[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100923442B1 - New cathode active material - Google Patents

New cathode active material Download PDF

Info

Publication number
KR100923442B1
KR100923442B1 KR1020070140967A KR20070140967A KR100923442B1 KR 100923442 B1 KR100923442 B1 KR 100923442B1 KR 1020070140967 A KR1020070140967 A KR 1020070140967A KR 20070140967 A KR20070140967 A KR 20070140967A KR 100923442 B1 KR100923442 B1 KR 100923442B1
Authority
KR
South Korea
Prior art keywords
composite oxide
lithium
lithium composite
active material
solvent
Prior art date
Application number
KR1020070140967A
Other languages
Korean (ko)
Other versions
KR20090013661A (en
Inventor
김세환
안영진
이상봉
정일천
양지운
Original Assignee
주식회사 엘 앤 에프
주식회사 엘앤에프신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프, 주식회사 엘앤에프신소재 filed Critical 주식회사 엘 앤 에프
Publication of KR20090013661A publication Critical patent/KR20090013661A/en
Application granted granted Critical
Publication of KR100923442B1 publication Critical patent/KR100923442B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차전지에 사용가능한 신규 양극활물질 및 이의 제조방법에 관한 것이다.The present invention relates to a novel cathode active material that can be used in a lithium secondary battery and a method of manufacturing the same.

상기 양극활물질은 용매에 Al 공급 전구체를 분산시킨 코팅액을 준비하는 제1단계; 전 단계의 코팅액을 40 ~ 100 ℃로 가열하여 Al 공급 전구체를 용매에 용해시키는 제2단계; 리튬 이온을 인터칼레이션/디인터칼레이션할 수 있는 제1 리튬 복합 산화물 제조시 과량의 리튬 공급 전구체를 사용하여 잔류 리튬 공급 전구체가 상기 제1 리튬 복합 산화물 입자 표면 또는 내부에 잔류하는 제1 리튬 복합 산화물을 준비하는 제3단계; 상기 제1 리튬 복합 산화물에 용매를 첨가하여 팽윤(Wetting)시키는 제4단계; 상기 용매에 팽윤된 제1 리튬 복합 산화물에 상기 코팅액을 투입 후 교반하는 제5단계; 및 전단계 결과물을 700℃~1000℃에서 가열처리하여 상기 제1 리튬 복합 산화물 입자 상에 LiAlO2 함유 피막이 연속적으로 형성된 제2 리튬 복합 산화물을 형성하는 제6단계를 통해 제조된다. The cathode active material is a first step of preparing a coating solution in which the Al feed precursor is dispersed in a solvent; A second step of dissolving the Al feed precursor in a solvent by heating the coating solution of the previous step to 40 to 100 ° C; In the preparation of the first lithium composite oxide capable of intercalating / deintercalating lithium ions, a residual lithium supply precursor is formed by using an excess lithium supply precursor. Preparing a first lithium composite oxide remaining on or in the particle surface; A fourth step of swelling by adding a solvent to the first lithium composite oxide; A fifth step of adding the coating solution to the first lithium composite oxide swelled in the solvent and then stirring the coating solution; And a sixth step of forming a second lithium composite oxide in which a LiAlO 2 -containing film is continuously formed on the first lithium composite oxide particles by heating the resultant material at 700 ° C. to 1000 ° C. in the previous step.

Description

신규 양극 활물질{NEW CATHODE ACTIVE MATERIAL}New Cathode Active Material {NEW CATHODE ACTIVE MATERIAL}

본 발명은 리튬 이차전지에 사용가능한 신규 양극 활물질 및 이의 제조방법에 관한 것이다.The present invention relates to a novel positive electrode active material usable in a lithium secondary battery and a method of manufacturing the same.

최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다.Recently, with the trend toward miniaturization and light weight of portable electronic devices, the need for high performance and high capacity of batteries used as power sources for these devices is increasing.

전지는 양극과 음극에 전기 화학 반응이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 리튬 이차 전지가 있으며, 리튬 이차 전지는 양극 및 음극에서 리튬 이온이 인터칼레이션/디인터칼레이션될 때의 화학전위(chemical potential)의 변화에 의하여 전기 에너지를 생성한다.A battery generates power by using a material capable of electrochemical reactions at a positive electrode and a negative electrode. A representative example of such a battery is a lithium secondary battery, which generates electrical energy by a change in chemical potential when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.

상기 리튬 이차 전지는 리튬 이온의 가역적인 인터칼레이션/디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다.The lithium secondary battery is manufactured by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.

리튬 이차 전지의 양극 활물질로는 리튬 복합금속 화합물이 사용되고 있으며, 그 예로 LiCoO2, LiMn2O4, LiNiO2, LiNi1 -xCoxO2(0<x<1), LiMnO2 등의 복합금속 산 화물들이 연구되고 있다.As a cathode active material of a lithium secondary battery, a lithium composite metal compound is used. Examples thereof include a composite of LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi 1- x Co x O 2 (0 <x <1), and LiMnO 2 . Metal oxides are being studied.

상기 양극 활물질 중 LiMn2O4, LiMnO2 등의 Mn계 양극 활물질은 합성하기도 쉽고, 값이 비교적 싸며, 과충전시 다른 활물질에 비하여 열적 안정성이 가장 우수하고, 환경에 대한 오염이 낮아 매력이 있는 물질이기는 하나, 용량이 적다는 단점을 가지고 있다. Among the cathode active materials, Mn-based cathode active materials such as LiMn 2 O 4 and LiMnO 2 are easy to synthesize, are relatively inexpensive, have the best thermal stability compared to other active materials when overcharged, and have low environmental pollution and are attractive. Although it has a disadvantage, the capacity is small.

LiCoO2는 양호한 전자 전도도와 높은 전지 전압 그리고 우수한 전극 특성을 보이며, 현재 Sony사 등에서 상업화되어 시판되고 있는 대표적인 양극 활물질이다. 그러나, 가격이 비싸고 고율 충방전시 안정성이 낮다는 단점을 내포하고 있다. LiCoO 2 exhibits good electron conductivity, high battery voltage, and excellent electrode characteristics, and is a representative cathode active material commercialized and marketed by Sony. However, it has the disadvantage of high price and low stability at high rate charge and discharge.

LiNiO2는 위에서 언급한 양극 활물질 중 가장 값이 싸며, 가장 높은 방전 용량의 전지 특성을 나타내고 있으나, 합성에 어려움이 있고 상기 언급된 양극 활물질 중에 충방전시 가장 구조적으로 불안정하다는 단점이 있다.LiNiO 2 is the least expensive of the above-mentioned positive electrode active material, and exhibits the highest discharge capacity of battery characteristics, but has difficulty in synthesis and has the disadvantage of being most structurally unstable during charge and discharge of the above-mentioned positive electrode active material.

이에 리튬 이차 전지의 양극 활물질의 전기 화학적 특성을 향상시키기 위해 조성 변경, 입도 제어 및 표면 처리를 통한 연구가 많이 지속적으로 진행이 되고 있다. In order to improve the electrochemical properties of the positive electrode active material of the lithium secondary battery, a lot of research through composition change, particle size control and surface treatment has been continuously conducted.

본 발명의 목적은 성능이 향상된 리튬 이차 전지용 양극 활물질을 제공하는 것이다.An object of the present invention is to provide a cathode active material for a lithium secondary battery with improved performance.

본 발명은 용매에 Al 공급 전구체를 분산시킨 코팅액을 준비하는 제1단계; 전 단계의 코팅액을 40 ~ 100 ℃로 가열하여 Al 공급 전구체를 용매에 용해시키는 제2단계; 리튬 이온을 인터칼레이션/디인터칼레이션할 수 있는 제1 리튬 복합 산화물 제조시 과량의 리튬 공급 전구체를 사용하여 잔류 리튬 공급 전구체가 상기 제1 리튬 복합 산화물 입자 표면 또는 내부에 잔류하는 제1 리튬 복합 산화물을 준비하는 제3단계; 상기 제1 리튬 복합 산화물에 용매를 첨가하여 팽윤(Wetting)시키는 제4단계; 상기 용매에 팽윤된 제1 리튬 복합 산화물에 상기 코팅액을 투입 후 교반하는 제5단계; 및 전단계 결과물을 700℃~1000℃에서 가열처리하여 상기 제1 리튬 복합 산화물 입자 상에 LiAlO2 함유 피막이 연속적으로 형성된 제2 리튬 복합 산화물을 형성하는 제6단계를 포함하는 것이 특징인 제2 리튬 복합 산화물로 된 양극활물질의 제조 방법을 제공한다.The present invention comprises a first step of preparing a coating solution in which the Al feed precursor is dispersed in a solvent; A second step of dissolving the Al feed precursor in a solvent by heating the coating solution of the previous step to 40 to 100 ° C; In the preparation of the first lithium composite oxide capable of intercalating / deintercalating lithium ions, a residual lithium supply precursor is formed by using an excess lithium supply precursor. Preparing a first lithium composite oxide remaining on or in the particle surface; A fourth step of swelling by adding a solvent to the first lithium composite oxide; A fifth step of adding the coating solution to the first lithium composite oxide swelled in the solvent and then stirring the coating solution; And a sixth step of forming a second lithium composite oxide in which a LiAlO 2 -containing film is continuously formed on the first lithium composite oxide particles by heating the resultant material at 700 ° C. to 1000 ° C. in the previous step. Provided is a method for producing a cathode active material of oxide.

또한, 본 발명은 리튬 이온을 인터칼레이션/디인터칼레이션할 수 있는 제1리튬 복합 산화물 코어 입자; 및 상기 코어 입자의 표면부로부터 내부로 확산되어 도입된 Al과 상기 제1리튬 복합 산화물 코어 입자 중 잔류하는 리튬 공급 전구체가 반응하여 형성된 LiAlO2 가 연속적인 피막형태로 존재하는 코팅층을 구비한 제2 리튬 복합 산화물을 포함하는 양극활물질 및 이를 사용하는 이차 전지를 제공한다.In addition, the present invention is the first lithium composite oxide core particles capable of intercalating / deintercalating lithium ions; And a coating layer in which LiAlO 2 formed by reacting Al introduced and diffused into the inner surface of the core particles and the lithium supply precursor remaining in the first lithium composite oxide core particles are present in a continuous coating form. Provided is a cathode active material including a lithium composite oxide and a secondary battery using the same.

본 발명에 따른 양극활물질은 이를 사용한 전지의 고전압 특성 및 Rate특성을 향상시킬 수 있다.The positive electrode active material according to the present invention can improve the high voltage characteristic and the rate characteristic of the battery using the same.

이하, 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.

본 명세서에서, 잔류 리튬 공급 전구체란 리튬 이온을 인터칼레이션/디인터칼레이션할 수 있는 제1 리튬 복합 산화물 코어 입자 제조시 화학양론 이상의 과량으로 사용된 리튬 공급 전구체의 과량분을 의미하며, 리튬 공급 전구체의 비제한적인 예로는 리튬 카보네이트(Li2CO3), 리튬 하이드록사이드(LiOH), 리튬 나이트레이트, 리튬 아세테이트, 리튬 옥사이드, 리튬 설페이트, 리튬 클로라이드 등이 있으며, 리튬 하이드록사이드가 바람직하다.As used herein, the term "residual lithium supply precursor" refers to an excess of lithium supply precursor used in excess of stoichiometry when preparing first lithium composite oxide core particles capable of intercalating / deintercalating lithium ions. Non-limiting examples of feed precursors include lithium carbonate (Li 2 CO 3 ), lithium hydroxide (LiOH), lithium nitrate, lithium acetate, lithium oxide, lithium sulfate, lithium chloride, and the like, with lithium hydroxide being preferred. Do.

본 발명에 따른 제조방법에서 Al 공급 전구체 중 Al은 리튬 이온을 인터칼레이션/디인터칼레이션할 수 있는 제1 리튬 복합 산화물 (예, LiCoO2) 표면 또는 그 근처에 잔존하고 있는 Li과 반응하여, 대부분 LiAlO2로 존재하고, 일부만이 Al2O3로 존재할 수 있다(실시예 1). In the manufacturing method according to the present invention, Al in the Al supply precursor reacts with Li remaining on or near the surface of the first lithium composite oxide (eg, LiCoO 2 ) capable of intercalating / deintercalating lithium ions. Most of which is present as LiAlO 2 , and only some may be present as Al 2 O 3 (Example 1).

또, 본 발명에 따른 제조방법에 의해 제조된 양극 활물질은 LiAlO2 가 입자 상태로 코팅되지 아니하고 연속적인 피막형태로 코팅되며, LiAlO2 를 포함하는 코팅층이 얇게 형성될 수 있다(도 1c 참조). In addition, the positive electrode active material produced by the method according to the invention can be a LiAlO 2 formed is coated with a continuous film shape nor be coated with a particulate, a thin coating layer containing a LiAlO 2 (see Fig. 1c).

본 명세서에서, 연속적인 피막형태로 코팅되었다는 것은 LiAlO2 가 입자상으로 관측이 않는 것을 의미한다.In the present specification, the coating in the form of a continuous coating is LiAlO 2 Means no observation in particulate form.

활물질의 표면과 전해액이 반응하여 활물질의 열화를 일으키는데, 본 발명은 Al-함유 산화물이 복수의 입자들로 이루어진 코팅층이 아니라 입자상태가 없는 연속된 피막층을 형성하여 활물질의 열화를 억제할 수 있다.The surface of the active material reacts with the electrolyte to cause deterioration of the active material. In the present invention, the Al-containing oxide is not a coating layer composed of a plurality of particles, but a continuous coating layer having no particle state can be suppressed to deteriorate the active material.

한편, Al 공급 전구체의 바람직한 예로는 Al-알콕사이드(예, Al 이소프로폭사이드)가 있으나, Li과 반응할 수 있는 한 알루미늄을 포함하는 산화물(예, 알루미나), 수산화물(예, 수산화 알루미늄), 옥시수산화물, 질산염, 염화물, 탄산염, 초산염, 옥살산염, 시트르산염, 또는 이들의 혼합물도 포함한다. Preferred examples of Al feed precursors include Al-alkoxides (eg Al isopropoxide), but oxides containing aluminum (eg, alumina), hydroxides (eg, aluminum hydroxide), as long as they can react with Li, Oxyhydroxides, nitrates, chlorides, carbonates, acetates, oxalates, citrates, or mixtures thereof.

본 발명에서 코팅액의 용매, 그리고 코팅 대상인 제1 리튬 복합 산화물을 팽윤(wetting)시키고자 하는 용매는 각각 Al 공급 전구체를 용해시키거나 제1 리튬 복합 산화물을 팽윤시킬 수 있는 한 그 종류가 제한되지 아니하나, 이의 비제한적인 예로는 알코올(예, 이소프로필 알코올, 에틸 알코올, 메틸 알코올), 물, 벤젠 톨루엔, 크로로폼, Carbon tetrachloride, Petroleum hydrocarbons 또는 이의 혼합물이 있다. 상기 용매로는 C1 내지 C6의 저급 알코올이 바람직하다.In the present invention, the solvent of the coating liquid and the solvent to swell the first lithium composite oxide to be coated are not limited as long as they can dissolve the Al feed precursor or swell the first lithium composite oxide, respectively. However, non-limiting examples thereof include alcohol (eg isopropyl alcohol, ethyl alcohol, methyl alcohol), water, benzene toluene, chloroform, carbon tetrachloride, Petroleum hydrocarbons or mixtures thereof. As the solvent, C 1 to C 6 lower alcohols are preferable.

한편, Al 공급 전구체를 용해시키는 용매와, 제1 리튬 복합 산화물을 팽윤시키는 용매는 동일한 것이 바람직하다. On the other hand, it is preferable that the solvent which dissolves an Al supply precursor and the solvent which swells a 1st lithium composite oxide are the same.

본 발명은 용매 중 Al 공급 전구체를 분산액이 아닌 용액의 상태로 사용하는 것이 특징이다.The present invention is characterized in that the Al feed precursor in the solvent is used as a solution rather than a dispersion.

본 발명에 따른 양극 활물질의 제조 방법에서, Al 공급 전구체는 알코올과 같은 용매에 완전히 용해되지 아니하면, 미세 입자로 분산 상태를 유지하게 되어 코팅 시에 미립자 형태로 코팅되는 경향이 있다. Al 공급 전구체가 분산 상태이면 균일 Coating이 되지 않는다. 따라서, 본 발명은 Al 공급 전구체를 알코올과 같은 용매에 완전히 용해시켜, 피막형태의 코팅층을 형성한다.In the production method of the positive electrode active material according to the present invention, if the Al feed precursor is not completely dissolved in a solvent such as alcohol, the Al feed precursor is maintained in a dispersed state as fine particles and tends to be coated in the form of fine particles at the time of coating. If Al feed precursor is dispersed, uniform coating is not possible. Therefore, the present invention completely dissolves the Al supply precursor in a solvent such as alcohol to form a coating layer in the form of a film.

한편, 본 발명은 제2단계에서의 코팅액 용해를 용이하게 하기 위해, 제1단계 이후 고속 교반을 통해 Al 공급 전구체를 미세하게 분산시키는 단계를 더 포함하는 것이 바람직하다. On the other hand, the present invention preferably further comprises the step of finely dispersing the Al feed precursor through high-speed stirring after the first step, in order to facilitate the dissolution of the coating solution in the second step.

한편, 본 발명은 피복대상인 제1 리튬 복합 산화물에도 알코올과 같은 용매를 첨가하여 Wetting시킴으로써 제1 리튬 복합 산화물에 Al-공급 전구체가 석출되지 않도록 한다. 이로인해, 코팅의 균일성을 확보할 수 있으며, Coating 결과물이 입자 형태가 아닌 피막 형태로 형성할 수 있도록 할 수 있다.Meanwhile, the present invention prevents the Al-supply precursor from depositing on the first lithium composite oxide by adding a solvent such as alcohol to the first lithium composite oxide to be coated. Due to this, it is possible to ensure the uniformity of the coating, it is possible to form the coating product in the form of a film rather than a particle form.

또, 본 발명은 제5단계 이후 용매를 증발시켜 제거하는 단계를 더 추가하는 것이 바람직하다. 용매를 증발시킴으로써 제6단계에서 가열처리를 통한 소성을 용이하게 할 수 있기 때문이다. 용매를 증발시키는 방법으로는 혼합코팅후 온수 공급하여 용매를 증발시키는 방법, 열풍으로 건조하는 방식, 간접 Heating 법으로 건조하는 방법, 감압건조법 등이 있다.In addition, the present invention preferably further adds a step of removing the solvent by evaporation after the fifth step. This is because the calcination through heat treatment in the sixth step can be facilitated by evaporating the solvent. As a method of evaporating the solvent, there is a method of evaporating the solvent by supplying hot water after mixing coating, drying by hot air, drying by indirect heating method, and drying under reduced pressure.

한편, 본 발명에 따른 양극 활물질의 제조 방법은 700℃ 이상에서 가열처리하는데, 소성 온도에 따라서 피착시킨 형태가 약간 달라진다. 700℃ 이상이 되면 코팅된 Al-Isopropoxide와 같은 Al-알콕사이드가 Li과 반응하여 내부로 확산하는 경향이 있다. 가열처리시간은 12시간 내지 18시간일 수 있다. On the other hand, the manufacturing method of the positive electrode active material according to the present invention is heat-treated at 700 ℃ or more, the shape deposited slightly varies depending on the firing temperature. Above 700 ° C, Al-alkoxides such as coated Al-Isopropoxide tend to react with Li and diffuse inside. The heat treatment time may be 12 hours to 18 hours.

한편, 상기와 같이 열처리된 활물질은 초음파 Shift를 통과시켜 분산처리시키는 것이 좋다.On the other hand, the active material heat-treated as described above is good to disperse by passing the ultrasonic shift.

본 발명에 따른 양극 활물질의 제조 방법에서 LiAlO2 로 코팅하기 전 상기 제1 리튬 복합 산화물 원료는 직경이 6 ~ 20μm일 수 있다.In the method for preparing a cathode active material according to the present invention, the first lithium composite oxide raw material may have a diameter of 6 to 20 μm before coating with LiAlO 2 .

본 발명에 따라, 리튬 이온을 인터칼레이션/디인터칼레이션할 수 있는 제1 리튬 복합 산화물은 리튬 이온을 인터칼레이션/디인터칼레이션할 수 있는 한 모든 리튬 함유 복합금속산화물을 사용할 수 있고, 이의 비제한적인 예로는 하기 화학식 1의 화합물이 있다.According to the present invention, the first lithium composite oxide capable of intercalating / deintercalating lithium ions may use any lithium-containing composite metal oxide as long as it can intercalate / deintercalate lithium ions. Non-limiting examples thereof include the compound of formula (1).

[화학식 1][Formula 1]

LiA1 -x- yBxCyO2 LiA 1 -x- y B x C y O 2

(상기 식에서 0 < x ≤ 0.3이고, 0 ≤ y ≤ 0.01이고, 상기 A는 Ni, Co 및 Mn으로 이루어진 그룹에서 선택되는 원소이고, 상기 B는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu 및 Al로 이루어진 그룹에서 선택되는 원소이고, 상기 C는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu 및 Al로 이루어진 그룹에서 선택되는 원소이다)Wherein 0 <x ≦ 0.3, 0 ≦ y ≦ 0.01, wherein A is an element selected from the group consisting of Ni, Co, and Mn, and B is Ni, Co, Mn, B, Mg, Ca, Sr , Ba, Ti, V, Cr, Fe, Cu and Al is an element selected from the group, C is Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Element selected from the group consisting of Cu and Al)

상기 리튬 복합산화물은 하기 화학식 2로 표시되는 리튬코발트 복합산화물이 바람직하다.The lithium composite oxide is preferably a lithium cobalt composite oxide represented by the following formula (2).

[화학식 2][Formula 2]

LixCo1 - yMeyO2 -a Li x Co 1 - y Me y O 2 -a

(Me는 Ni, B, Mg, Ca, Sr, Ba, V, Cr, Fe, Cu, Al, Ti 중에 선택된 1종류 또는 2종류 이상의 금속원소를 나타냄. X는 1.0≤x≤1.1, y는 0≤y≤0. 02, a는 -0.1 ≤a≤0. 1이다)(Me represents one or two or more metal elements selected from Ni, B, Mg, Ca, Sr, Ba, V, Cr, Fe, Cu, Al, Ti. X is 1.0≤x≤1.1, y is 0 ≤ y ≤ 0.0, a is -0.1 ≤ a ≤ 0.1)

상기 화학식 2의 리튬 복합산화물은 LiCoO2 뿐만 아니라 코발트 원자의 일부를 다른 금속 원소로 치환한 복합 산화물을 포함한다.The lithium composite oxide of Formula 2 is LiCoO 2 As well as complex oxides in which some of the cobalt atoms are replaced with other metal elements.

상기한 단계를 거쳐 제조된 물질은 리튬 이차 전지의 전극활물질, 바람직하게는 양극 활물질로 사용될 수 있다. The material prepared through the above steps may be used as an electrode active material, preferably a positive electrode active material of a lithium secondary battery.

한편, 본 발명에 따라 제조된 양극 활물질을 사용하는 것을 제외하고는, 통상적인 방법으로 전극 및/또는 이차전지를 제조할 수 있다. On the other hand, except for using the positive electrode active material prepared according to the present invention, it is possible to manufacture an electrode and / or a secondary battery by a conventional method.

리튬 이차 전지는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 이들 사이에 존재하는 전해질; 및 선택적으로 분리막을 포함하고, 이때 상기 전극활물질, 바람직하게는 양극 활물질로 본 발명에 따른 리튬 복합금속 산화물을 사용한다. The lithium secondary battery may include a positive electrode including a positive electrode active material; A negative electrode including a negative electrode active material; Electrolytes present between them; And optionally a separator, wherein the lithium composite metal oxide according to the present invention is used as the electrode active material, preferably the cathode active material.

본 발명의 리튬 이차 전지의 일례를 들면 다음과 같다.An example of the lithium secondary battery of the present invention is as follows.

상기 양극은 본 발명에 따른 양극 활물질과, 도전재, 결합제 및 용매를 혼합하여 양극 활물질 조성물을 제조한 다음, 알루미늄 집전체 상에 직접 코팅 및 건조하여 제조한다. 또는 상기 양극 활물질 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 알루미늄 집전체 상에 라미네이션하여 제조가 가능하다. The positive electrode is prepared by mixing a positive electrode active material according to the present invention, a conductive material, a binder and a solvent to prepare a positive electrode active material composition, and then coating and drying the aluminum active material directly. Alternatively, the cathode active material composition may be cast on a separate support, and then the film obtained by peeling from the support may be manufactured by laminating on an aluminum current collector.

이때 도전재는 카본 블랙, 아세틸렌 블랙, 흑연, 금속 분말을 사용하며, 결합제는 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오 라이드, 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 및 그 혼합물이 가능하다. 또한 용매는 N-메틸피롤리돈, 아세톤, 테트라하이드로퓨란, 데칸 등을 사용한다. 이때 양극 활물질, 도전재, 결합제 및 용매의 함량은 리튬 이차 전지에서 통상적으로 사용하는 수준으로 사용된다. The conductive material is carbon black, acetylene black, graphite, metal powder, the binder is vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polytetra Fluoroethylene and mixtures thereof are possible. In addition, N-methylpyrrolidone, acetone, tetrahydrofuran, decane, etc. are used as a solvent. In this case, the contents of the positive electrode active material, the conductive material, the binder, and the solvent are used at levels commonly used in lithium secondary batteries.

상기 음극은 마찬가지로 음극 활물질, 결합제 및 용매를 혼합하여 음극 활물질 조성물을 제조하며, 이를 구리 집전체에 직접 코팅하거나 별도의 지지체 상에 캐스팅하고 이 지지체로부터 박리시킨 음극 활물질 필름을 구리 집전체에 라미네이션하여 제조한다. 이때 음극 활물질 조성물에는 필요한 경우에는 도전재를 더욱 함유하기도 한다. The negative electrode is likewise mixed with a negative electrode active material, a binder and a solvent to prepare a negative electrode active material composition, which is directly coated on a copper current collector or cast on a separate support, and the negative electrode active material film peeled from the support is laminated to a copper current collector Manufacture. At this time, the negative electrode active material composition may further contain a conductive material if necessary.

상기 음극 활물질로는 리튬을 인터칼레이션/디인터칼레이션할 수 있는 재료가 사용되고, 예컨대, 리튬 금속이나 리튬 합금, 코크스, 인조 흑연, 천연 흑연, 유기 고분자 화합물 연소체, 탄소 섬유 등을 사용한다. 또한 도전재, 결합제 및 용매는 전술한 양극의 경우와 동일하게 사용된다. As the negative electrode active material, a material capable of intercalating / deintercalating lithium is used, and for example, lithium metal, lithium alloy, coke, artificial graphite, natural graphite, organic polymer compound combustor, carbon fiber, or the like is used. . In addition, a conductive material, a binder, and a solvent are used similarly to the case of the positive electrode mentioned above.

상기 리튬 이차 전지에 충전되는 전해질로는 비수성 전해질 또는 공지된 고체 전해질 등이 사용 가능하며, 통상 리튬염이 용해된 것을 사용한다. As the electrolyte to be charged in the lithium secondary battery, a non-aqueous electrolyte or a known solid electrolyte may be used, and a lithium salt is usually used.

상기 비수성 전해질의 용매는 특별히 한정되는 것은 아니지만, 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트 등의 환상 카보네이트; 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트 등의 쇄상 카보네이트; 아세트산메틸, 아세트산에틸, 아세트산프로필, 프로피온산메틸, 프로피온산에틸, γ-부티로락톤 등의 에스테르류; 1,2-디메톡시에탄, 1,2-디에톡시에탄, 테트 라히드로푸란, 1,2-디옥산, 2-메틸테트라히드로푸란 등의 에테르류; 아세토니트릴 등의 니트릴류; 디메틸포름아미드 등의 아미드류 등을 사용할 수 있다. 이들을 단독 또는 복수개 조합하여 사용할 수 있다. 특히, 환상 카보네이트와 쇄상 카보네이트와의 혼합 용매를 바람직하게 사용할 수 있다. Although the solvent of the said non-aqueous electrolyte is not specifically limited, Cyclic carbonates, such as ethylene carbonate, a propylene carbonate, butylene carbonate, vinylene carbonate; Chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate; Esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and γ-butyrolactone; Ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane and 2-methyltetrahydrofuran; Nitriles such as acetonitrile; Amides, such as dimethylformamide, etc. can be used. These can be used individually or in combination of two or more. In particular, a mixed solvent of a cyclic carbonate and a linear carbonate can be preferably used.

또한 전해질로서, 폴리에틸렌옥시드, 폴리아크릴로니트릴 등의 중합체 전해질에 전해액을 함침한 겔상 중합체 전해질이나, LiI, Li3N 등의 무기 고체 전해질이 가능하다. As the electrolyte, a gel polymer electrolyte in which an electrolyte solution is impregnated with a polymer electrolyte such as polyethylene oxide or polyacrylonitrile, or an inorganic solid electrolyte such as LiI or Li 3 N can be used.

이때 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiCl, 및 LiI로 이루어진 군에서 선택된 1종이 가능하다. The lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , One selected from the group consisting of LiCl and LiI is possible.

상기 분리막은 리튬 이차 전지에서 통상적으로 사용되는 것이라면 모두 다 사용가능하며, 일예로 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 분리막, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 분리막, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 분리막 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.The separator may be used as long as it is commonly used in a lithium secondary battery. For example, polyethylene, polypropylene, polyvinylidene fluoride, or two or more multilayer films thereof may be used, a polyethylene / polypropylene two-layer separator, Of course, mixed multilayer membranes such as polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / polypropylene three-layer separator, and the like may be used.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.

[실시예 1]Example 1

이소프로필 알코올에 Al-Isopropoxide을 분산시킨 코팅액을 고속 교반을 통해 Al-Isopropoxide를 미세하게 분산시킨 후, 40℃ 이상의 온도로 가열하여 Al-Isopropoxide를 이소프로필 알코올에 완전히 용해시킨 6중량% 코팅액을 준비하였다.After dispersing Al-Isopropoxide finely in Al-Isopropoxide in isopropyl alcohol through high-speed stirring, it was heated to a temperature of 40 ° C. or higher to prepare a 6 wt% coating solution in which Al-Isopropoxide was completely dissolved in isopropyl alcohol. It was.

LiCoO2 제조시 화학양론 이상의 과량의 Li2CO3를 사용하여 미반응 Li2CO3가 LiCoO2 입자 표면 또는 내부에 잔류하는 LiCoO2 를 제조하고 이를 이소프로필 알코올로 Wetting시켰다. 상기 이소프로필 알코올에 Wetting된 LiCoO2에 상기 코팅액을 투입 후 코팅액에 LiCoO2를 충분히 분산시키기 위하여 1시간 정도 교반하였다. 이어서, 진공을 건 상태에서 60℃에서 교반하면서 알코올을 증발시켜 제거하였다. 알코올이 제거된 상태에서 700℃에서 8시간 가열처리하고, 열처리된 활물질을 초음파 Shift를 통과시켜 분산처리시켰다. 그 결과 제조된 양극 활물질의 SEM 사진을 도 1에 도시하였다.LiCoO 2 in the manufacture using a large excess of Li 2 CO 3 or more stoichiometric unreacted Li 2 CO 3 is prepared for LiCoO 2 that remains on the surface or inside the particles, and LiCoO 2 was Wetting them with isopropyl alcohol. After putting the coating liquid in the LiCoO 2 Wetting to the isopropyl alcohol in order to sufficiently disperse the LiCoO 2 in the coating solution it was stirred for 1 hour. The alcohol was then removed by evaporation while stirring at 60 ° C. under vacuum. Heat treatment was performed at 700 ° C. for 8 hours while the alcohol was removed, and the heat-treated active material was dispersed by ultrasonic shift. As a result, an SEM image of the prepared cathode active material is shown in FIG. 1.

상기 제조된 양극 활물질은 입도가 12μm 이고, 도 1c를 통해 상기 제조된 양극 활물질의 코팅층은 LiAlO2 입자로 코팅되지 않고 연속된 피막 형태로 코팅이 일어난 것을 확인하였다.The prepared cathode active material has a particle size of 12 μm, and the coating layer of the prepared cathode active material is LiAlO 2 through FIG. 1C. It was confirmed that the coating occurred in the form of a continuous film without coating with particles.

한편, 0.1N HCl로 중화적정을 통하여 확인한 결과, 잔류 Li2CO3가 0.072중량%에서 0.05중량%으로 낮아진 것도 확인하였다. 즉, 하기 표 1에 표시된 바와 같이 잔류 Li2CO3 (용해성)의 함량이 낮아지는 것으로 보아, 상기 코팅층은 Al-Isopropoxide이 잔류 Li2CO3과 반응하여 코팅층이 형성된 것을 예측할 수 있다.On the other hand, as a result of confirming neutralization titration with 0.1 N HCl, it was also confirmed that the residual Li 2 CO 3 was lowered from 0.072% by weight to 0.05% by weight. That is, as shown in Table 1 below, the content of residual Li 2 CO 3 (soluble) is lowered, and the coating layer may predict that Al-Isopropoxide reacts with the residual Li 2 CO 3 to form a coating layer.

[표 1]TABLE 1

잔류 Li2CO3 Residual Li 2 CO 3 코팅 전Before coating 0.072 중량%0.072 weight% 코팅 및 소성 후After coating and firing 0.05 중량%0.05 wt%

또, 상기 제조된 양극활물질은 LiCoO2 표면 상에 일부만이 Al2O3로 존재하는 LiAlO2 코팅층이 형성된 것을 확인하였다. 상기 코팅층에서 CoAlO2는 검출(detect)되지 않았다. 도 2는 상기 제조된 양극활물질의 XRD로서, 전형적인 LiCoO2의 구조를 나타내는 피크이며, CoAlO2 등의 다른 물질의 혼입이 되지 않은 것을 알 수 있다. In addition, it was confirmed that the prepared cathode active material had a LiAlO 2 coating layer in which only part of Al 2 O 3 was present on the surface of LiCoO 2 . CoAlO 2 was not detected in the coating layer. 2 is a peak showing the structure of a typical LiCoO 2 as XRD of the prepared cathode active material, and it can be seen that other materials such as CoAlO 2 are not mixed.

유도결합플라즈마로 무기원소 측정한 결과, 상기 코팅층은 LiCoO2 대비 500ppm의 Al이 확인되었다.Inorganic element measurement with an inductively coupled plasma, the coating layer was found to be 500ppm Al compared to LiCoO 2 .

전지화학 평가를 위하여 상기 제조된 양극활물질과 바인더, 카본을 95:2.5:2.5의 중량 비율로 사용하여 Slurry를 제조하였다. 알루미늄 호일에 코팅을 하고 2시간 진공 건조한 후 Press를 실시하여 극판을 제조하였다. 제조된 극판을 양극으로 하고 리튬 금속을 음극으로 하여 코인 전지를 제작하여 초기 용량과 10 사이클 후에 용량 변화로 수명 특성 및 4.3V에서 다양한 rate에 따른 충방전 특성을 평가하였다(도 3 및 도 4 참조). 하기, 비교예 1(도 5)과 비교하건대, 실시예 1에 의해 제조된 전지의 경우 율별 충반전 특성 및 수명 특성이 좋아짐을 확인할 수 있다.Slurry was prepared by using the prepared positive electrode active material, binder, and carbon in a weight ratio of 95: 2.5: 2.5 for battery chemistry evaluation. Coating on an aluminum foil, vacuum drying for 2 hours and then press to prepare a plate. A coin battery was fabricated using the manufactured electrode plate as a positive electrode and a lithium metal as a negative electrode, and the life characteristics and the charge and discharge characteristics according to various rates at 4.3V were evaluated by the capacity change after the initial capacity and 10 cycles (see FIGS. 3 and 4). ). Compared with Comparative Example 1 (FIG. 5), it can be seen that the charging and discharging characteristics and the lifespan characteristics of the battery prepared by Example 1 are improved.

[비교예 1] Comparative Example 1

코팅층을 형성하지 아니한 채 실시예 1에서 사용한 LiCoO2 를 양극활물질로 사용하여 전극을 제조한 것을 제외하고는 실시예 1과 동일한 방법으로 코인 전지를 제작하여, 4.3V 및 첫 충반전 사이클에서의 다양한 rate에 따른 충방전 특성을 평가하였다 (도 5 참조).A coin battery was fabricated in the same manner as in Example 1 except that the electrode was manufactured using LiCoO 2 used in Example 1 as a cathode active material without forming a coating layer, and then, at various times of 4.3 V and the first charge and discharge cycle, Charge and discharge characteristics were evaluated according to the rate (see FIG. 5).

[실시예 2] Example 2

가열처리 온도를 700℃대신 750℃로 처리한 것을 제외하고는 실시예 1과 동일한 방법으로 양극활물질 및 코인 전지를 제작하여, 4.3V 및 첫 충반전 사이클에서의 다양한 rate에 따른 충방전 특성을 평가하였다. (도 6 참조) A positive electrode active material and a coin cell were manufactured in the same manner as in Example 1 except that the heat treatment temperature was treated at 750 ° C. instead of 700 ° C., and the charge and discharge characteristics were evaluated at various rates at 4.3 V and the first charge and discharge cycle. It was. (See Figure 6)

[비교예 2]Comparative Example 2

가열처리 온도를 700℃대신 600℃로 처리한 것을 제외하고는 실시예 1과 동일한 방법으로 양극활물질 및 코인 전지를 제작하여, 4.3V 및 첫 충반전 사이클에서의 다양한 rate에 따른 충방전 특성을 평가하였다. (도 7 참조) A positive electrode active material and a coin cell were manufactured in the same manner as in Example 1 except that the heat treatment temperature was treated at 600 ° C. instead of 700 ° C. to evaluate the charge and discharge characteristics according to various rates at 4.3 V and the first charge and discharge cycle. It was. (See Figure 7)

실시예 1, 2 및 비교예 2는 양극활물질 제조시 같은 조건에서 코팅을 하였으나 코팅후 열처리 온도를 달리한 것으로, 코팅후 700℃, 750 ℃에서 처리한 것이 600 ℃에서 처리한 것 보다 전지 성능이 좋았다. 특히 700℃에서 소성한 실시예 1이 가장 좋은 특성을 보였다. 그러나, 비교예 2의 경우도 코팅하지 아니한 양극활물질을 사용한 비교예 1 보다 전지 성능이 좋았다. Examples 1, 2 and Comparative Example 2 were coated under the same conditions when manufacturing the positive electrode active material, but the heat treatment temperature was different after coating, and the battery performance after treatment at 700 ° C. and 750 ° C. was higher than that at 600 ° C. it was good. In particular, Example 1 baked at 700 ° C showed the best properties. However, Comparative Example 2 also showed better battery performance than Comparative Example 1 using the positive electrode active material which was not coated.

도 1a 및 b는 실시예 1에 의해 제조된 양극활물질의 SEM 사진이며, 도 1c는 TEM 사진 이다.1a and b are SEM pictures of the positive electrode active material prepared in Example 1, Figure 1c is a TEM picture.

도 2은 실시예 1에 의해 제조된 양극활물질의 XRD이다.2 is XRD of the positive electrode active material prepared in Example 1. FIG.

도 3는 실시예 1에서 제조된 코인전지의 4.3V 및 첫 충반전 사이클에서의 다양한 rate에 따른 충방전 그래프이다. 3 is a charge and discharge graph according to various rates at 4.3V and the first charge and discharge cycle of the coin battery prepared in Example 1;

도 4는 실시예 1에서 제조된 코인전지의 10 사이클 후 4.3V 에서의 다양한 rate에 따른 충방전 그래프이다. 4 is a charge and discharge graph according to various rates at 4.3V after 10 cycles of the coin battery prepared in Example 1. FIG.

도 5는 비교예 1에서 제조된 코인전지의 4.3V 및 첫 충반전 사이클에서의 다양한 rate에 따른 충방전 그래프이다. 5 is a charge / discharge graph according to various rates in 4.3V and the first charge and discharge cycle of the coin battery prepared in Comparative Example 1.

도 6는 실시예 2에서 제조된 코인전지의 4.3V 및 첫 충반전 사이클에서의 다양한 rate에 따른 충방전 그래프이다. FIG. 6 is a charge / discharge graph according to various rates at 4.3 V and the first charge and discharge cycle of the coin battery prepared in Example 2. FIG.

도 7은 비교예 2에서 제조된 코인전지의 4.3V 및 첫 충반전 사이클에서의 다양한 rate에 따른 충방전 그래프이다. 7 is a charge and discharge graph according to various rates in 4.3V and the first charge and discharge cycle of the coin battery prepared in Comparative Example 2.

Claims (9)

용매에 Al 공급 전구체를 분산시킨 코팅액을 준비하는 제1단계; A first step of preparing a coating solution in which an Al feed precursor is dispersed in a solvent; 전 단계의 코팅액을 40 ~ 100 ℃로 가열하여 Al 공급 전구체를 용매에 용해시키는 제2단계;A second step of dissolving the Al feed precursor in a solvent by heating the coating solution of the previous step to 40 to 100 ° C; 리튬 이온을 인터칼레이션/디인터칼레이션할 수 있는 제1 리튬 복합 산화물 제조시 과량의 리튬 공급 전구체를 사용하여 잔류 리튬 공급 전구체가 상기 제1 리튬 복합 산화물 입자 표면 또는 내부에 잔류하는 제1 리튬 복합 산화물을 준비하는 제3단계;In the preparation of the first lithium composite oxide capable of intercalating / deintercalating lithium ions, a residual lithium supply precursor is formed by using an excess lithium supply precursor. Preparing a first lithium composite oxide remaining on or in the particle surface; 상기 제1 리튬 복합 산화물에 용매를 첨가하여 팽윤(Wetting)시키는 제4단계;A fourth step of swelling by adding a solvent to the first lithium composite oxide; 상기 용매에 팽윤된 제1 리튬 복합 산화물에 상기 제2단계의 코팅액을 투입 후 교반하는 제5단계; 및 A fifth step of adding the coating solution of the second step to the first lithium composite oxide swelled in the solvent and then stirring; And 전단계 결과물을 700℃~1000℃에서 가열처리하여 상기 제1 리튬 복합 산화물 입자 상에 LiAlO2 함유 피막이 연속적으로 형성된 제2 리튬 복합 산화물을 형성하는 제6단계A sixth step of forming a second lithium composite oxide in which a LiAlO 2 -containing film is continuously formed on the first lithium composite oxide particles by heating the resultant material at the previous stage at 700 ° C. to 1000 ° C. 를 포함하는 것이 특징인 제2 리튬 복합 산화물로 된 양극활물질의 제조 방법.Method for producing a positive electrode active material of a second lithium composite oxide, characterized in that it comprises a. 제1항에 있어서, Al 공급 전구체는 Al-알콕사이드인 것이 특징인 양극활물질 제조 방법.The method of claim 1, wherein the Al feed precursor is Al-alkoxide. 제1항에 있어서, 제5단계 이후 용매를 증발시켜 제거하는 단계를 더 추가하는 것이 특징인 양극활물질 제조방법.The method of claim 1, further comprising evaporating and removing the solvent after the fifth step. 제1항에 있어서, 상기 코팅액 중 Al 공급 전구체를 용해시키는 용매와 제1 리튬 복합 산화물을 팽윤시키는 용매는 동일한 것이 특징인 양극활물질 제조방법.The method of claim 1, wherein the solvent for dissolving the Al feed precursor in the coating solution and the solvent for swelling the first lithium composite oxide are the same. 제1항에 있어서, 제1 리튬 복합 산화물은 하기 화학식 1의 화합물인 것이 특징인 양극활물질 제조방법. The method of claim 1, wherein the first lithium composite oxide is a compound of Formula 1 below. [화학식 1][Formula 1] LiA1 -x- yBxCyO2 LiA 1 -x- y B x C y O 2 (상기 식에서 0 < x ≤ 0.3이고, 0 ≤ y ≤ 0.01이고, 상기 A는 Ni, Co 및 Mn으로 이루어진 그룹에서 선택되는 원소이고, 상기 B는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu 및 Al로 이루어진 그룹에서 선택되는 원소이고, 상기 C는 Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu 및 Al로 이루어진 그룹에서 선택되는 원소이다)Wherein 0 <x ≦ 0.3, 0 ≦ y ≦ 0.01, wherein A is an element selected from the group consisting of Ni, Co, and Mn, and B is Ni, Co, Mn, B, Mg, Ca, Sr , Ba, Ti, V, Cr, Fe, Cu and Al is an element selected from the group, C is Ni, Co, Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Element selected from the group consisting of Cu and Al) 제1항에 있어서, 제1 리튬 복합 산화물은 하기 화학식 2의 화합물인 것이 특징인 양극활물질 제조방법.The method of claim 1, wherein the first lithium composite oxide is a compound of Formula 2 below. [화학식 2][Formula 2] LixCo1 - yMeyO2 -a Li x Co 1 - y Me y O 2 -a (Me는 Ni, B, Mg, Ca, Sr, Ba, V, Cr, Fe, Cu, Al, Ti 중에 선택된 1종류 또는 2종류 이상의 금속원소를 나타냄. X는 1.0≤x≤1.1, y는 0≤y≤0. 02, a는 -0. 1≤a≤0.1이다)(Me represents one or two or more metal elements selected from Ni, B, Mg, Ca, Sr, Ba, V, Cr, Fe, Cu, Al, Ti. X is 1.0≤x≤1.1, y is 0 ≤ y ≤ 0.002, a is -0.1 ≤ a ≤ 0.1) 리튬 이온을 인터칼레이션/디인터칼레이션할 수 있는 제1리튬 복합 산화물 코어 입자; 및 상기 코어 입자의 표면부로부터 내부로 확산되어 도입된 Al과 상기 제1리튬 복합 산화물 코어 입자 중 잔류하는 리튬 공급 전구체가 반응하여 형성된 LiAlO2 가 연속적인 피막형태로 존재하는 코팅층을 구비한 제2 리튬 복합 산화물을 포함하는 양극활물질. First lithium composite oxide core particles capable of intercalating / deintercalating lithium ions; And a coating layer in which LiAlO 2 formed by reacting Al introduced and diffused into the inner surface of the core particles and the lithium supply precursor remaining in the first lithium composite oxide core particles are present in a continuous coating form. A cathode active material containing a lithium composite oxide. 제7항에 있어서, 제1항 내지 제6항 중 어느 한 항에 의해 제조된 것이 특징인 양극활물질.The cathode active material according to claim 7, wherein the cathode active material is prepared by any one of claims 1 to 6. 제7항에 기재된 양극활물질을 함유하는 양극을 사용한 이차 전지.The secondary battery using the positive electrode containing the positive electrode active material of Claim 7.
KR1020070140967A 2007-08-01 2007-12-28 New cathode active material KR100923442B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070077555 2007-08-01
KR1020070077555 2007-08-01

Publications (2)

Publication Number Publication Date
KR20090013661A KR20090013661A (en) 2009-02-05
KR100923442B1 true KR100923442B1 (en) 2009-10-27

Family

ID=40684065

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070140967A KR100923442B1 (en) 2007-08-01 2007-12-28 New cathode active material

Country Status (1)

Country Link
KR (1) KR100923442B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058188A (en) * 2016-07-14 2016-10-26 中南大学 Lithium ion battery composite cathode material LiNi1-x-yMxAlyO2 with core-shell structure and preparation method of lithium ion battery composite cathode material LiNi1-x-yMxAlyO2
WO2018179936A1 (en) * 2017-03-31 2018-10-04 パナソニック株式会社 Cathode active material for secondary battery using non-aqueous electrolyte and production method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9172086B2 (en) 2008-12-05 2015-10-27 Samsung Sdi Co., Ltd. Cathode and lithium battery using the same
WO2013100692A1 (en) * 2011-12-29 2013-07-04 주식회사 엘앤에프신소재 Preparation method of cathode active material for lithium secondary battery, and cathode active material
WO2014163357A1 (en) * 2013-03-30 2014-10-09 (주)오렌지파워 Precursor for producing lithium-rich cathode active material, and lithium-rich cathode active material produced thereby
WO2014163359A1 (en) * 2013-03-30 2014-10-09 (주)오렌지파워 Precursor for producing lithium-rich cathode active material, and lithium-rich cathode active material produced thereby
EP2985816B1 (en) * 2013-07-30 2020-09-02 LG Chem, Ltd. Electrode including coating layer for preventing reaction with electrolyte
US10056605B2 (en) 2013-10-29 2018-08-21 Lg Chem, Ltd. Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
KR102273772B1 (en) * 2014-05-21 2021-07-06 삼성에스디아이 주식회사 Composite cathode active material, lithium battery comprising the same, and preparation method thereof
KR102176654B1 (en) * 2014-12-22 2020-11-09 (주)포스코케미칼 Process for the production of lithium complex oxide and lithium complex oxide made by the same, and lithium ion batteries comprising the same
KR102296131B1 (en) * 2014-12-30 2021-09-01 삼성에스디아이 주식회사 Cathode active material for lithium ion secondary battery, method for preparing the same, and lithium ion secondary battery including the same
KR20160081545A (en) * 2014-12-31 2016-07-08 주식회사 에코프로 Cathod active material and manufacturing method of the same
CN107963883A (en) * 2017-12-14 2018-04-27 上海卡贝尼精密陶瓷有限公司 A kind of preparation method of high-purity alumina ceramic powder
CN113113588B (en) * 2021-04-09 2022-11-08 合肥工业大学 Method for preparing lithium fast ion conductor material coated high-nickel ternary layered oxide by using covalent interface engineering strategy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449219B1 (en) 1996-06-14 2004-12-14 우미코르 Electrode material for rechargeable batteries and process for the preparation thereof
KR100635735B1 (en) 2005-03-08 2006-10-17 삼성에스디아이 주식회사 Positive electrode active material and Lithium secondary battery comprising the same
JP2007103141A (en) 2005-10-04 2007-04-19 Sumitomo Chemical Co Ltd Cathode active substance and nonaqueous electrolyte secondary battery
KR100743982B1 (en) 2006-04-11 2007-08-01 한국전기연구원 Active material, manufacturing method thereof and lithium secondary battery comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449219B1 (en) 1996-06-14 2004-12-14 우미코르 Electrode material for rechargeable batteries and process for the preparation thereof
KR100635735B1 (en) 2005-03-08 2006-10-17 삼성에스디아이 주식회사 Positive electrode active material and Lithium secondary battery comprising the same
JP2007103141A (en) 2005-10-04 2007-04-19 Sumitomo Chemical Co Ltd Cathode active substance and nonaqueous electrolyte secondary battery
KR100743982B1 (en) 2006-04-11 2007-08-01 한국전기연구원 Active material, manufacturing method thereof and lithium secondary battery comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058188A (en) * 2016-07-14 2016-10-26 中南大学 Lithium ion battery composite cathode material LiNi1-x-yMxAlyO2 with core-shell structure and preparation method of lithium ion battery composite cathode material LiNi1-x-yMxAlyO2
WO2018179936A1 (en) * 2017-03-31 2018-10-04 パナソニック株式会社 Cathode active material for secondary battery using non-aqueous electrolyte and production method thereof
US11658295B2 (en) 2017-03-31 2023-05-23 Panasonic Holdings Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same

Also Published As

Publication number Publication date
KR20090013661A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
KR100923442B1 (en) New cathode active material
CN113169338B (en) Positive electrode additive for lithium secondary battery, method for producing same, positive electrode for lithium secondary battery comprising same, and lithium secondary battery comprising same
US10790498B2 (en) Positive active material for rechargeable lithium battery, method of preparing the same, electrode including the same, and rechargeable lithium battery including the electrode
KR100548988B1 (en) Manufacturing process of cathodes materials of lithium second battery, the reactor used therein and cathodes materials of lithium second battery manufactured thereby
US8173301B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery including the same
KR101601917B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
KR101064729B1 (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery comprising same
US20130171524A1 (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
CN107112533B (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
KR101904896B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20130079109A (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
KR100598491B1 (en) Double-layer cathode active materials and their preparing method for lithium secondary batteries
KR20170080104A (en) Positive active material, and positive electrode and lithium battery containing the material
KR20120117526A (en) Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using the same
US11757092B2 (en) Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
CN113677624A (en) Octahedral structured lithium manganese-based positive electrode active material, and positive electrode and lithium secondary battery comprising same
JP2024516811A (en) Positive electrode active material, its manufacturing method, and lithium secondary battery including positive electrode containing the same
KR20130085323A (en) Composite anode active material, preparation method thereof, anode and lithium battery comprising the material
KR100864199B1 (en) Composite oxide usable as cathode active material and methode thereof
JP2022523183A (en) A lithium secondary battery containing a positive electrode active material, a method for producing the same, and a positive electrode containing the positive electrode.
KR100786779B1 (en) Positive active material for lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
CN111201647A (en) Positive electrode active material for lithium secondary battery, method for producing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same
US9570743B2 (en) Positive active material precursor for rechargeable lithium battery, method of preparing positive active material for rechargeable lithium battery using the same, and rechargeable lithium battery including the prepared positive active material for rechargeable lithium battery
KR20150115531A (en) Composite cathode active material preparation method, composite cathode active material, cathode and lithium battery containing the material
WO2016186479A1 (en) Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120719

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130822

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140925

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150923

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161010

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191007

Year of fee payment: 11