[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101027433B1 - Method for quantifying campesterol of soybean using NIR - Google Patents

Method for quantifying campesterol of soybean using NIR Download PDF

Info

Publication number
KR101027433B1
KR101027433B1 KR1020090005455A KR20090005455A KR101027433B1 KR 101027433 B1 KR101027433 B1 KR 101027433B1 KR 1020090005455 A KR1020090005455 A KR 1020090005455A KR 20090005455 A KR20090005455 A KR 20090005455A KR 101027433 B1 KR101027433 B1 KR 101027433B1
Authority
KR
South Korea
Prior art keywords
soybean
present
content
dry
quantifying
Prior art date
Application number
KR1020090005455A
Other languages
Korean (ko)
Other versions
KR20100086215A (en
Inventor
김정봉
김창영
이정란
이석영
곽재균
이기안
김태산
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020090005455A priority Critical patent/KR101027433B1/en
Publication of KR20100086215A publication Critical patent/KR20100086215A/en
Application granted granted Critical
Publication of KR101027433B1 publication Critical patent/KR101027433B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 근적외광을 이용한 신속한(건식) 방법으로 콩(soybean)의 식물성 스테롤을 정량하는 방법에 관한 것으로, 분말상태의 콩을 대상으로 근적외선 분광분석기를 이용하여 측정된 값의 1차 도함수 값을 통계적 다중결정계수(r2)가 0.84 이상의 정확성이 높은 검량 곡선식에 도입함으로써 식물성 스테롤, 특히 캄페스테롤을 정량하는 방법에 관한 것이다. 본 발명의 방법은 콩을 화학적 습식으로 전처리하는 단계를 거치지 않고 콩의 단위 무게당 식물성 스테롤 함량을 신속하고 대량으로 탐색할 수 있으므로, 고품질 유지자원용 소재 또는 육종용 또는 산업적 소재 개발에 유용하게 이용될 수 있다.The present invention relates to a method for quantifying vegetable sterols of soybeans by a rapid (dry) method using near infrared light. The first derivative of the values measured by using a near infrared spectroscopy for powdered soybeans The present invention relates to a method for quantifying vegetable sterols, in particular campesterol, by introducing a statistical multicrystal coefficient (r 2 ) into a calibration curve with high accuracy of 0.84 or higher. The method of the present invention can quickly and in large quantities explore the content of vegetable sterols per unit weight of soybean without undergoing chemical and wet pretreatment of the soybean, which is useful for developing high quality maintenance materials or breeding or industrial materials. Can be.

건식 정량방법, 콩, 식물성 스테롤, 캄페스테롤, NIR, 대량탐색 Dry quantitative method, soybean, vegetable sterol, campestrol, NIR, mass search

Description

근적외광을 이용한 콩의 캄페스테롤을 정량하는 방법{Method for quantifying campesterol of soybean using NIR}Method for quantifying campesterol of soybean using near infrared light {Method for quantifying campesterol of soybean using NIR}

본 발명은 근적외광을 이용한 신속한(건식) 방법으로 콩(soybean)의 캄페스테롤을 정량하는 방법에 관한 것이다.The present invention relates to a method of quantifying soybean camphorsterol by a rapid (dry) method using near infrared light.

콩(soybean)에는 동물성 식품에서만 발견되는 일반적인 콜레스테롤과 구조적으로 유사한 특성이 있는 식물성 스테롤이 들어있다. 콩에 들어 있는 식물성 스테롤은 혈중 스테롤을 저하시켜 심장병을 예방하는 작용을 하며 이들은 대장에서 콜레스테롤의 대사물질인 담즙산과 해로운 물질로부터 장을 보호함으로써 암 발생을 억제하는 효과도 있는 것으로 알려져 있다. 일반적으로 결장암 발생률이 낮은 나라를 보면 식물성 스테롤 섭취가 높다는 통계가 있으며 피부암의 억제효과도 보고 되고 있다. 이에 세계각국에서는 현재 콩에서 추출한 식물성 스테롤을 배합해서 혈중 콜레스테롤 수치를 낮추는 효능을 부가한 샐러드 오일이나 마가린을 개발해 내는데 주력하고 있다. 최근 식생활이 급속히 서구화되면서 동물성 지방의 과잉 섭취가 문제라면 체지방이 잘 축적되지 않는 식물성 스테롤이 포함된 콩 식품이 대안이 될 수도 있다.Soybeans contain vegetable sterols that are structurally similar to the common cholesterol found only in animal foods. Plant sterols contained in soybeans are known to reduce blood sterols and prevent heart disease, and they are also known to inhibit cancer by protecting the intestines from bile acids and harmful substances, which are cholesterol metabolites in the large intestine. In general, countries with low incidence of colon cancer have high phytosterol intake and have been reported to inhibit skin cancer. To this end, countries around the world are now focusing on developing vegetable oils, soybeans, and salad oils or margarine that have the effect of lowering blood cholesterol levels. If the recent diet is rapidly westernized and excessive intake of animal fat is a problem, soy foods containing vegetable sterols that do not accumulate body fat may be an alternative.

또한 콩에 함유되어 있는 피토스테롤(phytosterol)은 크림과 립스틱 등 화장품의 활성 원료로서 널리 사용되며 기능성 화장품 원료로서 중요한 영역을 차지하는데 식품으로 섭취된 콩의 성분은 피부 표면 지질을 구성하게 되는데 이때 피부의 각질층 회복에 있어서도 콩의 피토스테롤이 효과가 있는 것으로 나타났다. 캄토스테롤(Campesterol)의 화학식은 C28H48O 이고, 분자량이 400.68이며 식물계에서 많이 발견되어 식물 스테롤이라고도 하며, 화학적으로 콜레스테롤과도 유사하다. 피토스테롤(phytosterol) 중에 2번째로 풍부한 물질로서 캄페스테롤은 곁사슬(side chain)의 24번째 탄소 자리에 메틸기가 존재하는 것이 콜레스테롤과 다르며, 콜레스테인(cholestane) 계열의 4-데스메틸스테롤(4-desmethylsterols)로서 분류되어 진다. 대두, 식물 종자 및 해바라기씨에 존재하며, 샐러드 드레싱과 마가린 형태의 기능성 식품에 이용한다. 캄페스테롤은 전체-콜레스테롤과 LDL-콜레스테롤 수치를 낮추어 관상 심장질환의 위험을 줄이는 역할을 한다. 캄페스테롤은 식이 콜레스테롤 흡수와 위장관의 내생적인 콜레스테롤 재흡수를 억제하고, 콜레스테롤을 변으로 배설하여 세럼 콜레스테롤 수치를 줄이게 된다. 또한 담즙산염으로 콜레스테롤을 치환하거나 장점막에서 콜레스테롤 에스테르화 억제를 통하여 콜레스테롤 수치를 낮추는 것으로 나타났다. 종래에는 이와 같은 캄페스테롤을 분석하기 위해서는 콩을 분말로 만들어서 유지성분을 모두 추출한 다음에 캄페스테롤 만을 메틸 에스테르 또는 실릴레이션(silylation) 등의 방법으로 유도체화 한 다음에 가스 크로마토그래피를 통하여 정량함으로써 시간과 시약 및 복잡한 절차의 습식 전처리 과정을 거쳐서 분석됨으로서 한꺼번에 많은 시료를 검정하기는 적절하지 못했었다. 그러나 상기 콩의 유용성이 점점 커지면서 단위 무게당 식물성 스테롤 함량을 신속하고 대량으로 탐색할 수 있는 방법이 필요성이 대두하였다.In addition, phytosterol contained in soybean is widely used as an active ingredient in cosmetics such as creams and lipsticks, and occupies an important area as a functional cosmetic raw material. Soybeans ingested as food constitute lipids of the skin. Soybean phytosterol was found to be effective in the recovery of the stratum corneum. Of formula kamto sterol (Campesterol) is C 28 H 48O, and a molecular weight of 400.68 is found in many plant-based, also known as plant sterols, cholesterol and is chemically similar. As the second most abundant substance in phytosterol, camphorsterol differs from cholesterol in that methyl group is present at the 24th carbon site of the side chain, and is cholesterol-based 4-desmethylsterols. Are classified as). Present in soybeans, plant seeds, and sunflower seeds, used in salad dressings and margarine-type functional foods. Campesterol lowers your total cholesterol and LDL-cholesterol levels, reducing your risk of coronary heart disease. Campestrol inhibits dietary cholesterol absorption and endogenous cholesterol resorption of the gastrointestinal tract, and excretes cholesterol into feces to reduce serum cholesterol levels. It has also been shown to lower cholesterol levels by replacing cholesterol with bile salts or inhibiting cholesterol esterification in the intestinal mucosa. Conventionally, in order to analyze such camphorol, powdered soybeans are extracted, all fats and oils are extracted, and only camphorsterol is derivatized by methyl ester or silylation, and then quantified by gas chromatography. As a result of analysis through wet pretreatment of the reagents and complex procedures, it was not appropriate to test many samples at once. However, as the usefulness of the soybeans increases, there is a need for a method for quickly and mass-exploring the vegetable sterol content per unit weight.

이에 본 발명자들은 습식 전처리를 거치지 않은 콩의 근적외선 스펙트럼을 반복적으로 수득한 후, 통계적 처리를 거쳐서 다중결정계수(r2)가 0.84 이상인 검량 곡선을 설계하였고, 상기 검량 곡선이 신속한(건식) 콩의 식물성 스테롤 속성을 정량하는 데에 유용하게 사용될 수 있음을 확인함으로써 본 발명을 완성하였다.Therefore, the inventors repeatedly obtained the near-infrared spectrum of the soybean that was not subjected to wet pretreatment, and designed a calibration curve having a coefficient of polycrystallization coefficient (r 2 ) of 0.84 or more through statistical processing, and the calibration curve of the fast (dry) soybean. The present invention has been completed by confirming that it can be usefully used to quantify plant sterol properties.

본 발명의 목적은 콩의 캄페스테롤 성분의 함량에 대한 신속한(건식) 정량 방법을 제공하는 것이다.It is an object of the present invention to provide a rapid (dry) quantitative method for the content of the camphorsterol component of soybeans.

상기 목적을 달성하기 위하여, 본 발명은 1) 콩 종자를 품종에 따라 구분하여 분말 상태로 테스트 시험관에 넣어 근적외광 분석기에 삽입한 후, 근적외광을 조사하여 1700 내지 2100 ㎚ 영역의 흡수 스펙트럼을 수득하는 단계;In order to achieve the above object, the present invention 1) to classify the beans seeds according to varieties, put them in a test tube in a powder state into a near-infrared analyzer, and then irradiate near-infrared light to obtain an absorption spectrum of 1700 to 2100 nm region Making;

2) 상기 근적외선 스펙트럼에 1차 미분법을 적용하고 측정 파장별 갭을 10 ㎚으로 1차 도함수 값을 수득하는 단계;2) applying a first order differential method to the near infrared spectrum and obtaining a first derivative value with a gap of 10 nm for each wavelength measured;

3) 상기 파장별 1차 도함수 값을 하기 수학식 1의 함수에 대입하여, 콩 시료 내 캄페스테롤 함량을 결정하는 단계를 포함하는 콩의 캄페스테롤 성분의 함량에 대한 건식 정량 방법을 제공한다.3) It provides a dry quantitative method for the content of the camphorsterol component of the soybean, comprising the step of determining the camphorsterol content in the soybean sample by substituting the first derivative value for each wavelength into a function of the following formula (1).

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 1) 콩 종자를 품종에 따라 구분하여 분말 상태로 테스트 시험관에 넣어 근적외광 분석기에 삽입한 후, 근적외광을 조사하여 1700 내지 2100 ㎚ 영역의 흡수 스펙트럼을 수득하는 단계;The present invention comprises the steps of: 1) sorting the bean seeds according to varieties and inserting them into a test tube in powder form into a near-infrared spectrometer, and irradiating near-infrared light to obtain an absorption spectrum in the region of 1700 to 2100 nm;

2) 상기 근적외선 스펙트럼에 1차 미분법을 적용하고 측정 파장별 갭을 10 ㎚으로 1차 도함수 값을 수득하는 단계;2) applying a first order differential method to the near infrared spectrum and obtaining a first derivative value with a gap of 10 nm for each wavelength measured;

3) 상기 파장별 1차 도함수 값을 하기 수학식 1의 함수에 대입하여, 콩 시료 내 캄페스테롤 함량을 결정하는 단계를 포함하는 콩의 캄페스테롤 성분의 함량에 대한 건식 정량 방법을 제공한다:3) by providing a first derivative of each wavelength in the function of Equation 1 below, to provide a dry quantification method for the content of the camphorsterol component of soybean, comprising determining the camphorsterol content in the soybean sample:

[수학식 1][Equation 1]

캄페스테롤 함량(㎍/g) = -159.7143 - 539.5369x'1700 + 208.2029x'1710 + 862.7268x'1720 + 304.1911x'1730 - 65.8495x'1740 - 255.1128x'1750 - 212.5636x'1760 - 52.1982x'1770 + 135.6333x'1780 + 203.0269x'1790 + 233.239x'1800 + 104.6265x'1810 + 75.9039x'1820 - 5.9972x'1830 + 56.3546x'1840 + 43.7998x'1850 + 140.0899x'1860 + 689.9338x'1870 + 791.2035x'1880 + 801.7698x'1890 - 284.5929x'1900 - 1425.0724x'1910 - 1286.3221x'1920 - 732.9667x'1930 + 61.4209x'1940 + 424.8888x'1950 + 568.9919x'1960 + 601.3539x'1970 + 406.6427x'1980 + 344.6469x'1990 + 278.9063x'2000 + 148.3x'2010 + 40.2344x'2020 + 22.6729x'2030 - 28.6875x'2040 - 142.7464x'2050 - 305.8374x'2060 - 237.7981x'2070 - 112.3536x'2080 - 50.1014x'2090 + 15.0298x'2100.Campesterol Content (μg / g) = -159.7143 - 539.5369x'1700+ 208.2029x'1710+ 862.7268x'1720+ 304.1911x'1730- 65.8495x'1740- 255.1128x'1750- 212.5636x'1760- 52.1982x'1770+ 135.6333x'1780+ 203.0269x'1790+ 233.239x'1800+ 104.6265x'1810+ 75.9039x'1820- 5.9972x'1830+ 56.3546x'1840+ 43.7998x'1850+ 140.0899x'1860+ 689.9338x'1870+ 791.2035x'1880+ 801.7698x'1890- 284.5929x'1900- 1425.0724x'1910- 1286.3221x'1920- 732.9667x'1930+ 61.4209 x'1940+ 424.8888x'1950+ 568.9919x'1960+ 601.3539x'1970+ 406.6427x'1980+ 344.6469x'1990+ 278.9063x'2000+ 148.3x'2010+ 40.2344x'2020+ 22.6729x'2030- 28.6875x'2040- 142.7464x'2050- 305.8374x'2060- 237.7981x'2070- 112.3536x'2080- 50.1014x'2090+ 15.0298x'2100.

상기 수학식 1의 x'1700 내지 x'2100는 1700 내지 2100 ㎚ 사이의 스펙트럼에서 10 ㎚ 간격으로 측정된 1차 도함수 값을 의미한다. X'1700 to x '2100 of Equation 1 refers to a first derivative value measured at intervals of 10 nm in a spectrum between 1700 and 2100 nm.

본 발명의 구체적인 실시예에서 152점의 콩 형질전환체(transgenic plant)를 대상으로, 습식으로 식물성 스테롤 분석(표 1 참조) 및 근적외선 분광기를 이용한 건식으로 식물성 스테롤 분석(표 2 참조)을 수행한 후, 1차 또는 2차 미분법 및 10 ㎚의 측정 파 장 갭으로 수처리를 수행한 상기 건식으로 식물성 스테롤을 분석한 결과를 습식 식물성 스테롤 분석 결과와 변형 부분최소자승법(MPLS: Modified Partial Least Squares)으로 유의상관 관계를 조사함으로써 각 식물성 스테롤별 검량 곡선(도 2 참조) 및 각 검량 곡선의 다중결정계수(R2: squared coefficient of multiple determination in calibration)(표 2 참조)를 수득하였다. 그 결과, 캄페스테롤(수학식 1)의 검량 곡선의 다중결정계수가 0.84 이상으로 정확성이 높은 것으로 나타났다.In a specific embodiment of the present invention, 152 soybean transgenic plants were subjected to wet plant sterol analysis (see Table 1) and dry plant sterol analysis (see Table 2) using a near-infrared spectrometer. Then, the results of the above analysis of the dry plant sterols, which were subjected to water treatment with a first or second differential method and a measurement wavelength gap of 10 nm, were analyzed by wet vegetable sterol analysis and modified partial least squares (MPLS). By investigating the significant correlation, a calibration curve for each plant sterol (see FIG. 2) and a squared coefficient of multiple determination in calibration (R 2 ) of each calibration curve (see Table 2) were obtained. As a result, the multiple crystal coefficient of the calibration curve of campestrol (Equation 1) was found to be high accuracy of 0.84 or more.

이에, 상기 수학식 1의 검량 곡선을 이용함으로써 건식 방법으로 콩의 식물성 스테롤 함량을 신속하고 정확하게 측정하는 것이 가능할 수 있다.Thus, by using the calibration curve of Equation 1 it may be possible to quickly and accurately measure the vegetable sterol content of the soybeans by the dry method.

본 발명의 방법은 시료를 화학적 습식 전처리 없이 있는 그대로 측정하기가 용이하며, 시약 등을 사용하지 않고 시료의 정량, 혼합, 가열, 추출 등의 과정의 전처리 과정이 필요 없어 신속하고 동시에 다성분을 분석할 수 있을 뿐만 아니라 측정시료를 회수하여 이용 및 보관 또는 기타 분석에 사용할 수 있는 장점이 있다.The method of the present invention makes it easy to measure a sample as it is without chemical wet pretreatment, and does not require a pretreatment process such as quantitating, mixing, heating, and extracting a sample without using a reagent, and thus analyzing multiple components quickly and simultaneously. In addition to being able to do so, there is an advantage in that the sample can be recovered and used for use and storage or other analysis.

본 발명에서 근적외선 스펙트럼은 콩 분말 상태로 당업계에서 통상적으로 사용하는 모든 방식으로 스캐닝하여 얻을 수 있으며, 바람직하게는 확산 반사(Diffuse Reflectance) 또는 투과(Transmission)의 방식으로 얻을 수 있다.In the present invention, the near-infrared spectrum may be obtained by scanning in a soybean powder in any manner commonly used in the art, and may be preferably obtained by diffuse reflection or transmission.

단계 2)에서 수득한 상기 근적외선 스펙트럼은 복잡하고 흡광 봉우리들의 겹침과 물리적인 성질에 변화를 주는 확인되지 않은 변화요인들이 존재하기 때문에 비어(Beer's)의 법칙에 잘 맞지 않는다. 구체적으로, 근적외선 스펙트럼은 바탕선 변동과 흡광도 방해가 발생한다. 바탕선의 변화요인들은 입 도크기, 시료의 밀집상태, 원산지, 높이, 단기 변화 등이 있고, 흡광도의 방해요인들로는 봉우리가 넓고, 겹치고, 복잡하고 불확실한 상태 등이 있다. 이러한 문제점을 해결하기 위해서 다양한 통계처리를 수행하여 최적의 검량선을 유도한다. 구체적으로, 본 발명에서는 미분법을 적용하며, 바람직하게는 상기 스펙트럼을 1차 미분 또는 2차 미분의 수학적 전처리하는 과정을 거치게 된다. 상기 수학적 전처리는 시료에 조사된 빛의 산란 효과를 일차적으로 보정을 해주며, 검량선을 안정하게 하는 필수적인 도구로써 시료를 전처리해주며, 크로마토그래피의 칼럼처럼 분리해 주는 역할을 수행한다. 또한 오버-피팅(over-fitting) 등 스펙트럼이 잘못 해석되는 것을 방지하기 위하여 측정 파장별 갭(gap)을 조절하는데, 본 발명에서는 4∼10 ㎚가 바람직하다. 본 발명의 콩에 함유된 캄페스테롤 함량 측정에 있어서, 1차 미분법을 이용하는 것이 가장 바람직하며, 측정 파장별 갭이 10 ㎚인 것이 가장 바람직하다.The near-infrared spectrum obtained in step 2) is not well suited to Beer's law because of the complex and unidentified change factors that change the overlap and physical properties of the absorbing peaks. Specifically, the near-infrared spectrum causes baseline variations and absorbance disturbances. Changes in baseline include particle size, density of sample, country of origin, height, and short-term changes, and blockages of absorbance include broad, overlapping, complex, and uncertain conditions. To solve this problem, various statistical processes are performed to derive the optimal calibration curve. Specifically, in the present invention, a differential method is applied, and preferably, the spectrum is subjected to the mathematical pretreatment of the first derivative or the second derivative. The mathematical pretreatment primarily corrects the scattering effect of the light irradiated onto the sample, pretreatment of the sample as an essential tool for stabilizing the calibration curve, and serves as a separation column of the chromatography. In addition, in order to prevent misinterpretation of the spectrum such as over-fitting, the gap for each measurement wavelength is adjusted. In the present invention, 4 to 10 nm is preferable. In the determination of the camphorsterol content contained in the soybean of the present invention, it is most preferable to use a first-order differential method, and most preferably, a gap for each wavelength of measurement is 10 nm.

본 발명의 방법은 콩을 화학적 습식으로 전처리하는 단계를 거치지 않고 콩의 단위 무게당 식물성 스테롤 함량을 신속하고 대량으로 탐색할 수 있으므로, 고품질 유지자원용 소재 또는 육종용 또는 산업적 소재 개발에 유용하게 이용될 수 있다.The method of the present invention can quickly and in large quantities explore the content of vegetable sterols per unit weight of soybean without undergoing chemical and wet pretreatment of the soybean, which is useful for developing high quality maintenance materials or breeding or industrial materials. Can be.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

<< 실시예Example 1> 분석 대상 1> Target of Analysis

152점의 콩을 대상으로 하였고, 그 중 일부는 국립농업유전자원센터에서 분양받았으며, 나머지 일부는 본 발명자들의 기존 연구에서 축적한 콩을 이용하였다.A total of 152 soybeans were sampled, some of which were distributed at the National Center for Agricultural Genetic Resources, and some of the soybeans used in the present study.

<< 실시예Example 2> 습식 단위 무게당 식물성 스테롤 함량 조사 2> Investigation of vegetable sterol content per wet unit weight

원심분리용 튜브에 실시예 1의 콩 시료를 각각 0.2 g씩 취한 후, 추출용매(chloroform : methanol =2 : 1) 5 ㎖과 내부 표준물질[MeOH에 1000 ppm으로 녹인 펜타디카노익 산(pentadecanoic acid): Sigma-Aldrich, USA] 1 ㎖을 넣고 1시간 동안 초음파 처리하였다. 이후 5 ㎖의 0.58% NaCl 용액(물에 녹임)을 넣고 10분 동안 초음파 처리하였다. 추출액을 2000 rpm으로 15분 동안 원심분리하여 클로로포름 분획(하층)을 취하여 질소가스로 용매를 날려서 농축하였다. 이후 0.5 ㎖ 톨루엔과 2 ㎖의 0.5N NaOH(메탄올에 녹임)를 넣고, 뜨거운 물(80℃)에서 5분 동안 중탕하였다. 상기 뜨거운 용액을 방냉한 후, 다시 2.5 ㎖의 14% BF3(Boron trifloride methanol solution 14%: Sigma-Aldrich, USA)를 넣고, 뜨거운 물(80℃)에서 5분 동안 중탕 후 방냉하였다. 상기 시료에 10 ㎖의 석유에테르(petroleum ether)와 15 ㎖의 증류수를 넣어 다른 시험관으로 옮겨 담은 후, 볼텍싱한 다음 2000 rpm으로 10분 동안 4℃에서 원심분리하였다. 상층액만 취하여 새 검사 튜브로 여과한(sodium sulfate, Whatman filter, USA) 후, 여과액을 질소가스로 농축하여 1 ㎖ 석유에테르에 용해시켜 GC/FID(Hewlett Packard, 5890 series Ⅱ, USA)로 분석하였다.After each 0.2 g of the soybean sample of Example 1 in a tube for centrifugation, 5 ml of extraction solvent (chloroform: methanol = 2: 1) and an internal standard [1000 ppm in MeOH dissolved in pentacanoic acid (pentadecanoic acid) ): Sigma-Aldrich, USA] 1 ml was added and sonicated for 1 hour. Then 5 ml of 0.58% NaCl solution (dissolved in water) was added and sonicated for 10 minutes. The extract was centrifuged at 2000 rpm for 15 minutes to take a chloroform fraction (lower layer) and concentrated by blowing the solvent with nitrogen gas. Then 0.5 ml toluene and 2 ml of 0.5N NaOH (dissolved in methanol) were added, followed by bathing in hot water (80 ° C.) for 5 minutes. After the hot solution was allowed to cool, 2.5 ml of 14% BF 3 (Boron trifloride methanol solution 14%: Sigma-Aldrich, USA) was added thereto, and the mixture was allowed to stand for 5 minutes in hot water (80 ° C) and then allowed to cool. 10 mL of petroleum ether and 15 mL of distilled water were added to the sample, which was transferred to another test tube, vortexed, and centrifuged at 4 ° C. for 10 minutes at 2000 rpm. Take only the supernatant, filter it with a new test tube (sodium sulfate, Whatman filter, USA), and then concentrate the filtrate with nitrogen gas and dissolve in 1 ml of petroleum ether to GC / FID (Hewlett Packard, 5890 series II, USA). Analyzed.

본 실험에 사용된 GC-FID 조건은 분석컬럼으로 HP-5 column(60 m X 0.25 ㎜ I.D, 0.25 ㎛, Agilent Co., USA)을 사용하여 300℃에서 등온으로 분석하였고, 주입기(injector)와 검출기(detector)의 온도는 각각 280℃와 290℃로 유지하였다. 이동상(질소가스) 속도는 1 ㎖/min, 스플리트(split) 비율은 1:8, 주입량은 1 ㎕로 하였다. 피토스테롤(Phytosterols)의 정량은 크로마토그램에 나타난 각 피트 면적을 내부표준물질 5α-콜레스테인(cholestane)과 비교하여 계산하였으며 크로마토그램상에 나타난 피토스테롤 별 지연 시간(retention time)은 캄페스텔로, 스티그마스테롤, β-시토스테롤 순으로 각각 17.9, 18.7 및 20.5분에서 확인되었다.GC-FID conditions used in this experiment were analyzed isothermally at 300 ° C. using an HP-5 column (60 m × 0.25 mm ID, 0.25 μm, Agilent Co., USA) as an analytical column. The detector temperature was maintained at 280 ° C and 290 ° C, respectively. The mobile phase (nitrogen gas) rate was 1 ml / min, the split ratio was 1: 8, and the injection amount was 1 µl. Quantitative phytosterols were calculated by comparing each pit area shown in the chromatogram with the internal standard 5α-cholestane. β-sitosterol was found at 17.9, 18.7 and 20.5 minutes, respectively.

그 결과, 표 1에서 나타난 바와 같이 152점의 콩의 캄페스테롤, 스티그마스테롤, β-시토스테롤 및 전체 식물성 스테롤의 함량을 측정하였다.As a result, as shown in Table 1, the contents of camphorsterol, stigmasterol, β-sitosterol and total vegetable sterols of 152 soybeans were measured.

콩 단위 무게당 식물성 스테롤 함량 조사표Table of Vegetable Sterol Content Per Weight of Soybean 시료sample 농도(㎍/g)Concentration (㎍ / g) 전체all 캄페스테롤Campestrol 스티그마스테롤Stigmasterol β-시토스테롤β-sitosterol ㎍/gΜg / g IT154763IT154763 10.8 10.8 8.7 8.7 2.9 2.9 22.4 22.4 IT141616IT141616 1.1 1.1 9.0 9.0 18.9 18.9 29.0 29.0 bean119-15bean119-15 8.2 8.2 8.9 8.9 14.5 14.5 31.5 31.5 bean148-6bean148-6 8.3 8.3 7.6 7.6 15.8 15.8 31.7 31.7 IT161404IT161404 8.1 8.1 1.0 1.0 23.0 23.0 32.1 32.1 IT142885IT142885 8.8 8.8 7.2 7.2 16.3 16.3 32.3 32.3 bean139-11bean139-11 9.8 9.8 7.9 7.9 15.1 15.1 32.8 32.8 IT153428IT153428 9.2 9.2 7.7 7.7 16.3 16.3 33.2 33.2 bean13-5bean13-5 9.2 9.2 8.6 8.6 15.5 15.5 33.3 33.3 bean58-12bean58-12 8.4 8.4 8.0 8.0 17.3 17.3 33.7 33.7 bean111-5bean111-5 8.3 8.3 8.0 8.0 17.6 17.6 33.9 33.9 IT154761IT154761 6.9 6.9 8.5 8.5 18.6 18.6 34.0 34.0 IT115489IT115489 9.3 9.3 9.4 9.4 15.8 15.8 34.4 34.4 IT121449IT121449 9.5 9.5 8.3 8.3 17.0 17.0 34.8 34.8 bean18-4bean18-4 7.8 7.8 8.6 8.6 18.5 18.5 35.0 35.0 IT195204IT195204 9.3 9.3 8.1 8.1 18.1 18.1 35.5 35.5 IT115933IT115933 10.8 10.8 8.6 8.6 16.2 16.2 35.5 35.5 IT212847IT212847 10.5 10.5 7.9 7.9 17.5 17.5 35.9 35.9 IT143148IT143148 9.3 9.3 8.4 8.4 18.2 18.2 35.9 35.9 IT115729IT115729 11.1 11.1 9.8 9.8 15.2 15.2 36.0 36.0 IT153719IT153719 7.8 7.8 8.9 8.9 19.6 19.6 36.2 36.2 bean100-3bean100-3 9.0 9.0 9.6 9.6 17.6 17.6 36.3 36.3 bean35-7bean35-7 8.3 8.3 9.2 9.2 18.9 18.9 36.5 36.5 IT108998IT108998 9.5 9.5 9.5 9.5 17.6 17.6 36.6 36.6 bean1-6bean1-6 12.0 12.0 8.7 8.7 15.9 15.9 36.6 36.6 IT154405IT154405 8.3 8.3 8.8 8.8 19.6 19.6 36.7 36.7 IT154741IT154741 7.7 7.7 8.9 8.9 20.1 20.1 36.7 36.7 IT115763IT115763 10.2 10.2 8.8 8.8 17.8 17.8 36.8 36.8 bean131-16bean131-16 7.7 7.7 8.4 8.4 20.9 20.9 37.1 37.1 bean146-3bean146-3 8.7 8.7 8.5 8.5 20.0 20.0 37.2 37.2 bean160-6bean160-6 10.8 10.8 8.4 8.4 18.0 18.0 37.2 37.2 IT162450IT162450 7.5 7.5 8.6 8.6 21.2 21.2 37.3 37.3 IT154760IT154760 8.6 8.6 8.0 8.0 20.8 20.8 37.4 37.4 bean105-3bean105-3 7.8 7.8 9.0 9.0 20.6 20.6 37.5 37.5 IT119898IT119898 9.5 9.5 8.3 8.3 20.0 20.0 37.8 37.8 bean136-3bean136-3 9.9 9.9 9.5 9.5 18.6 18.6 38.0 38.0 bean108-5bean108-5 9.9 9.9 8.7 8.7 19.3 19.3 38.0 38.0 IT154588IT154588 8.2 8.2 9.0 9.0 21.3 21.3 38.6 38.6 IT115431IT115431 10.0 10.0 8.5 8.5 20.2 20.2 38.7 38.7 IT142924IT142924 9.4 9.4 9.2 9.2 20.2 20.2 38.8 38.8 IT212822IT212822 10.8 10.8 8.1 8.1 20.2 20.2 39.1 39.1 IT162955IT162955 10.1 10.1 9.1 9.1 20.0 20.0 39.2 39.2 bean54-9bean54-9 9.6 9.6 8.5 8.5 21.1 21.1 39.2 39.2 bean74-11bean74-11 10.6 10.6 9.0 9.0 19.6 19.6 39.2 39.2 IT115882IT115882 9.4 9.4 10.1 10.1 20.0 20.0 39.6 39.6 bean135-5bean135-5 11.0 11.0 9.4 9.4 19.4 19.4 39.7 39.7 bean62-5bean62-5 10.6 10.6 8.9 8.9 20.4 20.4 39.9 39.9 IT212824IT212824 10.4 10.4 9.3 9.3 20.3 20.3 40.0 40.0 bean156-8bean156-8 9.6 9.6 10.3 10.3 20.2 20.2 40.1 40.1 IT141595IT141595 11.2 11.2 10.0 10.0 19.0 19.0 40.2 40.2 bean69-6bean69-6 10.7 10.7 9.3 9.3 20.3 20.3 40.3 40.3 IT211818IT211818 9.7 9.7 10.0 10.0 20.8 20.8 40.4 40.4 IT181939IT181939 9.6 9.6 9.6 9.6 21.4 21.4 40.6 40.6 IT208933IT208933 9.5 9.5 9.7 9.7 21.4 21.4 40.6 40.6 IT162495IT162495 9.7 9.7 8.1 8.1 22.8 22.8 40.7 40.7 bean157-19bean157-19 11.6 11.6 8.3 8.3 20.9 20.9 40.7 40.7 IT177345IT177345 10.9 10.9 8.9 8.9 20.9 20.9 40.8 40.8 bean137-5bean137-5 10.0 10.0 9.9 9.9 21.1 21.1 41.0 41.0 IT154573IT154573 7.7 7.7 10.3 10.3 23.1 23.1 41.1 41.1 IT211829IT211829 10.2 10.2 8.9 8.9 22.1 22.1 41.2 41.2 IT195600IT195600 9.1 9.1 8.4 8.4 23.8 23.8 41.3 41.3 bean80-5bean80-5 10.8 10.8 9.0 9.0 21.8 21.8 41.6 41.6 bean33-6bean33-6 9.5 9.5 9.5 9.5 22.8 22.8 41.8 41.8 IT189273IT189273 10.5 10.5 9.0 9.0 22.2 22.2 41.8 41.8 IT186278IT186278 9.1 9.1 10.2 10.2 22.6 22.6 41.8 41.8 IT115605IT115605 13.5 13.5 9.1 9.1 19.2 19.2 41.8 41.8 IT115451IT115451 11.9 11.9 10.3 10.3 19.7 19.7 41.9 41.9 bean72-6bean72-6 11.7 11.7 9.2 9.2 21.1 21.1 42.0 42.0 IT171212IT171212 10.3 10.3 10.4 10.4 21.5 21.5 42.1 42.1 bean138-8bean138-8 12.2 12.2 9.5 9.5 20.4 20.4 42.2 42.2 IT153739IT153739 9.5 9.5 10.2 10.2 23.2 23.2 42.8 42.8 IT165447IT165447 8.8 8.8 9.9 9.9 24.2 24.2 42.9 42.9 bean91-7bean91-7 10.3 10.3 9.8 9.8 22.8 22.8 42.9 42.9 IT160299IT160299 11.6 11.6 8.3 8.3 23.0 23.0 43.0 43.0 IT161546IT161546 10.5 10.5 9.6 9.6 22.8 22.8 43.0 43.0 IT167245IT167245 11.4 11.4 10.5 10.5 21.1 21.1 43.0 43.0 IT142744IT142744 11.1 11.1 9.1 9.1 22.8 22.8 43.1 43.1 bean45-7bean45-7 11.0 11.0 10.0 10.0 22.2 22.2 43.2 43.2 IT115486IT115486 11.1 11.1 9.2 9.2 23.0 23.0 43.3 43.3 bean82-7bean82-7 10.5 10.5 9.5 9.5 23.4 23.4 43.4 43.4 IT162405IT162405 9.5 9.5 9.2 9.2 24.7 24.7 43.4 43.4 IT180039IT180039 11.2 11.2 10.0 10.0 22.4 22.4 43.6 43.6 IT024888IT024888 12.9 12.9 11.3 11.3 19.4 19.4 43.6 43.6 bean89-5bean89-5 10.9 10.9 8.7 8.7 24.1 24.1 43.7 43.7 IT186142IT186142 8.8 8.8 10.6 10.6 24.4 24.4 43.8 43.8 IT160152IT160152 10.3 10.3 7.8 7.8 25.8 25.8 43.9 43.9 bean159-4bean159-4 12.1 12.1 8.1 8.1 23.7 23.7 43.9 43.9 IT162133IT162133 8.6 8.6 9.0 9.0 26.4 26.4 44.0 44.0 IT141988IT141988 10.6 10.6 10.7 10.7 22.6 22.6 44.0 44.0 IT165073IT165073 9.3 9.3 10.3 10.3 24.5 24.5 44.1 44.1 IT177734IT177734 10.0 10.0 9.4 9.4 24.7 24.7 44.1 44.1 IT162055IT162055 11.4 11.4 9.3 9.3 23.5 23.5 44.2 44.2 IT161510IT161510 10.4 10.4 10.6 10.6 23.3 23.3 44.3 44.3 IT154195IT154195 10.5 10.5 11.1 11.1 22.8 22.8 44.3 44.3 IT189206IT189206 10.0 10.0 10.6 10.6 23.9 23.9 44.4 44.4 bean50-11bean50-11 12.0 12.0 9.9 9.9 22.6 22.6 44.6 44.6 bean94-8bean94-8 11.5 11.5 10.1 10.1 23.2 23.2 44.7 44.7 IT154615IT154615 8.3 8.3 9.0 9.0 27.4 27.4 44.7 44.7 bean65-12bean65-12 11.2 11.2 10.4 10.4 23.1 23.1 44.7 44.7 bean25-1bean25-1 11.6 11.6 9.7 9.7 23.5 23.5 44.8 44.8 IT115400IT115400 11.4 11.4 9.7 9.7 23.7 23.7 44.8 44.8 IT108931IT108931 12.6 12.6 9.6 9.6 22.7 22.7 44.9 44.9 IT180021IT180021 12.2 12.2 10.2 10.2 22.6 22.6 44.9 44.9 bean81-13bean81-13 12.4 12.4 9.7 9.7 22.9 22.9 45.0 45.0 bean115-10bean115-10 12.4 12.4 9.8 9.8 23.1 23.1 45.4 45.4 IT154517IT154517 10.2 10.2 10.1 10.1 25.3 25.3 45.5 45.5 IT180019IT180019 12.3 12.3 10.9 10.9 22.4 22.4 45.5 45.5 IT154291IT154291 10.3 10.3 10.1 10.1 25.1 25.1 45.6 45.6 bean123-8bean123-8 10.9 10.9 9.4 9.4 25.4 25.4 45.7 45.7 IT162267IT162267 10.7 10.7 10.6 10.6 24.5 24.5 45.8 45.8 IT180028IT180028 12.2 12.2 10.0 10.0 23.6 23.6 45.8 45.8 IT165506IT165506 9.5 9.5 9.3 9.3 27.3 27.3 46.1 46.1 IT161617IT161617 10.3 10.3 9.6 9.6 26.6 26.6 46.5 46.5 IT180589IT180589 11.8 11.8 10.2 10.2 24.6 24.6 46.6 46.6 IT189269IT189269 11.5 11.5 9.9 9.9 25.3 25.3 46.7 46.7 IT180851IT180851 11.3 11.3 9.9 9.9 25.5 25.5 46.7 46.7 IT161737IT161737 9.2 9.2 9.5 9.5 28.2 28.2 46.8 46.8 bean40-5bean40-5 12.2 12.2 10.4 10.4 24.4 24.4 47.0 47.0 bean151-5bean151-5 9.8 9.8 12.5 12.5 24.7 24.7 47.0 47.0 IT186206IT186206 10.7 10.7 10.4 10.4 25.9 25.9 47.1 47.1 bean158-3bean158-3 12.2 12.2 8.5 8.5 26.4 26.4 47.2 47.2 bean163-3bean163-3 11.2 11.2 9.3 9.3 26.7 26.7 47.2 47.2 bean24-5bean24-5 11.8 11.8 9.8 9.8 25.8 25.8 47.3 47.3 bean42-6bean42-6 11.5 11.5 11.0 11.0 24.9 24.9 47.4 47.4 IT180190IT180190 12.9 12.9 9.2 9.2 25.3 25.3 47.4 47.4 IT153365IT153365 12.0 12.0 11.4 11.4 24.2 24.2 47.6 47.6 IT162546IT162546 11.0 11.0 10.3 10.3 26.4 26.4 47.7 47.7 bean78-4bean78-4 12.9 12.9 10.4 10.4 24.4 24.4 47.7 47.7 IT181551IT181551 10.9 10.9 12.3 12.3 24.7 24.7 47.8 47.8 IT161673IT161673 12.7 12.7 9.5 9.5 25.6 25.6 47.8 47.8 IT161826IT161826 10.3 10.3 11.0 11.0 27.0 27.0 48.3 48.3 IT154596IT154596 9.9 9.9 11.3 11.3 27.4 27.4 48.6 48.6 IT162651IT162651 13.2 13.2 10.3 10.3 25.1 25.1 48.6 48.6 bean10-12bean10-12 12.2 12.2 13.0 13.0 23.7 23.7 48.9 48.9 bean29-6bean29-6 13.3 13.3 10.3 10.3 25.4 25.4 49.0 49.0 bean3-3bean3-3 14.0 14.0 10.3 10.3 25.0 25.0 49.3 49.3 bean125-3bean125-3 12.2 12.2 9.8 9.8 27.5 27.5 49.4 49.4 IT180321IT180321 10.6 10.6 11.4 11.4 27.9 27.9 49.9 49.9 IT212829IT212829 11.6 11.6 10.2 10.2 28.6 28.6 50.3 50.3 IT154444IT154444 11.5 11.5 11.3 11.3 27.7 27.7 50.5 50.5 IT209385IT209385 11.7 11.7 9.8 9.8 29.0 29.0 50.5 50.5 bean5-10bean5-10 14.0 14.0 11.6 11.6 25.6 25.6 51.2 51.2 IT181569IT181569 11.3 11.3 11.9 11.9 28.8 28.8 52.0 52.0 IT189224IT189224 11.4 11.4 10.4 10.4 30.3 30.3 52.1 52.1 IT162163IT162163 12.8 12.8 11.4 11.4 28.7 28.7 52.9 52.9 IT180023IT180023 13.3 13.3 11.8 11.8 27.8 27.8 52.9 52.9 IT1622277IT1622277 13.7 13.7 10.4 10.4 30.6 30.6 54.8 54.8 IT181509IT181509 13.6 13.6 13.3 13.3 31.9 31.9 58.8 58.8 IT186179IT186179 12.6 12.6 13.7 13.7 35.1 35.1 61.4 61.4 IT175884IT175884 13.4 13.4 12.6 12.6 35.7 35.7 61.7 61.7 IT194542IT194542 17.1 17.1 14.3 14.3 30.9 30.9 62.4 62.4 IT025061IT025061 25.1 25.1 30.4 30.4 25.4 25.4 80.9 80.9 평균Average 10.6 10.6 9.8 9.8 22.5 22.5 42.9 42.9 SDSD 2.1 2.1 2.2 2.2 4.2 4.2 6.9 6.9 최소값Minimum value 1.1 1.1 1.0 1.0 2.9 2.9 22.4 22.4 최대값Maximum value 25.1 25.1 30.4 30.4 35.7 35.7 80.9 80.9

<< 실시예Example 3> 콩의  3> soybean NIRNIR 스펙트럼 프로파일 작성 Create spectrum profile

1) 근적외선 분광광도계 6500(FOSS NIRsystems, INc., 한국) 자체의 전체 진단테스트(Diagnodtics)를 수행하여 장비 점검을 모두 통과하였다. 새 파일을 생성한 후 1100-2350 ㎚의 파장에서 스펙트럼을 작성하도록 설정하였다.1) Near-infrared spectrophotometer 6500 (FOSS NIRsystems, INc., Korea) performed a full diagnostic test (Diagnodtics) of its own to pass all the equipment check. After creating a new file, the spectra were set to produce spectra at wavelengths of 1100-2350 nm.

2) 실온에서 3일 이상 건조된 실시예 1의 콩 분말(120 mesh 이하) 시료 0.7 g을 시료 셀(지름 18 ㎜, 깊이 0.4 ㎜: IH-0348, FOSS NIRsystems, INc., USA)에 적재하였다. 전체 152점의 콩 시료당 1분 동안 파장 1100-2350 ㎚에서 스펙트럼 프로파일을 작성하였다. 이때, 내부 표준물질로는 세라믹(Ceramic; FOSS NIRsystems, INc., USA)2) 0.7 g of the soybean powder (120 mesh or less) of Example 1 dried at room temperature for 3 days or more were loaded into a sample cell (18 mm diameter, 0.4 mm depth: IH-0348, FOSS NIRsystems, Inc., USA). . Spectral profiles were prepared at wavelength 1100-2350 nm for 1 minute per total 152 soybean samples. At this time, as an internal standard material (Ceramic; FOSS NIRsystems, INc., USA)

그 결과, 도 1에서 나타난 바와 같은 콩 152점에 대한 스펙트럼 프로파일을 수득하였다.As a result, a spectral profile for 152 beans as shown in FIG. 1 was obtained.

<< 실시예Example 4> 콩의 식물성 스테롤 정량용 검량 곡선 작성 4> Calibration curve for quantifying soybean vegetable sterol

상기 도 1의 근적외선 스펙트럼을 1차 또는 2차 미분법 및 10 ㎚의 측정 파 장 갭으로 수처리를 수행하였다. 이를 다시 변형 부분최소자승법(MPLS: Modified Partial Least Squares)을 이용하여 통계적 분석을 한 후, 실시예 2의 습식 정량값 및 실시예 3의 건식 정량값 간에 고도의 유의 상관을 나타내는 적정의 검량식을 도출하였다. 검증 검량식이 얻어지면 이 검량식의 적용이 합당한지를 검증하여야 하므로, 검량식을 만들 때 교차검증(Cross Validation; CV)을 사용하여 검량 세트 내에서 내부 검증하였다.The near-infrared spectrum of FIG. 1 was subjected to water treatment with a first or second differential method and a measurement wavelength gap of 10 nm. After performing statistical analysis using Modified Partial Least Squares (MPLS) again, an appropriate calibration equation showing a highly significant correlation between the wet quantitative value of Example 2 and the dry quantitative value of Example 3 was obtained. Derived. When the validation calibration equation is obtained, it is necessary to verify that the application of the calibration equation is reasonable. Therefore, the cross validation (CV) was used internally in the calibration set when creating the calibration equation.

그 결과, 도 2에서 나타난 바와 같이 각 식물성 스테롤별 검량 곡선을 수득하였고, 표 2에서 나타난 바와 같이 각 검량 곡선의 다중결정계수(R2: squared coefficient of multiple determination in calibration)를 수득하였다. 스티그마스테롤 및 β-시토스테롤은 다중결정계수가 0.236 및 0.501으로, 정량용 표준곡선으로 사용이 어려운 것으로 나타났고, 캄페스테롤(수학식 1) 검량 곡선의 다중결정계수는 0.842로 정확성이 높은 것으로 나타났다.As a result, as shown in FIG. 2, a calibration curve for each plant sterol was obtained, and as shown in Table 2, a multipled coefficient of multiple determination in calibration (R 2 ) of each calibration curve was obtained. The stigmasterol and β-sitosterol were found to be difficult to use as a standard quantitative curve with 0.236 and 0.501 polycrystalline coefficients, and the multicrystal coefficient of the campestrol (Equation 1) calibration curve was 0.842 with high accuracy.

성분ingredient α-
토코페롤
α-
Tocopherol
β-
토코페롤
β-
Tocopherol
γ-
토코페롤
γ-
Tocopherol
δ-
토코페롤
δ-
Tocopherol
캄페스테롤Campestrol 스티그마스테롤Stigmasterol β-시토스테롤β-sitosterol 전체all
결정계수
(r2)
Coefficient of determination
(r 2 )
0.1900.190 -- 0.5260.526 0.4780.478 0.8420.842 0.2360.236 0.5010.501 0.4740.474

캄페스테롤 함량(㎍/g) = -159.7143 - 539.5369x'1700 + 208.2029x'1710 + 862.7268x'1720 + 304.1911x'1730 - 65.8495x'1740 - 255.1128x'1750 - 212.5636x'1760 - 52.1982x'1770 + 135.6333x'1780 + 203.0269x'1790 + 233.239x'1800 + 104.6265x'1810 + 75.9039x'1820 - 5.9972x'1830 + 56.3546x'1840 + 43.7998x'1850 + 140.0899x'1860 + 689.9338x'1870 + 791.2035x'1880 + 801.7698x'1890 - 284.5929x'1900 - 1425.0724x'1910 - 1286.3221x'1920 - 732.9667x'1930 + 61.4209x'1940 + 424.8888x'1950 + 568.9919x'1960 + 601.3539x'1970 + 406.6427x'1980 + 344.6469x'1990 + 278.9063x'2000 + 148.3x'2010 + 40.2344x'2020 + 22.6729x'2030 - 28.6875x'2040 - 142.7464x'2050 - 305.8374x'2060 - 237.7981x'2070 - 112.3536x'2080 - 50.1014x'2090 + 15.0298x'2100.Campesterol Content (μg / g) = -159.7143 - 539.5369x '1700 + 208.2029x '1710 + 862.7268x '1720 + 304.1911x ' 1730- 65.8495x ' 1740- 255.1 128x '1750- 212.5636x ' 1760- 52.1982x '1770 + 135.6333x '1780 + 203.0269x '1790 + 233.239x '1800 + 104.6265x '1810 + 75.9039x ' 1820- 5.9972x '1830 + 56.3546x '1840 + 43.7998x '1850 + 140.0899x '1860 + 689.9338x '1870 + 791.2035x '1880 + 801.7698x '1890- 284.5929x ' 1900- 1425.0724x '1910- 1286.3221x ' 1920- 732.9667x '1930 + 61.4209x '1940 + 424.8888x '1950 + 568.9919x '1960 + 601.3539x '1970 + 406.6427x '1980 + 344.6469x '1990 + 278.9063x '2000 + 148.3x '2010 + 40.2344x '2020 + 22.6729x ' 2030- 28.6875x ' 2040- 142.7464 x ' 2050- 305.8374x ' 2060- 237.7981x ' 2070- 112.3536x ' 2080- 50.1014x '2090 + 15.0298x '2100 .

도 1은 152점 콩 시료의 NIR 스펙트럼을 나타낸 도이다.1 is a diagram showing an NIR spectrum of a 152-point soybean sample.

도 2는 콩 식물성 스테롤별 검량곡선을 나타낸 도이다:2 is a diagram showing a calibration curve for soybean vegetable sterols:

Slope: 기울기, RSQ: 다중결정계수, SEP: 표준예측오차, BIAS: 절편, SEP(C): 표준예측오차(corrected);Slope: slope, RSQ: multiple crystal coefficient, SEP: standard prediction error, BIAS: intercept, SEP (C): standard prediction error;

a: 시그마스테롤;a: sigmasterol;

b: β-시토스테롤; 및,b: β-sitosterol; And,

c: 캄페스테롤.c: camphorsterol.

Claims (3)

1) 콩 종자를 품종에 따라 구분하여 분말 상태로 테스트 시험관에 넣어 근적외광 분석기에 삽입한 후, 근적외광을 조사하여 1700 내지 2100 ㎚ 영역의 흡수 스펙트럼을 수득하는 단계;1) sorting the bean seeds according to the varieties into powder test tubes and inserting them into a near-infrared spectrometer, and irradiating near-infrared light to obtain an absorption spectrum in the region of 1700 to 2100 nm; 2) 상기 근적외선 스펙트럼에 1차 미분법을 적용하고 측정 파장별 갭을 10 ㎚으로 1차 도함수 값을 수득하는 단계;2) applying a first order differential method to the near infrared spectrum and obtaining a first derivative value with a gap of 10 nm for each wavelength measured; 3) 상기 파장별 1차 도함수 값을 하기 수학식 1의 함수에 대입하여, 콩 시료 내 캄페스테롤 함량을 결정하는 단계를 포함하는 콩의 캄페스테롤 성분의 함량에 대한 건식 정량 방법:3) dry quantification method for the content of the camphorsterol component of the soybean, comprising the step of determining the camphorsterol content in the soybean sample by substituting the first derivative value for each wavelength into a function of Equation 1 below: [수학식 1][Equation 1] 캄페스테롤 함량(㎍/g) = -159.7143 - 539.5369x'1700 + 208.2029x'1710 + 862.7268x'1720 + 304.1911x'1730 - 65.8495x'1740 - 255.1128x'1750 - 212.5636x'1760 - 52.1982x'1770 + 135.6333x'1780 + 203.0269x'1790 + 233.239x'1800 + 104.6265x'1810 + 75.9039x'1820 - 5.9972x'1830 + 56.3546x'1840 + 43.7998x'1850 + 140.0899x'1860 + 689.9338x'1870 + 791.2035x'1880 + 801.7698x'1890 - 284.5929x'1900 - 1425.0724x'1910 - 1286.3221x'1920 - 732.9667x'1930 + 61.4209x'1940 + 424.8888x'1950 + 568.9919x'1960 + 601.3539x'1970 + 406.6427x'1980 + 344.6469x'1990 + 278.9063x'2000 + 148.3x'2010 + 40.2344x'2020 + 22.6729x'2030 - 28.6875x'2040 - 142.7464x'2050 - 305.8374x'2060 - 237.7981x'2070 - 112.3536x'2080 - 50.1014x'2090 + 15.0298x'2100.Campesterol Content (μg / g) = -159.7143 - 539.5369x '1700 + 208.2029x '1710 + 862.7268x '1720 + 304.1911x ' 1730- 65.8495x ' 1740- 255.1 128x '1750- 212.5636x ' 1760- 52.1982x '1770 + 135.6333x '1780 + 203.0269x '1790 + 233.239x '1800 + 104.6265x '1810 + 75.9039x ' 1820- 5.9972x '1830 + 56.3546x '1840 + 43.7998x '1850 + 140.0899x '1860 + 689.9338x '1870 + 791.2035x '1880 + 801.7698x '1890- 284.5929x ' 1900- 1425.0724x '1910- 1286.3221x ' 1920- 732.9667x '1930 + 61.4209x '1940 + 424.8888x '1950 + 568.9919x '1960 + 601.3539x '1970 + 406.6427x '1980 + 344.6469x '1990 + 278.9063x '2000 + 148.3x '2010 + 40.2344x '2020 + 22.6729x ' 2030- 28.6875x ' 2040- 142.7464 x ' 2050- 305.8374x ' 2060- 237.7981x ' 2070- 112.3536x ' 2080- 50.1014x '2090 + 15.0298x '2100 . 제 1항에 있어서, 상기 수학식 1의 함수의 다중결정계수(R2)는 0.8423인 것을 특징으로 하는 건식 정량 방법.The dry quantitative method of claim 1, wherein the multiple crystal coefficient R 2 of the function of Equation 1 is 0.8423. 제 1항에 있어서, 상기 x'1700 내지 x'2100는 1700 내지 2100 ㎚ 사이의 스펙트럼에서 10 ㎚ 간격으로 측정된 1차 도함수 값인 것을 특징으로 하는 건식 정량 방법.The method of claim 1, wherein x '1700 to x ' 2100 is a first derivative value measured at intervals of 10 nm in a spectrum between 1700 and 2100 nm.
KR1020090005455A 2009-01-22 2009-01-22 Method for quantifying campesterol of soybean using NIR KR101027433B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090005455A KR101027433B1 (en) 2009-01-22 2009-01-22 Method for quantifying campesterol of soybean using NIR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090005455A KR101027433B1 (en) 2009-01-22 2009-01-22 Method for quantifying campesterol of soybean using NIR

Publications (2)

Publication Number Publication Date
KR20100086215A KR20100086215A (en) 2010-07-30
KR101027433B1 true KR101027433B1 (en) 2011-04-25

Family

ID=42644829

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090005455A KR101027433B1 (en) 2009-01-22 2009-01-22 Method for quantifying campesterol of soybean using NIR

Country Status (1)

Country Link
KR (1) KR101027433B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103868881A (en) * 2012-12-13 2014-06-18 中国石油化工股份有限公司 Method for test of wax content in asphalt
CN114280172A (en) * 2021-12-06 2022-04-05 南京诺齐生物科技有限公司 Detection and analysis method of phytosterol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346483A (en) 2001-05-29 2002-12-03 Shizuoka Seiki Co Ltd Grain component analyzer
KR20030010025A (en) * 2001-07-25 2003-02-05 대한민국 (관리부서 농촌진흥청) non-destructive analysis method of one seed grain by near infrared reflectance spectroscopy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346483A (en) 2001-05-29 2002-12-03 Shizuoka Seiki Co Ltd Grain component analyzer
KR20030010025A (en) * 2001-07-25 2003-02-05 대한민국 (관리부서 농촌진흥청) non-destructive analysis method of one seed grain by near infrared reflectance spectroscopy

Also Published As

Publication number Publication date
KR20100086215A (en) 2010-07-30

Similar Documents

Publication Publication Date Title
Meenu et al. A critical review on analytical techniques to detect adulteration of extra virgin olive oil
Yuan et al. Prediction of fatty acid composition in Camellia oleifera oil by near infrared transmittance spectroscopy (NITS)
Belay et al. Measurement of caffeine in coffee beans with UV/vis spectrometer
Gökmen et al. Multiple-stage extraction strategy for the determination of acrylamide in foods
Longobardi et al. Instrumental and multivariate statistical analyses for the characterisation of the geographical origin of Apulian virgin olive oils
Risoluti et al. Monitoring of cannabinoids in hemp flours by MicroNIR/Chemometrics
Przykaza et al. Newly marketed seed oils. What we can learn from the current status of authentication of edible oils
Oblath et al. Development of near-infrared spectroscopy calibrations to measure quality characteristics in intact Brassicaceae germplasm
Milojković-Opsenica et al. Thin-layer chromatography in the authenticity testing of bee-products
Sebastià et al. A critical review of acrylamide green extraction and determination in food matrices: Current insights and future perspectives
Siano et al. Integrated analytical methods to characterize lipids from prosopis spp. and ceratonia siliqua seed germ flour
KR101027433B1 (en) Method for quantifying campesterol of soybean using NIR
Laczkowski et al. Application of chemometric methods in the evaluation of antioxidants activity from degreased chia seeds extracts
Haruna et al. Rapid and simultaneous quantification of phenolic compounds in peanut (Arachis hypogaea L.) seeds using NIR spectroscopy coupled with multivariate calibration
Faria-Machado et al. Method validation for analysis of phorbol esters from Jatropha curcas
García-González et al. A study of the differences between trade standards inside and outside Europe
Liu et al. Classification and quantification analysis of peach kernel from different origins with near-infrared diffuse reflection spectroscopy
Gómez-Coca et al. On the glucoside analysis: simultaneous determination of free and esterified steryl glucosides in olive oil. Detailed analysis of standards as compulsory first step
Liu et al. A highly sensitive quantification of phytosterols through an inexpensive derivatization
Kong et al. Multi-component analysis of bile acids in natural Calculus bovis and its substitutes by ultrasound-assisted solid–liquid extraction and UPLC-ELSD
KR101027434B1 (en) Method for quantifying the composition of fatty acid in Perilla frutescens using NIR
Azizian et al. Quantification of trans fatty acids in food products by GC, ATR-FTIR and FT-NIR methods
de Castro et al. Appropriate use of analytical terminology–examples drawn from research on saffron
Zhang et al. Recent advances in analytical detection of olive oil adulteration
Tsai et al. Feasibility of rapid quantitation of stratum corneum lipid content by Fourier transform infrared spectrometry

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant