metal film formed of silver.

이하, 첨부된 도면들을 참조하여 본 발명의 일실시예에 따른 금속 나노 입자를 이용한 무반사막의 제조 방법에 대해 상세히 설명한다. 여기서, 무반사막은 예컨대, 가시 광 대역에서의 반사율이 거의 0 %가 되도록 가공된 블랙 실리콘이다.Hereinafter, a method of manufacturing an antireflection film using metal nanoparticles according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Here, the antireflective film is, for example, black silicon processed so that the reflectance in the visible light band becomes almost 0%.

도 1 내지 도 3은 본 발명의 일실시예에 따른 금속 나노 입자를 이용한 무반사막의 제조 방법을 순차적으로 도시한 단면도들이다.1 to 3 are cross-sectional views sequentially illustrating a method of manufacturing an anti-reflective film using metal nanoparticles according to an embodiment of the present invention.

도 1에 도시된 바와 같이, 실리콘 기판(100) 상에 금속막(101)을 형성한다.As shown in FIG. 1, the metal film 101 is formed on the silicon substrate 100.

여기서, 실리콘 기판(100)은 SOI(Silicon On Insulator) 기판일 수 있다.The silicon substrate 100 may be a silicon on insulator (SOI) substrate.

구체적으로, 실리콘 기판(100) 상에 금(Au) 또는 은(Ag) 등의 금속을 예컨대, 스퍼터링(Sputtering) 방식을 통해 증착시켜 금속막(101)을 형성할 수 있다. 여기서, 금속막(101)을 약 1~8㎚의 두께로 형성할 수 있다. 금속막(101)의 두께가 증가 할수록 다음 단계인 열처리 과정에서, 생성되는 금속 나노 입자의 크기가 커짐에 따라, 적당한 크기의 금속 나노 입자를 형성하기 위해, 금속막(101)을 3~5㎚의 두께로 형성하는 것이 바람직하다.Specifically, the metal film 101 may be formed on the silicon substrate 100 by depositing a metal such as gold (Au) or silver (Ag) by, for example, a sputtering method. Here, the metal film 101 can be formed to a thickness of about 1 to 8 nm. As the thickness of the metal film 101 increases, the size of the metal nanoparticles generated during the heat treatment process, which is the next step, increases the size of the metal film 101 to 3 to 5 nm in order to form metal nanoparticles having an appropriate size. It is preferable to form in thickness.

이어서, 도 2에 도시된 바와 같이, 금속막(101)을 예컨대, 어닐링(Annealing) 방식을 통해 열처리하여, 자가 집합을 통해 금속 나노 입자(102)를 생성한다.Subsequently, as shown in FIG. 2, the metal film 101 is heat-treated by, for example, annealing to produce metal nanoparticles 102 through self-assembly.

즉, 열처리를 거치면서 실리콘 기판(100)에 증착된 금속이 자가 집합 특성에 의하여 나노 크기의 입자들로 뭉치게 된다.That is, during the heat treatment, the metal deposited on the silicon substrate 100 is agglomerated into nano-sized particles by self-assembly.

예컨대, 금속막(101)이 금(Au)으로 형성된 경우, 450~500℃의 핫플레이트(hotplate)에서 약 12시간 동안 열처리하여 금속 나노 입자를 안정적으로 형성할 수 있고, 은(Ag)으로 형성되는 경우, 450~500℃의 핫플레이트에서 약 10분의 비교적 짧은 시간 동안 열처리하여, 금속 나노 입자를 형성할 수 있다.For example, when the metal film 101 is formed of gold (Au), the metal nanoparticles may be stably formed by heat treatment for about 12 hours on a hot plate of 450 to 500 ° C., and formed of silver (Ag). If it is, the heat treatment for a relatively short time of about 10 minutes in a hot plate of 450 ~ 500 ℃, it can be formed metal nanoparticles.

이때, 금속막(101)을 열처리하여, 지름이 약 20~60㎚의 금속 나노 입자(102)를 형성할 수 있다. 구체적으로, 약 2㎚의 금속막(101)을 열처리하면, 지름이 약 20㎚인 금속 나노 입자(102)가 형성되고, 약 4㎚의 금속막(101)을 열처리하면, 지름이 약 40㎚인 금속 나노 입자(102)가 형성될 수 있다. 또한, 약 6㎚의 금속막(101)을 열처리하면, 지름이 약 60㎚인 금속 나노 입자(102)가 형성될 수 있다.In this case, the metal film 101 may be heat-treated to form metal nanoparticles 102 having a diameter of about 20 to 60 nm. Specifically, when the metal film 101 of about 2 nm is heat treated, metal nanoparticles 102 having a diameter of about 20 nm are formed, and when the metal film 101 of about 4 nm is heat treated, about 40 nm in diameter. Phosphorus metal nanoparticles 102 may be formed. In addition, when the metal film 101 of about 6 nm is heat-treated, metal nanoparticles 102 having a diameter of about 60 nm may be formed.

이어서, 도 3에 도시된 바와 같이, 금속 나노 입자(102)를 이용하여 실리콘 기판(100)을 식각한다.Subsequently, as illustrated in FIG. 3, the silicon substrate 100 is etched using the metal nanoparticles 102.

구체적으로, 금속 나노 입자(102)를 촉매로 이용하여, 습식 식각(Wet etching)을 통해 실리콘 기판(100)을 식각할 수 있다. 이때, 물(H2O), 과산화수소(H2O2) 및 불화수소(HF)을 10: 5: 1의 비율로 혼합된 식각 용액을 이용하여, 습식 식각을 수행할 수 있다.Specifically, using the metal nanoparticles 102 as a catalyst, the silicon substrate 100 may be etched through wet etching. In this case, wet etching may be performed using an etching solution in which water (H 2 O), hydrogen peroxide (H 2 O 2), and hydrogen fluoride (HF) are mixed at a ratio of 10: 5: 1.

본 발명의 실시예는 자가 집합된 금속 나노 입자를 촉매로 이용한, 습식 식각을 통해 실리콘 무반사막을 용이하게 제조하는 방법을 제공할 수 있다.Embodiments of the present invention may provide a method for easily manufacturing a silicon anti-reflective film through wet etching using self-assembled metal nanoparticles as a catalyst.

본 발명의 실시예는 금속 나노 입자의 크기 조절을 통해, 반사율을 조절하여 실리콘 막을 용이하게 제조하는 방법을 제공할 수 있다.Embodiment of the present invention can provide a method for easily manufacturing a silicon film by controlling the reflectivity through the size control of the metal nanoparticles.

또한, 본 발명의 실시예는 금속막을 이용하는 경우, 적은 시간(예컨대, 30분)을 소요하여 무반사막을 용이하게 제조할 수 있다.In addition, in the embodiment of the present invention, when using a metal film, it takes less time (for example, 30 minutes) can be easily produced an anti-reflective film.

도 4는 금으로 형성된 금속막을 이용한 무반사막을 나타내는 도면이다.4 is a view showing an antireflection film using a metal film formed of gold.

도 4에 도시된 바와 같이, (a)는 금(Au)으로 형성되는 2㎚의 금속막을 열처리한 후 금속 나노 입자를 주사현미경으로 관찰한 것이고, (b)는 식각 공정 후, 금속 나노 입자를 이용하여 형성된 무반사막을 주사현미경으로 관찰된 것을 나타내는 도면이다.As shown in Figure 4, (a) is a heat treatment of the metal film of 2nm formed of gold (Au) and observed the metal nanoparticles by scanning microscope, (b) is a metal nanoparticle after the etching process, It is a figure which shows that the anti-reflective film formed using was observed with the scanning microscope.

도 5는 은으로 형성된 금속막을 이용한 무반사막을 나타내는 도면이다.5 is a view showing an antireflection film using a metal film formed of silver.

도 5에 도시된 바와 같이, (a)는 은(Ag)으로 형성되는 4㎚의 금속막을 열처리한 후 금속 나노 입자를 주사현미경으로 관찰한 것이고, (b)는 식각 공정 후, 금속 나노 입자를 이용하여 형성된 무반사막을 주사현미경으로 관찰된 것을 나타내는 도면이다.As shown in Figure 5, (a) is a heat treatment of the metal film of 4nm formed of silver (Ag) and observed the metal nanoparticles by scanning microscope, (b) is a metal nanoparticle after the etching process, It is a figure which shows that the anti-reflective film formed using was observed with the scanning microscope.

본 발명에서, 식각된 실리콘 기판은 검은 색으로 변하게 되고, 금속 나노 입자의 크기를 크게 벗어나지 않도록 식각되므로, 가시광 대역에서의 반사율이 매우 낮아지게 된다.In the present invention, since the etched silicon substrate is turned black and is etched so as not to deviate greatly from the size of the metal nanoparticles, the reflectance in the visible light band is very low.

이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.

그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

100: 실리콘 기판
101: 금속막
102: 금속 나노 입자
100: silicon substrate
101: metal film
102: metal nanoparticles

Claims (3)

실리콘 기판 상에 금(Au) 또는 은(Ag)을 포함한 금속을, 증착시켜 금속막을 형성하는 단계;
상기 금속막을 열처리하여, 자가 집합을 통해 금속 나노 입자를 생성하는 단계; 및
상기 금속 나노 입자를 이용하여 상기 실리콘 기판을 식각하는 단계
를 포함하는 금속 나노 입자를 이용한 무반사막의 제조 방법.
Depositing a metal including gold (Au) or silver (Ag) on the silicon substrate to form a metal film;
Heat treating the metal film to generate metal nanoparticles through self-assembly; And
Etching the silicon substrate using the metal nanoparticles
Method for producing an antireflection film using a metal nanoparticle comprising a.
제1항에 있어서,
상기 금속 나노 입자를 생성하는 단계는,
설정된 p ㎚ 두께의 금속막을 열처리하여 q nm 지름의 금속 나노 입자를 생성하는 단계
를 포함하는 금속 나노 입자를 이용한 무반사막의 제조 방법.
The method of claim 1,
Generating the metal nanoparticles,
Heat-treating the set p nm-thick metal film to generate metal nanoparticles having a q nm diameter
Method for producing an antireflection film using a metal nanoparticle comprising a.
제2항에 있어서,
상기 p는 1 내지 8의 정수이고, 상기 q는 20 내지 60의 정수인, 금속 나노 입자를 이용한 무반사막의 제조 방법.
The method of claim 2,
P is an integer of 1 to 8, and q is an integer of 20 to 60, the method for producing an antireflection film using metal nanoparticles.
KR1020100053350A 2010-06-07 2010-06-07 Method for fabricating silicon antireflection film using metal nano particle KR101045163B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100053350A KR101045163B1 (en) 2010-06-07 2010-06-07 Method for fabricating silicon antireflection film using metal nano particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100053350A KR101045163B1 (en) 2010-06-07 2010-06-07 Method for fabricating silicon antireflection film using metal nano particle

Publications (1)

Publication Number Publication Date
KR101045163B1 true KR101045163B1 (en) 2011-06-30

Family

ID=44406247

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100053350A KR101045163B1 (en) 2010-06-07 2010-06-07 Method for fabricating silicon antireflection film using metal nano particle

Country Status (1)

Country Link
KR (1) KR101045163B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172809B1 (en) 2010-07-26 2012-08-09 한국전기연구원 Formation method of black semiconductor utilizing the etching
KR101401887B1 (en) * 2012-11-27 2014-05-30 한국생산기술연구원 Solar cell and manufacturing method for the solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080095378A (en) * 2007-04-24 2008-10-29 한양대학교 산학협력단 Method of forming metal nanoparticles and method of fabricating flash memory devices utilizing the same
KR20090077274A (en) * 2008-01-10 2009-07-15 엘지전자 주식회사 Method for fabricating selar cell having semiconductor wafer substrate with nano texturing structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080095378A (en) * 2007-04-24 2008-10-29 한양대학교 산학협력단 Method of forming metal nanoparticles and method of fabricating flash memory devices utilizing the same
KR20090077274A (en) * 2008-01-10 2009-07-15 엘지전자 주식회사 Method for fabricating selar cell having semiconductor wafer substrate with nano texturing structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172809B1 (en) 2010-07-26 2012-08-09 한국전기연구원 Formation method of black semiconductor utilizing the etching
KR101401887B1 (en) * 2012-11-27 2014-05-30 한국생산기술연구원 Solar cell and manufacturing method for the solar cell

Similar Documents

Publication Publication Date Title
Hossain et al. Advances and significances of nanoparticles in semiconductor applications–A review
JP6033687B2 (en) Method for producing photovoltaic cell including pretreatment of the surface of a crystalline silicon substrate
KR101131485B1 (en) Fabricating method of nano structure for antireflection and fabricating method of photo device integrated with antireflection nano structure
Ghosh et al. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals
JP5424638B2 (en) Process for the preparation of nanocrystalline silicon and independent silicon nanoparticles in SiO2
FR2953213A1 (en) METHOD FOR ION ABRASION SURFACE STRUCTURING, STRUCTURED SURFACE AND USES
Nichkalo et al. Silicon nanostructures produced by modified MacEtch method for antireflective Si surface
TW201123508A (en) Antireflection layer, method for fabricating antireflection surface, and photovoltaic device applying the same
Wang et al. Large-scale bio-inspired flexible antireflective film with scale-insensitivity arrays
Lova et al. Black GaAs by metal-assisted chemical etching
WO2011099216A1 (en) Semiconductor device manufacturing method, semiconductor device, and transfer member
KR101990194B1 (en) Structure with various patterns and manufacturing method thereoff
Zhang et al. Anti-reflective porous Ge by open-circuit and lithography-free metal-assisted chemical etching
Salem et al. Novel Si nanostructures via Ag-assisted chemical etching route on single and polycrystalline substrates
Chen et al. Efficient photon capture on germanium surfaces using industrially feasible nanostructure formation
KR101045163B1 (en) Method for fabricating silicon antireflection film using metal nano particle
Cheng et al. Fabrication of size-tunable, periodic Si nanohole arrays by plasma modified nanosphere lithography and anisotropic wet etching
US11807571B2 (en) Silicon and silica nanostructures and method of making silicon and silica nanostructures
KR101714904B1 (en) Photoelectronic device using hybrid structure of silica nano particles-graphene quantum dots and method of manufacturing the same
Ou et al. Structural and optical properties of textured silicon substrates by three-step chemical etching
Yang et al. Fabrication of highly ordered 2D metallic arrays with disc-in-hole binary nanostructures via a newly developed nanosphere lithography
KR101731497B1 (en) Method for texturing of semiconductor substrate, semiconductor substrate manufactured by the method and solar cell comprising the same
Wu et al. The effects of Ag particle morphology on the antireflective properties of silicon textured using Ag-assisted chemical etching
CN103934472B (en) The method of the silver-colored micro-nano granules of a kind of electric field-assisted annealing preparation
TW201515258A (en) Method of forming surface plasma using microstructures

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140320

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150216

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160404

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee