KR100948170B1 - Method for inducing the defferentiation of embryonic stem cells into hemangioblast - Google Patents
Method for inducing the defferentiation of embryonic stem cells into hemangioblast Download PDFInfo
- Publication number
- KR100948170B1 KR100948170B1 KR1020080014625A KR20080014625A KR100948170B1 KR 100948170 B1 KR100948170 B1 KR 100948170B1 KR 1020080014625 A KR1020080014625 A KR 1020080014625A KR 20080014625 A KR20080014625 A KR 20080014625A KR 100948170 B1 KR100948170 B1 KR 100948170B1
- Authority
- KR
- South Korea
- Prior art keywords
- cells
- embryonic stem
- stem cells
- differentiation
- hemangioblasts
- Prior art date
Links
- 210000001671 embryonic stem cell Anatomy 0.000 title claims abstract description 105
- 210000003566 hemangioblast Anatomy 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000001939 inductive effect Effects 0.000 title claims abstract description 44
- 210000004027 cell Anatomy 0.000 claims abstract description 126
- 230000004069 differentiation Effects 0.000 claims abstract description 94
- 230000011664 signaling Effects 0.000 claims abstract description 41
- 102000004232 Mitogen-Activated Protein Kinase Kinases Human genes 0.000 claims abstract description 40
- 108090000744 Mitogen-Activated Protein Kinase Kinases Proteins 0.000 claims abstract description 40
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 claims abstract description 39
- 210000003556 vascular endothelial cell Anatomy 0.000 claims abstract description 38
- 102100024193 Mitogen-activated protein kinase 1 Human genes 0.000 claims abstract description 35
- 239000003112 inhibitor Substances 0.000 claims abstract description 34
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 claims abstract description 31
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 claims abstract description 31
- 229940112869 bone morphogenetic protein Drugs 0.000 claims abstract description 31
- 210000004509 vascular smooth muscle cell Anatomy 0.000 claims abstract description 29
- 238000012258 culturing Methods 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims abstract description 23
- 108091006086 inhibitor proteins Proteins 0.000 claims abstract description 17
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 claims abstract description 12
- 230000024245 cell differentiation Effects 0.000 claims abstract description 11
- 230000001105 regulatory effect Effects 0.000 claims abstract description 5
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 claims abstract description 3
- 102100031706 Fibroblast growth factor 1 Human genes 0.000 claims abstract description 3
- 108091000080 Phosphotransferase Proteins 0.000 claims abstract description 3
- 102000020233 phosphotransferase Human genes 0.000 claims abstract description 3
- 210000000130 stem cell Anatomy 0.000 claims description 24
- QFWCYNPOPKQOKV-UHFFFAOYSA-N 2-(2-amino-3-methoxyphenyl)chromen-4-one Chemical group COC1=CC=CC(C=2OC3=CC=CC=C3C(=O)C=2)=C1N QFWCYNPOPKQOKV-UHFFFAOYSA-N 0.000 claims description 14
- 102100024505 Bone morphogenetic protein 4 Human genes 0.000 claims description 12
- 239000001963 growth medium Substances 0.000 claims description 9
- DVEXZJFMOKTQEZ-JYFOCSDGSA-N U0126 Chemical compound C=1C=CC=C(N)C=1SC(\N)=C(/C#N)\C(\C#N)=C(/N)SC1=CC=CC=C1N DVEXZJFMOKTQEZ-JYFOCSDGSA-N 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 claims description 6
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 claims description 3
- 102100022544 Bone morphogenetic protein 7 Human genes 0.000 claims description 3
- 210000003716 mesoderm Anatomy 0.000 claims description 2
- 108010081589 Becaplermin Proteins 0.000 claims 2
- 101000762366 Homo sapiens Bone morphogenetic protein 2 Proteins 0.000 claims 2
- 101000762379 Homo sapiens Bone morphogenetic protein 4 Proteins 0.000 claims 2
- 101000899361 Homo sapiens Bone morphogenetic protein 7 Proteins 0.000 claims 2
- 210000001704 mesoblast Anatomy 0.000 abstract description 6
- 210000001519 tissue Anatomy 0.000 abstract description 5
- 230000014509 gene expression Effects 0.000 description 36
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 27
- 239000002609 medium Substances 0.000 description 25
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 23
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 23
- 108090000623 proteins and genes Proteins 0.000 description 17
- 239000003550 marker Substances 0.000 description 14
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 13
- 238000003752 polymerase chain reaction Methods 0.000 description 12
- 210000002966 serum Anatomy 0.000 description 12
- 108010049955 Bone Morphogenetic Protein 4 Proteins 0.000 description 10
- 241000283707 Capra Species 0.000 description 10
- 210000002889 endothelial cell Anatomy 0.000 description 10
- 238000003125 immunofluorescent labeling Methods 0.000 description 10
- 102100029761 Cadherin-5 Human genes 0.000 description 8
- 102100037241 Endoglin Human genes 0.000 description 8
- 108010018828 cadherin 5 Proteins 0.000 description 8
- 102000006783 calponin Human genes 0.000 description 8
- 108010086826 calponin Proteins 0.000 description 8
- 239000003636 conditioned culture medium Substances 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- -1 2-amino-3-methoxyphenyl Chemical group 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 102100031480 Dual specificity mitogen-activated protein kinase kinase 1 Human genes 0.000 description 6
- 101710146526 Dual specificity mitogen-activated protein kinase kinase 1 Proteins 0.000 description 6
- 102100035423 POU domain, class 5, transcription factor 1 Human genes 0.000 description 6
- 108010069381 Platelet Endothelial Cell Adhesion Molecule-1 Proteins 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 6
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 239000012466 permeate Substances 0.000 description 6
- 102100034343 Integrase Human genes 0.000 description 5
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 5
- 102000019149 MAP kinase activity proteins Human genes 0.000 description 5
- 108040008097 MAP kinase activity proteins Proteins 0.000 description 5
- 101710126211 POU domain, class 5, transcription factor 1 Proteins 0.000 description 5
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 5
- 108010022164 acetyl-LDL Proteins 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000012091 fetal bovine serum Substances 0.000 description 5
- 108010082117 matrigel Proteins 0.000 description 5
- 210000003205 muscle Anatomy 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 101710082961 GATA-binding factor 2 Proteins 0.000 description 4
- 108700031316 Goosecoid Proteins 0.000 description 4
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 210000004204 blood vessel Anatomy 0.000 description 4
- 230000010261 cell growth Effects 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 210000002257 embryonic structure Anatomy 0.000 description 4
- 238000010195 expression analysis Methods 0.000 description 4
- 210000001778 pluripotent stem cell Anatomy 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 3
- 108010085238 Actins Proteins 0.000 description 3
- 101100481408 Danio rerio tie2 gene Proteins 0.000 description 3
- 102000050057 Goosecoid Human genes 0.000 description 3
- 102100039064 Interleukin-3 Human genes 0.000 description 3
- 108010002386 Interleukin-3 Proteins 0.000 description 3
- 102000043136 MAP kinase family Human genes 0.000 description 3
- 108091054455 MAP kinase family Proteins 0.000 description 3
- 229940124647 MEK inhibitor Drugs 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 101100481410 Mus musculus Tek gene Proteins 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 239000013504 Triton X-100 Substances 0.000 description 3
- 229920004890 Triton X-100 Polymers 0.000 description 3
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 210000000648 angioblast Anatomy 0.000 description 3
- 210000000601 blood cell Anatomy 0.000 description 3
- 239000006143 cell culture medium Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 210000002242 embryoid body Anatomy 0.000 description 3
- 230000000925 erythroid effect Effects 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 210000003714 granulocyte Anatomy 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 239000013028 medium composition Substances 0.000 description 3
- 229920002866 paraformaldehyde Polymers 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 108010036395 Endoglin Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000050554 Eph Family Receptors Human genes 0.000 description 2
- 108091008815 Eph receptors Proteins 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 2
- 102000014429 Insulin-like growth factor Human genes 0.000 description 2
- 108010007622 LDL Lipoproteins Proteins 0.000 description 2
- 102000007330 LDL Lipoproteins Human genes 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 210000002459 blastocyst Anatomy 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 238000002659 cell therapy Methods 0.000 description 2
- 230000001332 colony forming effect Effects 0.000 description 2
- 210000003038 endothelium Anatomy 0.000 description 2
- 239000003797 essential amino acid Substances 0.000 description 2
- 235000020776 essential amino acid Nutrition 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000000984 immunochemical effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 210000002435 tendon Anatomy 0.000 description 2
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 1
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 1
- 108010049931 Bone Morphogenetic Protein 2 Proteins 0.000 description 1
- 108010049870 Bone Morphogenetic Protein 7 Proteins 0.000 description 1
- 241000283074 Equus asinus Species 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 101001094700 Homo sapiens POU domain, class 5, transcription factor 1 Proteins 0.000 description 1
- 101000713275 Homo sapiens Solute carrier family 22 member 3 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000047918 Myelin Basic Human genes 0.000 description 1
- 101710107068 Myelin basic protein Proteins 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000010454 developmental mechanism Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 210000003981 ectoderm Anatomy 0.000 description 1
- 210000001705 ectoderm cell Anatomy 0.000 description 1
- 210000001900 endoderm Anatomy 0.000 description 1
- 210000004039 endoderm cell Anatomy 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 108700014844 flt3 ligand Proteins 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 150000007523 nucleic acids Chemical group 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 238000002135 phase contrast microscopy Methods 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000007651 self-proliferation Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000009750 upstream signaling Effects 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0647—Haematopoietic stem cells; Uncommitted or multipotent progenitors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/069—Vascular Endothelial cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/135—Platelet-derived growth factor [PDGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/155—Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/165—Vascular endothelial growth factor [VEGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/70—Enzymes
- C12N2501/72—Transferases [EC 2.]
- C12N2501/727—Kinases (EC 2.7.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/02—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Developmental Biology & Embryology (AREA)
- Immunology (AREA)
- Vascular Medicine (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
본 발명은 MEK/ERK(mitogen-activated protein kinase kinase/extracellular regulated kinase) 신호전달 억제제 및 BMP(bone morphogenetic protein)를 포함하는 배아줄기세포 분화 유도용 조성물 및 상기 조성물을 이용하여 배아줄기세포로부터 중간엽 세포(mesoderm cell)로의 분화를 유도하는 방법에 관한 것이다. 또한, 상기 방법으로 얻어진 중간엽 세포는 다양한 중간엽성 조직 세포로 분화할 수 있으며, 구체적인 예시로서 본 발명은 상기 방법으로 얻어진 중간엽 세포를 VEGF(vascular endothelial cell growth factor) 및 bFGF(basic fibroblast growth factor)의 존재 하에 배양하여 혈관모세포(hemangioblast)로 분화 유도하는 방법에 관한 것이다. 상기와 같이 분화된 혈관모세포는 이후 다양한 배양 조건 하에서 혈관내피세포, 혈관평활근세포 및 조혈줄기세포로 효과적으로 분화 유도될 수 있다. The present invention provides a composition for inducing embryonic stem cell differentiation comprising MEK / ERK (mitogen-activated protein kinase kinase / extracellular regulated kinase) signaling inhibitor and BMP (bone morphogenetic protein) and mesenchymal from embryonic stem cells using the composition It relates to a method of inducing differentiation into a cell (mesoderm cell). In addition, the mesenchymal cells obtained by the above method can be differentiated into various mesenchymal tissue cells. As a specific example, the present invention provides the vascular endothelial cell growth factor (VEGF) and the basic fibroblast growth factor (BFGF). And inducing differentiation into hemangioblasts by culturing in the presence of Hemangioblasts differentiated as described above can be effectively induced differentiation into vascular endothelial cells, vascular smooth muscle cells and hematopoietic stem cells under various culture conditions.
배아줄기세포, 중간엽 세포, 혈관모세포, MEK/ERK 신호전달 억제제, BMP Embryonic stem cells, mesenchymal cells, hemangioblasts, MEK / ERK signaling inhibitors, BMP
Description
본 발명은 MEK/ERK 신호전달 억제제 및 BMP를 포함하는 줄기세포 분화 유도용 조성물 및 상기 조성물을 이용하여 배아줄기세포로부터 중간엽 세포(mesoderm cell)로의 분화를 유도하는 방법에 관한 것이다. 또한, 상기 방법으로 얻어진 중간엽 세포는 다양한 중간엽성 조직 세포로 분화할 수 있으며, 구체적인 예시로서 본 발명은 상기 방법으로 얻어진 중간엽 세포를 VEGF(vascular endothelial cell growth factor) 및 bFGF(basic fibroblast growth factor)의 존재 하에 배양하여 혈관모세포(hemangioblast)로 분화 유도하는 방법에 관한 것이다. 상기와 같이 분화된 혈관모세포는 이후 다양한 배양 조건 하에서 혈관내피세포, 혈관평활근세포 및 조혈줄기세포로 효과적으로 분화 유도될 수 있다. The present invention relates to a composition for inducing stem cell differentiation comprising a MEK / ERK signaling inhibitor and BMP, and a method of inducing differentiation from embryonic stem cells to mesoderm cells using the composition. In addition, the mesenchymal cells obtained by the above method can be differentiated into various mesenchymal tissue cells. As a specific example, the present invention provides the vascular endothelial cell growth factor (VEGF) and the basic fibroblast growth factor (BFGF). And inducing differentiation into hemangioblasts by culturing in the presence of Hemangioblasts differentiated as described above can be effectively induced differentiation into vascular endothelial cells, vascular smooth muscle cells and hematopoietic stem cells under various culture conditions.
인간 배아줄기세포(human embryonic stem cells: hESCs)는 인간 배반포(blastocyst)의 내세포괴 (inner cell mass)에서 유래한 세포로서(J. A. Thomson et al, Science 282, 1145-1147, 1998), 자가증식(self-renewal) 할 수 있는 능력과, 인체 내의 다양한 세포 타입으로 분화할 수 있는 분화전능성(pluripotency)을 가지고 있다(K. S. O'Shea et al, Anat Rec 257, 32-41, 1999; A. M. Wobus et al, Preface, Cells Tissues Organs 165, 129-130, 1999). 이러한 인간 배아줄기세포의 특성으로 인해, 인간 배아줄기세포는 당뇨병, 파키슨씨 질환과 같이 세포자체의 기능이 저하되거나 사멸됨으로 인해 발생하는 질환의 치료에 이용될 수 있다고 알려져 있다(J. H. Kim et al. Nature 418, 50-56, 2002; S. Gerecht-Nir et al, Transpl Immunol 12, 203-209, 2004; Y. Hori et al, Proc Natl Acad Sci USA 99, 16105-16110, 2002). 현재까지 여러 연구 그룹에서 인간 배아줄기세포를 이용하여 다양한 세포 타입으로 분화 유도하고 있다. 인간 배아줄기세포의 분화방법은 크게 3가지 방법으로 나눌 수 있다. 첫 번째로, 인간 배아줄기세포로부터 배아체(embryoid body)를 형성하는 방법이다(Itskovitz-Eldor J et al. Mol Med 6:88-95, 2000). 두 번째로, 단일층(monolayer)으로 자라고 있는 인간 배아줄기세포에 FBS 또는 FCS 등의 동물 유래 혈청(serum)을 첨가하여 자연분화시키는 방법이다(Wang et al. Nature biotech 25, 317-318, 2007). 마지막으로, 인간 배아줄기세포를 분화된 다른 세포와 함께 공배양(co-culture)하는 방법이다(Vodyanik, M. A. et al. Blood 105, 617-626, 2005). 이러한 3가지 분화방식은 인간 배아줄기세포가 자연적으로 분화할 수 있는 환경을 조성하여 다양한 세포 타입의 생성을 유도하고, 분화된 세포들 중 실험자가 원하는 세포 타입을 분리하여 획득하는 방법을 취하고 있다. 따라서 특정 세포 타입으로의 분화효율이 낮고, 특히 동물유래인자나 혈청이 함유된 경우에는 혈청 속의 다양한 인자들 때문에 인간 배아줄기세포를 통한 초기 인간의 발생기작을 연구하는데에 큰 어려움이 있다. Human embryonic stem cells (hESCs) are cells derived from the inner cell mass of human blastocysts (JA Thomson et al, Science 282, 1145-1147, 1998), and autologous growth ( It has the ability to self-renewal and the pluripotency to differentiate into various cell types in the human body (KS O'Shea et al, Anat Rec 257, 32-41, 1999; AM Wobus et al). , Preface, Cells Tissues Organs 165, 129-130, 1999). Due to the characteristics of these human embryonic stem cells, human embryonic stem cells are known to be used for the treatment of diseases caused by deterioration or death of the cell itself, such as diabetes and Parkinson's disease (JH Kim et al. Nature 418, 50-56, 2002; S. Gerecht-Nir et al, Transpl Immunol 12, 203-209, 2004; Y. Hori et al, Proc Natl Acad Sci USA 99, 16105-16110, 2002). To date, several research groups have used human embryonic stem cells to induce differentiation into various cell types. Differentiation of human embryonic stem cells can be largely divided into three methods. First, an embryonic body is formed from human embryonic stem cells (Itskovitz-Eldor J et al. Mol Med 6: 88-95, 2000). Secondly, animal embryos, such as FBS or FCS, are added to human embryonic stem cells growing into a monolayer to differentiate them naturally (Wang et al. Nature biotech 25, 317-318, 2007). ). Finally, human embryonic stem cells are co-cultured with other differentiated cells (Vodyanik, M. A. et al. Blood 105, 617-626, 2005). These three differentiation methods create an environment in which human embryonic stem cells can naturally differentiate, induce the production of various cell types, and take a method of separating and obtaining a cell type desired by an experimenter among the differentiated cells. Therefore, the differentiation efficiency to a specific cell type is low, especially when animal-derived factors or serum are contained, there are great difficulties in studying early human developmental mechanisms through human embryonic stem cells due to various factors in serum.
한편, 배아줄기세포는 외배엽, 중배엽 및 내배엽성 줄기세포로 분화할 수 있는데, 이 중 중배엽성 기원(mesodermal origin)의 다능성 줄기 세포는 발단 단계에서 뼈, 연골 조직, 힘줄, 근육, 지방 및 혈관 내피 등으로 분화한다 (Minguell et al., Esp. Biol. Med. 226, 507-520, 2001). 이러한 중배엽성 줄기세포에서 유래한 대표적인 세포군은 소위 혈관모세포(Hemangioblast)를 들 수 있다. 중배엽성 기원의 다능성 줄기세포는 자가 증식성을 가지며, 다양한 동물 모델 시스템에 이들 세포를 이식하면 국소 부위에서 이들 세포가 분화하여 혈관 및 다양한 혈액세포로 분화하여 조직이 재생되므로 세포 치료에 유용하다. 이러한 중배엽성 기원의 줄기세포를 세포 치료 등에 이용할 수 있을 만큼 충분한 양을 얻기 위해서는 배아줄기세포로부터 중배엽성 기원의 줄기세포로 분화 유도하는 기술이 필요하다. 그러나, 배아줄기세포를 중배엽성 기원의 줄기세포로 효과적으로 분화 유도하는 방법은 현재까지 국내외적으로 거의 알려진 바가 없다.Embryonic stem cells, on the other hand, can differentiate into ectoderm, mesoderm and endoderm stem cells, among which pluripotent stem cells of mesodermal origin are bone, cartilage tissue, tendons, muscle, fat and blood vessels at the beginning stage. Differentiate into endothelium and the like (Minguell et al., Esp. Biol. Med. 226, 507-520, 2001). Representative cell groups derived from such mesodermal stem cells include so-called hemangioblasts. Pluripotent stem cells of mesodermal origin have self-proliferative properties, and transplanting these cells into various animal model systems is useful for cell therapy because these cells are differentiated at localized sites and differentiated into blood vessels and various blood cells. . In order to obtain sufficient amounts of such stem cells of mesodermal origin to be used for cell therapy, a technique for inducing differentiation from embryonic stem cells to stem cells of mesodermal origin is required. However, the method of effectively inducing differentiation of embryonic stem cells into stem cells of mesodermal origin has not been known so far at home and abroad.
또한, 배아줄기세포로부터 혈관모세포로 분화 유도하는 기술로는 배아줄기세포를 VEGF, bFGF, IGF(insulin-like growth factor) 및 EGF(epidermal growth factor)를 포함한 배지에서 배양하여 내피세포(endothelial cell)로 분화 유도하는 방법 (국제공개특허 WO 03/040319), 배아줄기세포를 SCF(stem cell factor), FLT-3 리간드, IL-3, IL-6 및 G-CSF(granulocyte colony stimulating factor)로부터 선택된 조혈성장인자(hematopoietic growth factor)를 포함한 환경에서 배양하여 조혈세포주(Hematopoietic lineage)를 생산하는 방법 (미국공개특허 US 2003/0153082), 인간 배아체를 인간 태반기질세포와 복합배양하여 인간 배아체를 조혈모세포로 분화 유도하는 방법(국내특허출원 제10-2006-0009934호) 및 인간 배아체를 인간 골수기질세포와 복합배양하여 인간 배아체를 조혈모세포로 분화 유도하는 방법(국내특허출원 제10-2004-0097538호) 등이 있다. 그러나, 현재까지 배아줄기세포의 신호전달체계 조절을 통하여 혈관모세포로 분화 유도하려는 시도에 관해서는 전혀 알려진 바가 없다. In addition, as a technique for inducing differentiation from embryonic stem cells to hemangioblasts, endothelial cells are cultured by culturing embryonic stem cells in a medium containing VEGF, bFGF, insulin-like growth factor (IGF) and epidermal growth factor (EGF). Method for inducing differentiation of the embryonic stem cells (international patent publication WO 03/040319), embryonic stem cells selected from SCF (stem cell factor), FLT-3 ligand, IL-3, IL-6 and granulocyte colony stimulating factor (G-CSF) Method of producing hematopoietic lineage by culturing in an environment containing hematopoietic growth factor (US Patent Publication No. US 2003/0153082), human embryonic body by complex culture with human placental matrix cells Method of inducing differentiation into hematopoietic stem cells (Domestic Patent Application No. 10-2006-0009934) and method of inducing differentiation of human embryoid bodies into hematopoietic stem cells by complex culture of human embryoid bodies with human bone marrow stromal cells (Domestic Patent Application No. 10-2006) 2004-00975 38). However, there is no known attempt to induce differentiation into hemangioblasts by regulating the signaling system of embryonic stem cells.
이러한 배경 하에, 본 발명자는 배아줄기세포의 신호전달체계를 조절하여 보다 효율적으로 배아줄기세포를 중배엽성 줄기 세포로 분화 유도할 수 있는 방법을 찾고자 예의 노력한 결과, 배아줄기세포에 MEK/ERK신호전달억제제 및 BMP를 처리하면 높은 효율로 중배엽성 줄기세포로 분화 유도시킬 수 있음을 발견하였고, 나아가 상기 방법으로 분화된 중배엽성 줄기세포에 VEGF 및 bFGF를 처리하면 혈관모세포(hemangioblast)로 분화 유도시키는데 탁월한 효과가 있음을 발견함으로써 본 발명을 완성하였다. 이러한 분화 유도 방법은 동물 유래의 혈청의 첨가 없이도, 인간 배아줄기세포의 신호전달체계를 조절하여 효과적으로 다양한 세포를 생산할 수 있는 장점이 있다. Under these backgrounds, the present inventors have made efforts to find ways to induce differentiation of embryonic stem cells into mesodermal stem cells by controlling the signaling system of embryonic stem cells. As a result, MEK / ERK signaling is transmitted to embryonic stem cells. It was found that treatment with inhibitors and BMP can induce differentiation into mesodermal stem cells with high efficiency, and furthermore, the treatment of VEGF and bFGF in differentiated mesenchymal stem cells by the above method is excellent for inducing differentiation into hemangioblasts. The present invention has been completed by finding an effect. This differentiation induction method has the advantage that can effectively produce a variety of cells by controlling the signaling system of human embryonic stem cells without the addition of serum derived from animals.
본 발명의 하나의 목적은, MEK/ERK 신호전달 억제제 및 BMP를 포함하는 배아줄기세포 분화 유도용 조성물을 제공하는 것이다.One object of the present invention is to provide a composition for inducing embryonic stem cell differentiation comprising a MEK / ERK signaling inhibitor and BMP.
본 발명의 다른 목적은, 상기 조성물을 이용하여 배아줄기세포로부터 중간엽 세포(mesoderm cell)로의 분화를 유도하는 방법을 제공하는 것이다. Another object of the present invention is to provide a method of inducing differentiation from embryonic stem cells to mesoderm cells using the composition.
본 발명의 또 다른 목적은, 상기 방법으로 얻어진 중간엽 세포를 VEGF 및 bFGF의 존재 하에 배양하여 혈관모세포(hemangioblast)로 분화 유도하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method of inducing differentiation into hemangioblasts by culturing the mesenchymal cells obtained by the above method in the presence of VEGF and bFGF.
본 발명의 또 다른 목적은, 상기 방법으로 얻어진 혈관모세포를 VEGF 및 bFGF의 존재 하에 배양하여 혈관내피세포(vascular endothelial cell)로 분화 유도하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method of inducing differentiation into vascular endothelial cells by culturing hemangioblasts obtained by the above method in the presence of VEGF and bFGF.
본 발명의 또 다른 목적은, 상기 방법으로 얻어진 혈관모세포를 PDGF-BB의 존재 하에 배양하여 혈관평활근세포(vascular smooth muscle cell)로 분화 유도하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method of inducing differentiation of vascular smooth muscle cells by culturing hemangioblasts obtained by the above method in the presence of PDGF-BB.
본 발명의 또 다른 목적은, 상기 방법으로 얻어진 혈관모세포를 MethCult GF H4434 (Stem Cell Technologies사, Canada)에 배양하여 조혈줄기세포(hematopoietic stem cell)로 분화 유도하는 방법을 제공하는 것이다. Still another object of the present invention is to provide a method of inducing differentiation into hematopoietic stem cells by culturing hemangioblasts obtained by the above method in MethCult GF H4434 (Stem Cell Technologies, Canada).
따라서, 하나의 양태로서, 본 발명은 MEK/ERK 신호전달 억제제 및 BMP를 포함하는 배아줄기세포 분화 유도용 조성물에 관한 것이다.Accordingly, in one aspect, the present invention relates to a composition for inducing embryonic stem cell differentiation comprising a MEK / ERK signaling inhibitor and BMP.
본 발명에서 용어, "배아줄기세포(embryonic stem cell)"는 수정란이 모체의 자궁에 착상하기 직전인 포배기 배아에서 내세포괴(inner cell mass)를 추출하여 체외에서 배양한 것으로서, 개체의 모든 조직의 세포로 분화할 수 있는 다능성(pluripotent)이거나 전능성(totipotent)일 수 있는 세포를 의미하며, 넓은 의미로는 배아줄기세포로부터 유래한 배아체(embryoid bodies)도 포함한다. 배아체는 배아줄기세포의 다양한 조직 형태로의 자발적 분화 과정에서 줄기세포에 의해 형성된 중간구조이며, 배아 줄기 세포의 배양 중에 형성된 응집물(aggregate) 형태이다. 한편, 본 발명의 배아줄기세포는 인간을 포함한 포유동물로부터 유래할 수 있고, 바람직하게는 인간 배아줄기세포이다.As used herein, the term "embryonic stem cell" refers to a cell cultured in vitro by extracting an inner cell mass from an blastocyst embryo just before the fertilized egg implants in the mother's womb. It refers to a cell that may be pluripotent or totipotent capable of differentiating into cells, and broadly includes embryoid bodies derived from embryonic stem cells. Embryos are intermediate structures formed by stem cells during spontaneous differentiation of embryonic stem cells into various tissue forms, and aggregate forms formed during the culture of embryonic stem cells. On the other hand, the embryonic stem cells of the present invention can be derived from a mammal, including human, preferably human embryonic stem cells.
본 발명에서 용어,“분화(differentiation)”란 세포가 분열 증식하여 성장하는 동안에 세포의 구조나 기능이 특수화되는 현상을 의미한다. 다능성 베아줄기세포는 계통이 한정된 전구세포(예컨대, 외배엽성 세포, 중배엽성 세포 또는 내배엽성 세포 등)로 분화한 후, 다른 형태의 전구세포로 더 분화될 수 있고(예컨대, 혈관모세포 등), 그 뒤 특정 조직(예컨대, 혈관 등)에서 특징적인 역할을 수행하는 말기 분화세포(예컨대, 혈관내피세포 및 혈관평활근세포 등)로 분화될 수 있다. As used herein, the term “differentiation” refers to a phenomenon in which a cell's structure or function is specialized during cell division and proliferation. Pluripotent stem cells can differentiate into lineage-defining progenitor cells (eg, ectoderm cells, mesoderm cells, or endoderm cells, etc.) and then further differentiate into other types of progenitor cells (eg, hemangioblasts, etc.). Then, they may be differentiated into terminal differentiated cells (eg, vascular endothelial cells and vascular smooth muscle cells, etc.) which play a characteristic role in specific tissues (eg, blood vessels, etc.).
본 발명에서 용어, "MEK/ERK 신호전달 억제제"란 MEK/ERK(mitogen-activated protein kinase kinase/extracellular regulated kinase) 신호전달과정에 관여하는 ERK1/2 및 ERK1/2의 upstream 분자인 MEK1/2를 표적으로 하는 물질들을 의미한다. As used herein, the term "MEK / ERK signaling inhibitor" refers to MEK1 / 2, which is an upstream molecule of ERK1 / 2 and ERK1 / 2 involved in mitogen-activated protein kinase kinase / extracellular regulated kinase (MEK) signaling. Means the substances that are targeted.
MEK(mitogen-activated protein kinase kinase)는 세포질 내의 MAP 카이네이즈 신호전달계 말단에 작용하는 효소로서 세포 밖의 신호를 핵 내부로 전달하는 중요한 매개체 역할을 하며, 미엘린 기저 단백질(myelin basic protein)의 트레오닌(Thr) 잔기를 시험관 내에서 인산화(phosphorylation)시킨다. ERK는 고등생물에 존재하는 대표적인 MAP 카이네이즈로서 외부 신호에 의해 트레오닌(Thr)과 티로신(Tyr) 잔기를 인산화시킨다. 이와 같은 트레오닌과 티로신 잔기의 인산화는 MAP 카이네이즈 활성화에 결정적인 역할을 하므로, 이들 아미노산 잔기가 다른 아미노산 잔기로 치환될 경우에는 효소가 활성화되지 않는다는 것이 보고되었다. Mitogen-activated protein kinase kinase (MEK) is an enzyme that acts at the end of the MAP kinase signaling system in the cytoplasm and acts as an important mediator of extracellular signals into the nucleus and threonine (Thr) of the myelin basic protein. The residues are phosphorylated in vitro. ERK is a representative MAP kinase present in higher organisms that phosphorylates threonine (Thr) and tyrosine (Tyr) residues by external signals. Since such phosphorylation of threonine and tyrosine residues plays a crucial role in MAP kinase activation, it has been reported that enzymes are not activated when these amino acid residues are substituted with other amino acid residues.
본 발명은 MEK/ERK 에 의한 신호전달 억제가 줄기세포 분화 조절에 효과적임을 처음으로 입증한 것으로서, 본 발명의 조성물에 포함되는 MEK/ERK 신호전달 억제제는 바람직하게는 PD98059 또는 U0126를 의미한다. PD98059는 2-(2-amino-3-methoxyphenyl)-4H-1-Benzopyran-4-one2-(2'-Amino-3'-methoxy)-flavone2-(2-amino-3-methoxyphenyl)-chromone 이고, U0126 은 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene 로 표시된다. 그러나, 상기 화합물 외에도 모든 MEK/ERK 신호전달 억제제가 본 발명의 범주에 속하게 됨은 당업자에게 있어서 자명하다. ERK1/2 는 MEK 1/2에 의해서 활성화되며 MEK 1/2 의 활성을 억제하면 ERK1/2 의 활성이 곧바로 억제되므로, MEK 1/2는 ERK1/2의 직접적인 상위 신호전달분자가 된다. The present invention demonstrates for the first time that the inhibition of signaling by MEK / ERK is effective in regulating stem cell differentiation, and the MEK / ERK signaling inhibitor included in the composition of the present invention preferably means PD98059 or U0126. PD98059 is 2- (2-amino-3-methoxyphenyl) -4H-1-Benzopyran-4-one2- (2'-Amino-3'-methoxy) -flavone2- (2-amino-3-methoxyphenyl) -chromone , U0126 is represented by 1,4-diamino-2,3-dicyano-1,4-bis [2-aminophenylthio] butadiene. However, it will be apparent to those skilled in the art that all MEK / ERK signaling inhibitors in addition to the above compounds fall within the scope of the present invention. ERK1 / 2 is activated by
본 발명에서 용어, "BMP(bone morphogenetic proteins)" 란 골형성 성장인자로서, 골형성을 촉진하는 물질로 알려져 있으나 본 발명에서는 배아줄기세포의 분화를 조절하는 물질로 사용된다. 본 발명의 BMP는 바람직하게는 BMP-2, BMP-4, 또는 BMP-7을 의미한다. In the present invention, the term "BMP (bone morphogenetic proteins)" is a bone growth factor, known as a substance that promotes bone formation, but in the present invention is used as a substance for controlling the differentiation of embryonic stem cells. BMP of the present invention preferably means BMP-2, BMP-4, or BMP-7.
본 발명은 배아줄기세포를 MEK/ERK 신호전달 억제제 및 BMP의 자극 하에 배양하는 것을 특징으로 하며, 상기 자극 방법은 특별히 한정되지 않으나, 바람직하게는 상기 물질을 배지 중에 첨가하는 방법을 들 수 있다. 그 밖에도, 상기 물질을 배지에 첨가하는 방법과 동일한 효과를 나타내는 모든 방법을 사용할 수 있다. The present invention is characterized in that the embryonic stem cells are cultured under the stimulation of MEK / ERK signaling inhibitor and BMP, the stimulation method is not particularly limited, but preferably the method of adding the substance in the medium. In addition, any method having the same effect as that of adding the substance to the medium can be used.
본 발명의 조성물은 줄기세포 분화 유도제로서 MEK/ERK 신호전달 억제제 및 BMP만을 포함할 수도 있고, 또는 다른 분화 유도제를 추가적으로 포함하여 이들 분화 유도제 사이에 상승적인(synergic) 효과가 발생하도록 할 수 있다. 본 발명의 조성물에 추가적으로 사용할 수 있는 분화 유도제는 줄기세포의 분화 유도제로 알려진 어떠한 것도 가능하다. 바람직하게, 본 발명의 조성물은 MEK/ERK 신호전달 억제제의 경우 배지 조성물 내에 20μM 내지 50 μM의 농도로 포함되는 것이 바람직하고, BMP 의 경우 배지 조성물 내에 10μM 내지 20 μM의 농도로 포함되는 것이 바람직하다. The compositions of the present invention may comprise only MEK / ERK signaling inhibitors and BMPs as stem cell differentiation inducing agents, or may further include other differentiation inducing agents to cause synergistic effects between these differentiation inducing agents. Differentiation inducing agents that can be additionally used in the compositions of the present invention can be any known as inducing agents of differentiation of stem cells. Preferably, the composition of the present invention is preferably included at a concentration of 20 μM to 50 μM in the medium composition in the case of MEK / ERK signaling inhibitor, and is preferably included at a concentration of 10 μM to 20 μM in the medium composition in the case of BMP. .
또한, 본 발명의 조성물을 배지조성물 형태로 사용하는 경우, 일반적인 기본 배지 첨가물을 포함할 수 있으며, 예를 들면 혈청, 아미노산, 항생제 및 분화조절물질이 가능하지만, 이에 한정되는 것은 아니다.In addition, when the composition of the present invention is used in the form of a medium composition, it may include a general base medium additive, for example, serum, amino acids, antibiotics and differentiation regulators are possible, but are not limited thereto.
본 발명의 MEK/ERK 신호전달 억제제 및 BMP를 포함하는 배아줄기세포 분화 유도용 조성물은 배아줄기세포를 중간엽 세포를 포함한 중배엽 계열의 세포들로 효과적으로 분화 유도시킬 수 있다. 이러한 중배엽 계열의 세포들로는 중간엽 세포(mesoderm cell), 혈관모세포(hemangioblast), 혈관내피세포(vascular endothelial cell), 혈관평활근세포(vascular smooth muscle cell) 또는 조혈줄기세포(hematopoietic stem cell)가 포함된다. Embryonic stem cell differentiation inducing composition comprising MEK / ERK signaling inhibitor and BMP of the present invention can effectively induce differentiation of embryonic stem cells into mesodermal series cells including mesenchymal cells. Such mesodermal cells include mesenchymal cells, hemangioblasts, vascular endothelial cells, vascular smooth muscle cells, or hematopoietic stem cells. .
본 발명에서 용어, "중간엽 세포(mesoderm cell)"란 중배엽성 기원(mesodermal origin)의 다능성 줄기 세포를 말하며, 이러한 중간엽 세포는 발달 단계에서 뼈, 연골 조직, 힘줄, 근육, 지방 및 혈관 내피 등으로 분화한다 (Minguell et al., Esp. Biol. Med. 226, 507-520, 2001). 이러한 중배엽성 줄기세포에서 유래한 대표적인 세포군은 소위 혈관모세포(Hemangioblast)를 들 수 있다. 본 발명의 중간엽 세포는 자가 증식성 및 다능성을 가진다. As used herein, the term "mesoderm cell" refers to a pluripotent stem cell of mesodermal origin, which mesenchymal cells are bone, cartilage tissue, tendons, muscle, fat and blood vessels at the developmental stage. Differentiate into endothelium and the like (Minguell et al., Esp. Biol. Med. 226, 507-520, 2001). Representative cell groups derived from such mesodermal stem cells include so-called hemangioblasts. Mesenchymal cells of the present invention have self proliferation and pluripotency.
배아줄기세포로부터 중간엽 세포로의 분화를 확인하기 위하여, 중간엽 세포에 특이적인 마커의 검출을 이용할 수 있다. 중간엽 세포에 특이적인 마커의 예로는 구스코이드(Goosecoid), 브라키우리(Brachyury), TBX-4, TBX-5 및 TBX-6 등을 들 수 있다. 이러한 중간엽 세포에 특이적인 각종 마커의 발현을 검출하는 방법은 특별히 한정되지 않으나, 역전사 효소 매개 중합효소 연쇄 반응(RT-PCR) 또는 혼성화 분석으로서 임의의 마커 단백질을 코딩하는 mRNA를 증폭, 검출, 해석하기 위한 종래에 흔히 사용되는 분자생물학적 방법으로 확인할 수 있다. 중간엽 세포에 특이적인 마커 단백질을 코딩하는 핵산 서열은 이미 공지되어 있어 유전자은 행(GenBank)과 같은 공공 데이터베이스로부터 이용가능하며, 프라이머 또는 프로브로 사용하기 위하여 필요한 마커 특이적 서열을 용이하게 결정할 수 있다. 보다 바람직하게는, 면역조직 화학적 염색법이나 면역 전기영동법과 같은 면역화학적 방법을 사용하여 마커의 발현을 단백질 수준에서 확인할 수 있다. 면역화학적 방법에서, 중간엽 세포에 결합하는 마커 특이적인 다클론성 항체 또는 단일 클론 항체를 사용할 수 있으며, 시판되고 있는 항체를 사용할 수 있다. In order to confirm differentiation from embryonic stem cells to mesenchymal cells, detection of markers specific for mesenchymal cells can be used. Examples of markers specific for mesenchymal cells include Goosecoid, Brachyury, TBX-4, TBX-5 and TBX-6. The method for detecting the expression of various markers specific for such mesenchymal cells is not particularly limited, but amplification, detection, detection of mRNA encoding any marker protein as reverse transcriptase mediated polymerase chain reaction (RT-PCR) or hybridization assay, It can be confirmed by molecular biological methods commonly used in the art for interpretation. Nucleic acid sequences encoding marker proteins specific for mesenchymal cells are already known so that genes are available from public databases such as GenBank and can easily determine the marker specific sequences required for use as primers or probes. . More preferably, expression of the marker can be confirmed at the protein level using immunochemical methods such as immunohistochemical staining or immunoelectrophoresis. In immunochemical methods, marker-specific polyclonal antibodies or monoclonal antibodies that bind to mesenchymal cells can be used, and commercially available antibodies can be used.
또한, 본 발명의 조성물은 VEGF 및 bFGF을 추가로 포함할 수 있으며, VEGF 및 bFGF는 중간엽 세포를 혈관모세포(hemangioblast)로 분화 유도시킬 수 있다. In addition, the composition of the present invention may further comprise VEGF and bFGF, VEGF and bFGF can induce differentiation of mesenchymal cells into hemangioblasts (hemangioblast).
또 하나의 양태로서, 본 발명은 MEK/ERK 신호전달 억제제 및 BMP를 포함하는 배아줄기세포 분화 유도용 조성물을 이용하여 배아줄기세포로부터 중간엽 세포(mesoderm cell)로의 분화를 유도하는 방법에 관한 것이다. As another aspect, the present invention relates to a method for inducing differentiation from embryonic stem cells to mesoderm cells using a composition for inducing embryonic stem cell differentiation comprising a MEK / ERK signaling inhibitor and BMP. .
또한, 본 발명은 상기 방법으로 얻어진 중간엽 세포를 VEGF 및 bFGF의 존재 하에 배양하여 혈관모세포(hemangioblast)로 분화 유도하는 방법에 관한 것이다. 또한, 본 발명은 상기 방법으로 얻어진 혈관모세포를 VEGF 및 bFGF의 존재 하에 배양하여 혈관내피세포(vascular endothelial cell)로 분화 유도하는 방법에 관한 것이다. 또한, 본 발명은 상기 방법으로 얻어진 혈관모세포를 PDGF-BB의 존재 하에 배양하여 혈관평활근세포(vascular smooth muscle cell)로 분화 유도하는 방법에 관한 것이다. 또한, 본 발명은 상기 방법으로 얻어진 혈관모세포를 MethCult GF H4434 배지에 배양하여 조혈줄기세포(hematopoietic stem cell)로 분화 유도하는 방법에 관한 것이다.In addition, the present invention relates to a method of inducing differentiation into hemangioblasts by culturing the mesenchymal cells obtained by the above method in the presence of VEGF and bFGF. The present invention also relates to a method of inducing differentiation into vascular endothelial cells by culturing hemangioblasts obtained by the above method in the presence of VEGF and bFGF. The present invention also relates to a method of inducing differentiation into vascular smooth muscle cells by culturing hemangioblasts obtained by the above method in the presence of PDGF-BB. The present invention also relates to a method of inducing differentiation into hematopoietic stem cells by culturing hemangioblasts obtained by the above method in MethCult GF H4434 medium.
구체적으로, 본 발명의 배아줄기세포 분화 유도방법은 1) 미분화 배아줄기세포를 준비하는 단계; 2) 상기 배아줄기세포를 MEK/ERK 신호전달 억제제 및 BMP를 포함하는 배아줄기세포 분화 유도용 조성물을 포함하는 배지에서 배양하여 중간엽 세포로 분화시키는 단계; 3) 상기 분화된 중간엽 세포를 VEGF 및 bFGF의 존재 하에 배양하여 혈관모세포(hemangioblast)로 분화시키는 단계; 및 4) 상기 분화된 혈관모세포를 혈관내피세포, 혈관평활근세포 및 조혈줄기세포로 분화시키는 단계를 순차적으로 포함할 수 있다.Specifically, embryonic stem cell differentiation induction method of the present invention comprises the steps of 1) preparing undifferentiated embryonic stem cells; 2) culturing the embryonic stem cells in a medium comprising a composition for inducing embryonic stem cell differentiation comprising a MEK / ERK signaling inhibitor and BMP to differentiate into mesenchymal cells; 3) culturing the differentiated mesenchymal cells in the presence of VEGF and bFGF to differentiate into hemangioblasts; And 4) differentiating the differentiated hemangioblasts into vascular endothelial cells, vascular smooth muscle cells, and hematopoietic stem cells.
먼저, 상기 단계 1)은 미분화 상태의 배아줄기세포를 준비하는 단계로서, 배아줄기세포를 영양세포와 공배양하는 것이 바람직하다. 일반적으로, 세포를 증식시키기 위해서는 혈청을 사용하지만, 배아줄기세포는 혈청을 사용하여 배양하면 미분화상태를 유지시킬 수 없기 때문에 혈청 대신 영양(feeder)세포 위에 부착시켜 공배양시킬 수 있으며, 이때 영양세포로서 미토마이신 C 처리되어 증식이 정지된 생쥐 유래 섬유아세포인 MEF(mouse embryonic fibroblast, MEF) 또는 STO (ATCC, USA)를 사용할 수 있다. First, step 1) is to prepare embryonic stem cells in undifferentiated state, it is preferable to co-culture embryonic stem cells with feeder cells. Generally, serum is used to proliferate cells. However, embryonic stem cells can be co-cultured by attaching onto feeder cells instead of serum because they cannot maintain undifferentiated state when cultured with serum. As a mitomycin C-treated mouse-derived fibroblast-derived mouse fibroblasts (MEF (mouse embryonic fibroblast, MEF) or STO (ATCC, USA)) can be used.
또한, 배아줄기세포를 영양세포 없이 배양하는 경우(feeder-free culture) 에는 영양세포에 의한 조건배지(conditioned medium, CM)가 첨가된 마트리젤(matrigel)-코팅된 배양접시에서 배양할 수 있다. 본 발명에서 용어, "conditioned medium"은 영양세포인 MEF 또는 STO를 bFGF가 첨가된 인간 배아줄기세포 배지에서 배양하여 생성된 배양액을 의미한다. 구체적으로, 본 발명에서는 조건배지를 제조하기 위하여 영양세포로 STO(ATCC, USA)를 사용하였고, 이는 10% 우태아혈청(fetal bovine serum, Hyclone, USA), 0.1 mM 비필수 아미노산, 1X 페니실린/스트렙토마이신 및 0.5 mM 베타-머캡토에탄올이 첨가된 DMEM (Invitorgen, USA) 배지에서 유지 배양한 후, 10 ㎍/㎖ 마이토마이신-C(Sigma, USA)에서 2시간 30분 동안 불활성화하여 사용하였다. In addition, when embryonic stem cells are cultured without feeder cells (feeder-free culture), they may be cultured in a matrigel-coated culture dish to which a conditioned medium (CM) by feeder cells is added. As used herein, the term "conditioned medium" refers to a culture solution produced by culturing vegetative MEF or STO in human embryonic stem cell medium to which bFGF is added. Specifically, in the present invention, STO (ATCC, USA) was used as a feeder cell to prepare a conditioned medium, which was 10% fetal bovine serum (Hyclone, USA), 0.1 mM non-essential amino acid, 1X penicillin / Incubated in DMEM (Invitorgen, USA) medium supplemented with streptomycin and 0.5 mM beta-mercaptoethanol, and then inactivated in 10 μg / ml mitomycin-C (Sigma, USA) for 2 hours and 30 minutes. It was.
단계 2)는 상기 준비된 배아줄기세포 유래 배아체에 MEK/ERK 신호전달 억제제 및 BMP를 처리하여 중간엽 세포로 분화 유도하는 단계이다. MEK/ERK 신호전달 억제제는 MEK/ERK의 신호전달을 억제시켜 정상적인 신호전달과정을 방해하는 물질이면 특별히 한정하지 않으나, 바람직하게는 PD98059 또는 U0126을 사용할 수 있다. 이때, MEK/ERK 신호전달 억제제는 20 내지 50 μM 의 배양 배지 내 농도로 처리하는 것이 바람직하다. BMP 는 BMP-2,4 또는 7이 바람직하고 10 내지 20 μM 의 배양 배지 내 농도로 처리한다. MEK/ERK 신호전달 억제제 및 BMP는 동시에 처리하는 것이 이들을 각각 단독으로 처리하는 것보다 바람직하다 (도 2A). Step 2) is a step of inducing differentiation into mesenchymal cells by treating the prepared embryonic stem cell-derived embryos with MEK / ERK signaling inhibitor and BMP. The MEK / ERK signaling inhibitor is not particularly limited as long as it inhibits MEK / ERK signaling and interferes with the normal signaling process. Preferably, PD98059 or U0126 may be used. At this time, the MEK / ERK signaling inhibitor is preferably treated at a concentration in the culture medium of 20 to 50 μM. BMP is preferably BMP-2,4 or 7 and treated at a concentration in culture medium of 10-20 μM. It is preferable to treat MEK / ERK signaling inhibitors and BMP simultaneously than to treat each of them alone (FIG. 2A).
또한, 중간엽 세포로 분화 유도시, MEK/ERK 신호전달 억제제 및 BMP 이외에도 배아줄기세포를 중간엽 세포로 분화 유도를 촉진하는 공지의 물질 및 일반적인 배지 첨가물을 추가로 포함할 수 있다. 단계 2)은 분화 세포가 형성될 수 있는 충분한 시간 동안 실시하는 것이 일반적이며, 바람직하게는 3일 내지 5일이 좋다.In addition, when inducing differentiation into mesenchymal cells, in addition to the MEK / ERK signaling inhibitor and BMP, it may further include a known substance and a general medium additive for promoting the induction of differentiation of embryonic stem cells into mesenchymal cells. Step 2) is generally carried out for a sufficient time for the differentiated cells to form, preferably 3 to 5 days.
단계 3)은 상기 분화된 중간엽 세포를 VEGF 및 bFGF의 존재 하에 배양하여 혈관모세포(hemangioblast)로 분화시키는 단계이다. VEGF와 bFGF는 배지 내에 50 ng/㎖ 의 농도로 포함되는 것이 바람직하고, 이 외에도 혈관모세포로 분화 유도를 촉진하는 공지의 물질 및 일반적인 배지 첨가물을 추가로 포함할 수 있다. 단계 3)은 분화 세포가 형성될 수 있는 충분한 시간 동안 실시하는 것이 일반적이며, 바람직하게는 3일 내지 5일이 좋다.Step 3) is a step of culturing the differentiated mesenchymal cells in the presence of VEGF and bFGF to differentiate into hemangioblasts. VEGF and bFGF are preferably included in the medium at a concentration of 50 ng / ml. In addition, the VEGF and bFGF may further include a known substance and a general medium additive which promotes differentiation induction into hemangioblasts. Step 3) is generally carried out for a sufficient time for differentiated cells to form, preferably 3 to 5 days.
단계 4)는 상기 분화된 혈관모세포를 적절한 배양 조건 하에서 혈관내피세포, 혈관평활근세포 및 조혈줄기세포로 분화시키는 단계이다. 혈관모세포를 혈관내피세포로 분화하기 위해서는 VEGF 및 bFGF의 존재 하에 배양하는 것이 바람직하며, 이 때 VEGF와 bFGF는 배지 내 농도는 50ng/㎖ 로 하여 3일 내지 5일간 배양하는 것이 바람직하다. 또한, 혈관모세포를 혈관평활근세포로 분화하기 위해서는 PDGF-BB(Platelet-derived growth factor-BB)의 존재 하에 배양하는 것이 바람직하며, 이 때 PDGF-BB는 배지 내 농도는 50ng/㎖ 로 하여 3일 내지 5일간 배양하는 것이 바람직하다. 또한, 혈관모세포를 조혈줄기세포로 분화하기 위해서는 MethCult GF H4434 (Stem Cell Technologies사, Canada)에 배양하는 것이 바람직하며, 15일 정도 배양하는 것이 바람직하다. Step 4) is a step of differentiating the differentiated hemangioblasts into vascular endothelial cells, vascular smooth muscle cells and hematopoietic stem cells under appropriate culture conditions. In order to differentiate the hemangioblasts into vascular endothelial cells, it is preferable to culture in the presence of VEGF and bFGF. At this time, VEGF and bFGF are preferably cultured for 3 to 5 days at a concentration of 50 ng / ml. In addition, in order to differentiate the hemangioblasts into vascular smooth muscle cells, it is preferable to culture in the presence of platelet-derived growth factor (BB) (PDGF-BB), wherein the PDGF-BB concentration in the medium to 50ng /
본 발명의 구체적인 실시예에서도 상기 4 단계에 따라 인간 배아줄기세포를 분화 유도시켰다 (도 1). 우선 1 단계에서는, 영양세포주인 STO세포주 위에서 인간 배아줄기세포를 공배양 한 후, feeder-free 배양을 위해 10㎖ 주사기 바늘을 이용하여 하나의 콜로니를 직경 300 내지 500 ㎛로 잘라서 마트리젤(Matrigel) 위에 올 려 놓고, 4~8 ng/㎖의 bFGF가 첨가된 조건배지에서 2 일간 배양하였다. 2 단계에서는, 조건배지에서 2 일간 배양한 인간 배아줄기세포를 MEK1/2억제제인 PD98059 및 BMP-4를 각각 20~50μM 및 10~20ng/㎖의 농도로 unconditioned medium에 첨가하여, 3일간 배양하였다. 이 때, "unconditioned medium" 은 bFGF가 첨가되지 않은 배아줄기세포 배양 배지를 말한다. 3 단계에서는, unconditioned medium에 VEGF와 bFGF를 각각 50 ng/㎖의 농도로 첨가하여 3일간 배양하였다. 4 단계에서는, 혈관모세포 표시인자인 CD34 를 발현하는 세포를 CD34 마이크로비드(microbead)를 이용하여, CD34 양성세포만 분리하여 획득하였다. 획득한 CD34 양성세포는 혈관내피세포로 분화시키기 위해, EGM(Endothelial cell Growth Medium, clonetics사, USA)에 VEGF와 bFGF를 첨가하여 약 5일동안 배양하였다. 또한, CD34 양성세포를 혈관평활근세포로 분화시키기 위해, EGM(Endothelial cell Growth Medium, clonetics사, USA)에 50 ng/㎖의 PDGF-BB를 첨가하여, 약 5일동안 배양하였다. 또한, CD34 양성세포를 조혈줄기세포로 분화시키기 위해, MethCult GF H4434 (Stem Cell Technologies사, Canada)에서 약 15일동안 배양하였고, 실험방법은 제조사의 프로토콜을 따라 수행하였다. In a specific embodiment of the present invention, human embryonic stem cells were differentiated according to the above four steps (FIG. 1). First, in
본 발명의 분화 유도방법을 통해 배아줄기세포로부터 분화 유도된 세포는 형태학적, 생리학적 또는 면역학적 특징을 가지는데, 바람직하게는 분화 유도된 세포 특이적인 표지 인자들의 유전자 발현 정도가 증가될 수 있다. 인간 배아줄기세포로부터 분화 유도된 중간엽 세포의 경우, 중간엽 세포 특이적인 표지 인자, 예를 들면 구스코이드(Goosecoid), 브라키우리(Brachyury), TBX-4, TBX-5 및 TBX-6 중 하나 이상의 유전자 발현 정도가 증가되는 특징을 가질 수 있다. 또한, 중간엽 세포로부터 분화 유도된 혈관모세포의 경우 CD34 양성의 특징을 가진다. 또한, 혈관모세포로부터 분화 유도된 혈관내피세포의 경우, 혈관내피세포 특이적 마커 유전자인 vWF(von Willerbrand factor), EphB4(Ephrin receptor B4), VE-cadherin(Vascular Endothelial-cadherin), CD105(endoglin) 및 CD31(PECAM-1) 중 하나 이상의 유전자 발현 정도가 증가되는 특징을 가질 수 있다. 또한, 혈관모세포로부터 분화 유도된 혈관평활근세포의 경우, 혈관평활근세포 특이적 마커 유전자인 SM22α, SM-MHC(smooth muscle-myosin heavy chain), PDGF-B 수용체, α-SMA(α-smooth muscle actin) 및 칼포닌(calponin) 중 하나 이상의 유전자 발현 정도가 증가되는 특징을 가질 수 있다. Differentiation-induced cells from embryonic stem cells by the differentiation induction method of the present invention has a morphological, physiological or immunological characteristics, preferably the degree of gene expression of the differentiation-induced cell-specific markers may be increased. . For mesenchymal cells induced differentiation from human embryonic stem cells, among mesenchymal cell specific markers such as Goosecoid, Brachyury, TBX-4, TBX-5 and TBX-6 One or more gene expression levels may be characterized as increased. In addition, hemangioblasts differentiated from mesenchymal cells have CD34 positive characteristics. In addition, vascular endothelial cells induced differentiation from hemangioblasts, von Willerbrand factor (vWF), Ephrin receptor B4 (EphB4), Vascular Endothelial-cadherin (VE-cadherin), CD105 (endoglin) And CD31 (PECAM-1) may be characterized by an increased degree of gene expression. In the case of vascular smooth muscle cells induced differentiation from hemangioblasts, vascular smooth muscle cell specific marker genes SM22α, SM-MHC (smooth muscle-myosin heavy chain), PDGF-B receptor, α-SMA (α-smooth muscle actin) ) And the degree of expression of one or more genes of calponin may be increased.
본 발명의 구체적인 실시예에서는, 본 발명의 조성물 및 이를 이용한 분화 유도 방법의 분화 유도 효과를 확인하기 위하여, 본 발명의 MEK/ERK 신호전달 억제제 및 BMP를 인간 배아줄기세포에 처리하여 중간엽 세포 특이적인 마커 유전자인 구스코이드(Goosecoid), 브라키우리(Brachyury), TBX-4, TBX-5 및 TBX-6의 발현을 RT-PCR 및 면역형광염색에 의해 확인하였고(도 2), 상기 분화된 중간엽 세포에 VEGF 및 bFGF를 처리하여 혈관모세포 특이적인 마커인 CD34 의 발현을 RT-PCR로 확인하였다(도 3). 또한, 상기 분화된 혈관모세포로부터 혈관내피세포(도 4), 혈관평활근세포(도 5) 및 조혈줄기세포(도 6)로의 분화 여부를 확인하기 위하여 각 세포 에 특이적인 마커의 발현을 RT-PCR 로 확인한 결과, 본 발명의 조성물이 탁월한 분화 유도 효과가 있음을 확인할 수 있었다.In a specific embodiment of the present invention, in order to confirm the differentiation-inducing effect of the composition of the present invention and the method of inducing differentiation using the same, mesenchymal cell specificity by treating human embryonic stem cells with MEK / ERK signaling inhibitor and BMP of the present invention Expression of the marker genes Goosecoid, Brachyyu, TBX-4, TBX-5 and TBX-6 were identified by RT-PCR and immunofluorescence staining (FIG. 2). Treatment of mesenchymal cells with VEGF and bFGF confirmed the expression of CD34, an angioblast-specific marker, by RT-PCR (FIG. 3). In addition, RT-PCR expression of markers specific to each cell to confirm whether the differentiation from the differentiated hemangioblasts to vascular endothelial cells (Fig. 4), vascular smooth muscle cells (Fig. 5) and hematopoietic stem cells (Fig. 6) As a result, it was confirmed that the composition of the present invention has an excellent differentiation inducing effect.
상기에서 기술한 바와 같이, 인간 배아줄기세포의 신호전달체계를 조절하여 중간엽 세포로 분화 유도하기 위해 MEK/ERK 신호전달 억제제 및 BMP 를 사용할 수 있으며, 이렇게 분화 유도된 중간엽 세포에 VEGF 및 bFGF를 처리하여 동물 유래의 혈청(serum) 없이도 배아줄기세포를 혈관내피세포, 혈관평활근세포, 조혈줄기세포로 분화할 수 있는 혈관모세포를 효과적으로 유도할 수 있다. 이와 같은 분화방법을 통하여 배아줄기세포를 효과적으로 원하는 세포로 분화 유도할 수 있으며, 초기 인간 발생을 연구하는 중요한 기작을 제공할 수 있다.As described above, MEK / ERK signaling inhibitors and BMPs can be used to modulate the signaling system of human embryonic stem cells to induce differentiation into mesenchymal cells, and VEGF and bFGF in the differentiation-induced mesenchymal cells. Treatment of the cells can effectively induce hemangioblasts capable of differentiating embryonic stem cells into vascular endothelial cells, vascular smooth muscle cells, and hematopoietic stem cells without serum. This differentiation method can effectively induce differentiation of embryonic stem cells into desired cells and can provide an important mechanism for studying early human development.
이하, 본 발명을 하기의 실시예에 의하여 더욱 구체적으로 설명한다. 그러나 하기의 실시예는 본 발명의 예시일 뿐 본 발명이 이에 의해 한정되지 않는다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are merely illustrative of the present invention and the present invention is not limited thereto.
실시예Example 1. 인간 배아줄기세포의 배양 1. Culture of Human Embryonic Stem Cells
본 발명에서, 인간 배아줄기세포 배양 배지는 20% 넉아웃 시럼 리플레이스먼트(knockout serum replacement, Invitrogen, USA), 0.1 mM 비필수 아미노산(Non-essential amino acid, NEAA; Invitrogen, USA), 0.1 mM 베타-머캡토에탄올, 4 ng/ ㎖ 인간 재조합 염기성 FGF(recombinant human basic FGF, Invitrogen, USA) 및 1X 페니실린-스트렙토마이신(penicillin-streptomycin; Invitrogen, USA)이 포함된 DMEM/F12 (Invitrogen, USA) 배지를 사용하고, 0.22 mm filter로 여과(filtration) 하여 사용하였다. In the present invention, the human embryonic stem cell culture medium is 20% knockout serum replacement (Knockout serum replacement, Invitrogen, USA), 0.1 mM non-essential amino acid (NEAA; Invitrogen, USA), 0.1 mM DMEM / F12 (Invitrogen, USA) containing beta-mercaptoethanol, 4 ng / ml recombinant human basic FGF (Invitrogen, USA) and 1X penicillin-streptomycin (Invitrogen, USA) A medium was used and used by filtration with a 0.22 mm filter.
영양세포주인 STO 세포주 위에서 인간 배아줄기세포를 공배양한 후, feeder-free 배양을 위해 10㎖ 주사기 바늘을 이용하여 하나의 콜로니를 직경 300 내지 500 ㎛로 잘라서 마트리젤(Matrigel) 위에 올려 놓고, 4~8 ng/㎖의 bFGF가 첨가된 조건배지에서 2 일간 배양하였다. After coculture of human embryonic stem cells on feeder cell line, STO cell line, one colony was cut to 300-500 μm in diameter using 10 ml syringe needle for feeder-free culture, and placed on Matrigel, 4 Incubated for 2 days in conditioned medium to which bFGF was added to ˜8 ng / ml.
실시예Example 2. 인간 배아줄기세포의 2. Human Embryonic Stem Cells 중간엽Mesenchyme 세포로의 분화 유도 Induce differentiation into cells
2-1. 2-1. RTRT -- PCRPCR 에 의한 확인Confirmation by
실시예 1에서 배양한 인간 배아줄기세포를 MEK1/2억제제인 PD98059 및 BMP-4를 각각 20~50μM 및 10~20ng/㎖의 농도로 조건배지에 첨가하여 3일간 배양한 후, 인간 배아줄기세포가 중간엽 세포로 분화되었는지 확인하기 위하여 중간엽세포 특이적인 마커 유전자(marker genes)들의 발현을 RT-PCR을 통해 알아보았다. 유전자발현 분석은 총 RNA를 세포에서 분리한 후, 역전사 효소를 이용하여 cDNA를 합성하여 각각의 유전자에 특이적인 프라이머를 이용하여 PCR (polymerase-chain reaction)법으로 분석하였다.Human embryonic stem cells cultured in Example 1 were added to MEK1 / 2 inhibitor PD98059 and BMP-4 in condition medium at concentrations of 20-50 μM and 10-20 ng / ml, respectively, and then cultured for 3 days. In order to confirm that the differentiation into mesenchymal cells, the expression of mesenchymal-specific marker genes was examined by RT-PCR. In gene expression analysis, total RNA was isolated from cells, and cDNA was synthesized using reverse transcriptase and analyzed by PCR (polymerase-chain reaction) using primers specific to each gene.
대조군으로 조건배지에서만 5일간 처리한 표본을 사용했고, 실험군으로는 PD98059 및 BMP-4를 단독으로 각각 20~50μM 및 10~20ng/㎖의 농도로 unconditioned medium에 추가하여 세포배양액으로 넣어준 후, 3일과 5일 동안 그 경과를 관찰하였다. 또한, PD98059 및 BMP-4을 동시에 처리한 표본 역시 3일과 5일 동안 그 경과를 관찰하였다. As a control, a sample treated with only 5 days was used as a control medium, and as an experimental group, PD98059 and BMP-4 were added alone to an unconditioned medium at concentrations of 20 to 50 μM and 10 to 20 ng / ml, respectively, and then put into a cell culture medium. The progress was observed for 3 and 5 days. In addition, the samples treated with PD98059 and BMP-4 simultaneously observed the progress for 3 and 5 days.
그 결과, 도 2(A)에 나타난 바와 같이, PD98059 및 BMP-4를 동시에 처리한 표본에서만 중간엽세포 특이적 마커인 BRACHYURY, GOOSECOID, TBX-4,TBX-5, 및 TBX-6 이 발현되었고, PD98059 또는 BMP-4 만 단독으로 처리한 표본에서는 중간엽세포 특이적 마커의 발현이 일어나지 않았다. As a result, as shown in FIG. 2 (A), mesenchymal cell specific markers BRACHYURY, GOOSECOID, TBX-4, TBX-5, and TBX-6 were expressed only in the samples treated with PD98059 and BMP-4 simultaneously. Expression of mesenchymal cell specific markers did not occur in samples treated with PD98059 or BMP-4 alone.
2-2. 2-2. 면역형광염색법에Immunofluorescence staining 의한 확인 Confirmed by
중간엽 세포로의 분화 여부를 단백질 수준에서 확인하기 위하여, 조건배지에서 5일간 처리한 표본과 PD98059, BMP-4를 함께 처리한 표본에서의 배아줄기세포 특이적 마커와 중간엽 세포 특이적 마커의 발현 여부를 면역형광염색으로 알아보았다. 중간엽세포로 분화된 인간배아줄기세포를 중간엽세포 특이적 마커인 BRACHYURY, GATA-2를 염색하기 위해, 먼저, PD98059와 BMP-4를 3일간 처리한 표본을 4% paraformaldehyde로 20분간 실온에서 고정시킨 후, PBST용액(PBS에 0.1% Tween-20 첨가)으로 5분간 3번 세척한다. 그리고, 항체가 핵까지 세포를 투과(permeabilization)될 수 있게 하기 위해서 투과용액(PBS에 0.1% Triton X-100첨가)을 배양접시에 넣고, 15분간 실온에서 두었다. 15분 후, 투과용액을 제거하고, 4% FBS(Fetal Bovine Serum)를 넣어 주어, 1시간 동안 실온에서 블록킹(blocking)을 실시하였다. 그리고 나서, 블록킹용액에 Goat anti-human OCT4, Mouse anti- human SSEA-4항체를 1:300으로 희석하고, Goat anti-human BRACHYURY, Goat anti-human GATA-2 항체를 1:100으로 희석하여 배양접시에 넣어준 후, 4℃에서 하루동안 넣어두었다. 다음날, 위의 표시인자들(OCT4, SSEA-4, BRACHYURY, GATA-2)의 발현여부를 형광현미경을 이용하여, 육안으로 확인하기 위해, 이들 표시인자들의 항체에 대한 2차항체들(Alexa 488와 Alexa 594가 결합된 Donkey anti-goat IgG , Alexa 488이 결합된Goat anti-mouse IgG)를 붙인 후, 1시간동안 실온에 방치한다. 1시간 후, PBST용액으로 10분간 5번 세척한 후, 형광현미경을 통해 표시인자들의 발현 여부를 확인하였다.In order to confirm the differentiation into mesenchymal cells at the protein level, the embryonic stem cell-specific markers and the mesenchymal cell-specific markers in samples treated with PD98059 and BMP-4 for 5 days in conditioned medium Expression was examined by immunofluorescence staining. In order to stain the mesenchymal-derived human embryonic stem cells with BRACHYURY and GATA-2 markers specific to mesenchymal cells, first, the samples treated with PD98059 and BMP-4 for 3 days were treated with 4% paraformaldehyde for 20 minutes at room temperature. After fixation, wash three times with PBST solution (0.1% Tween-20 in PBS) for 5 minutes. In order to allow the antibody to permeabilize the cells to the nucleus, a permeate solution (addition of 0.1% Triton X-100 to PBS) was placed in a culture dish and left at room temperature for 15 minutes. After 15 minutes, the permeate solution was removed, 4% FBS (Fetal Bovine Serum) was added thereto, and blocking was performed at room temperature for 1 hour. Then, the Goat anti-human OCT4 and Mouse anti-human SSEA-4 antibodies were diluted 1: 300 in the blocking solution, and the Goat anti-human BRACHYURY and Goat anti-human GATA-2 antibodies were diluted 1: 100 and cultured. After putting in a plate, it was placed at 4 ℃ for one day. The next day, secondary antibodies to the antibodies of these markers (Alexa 488) to visually confirm the expression of the above markers (OCT4, SSEA-4, BRACHYURY, GATA-2) using a fluorescent microscope. And Donkey anti-goat IgG conjugated with Alexa 594 and Goat anti-mouse IgG conjugated with Alexa 488) were allowed to stand at room temperature for 1 hour. After 1 hour, and washed 5 times with PBST solution for 10 minutes, and confirmed the expression of markers through a fluorescent microscope.
그 결과, 도 2(B)에 나타난 바와 같이, 배아줄기세포 특이적 마커인 OCT3/4 및 SSEA-4의 발현은 PD98059 및 BMP-4를 처리함에 따라 감소하였고, 중간엽 세포 특이적 마커인 BRACHYURY 및 GATA-2의 발현을 확인할 수 있었다. As a result, as shown in Figure 2 (B), the expression of embryonic stem cell-specific markers OCT3 / 4 and SSEA-4 decreased with treatment of PD98059 and BMP-4, BRACHYURY mesenchymal cell-specific markers And expression of GATA-2.
실시예Example 3. 인간 배아줄기세포로부터 분화 유도된 3. Differentiation-induced from human embryonic stem cells 중간엽Mesenchyme 세포의 Cellular 혈관모세포로의Into hemangioblasts 분화 유도 Differentiation induction
실시예 2에서 얻은 중간엽 세포를 unconditioned medium에 VEGF 및 bFGF를 각각 50 ng/㎖의 농도로 첨가하여 3일간 배양한 후, 내피세포 특이적 마커(Tie-2, CD31, CD105 및 KDR)와 배아줄기세포 특이적 마커(NANOG 및 OCT4), 그리고 혈관모세포특이적 마커(CD34)의 발현 여부를 RT-PCR을 통해 확인하였다. 유전자발현 분석은 총 RNA를 세포에서 분리한 후, 역전사 효소를 이용하여 cDNA를 합성하여 각각의 유전자에 특이적인 프라이머를 이용하여 PCR (polymerase-chain reaction)법으로 분석하였다.The mesenchymal cells obtained in Example 2 were incubated for 3 days with VEGF and bFGF at a concentration of 50 ng / ml, respectively, in an unconditioned medium, followed by endothelial cell specific markers (Tie-2, CD31, CD105 and KDR) and embryos. The expression of stem cell specific markers (NANOG and OCT4) and hemangioblast specific markers (CD34) was confirmed by RT-PCR. In gene expression analysis, total RNA was isolated from cells, and cDNA was synthesized using reverse transcriptase and analyzed by PCR (polymerase-chain reaction) using primers specific to each gene.
VEGF 및 bFGF를 동시에 3일과 5일동안 처리한 결과, 도 3에 나타난 바와 같이, 배아줄기세포 특이적 마커인 OCT4 및 NANOG의 발현은 사라졌으며, 내피세포특이적 마커(Tie-2, CD31, CD105 및 KDR)와 혈관모세포 특이적 마커는 증가하였다. 이 실험에서 사용한 HUVEC은 양성대조군으로써, VEGF와 bFGF를 처리한 표본에서 내피세포 특이적 마커와 혈관모세포 특이적 마커의 발현정도를 나타낸다. As a result of treatment of VEGF and bFGF simultaneously for 3 days and 5 days, as shown in FIG. 3, expression of embryonic stem cell specific markers OCT4 and NANOG disappeared and endothelial cell specific markers (Tie-2, CD31, CD105). And KDR) and hemangioblast specific markers increased. The HUVEC used in this experiment is a positive control group and shows the expression level of endothelial cell markers and hemangioblast specific markers in VEGF and bFGF treated samples.
실시예Example 4. 인간 배아줄기세포 유래의 4. derived from human embryonic stem cells 혈관모세포의Hemangioblast 분리 및 혈관 내피세포로의 분화 확인 Isolation and Confirmation of Differentiation into Vascular Endothelial Cells
4-1. 4-1. RTRT -- PCRPCR 에 의한 확인Confirmation by
혈관모세포 표시 인자인 CD34 를 발현하는 세포를 CD34 마이크로비드(microbead)를 이용하여 CD34 양성세포만 분리하여 획득하였다. 획득한 CD34 양성세포는 혈관내피세포로 분화시키기 위해 EGM(Endothelial cell Growth Medium, clonetics사, USA)에 VEGF 및 bFGF를 각각 50ng/㎖의 농도로 처리하여 약 5일동안 배양한 후, 혈관내피세포 특이적 마커의 발현 여부를 RT-PCR을 통해 알아보았다. 유전자발현 분석은 총 RNA를 세포에서 분리한 후, 역전사 효소를 이용하여 cDNA를 합성하여 각각의 유전자에 특이적인 프라이머를 이용하여 PCR (polymerase-chain reaction)법으로 분석하였다.Cells expressing CD34, an angioblast marker, were obtained by separating only CD34 positive cells using CD34 microbeads. The obtained CD34 positive cells were treated with VEGF and bFGF at concentrations of 50 ng / ml in Endothelial Cell Growth Medium (Clontics, USA) in order to differentiate into vascular endothelial cells, and then cultured for about 5 days, and then vascular endothelial cells. The expression of specific markers was examined through RT-PCR. In gene expression analysis, total RNA was isolated from cells, and cDNA was synthesized using reverse transcriptase and analyzed by PCR (polymerase-chain reaction) using primers specific to each gene.
그 결과, 도 4(a)에 나타난 바와 같이, CD34 양성세포를 VEGF 및 bFGF가 첨가된 EGM에서 배양하였을 때 혈관내피세포 특이적 마커인 vWF(von Willerbrand factor), EphB4(Ephrin receptor B4), VE-cadherin(Vascular Endothelial-cadherin), CD105(endoglin) 및 CD31(PECAM-1)의 발현이 양성대조군인 HUVEC 과 유사한 수준에서 발현되었다. As a result, as shown in FIG. 4 (a), when CD34-positive cells were cultured in EGM to which VEGF and bFGF were added, vWF (von Willerbrand factor), EphB4 (Ephrin receptor B4), and VE, which are vascular endothelial cell specific markers, were observed. Expression of -cadherin (Vascular Endothelial-cadherin), CD105 (endoglin) and CD31 (PECAM-1) was expressed at levels similar to the positive control HUVEC.
4-2. 4-2. 면역형광염색법에Immunofluorescence staining 의한 확인 Confirmed by
혈관내피세포로의 분화 여부를 단백질 수준에서 확인하기 위하여, 혈관내피세포 특이적 마커의 발현 여부를 면역형광염색으로 알아보았다. 혈관내피세포로 분화된 인간배아줄기세포를 혈관내피세포 특이적 마커인 PECAM-1, vWF, VE-cadherin을 염색하기 위해, 먼저, 표본을 4% paraformaldehyde로 20분간 실온에서 고정시킨 후, PBST용액(PBS에 0.1% Tween-20 첨가)으로 5분간 3번 세척하였다. 그리고, 항체가 핵까지 세포를 투과(permeabilization)될 수 있게 하기위해서 투과용액 (PBS에 0.1% Triton X-100첨가)을 배양접시에 넣고, 15분간 실온에서 두었다. 15분후, 투과용액을 제거하고, 4% NGS(Normal Goat Serum)을 넣어 주어, 1시간동안 실온에서 블록킹(blocking)을 실시하였다. 그리고 나서, 블록킹용액에 mouse anti-human PECAM-1, Rabbit anti-human vWF, mouse anti-human VE-cadherin 항체를 1:100으로 희석하여 배양접시에 넣어준 후, 4℃에서 하루 동안 넣어두었다. 다음날, 위의 표시인자들(PECAM-1, vWF, VE-cadherin)의 발현여부를 형광현미경을 이용하여, 육안으로 확인하기 위해, 이들 표시인자들의 항체에 대한 2차 항체들(Alexa 488와 Alexa 594가 결합된 Goat anti-mouse IgG , Alexa 488이 결합된 Goat anti-Rabbit poly)를 붙인 후, 1시간동안 실온에 방치한다. 1시간 후, PBST용액으로 10 분간 5번 세척한 후, 형광현미경을 통해 표시인자들의 발현여부를 확인하였다.In order to confirm the differentiation into vascular endothelial cells at the protein level, the expression of vascular endothelial cell-specific markers was examined by immunofluorescence staining. To stain human embryonic stem cells differentiated into vascular endothelial cells, PECAM-1, vWF, and VE-cadherin, the samples were first fixed with 4% paraformaldehyde at room temperature for 20 minutes, followed by PBST solution. (0.1% Tween-20 in PBS) was washed three times for 5 minutes. In order to allow the antibody to permeabilize the cells to the nucleus, a permeate solution (addition of 0.1% Triton X-100 to PBS) was placed in a culture dish and left at room temperature for 15 minutes. After 15 minutes, the permeate solution was removed, 4% NGS (Normal Goat Serum) was added thereto, and blocking was performed at room temperature for 1 hour. Then, the antimicrobial mouse anti-human PECAM-1, rabbit anti-human vWF, and mouse anti-human VE-cadherin antibody were diluted 1: 100 in a blocking solution and placed in a culture dish, and then placed at 4 ° C. for one day. The next day, to visually confirm the expression of the above markers (PECAM-1, vWF, VE-cadherin) using a fluorescent microscope, secondary antibodies to the antibodies of these markers (Alexa 488 and Alexa) 594 conjugated Goat anti-mouse IgG and Alexa 488 conjugated Goat anti-Rabbit poly) were attached and allowed to stand at room temperature for 1 hour. After 1 hour, after washing for 5 minutes with PBST solution for 5 minutes, the expression of the markers was confirmed by fluorescence microscope.
그 결과, 도 4(b)-(d)에 나타난 바와 같이, 혈관내피세포 특이적 마커인 vWF, VE-cadherin 및 CD31(PECAM-1)의 발현을 확인할 수 있었다. As a result, as shown in Figure 4 (b)-(d), the expression of vascular endothelial cell-specific markers vWF, VE-cadherin and CD31 (PECAM-1) was confirmed.
4-3. 4-3. AcLDLAcLDL 흡수, 형태 및 코드구조형성 여부 확인 Confirm Absorption, Form and Code Structure Formation
또한, 성숙한 내피세포는 LDL(Low Density Lipoprotein)을 흡수하는 성질을 가지고 있는데, 이러한 특성이 인간 배아줄기세포로부터 분화된 혈관내피세포에서도 있는지에 대해 확인하기 위해, AcLDL(acetylated LDL)을 약 4시간 가량 배양액에 넣어준 후, 형광현미경을 통해 AcLDL이 인간 배아줄기세포로부터 분화 유도된 혈관내피세포에 흡수됨을 확인하였다(도 4(e)). In addition, mature endothelial cells have the property of absorbing LDL (Low Density Lipoprotein). To determine whether these characteristics are also in vascular endothelial cells differentiated from human embryonic stem cells, AcLDL (acetylated LDL) is about 4 hours. After the addition in the culture medium, it was confirmed that AcLDL is absorbed into vascular endothelial cells induced by differentiation from human embryonic stem cells through a fluorescence microscope (Fig. 4 (e)).
또한, 인간 배아줄기세포로부터 분화 유도된 혈관내피세포의 형태는 성숙한 혈관내피세포의 조약돌모양 형태와 유사함을 위상차 현미경을 통해 확인하였다(도 4(f)). In addition, it was confirmed through phase contrast microscopy that differentiation-induced vascular endothelial cells from human embryonic stem cells were similar to the pebble-shaped forms of mature vascular endothelial cells (FIG. 4 (f)).
마지막으로, 혈관내피세포는 마트리젤(Matrigel)이라고 하는 물질 위에 올려놓았을 때, 전선(코드)과 같은 구조를 형성하는 특성이 있다. 인간 배아줄기세포로부터 분화 유도된 혈관내피세포에서도 같은 특성을 유지하고 있는지 확인하기 위하여 마트리젤(Matrigel) 위에 인간 배아줄기세포로부터 분화 유도된 혈관내피세포를 올려놓고 24 시간 동안 배양한 결과, 코드모양의 구조물을 형성하는 것을 확인하였다(도 4(g)) .Finally, vascular endothelial cells, when placed on a material called Matrigel, have the property of forming wire-like structures. In order to confirm that vascular endothelial cells induced by differentiation from human embryonic stem cells maintain the same characteristics, cord-shaped cells were cultured for 24 hours with differentiation-induced vascular endothelial cells placed on human embryonic stem cells on Matrigel. It was confirmed to form the structure of (Fig. 4 (g)).
실시예Example 5. 인간 배아줄기세포 유래의 5. Derived from human embryonic stem cells 혈관모세포의Hemangioblast 혈관평활근세포로의Into vascular smooth muscle cells 분화확인 Differentiation confirmation
5-1. 5-1. RTRT -- PCRPCR 에 의한 확인Confirmation by
CD34 양성세포를 혈관평활근세포로 분화시키기 위해, EGM(Endothelial cell Growth Medium, clonetics사, USA)에 50 ng/㎖의 PDGF-BB를 첨가하여 5 일동안 배양한 후, 혈관평활근세포 마커의 발현을 RT-PCR을 통해 알아보았다. 유전자발현 분석은 총 RNA를 세포에서 분리한 후, 역전사 효소를 이용하여 cDNA를 합성하여 각각의 유전자에 특이적인 프라이머를 이용하여 PCR (polymerase-chain reaction)법으로 분석하였다.In order to differentiate CD34 positive cells into vascular smooth muscle cells, 50 ng / ml of PDGF-BB was added to Endothelial Cell Growth Medium (Clontics, USA) and cultured for 5 days, followed by expression of vascular smooth muscle cell markers. It was checked through RT-PCR. In gene expression analysis, total RNA was isolated from cells, and cDNA was synthesized using reverse transcriptase and analyzed by PCR (polymerase-chain reaction) using primers specific to each gene.
그 결과, 도 5(a)에 나타난 바와 같이, CD34 양성세포는 PDGF-BB가 첨가된 EGM-2배양액에서 혈관평활근세포 특이적인 마커 유전자인 SM22α, SM-MHC(smooth muscle-myosin heavy chain), PDGF-B 수용체, α-SMA(α-smooth muscle actin) 및 칼포닌(calponin)을 발현하였다. As a result, as shown in Figure 5 (a), CD34 positive cells are SM22α, SM-MHC (smooth muscle-myosin heavy chain), which is a marker gene specific for vascular smooth muscle cells in EGM-2 culture medium added with PDGF-BB, PDGF-B receptor, α-smooth muscle actin (α-SMA) and calponin (calponin) were expressed.
5-2. 5-2. 면역형광염색법에Immunofluorescence staining 의한 확인 Confirmed by
혈관평활근세포로의 분화 여부를 단백질 수준에서 확인하기 위하여, 혈관평활근세포 특이적 마커의 발현 여부를 면역형광염색으로 알아보았다. 혈관평활근세포로 분화된 인간배아줄기세포를 혈관평활근세포 특이적 마커인 α-smooth muscle actin(α-SMA)와 칼포닌(calponin)을 염색하기 위해, 먼저, 표본을 4% paraformaldehyde로 20분간 실온에서 고정시킨 후, PBST용액(PBS에 0.1% Tween-20 첨가)으로 5분간 3번 세척하였다. 그리고, 항체가 핵까지 세포를 투 과(permeabilization)될 수 있게 하기 위해서 투과용액 (PBS에 0.1% Triton X-100첨가)을 배양접시에 넣고, 15분간 실온에서 두었다. 15분 후, 투과용액을 제거하고, 4% NGS(Normal Goat Serum)을 넣어주어, 1시간 동안 실온에서 블록킹(blocking)을 실시하였다. 그리고 나서, 블록킹용액에 mouse anti-human α-SMA, Rabbit anti-human calponin 항체를 1:100으로 희석하여 배양접시에 넣어준 후, 4℃에서 하루 동안 넣어두었다. 다음날, 위의 표시인자들(α-SMA, 칼포닌)의 발현여부를 형광현미경을 이용하여, 육안으로 확인하기 위해, 이들 표시인자들의 항체에 대한 2차항체들(Alexa 488이 결합된 Goat anti-mouse IgG 와 Alexa 594이 결합된 Goat anti-Rabbit poly)를 붙인 후, 1시간동안 실온에 방치하였다. 1시간 후, PBST용액으로 10분간 5번 세척한 후, 형광현미경을 통해 표시인자들의 발현여부를 확인하였다.In order to confirm the differentiation into vascular smooth muscle cells at the protein level, the expression of vascular smooth muscle cell-specific markers was examined by immunofluorescence staining. To stain human embryonic stem cells differentiated with vascular smooth muscle cells, α-smooth muscle actin (α-SMA) and calponin, which are specific markers of vascular smooth muscle cells, first, the samples were treated with 4% paraformaldehyde for 20 minutes at room temperature. After fixing at, it was washed three times with PBST solution (0.1% Tween-20 added to PBS) for 5 minutes. In order to allow the antibody to permeabilize the cells to the nucleus, a permeate solution (addition of 0.1% Triton X-100 to PBS) was placed in a culture dish and left at room temperature for 15 minutes. After 15 minutes, the permeate solution was removed, 4% NGS (Normal Goat Serum) was added thereto, and blocking was performed at room temperature for 1 hour. Then, the mouse anti-human α-SMA and rabbit anti-human calponin antibody were diluted 1: 100 in a blocking solution and placed in a culture dish, and then placed at 4 ° C. for 1 day. The next day, in order to visually confirm the expression of the above markers (α-SMA, calponin) using a fluorescence microscope, Goat anti bound to antibodies of these markers (Alexa 488 bound) Goat anti-Rabbit poly) conjugated with -mouse IgG and Alexa 594 was attached and allowed to stand at room temperature for 1 hour. After 1 hour, after washing for 5 minutes with PBST solution for 10 minutes, the expression of the markers was confirmed by fluorescence microscope.
그 결과, 도 5(b)에 나타난 바와 같이, 혈관평활근세포 특이적 마커인 α-SMA 및 칼포닌(calponin)이 단백질 수준에서도 발현되고 있음을 알 수 있다.As a result, as shown in Figure 5 (b), it can be seen that the vascular smooth muscle cell-specific markers α-SMA and calponin (calponin) is also expressed at the protein level.
실시예Example 6. 인간 배아줄기세포 유래의 6. Derived from human embryonic stem cells 혈관모세포의Hemangioblast 조혈줄기세포로의To hematopoietic stem cells 분화확인 Differentiation confirmation
CD34 양성세포를 조혈줄기세포로 분화시키기 위해, MethCult GF H4434 (Stem Cell Technologies사, Canada)에서 약 15일 동안 배양하였고, 실험방법은 제조사의 프로토콜을 따라 수행하였다. CD34 양성세포가 조혈줄기세포로 분화하는지에 대해 확인하고자 CFU (colony forming unit) assay를 수행하였다. CFU assay를 수행하기 위해, 먼저 CD34 양성세포를 IMDM(Iscove's MDM)배지를 통해 세척한 후, 세포를 연 차적으로 희석하여 (500개, 1000개, 5000개, 5x104개, 1x105개 등) StemCell Technology 에서 자체 제작한 반-고체 메틸셀룰로우즈 폴리머(semi-solid methylcellulose polymer) 로 합성된 특수한 배지에 첨가하였다. 배지 내에 첨가된 성분들은 다음과 같다. To differentiate CD34 positive cells into hematopoietic stem cells, the cells were cultured in MethCult GF H4434 (Stem Cell Technologies, Canada) for about 15 days, and the test method was performed according to the manufacturer's protocol. To determine whether CD34 positive cells differentiate into hematopoietic stem cells, a CFU (colony forming unit) assay was performed. In order to perform the CFU assay, CD34 positive cells were first washed through IMDM (Iscove's MDM) medium, and the cells were serially diluted (500, 1000, 5000, 5x10 4 , 1x10 5 , etc.). It was added to a special medium synthesized by StemCell Technology's own semi-solid methylcellulose polymer. The components added in the medium are as follows.
~ Iscove's MDM~ Iscove's MDM
~1% Methylcellulose~ 1% Methylcellulose
~30% Fetal Bovine serum~ 30% Fetal Bovine serum
~ 1% Bovine Serum Albumin~ 1% Bovine Serum Albumin
~ 10-4M 2-Merchaptoethanol~ 10 -4 M 2-Merchaptoethanol
~ 2mM L-glutamine~ 2 mM L-glutamine
~ 50ng/㎖ Stem Cell Factor~ 50ng / ml Stem Cell Factor
~ 10ng/㎖ GM-CSF~ 10ng / ml GM-CSF
~ 10ng/㎖ IL-3~ 10ng / ml IL-3
~ 3U/㎖ Erythropoietin~ 3U / ml Erythropoietin
CD34 양성 세포를 위의 배지에 첨가한 후, 14일에서 20 여일 동안 37°C, 5% CO2 조건에서 배양하면서, 배양접시 내의 세포의 모양과 콜로니(colony)의 개체수를 확인하여 각 콜로니 별로 특성을 구분 지었다.After adding CD34 positive cells to the above medium, the cells were cultured at 37 ° C. and 5% CO 2 conditions for 14 to 20 days to confirm the shape of the cells in the culture dish and the number of colonies. Characterized.
그 결과, 도 6에 나타난 바와 같이, CD34 양성세포로부터 대식세포(macrophage), 적혈구(erythroid) 및 과립구(granulocyte)등의 혈액세포가 생성 됨을 확인하였다. 이를 통해, 본 발명자가 유도한 CD34 양성세포가 조혈줄기세포로 분화됨을 알 수 있었다.As a result, as shown in Figure 6, it was confirmed that blood cells, such as macrophage (macrophage), erythroid (erythroid) and granulocyte (granulocyte) is generated from the CD34 positive cells. Through this, it can be seen that the CD34 positive cells induced by the present inventors are differentiated into hematopoietic stem cells.
도 1은 인간 배아줄기세포를 조혈줄기세포, 혈관내피세포, 혈관평활근세포로 분화할 수 있는 혈관모세포로 분화 유도하는 방법을 도식화한 그림이다. 1 is a diagram illustrating a method of inducing differentiation of human embryonic stem cells into hematopoietic stem cells capable of differentiating into hematopoietic stem cells, vascular endothelial cells, and vascular smooth muscle cells.
도 2는 인간 배아줄기세포가 중간엽 세포로 분화되었는지 확인하기 위하여 중간엽세포 특이적인 마커 유전자(marker genes)들의 발현을 RT-PCR (a) 및 면역형광염색법 (b) 으로 확인한 결과이다.Figure 2 shows the results of confirming the expression of mesenchymal-specific marker genes by RT-PCR (a) and immunofluorescence staining (b) to confirm whether human embryonic stem cells have been differentiated into mesenchymal cells.
도 3은 인간 배아줄기세포로부터 분화된 중간엽 세포가 혈관모세포로 분화 유도되었는지 확인하기 위하여 내피세포 특이적 마커(Tie-2, CD31, CD105 및 KDR)와 배아줄기세포 특이적 마커(NANOG 및 OCT4), 그리고 혈관모세포특이적 마커(CD34)의 발현 여부를 RT-PCR을 통해 확인한 결과이다.Figure 3 shows endothelial cell specific markers (Tie-2, CD31, CD105 and KDR) and embryonic stem cell specific markers (NANOG and OCT4) to determine whether mesenchymal cells differentiated from human embryonic stem cells are induced differentiation into hemangioblasts. ), And whether hemangioblast specific marker (CD34) is expressed through RT-PCR.
도 4는 인간 배아줄기세포 유래의 혈관모세포가 혈관 내피세포로 분화 유도되었는지 확인하기 위하여 혈관내피세포 특이적 마커인 vWF, EphB4, VE-cadherin, CD105 및 CD31의 발현 여부를 RT-PCR (a) 및 면역형광염색 (b-d)으로 확인한 결과이다. 또한, AcLDL이 인간 배아줄기세포로부터 분화 유도된 혈관내피세포에 흡수됨을 형광현미경을 통해 확인하였고(e), 분화 유도된 혈관내피세포의 형태가 성숙한 혈관내피세포의 조약돌모양 형태와 유사함을 위상차 현미경을 통해 확인하였으며(f), 마트리젤(Matrigel) 위에 인간 배아줄기세포로부터 분화 유도된 혈관내피세포를 올려놓고 24 시간 동안 배양한 결과, 코드모양의 구조물을 형성하는 것을 확인한(g) 결과를 나타낸다.Figure 4 shows whether the expression of vascular endothelial cell-specific markers vWF, EphB4, VE-cadherin, CD105 and CD31 to determine whether hemangioblasts derived from human embryonic stem cells induced vascular endothelial cells RT-PCR (a) And immunofluorescence staining (bd). In addition, AcLDL was confirmed to be absorbed into vascular endothelial cells induced by differentiation from human embryonic stem cells through fluorescence microscopy (e). It was confirmed through a microscope (f), and cultured for 24 hours with differentiation-induced vascular endothelial cells derived from human embryonic stem cells on Matrigel, and confirmed that they formed cord-shaped structures (g). Indicates.
도 5는 인간 배아줄기세포 유래의 혈관모세포가 혈관평활근세포로 분화 유도 되었는지 확인하기 위하여 혈관평활근세포 마커의 발현을 RT-PCR (a) 및 면역형광염색법 (b)으로 확인한 결과이다.5 is a result of confirming the expression of vascular smooth muscle cell markers by RT-PCR (a) and immunofluorescence staining (b) in order to determine whether hemangioblasts derived from human embryonic stem cells induced differentiation into vascular smooth muscle cells.
도 6은 인간 배아줄기세포 유래의 혈관모세포가 조혈줄기세포로 분화 유도되었는지 확인하기 위하여 CFU (colony forming unit) assay를 수행한 결과, 대식세포(macrophage), 적혈구(erythroid) 및 과립구(granulocyte)등의 혈액세포가 생성됨을 확인한 결과이다.6 is a result of performing a colony forming unit (CFU) assay to determine whether hemangioblasts derived from human embryonic stem cells are differentiated into hematopoietic stem cells, macrophage, erythroid, granulocyte, etc. This is a result of confirming that the blood cells are produced.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080014625A KR100948170B1 (en) | 2008-02-18 | 2008-02-18 | Method for inducing the defferentiation of embryonic stem cells into hemangioblast |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080014625A KR100948170B1 (en) | 2008-02-18 | 2008-02-18 | Method for inducing the defferentiation of embryonic stem cells into hemangioblast |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090089206A KR20090089206A (en) | 2009-08-21 |
KR100948170B1 true KR100948170B1 (en) | 2010-03-16 |
Family
ID=41207550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080014625A KR100948170B1 (en) | 2008-02-18 | 2008-02-18 | Method for inducing the defferentiation of embryonic stem cells into hemangioblast |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100948170B1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101193541B1 (en) * | 2009-08-24 | 2012-10-22 | 한국과학기술원 | Method of inducing differentiation of human embryonic stem cells into mesenchymal stem cells |
KR101406875B1 (en) * | 2010-09-16 | 2014-06-16 | 연세대학교 산학협력단 | Use of casein kinase inhibitor for inducing differentiation of mesenchymal stem cells to endothelial cells |
KR101406557B1 (en) * | 2010-09-16 | 2014-06-12 | 연세대학교 산학협력단 | Use of dna-pk inhibitor for inducing differentiation of mesenchymal stem cells to endothelial cells |
KR101490695B1 (en) * | 2011-09-16 | 2015-02-06 | 연세대학교 산학협력단 | N-(2-acetyl-4-morpholinophenyl amide derivatives for inducing differentiation of mesenchymal stem cells to endothelial cells |
KR101477016B1 (en) * | 2012-01-19 | 2014-12-29 | (주)차바이오텍 | Method for producing human embryonic stem cell-derived perivascular progenitor cell and composition for cell therapy comprising the same |
CN105296427A (en) * | 2015-10-23 | 2016-02-03 | 深圳爱生再生医学科技有限公司 | In-vitro multiplication culture method of hematopoietic stem cells |
-
2008
- 2008-02-18 KR KR1020080014625A patent/KR100948170B1/en active IP Right Grant
Non-Patent Citations (3)
Title |
---|
Mol. Cancer Res., Vol. 1, pp.147-154. |
Proc. Nat'l Acad. Sci., Vol. 97, pp.11307-11312. |
Trends in Cell Biol., Vol. 12, pp.432-438. |
Also Published As
Publication number | Publication date |
---|---|
KR20090089206A (en) | 2009-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8507275B2 (en) | Method of inducing differentiation of embryonic stem cells into hemangioblast | |
Kawai et al. | Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2 | |
RU2359030C1 (en) | Method for obtaining endotheliocytes from human embryonic stem cells (versions) | |
KR102151210B1 (en) | Methods and materials for hematoendothelial differentiation of human pluripotent stem cells under defined conditions | |
AU2009228354B2 (en) | Human cardiovascular progenitor cells | |
JP2020162608A (en) | Methods and compositions for generating epicardium cells | |
US11111476B2 (en) | Method for manufacturing ciliary marginal zone-like structure | |
JP7045363B2 (en) | Method for Producing Mesoderm Cells and / or Vascular Endothelial Colony-forming Cell-like Cells with Angiogenic Capability in vivo | |
KR100948170B1 (en) | Method for inducing the defferentiation of embryonic stem cells into hemangioblast | |
JPWO2019093340A1 (en) | Method for inducing primitive endoderm from naive pluripotent stem cells | |
US20080108044A1 (en) | In vitro differentiation of hematopoietic cells from primate embryonic stem cells | |
KR20200091885A (en) | Cell culture method | |
US20220010271A1 (en) | Method for producing brain organoids | |
Kurisaki et al. | In vitro organogenesis using multipotent cells | |
CN111918961B (en) | Myocardial cell maturation promoter | |
WO2022196613A1 (en) | Method for producing sclerotome cells and utilization of said sclerotome cells | |
KR100937457B1 (en) | A Method for differentiating of human embryonic stem cells and human embryonic carcinoma cells into the cardiomyocytic lineages | |
EA044339B1 (en) | METHOD FOR CULTURING CELLS | |
Witty | The Derivation of the Myocardial, Epicardial and Endocardial Lineages from Human Pluripotent Stem Cells | |
Lundin | Evaluating and Optimizing a Protocol for Mesodermal Differentiation of Pluripotent Stem Cells towards Cardiomyocytes and Adipocytes | |
KR20120051907A (en) | Method for inducing differentiation of induced pluripotent stem cells into cd34 positive cells | |
KR20130090389A (en) | Method for inducing differentiation of induced pluripotent stem cells into cd34 positive cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130304 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20140303 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20150226 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20170224 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20180226 Year of fee payment: 9 |