[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100903338B1 - System for emission reduce line of diesel vehicle and method of monitoring thereof - Google Patents

System for emission reduce line of diesel vehicle and method of monitoring thereof Download PDF

Info

Publication number
KR100903338B1
KR100903338B1 KR1020080027486A KR20080027486A KR100903338B1 KR 100903338 B1 KR100903338 B1 KR 100903338B1 KR 1020080027486 A KR1020080027486 A KR 1020080027486A KR 20080027486 A KR20080027486 A KR 20080027486A KR 100903338 B1 KR100903338 B1 KR 100903338B1
Authority
KR
South Korea
Prior art keywords
dfc
secondary injection
injection injector
lnt
nox
Prior art date
Application number
KR1020080027486A
Other languages
Korean (ko)
Inventor
조준규
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020080027486A priority Critical patent/KR100903338B1/en
Application granted granted Critical
Publication of KR100903338B1 publication Critical patent/KR100903338B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/90Driver alarms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

A post-treatment system of a diesel vehicle and a diagnostic method thereof are provided to simplify the system by diagnosing the malfunction of DFC(Diesel Fuel Cracking) and a secondary injection injector at the same time through one oxygen sensor. A diagnostic method of a post-treatment system of a diesel vehicle comprises: a step(S102,S103,S104) for detecting the signals of an NOx(Nitrogen Oxide) sensor in the active state of the post-treatment system and analyzing NOx purification rate of LNT(Lean NOx Trap); a step(S105) for determining that the NOx purification rate of the LNT reaches on the state in which the LNT regeneration is necessary; a step(S106) for supplying the diesel fuel to the DFC through a secondary injection injector in case the regeneration of LNT is necessary; and a step(S107,S108,S110,S122) for diagnosing the malfunction of the DFC and the secondary injection injector by analyzing the signal of the oxygen sensor installed at the downstream of the DFC in case of a fault detection mode of the DFC and the secondary injection injector.

Description

디젤차량의 후처리계 시스템 및 그것의 진단방법{SYSTEM FOR EMISSION REDUCE LINE OF DIESEL VEHICLE AND METHOD OF MONITORING THEREOF}After-treatment system of diesel vehicle and its diagnostic method {SYSTEM FOR EMISSION REDUCE LINE OF DIESEL VEHICLE AND METHOD OF MONITORING THEREOF}

본 발명은 디젤차량의 후처리계 시스템에 관한 것으로, 더 상세하게는 연비 개선과 배기가스에 포함된 입자상 물질(Particulate Matter : 이하 'PM' 이라 한다.)및 NOx의 정화효율을 높이고, 연료분해촉매(Diesel Fuel Cracking : 이하 'DFC' 라 한다.)의 하류측에 설치되는 산소센서의 정보를 이용하여 2차분사 인젝터 및 DFC 촉매의 이상여부를 진단하는 디젤차량의 후처리계 시스템 및 그것의 진단방법에 관한 것이다.The present invention relates to a post-treatment system of a diesel vehicle, and more particularly, to improve fuel efficiency and improve the purification efficiency of particulate matter (hereinafter referred to as 'PM') and NOx contained in exhaust gas, and to improve fuel decomposition. After-treatment system of diesel vehicle that diagnoses abnormality of secondary injection injector and DFC catalyst by using information of oxygen sensor installed downstream of diesel fuel cracking (DFC), and its It is about a diagnosis method.

일반적으로 엔진에서 배출되는 배기가스는 배기 파이프의 중간에 배치되는 촉매장치(Catalytic Converter)로 유도되어 정화되고 머플러를 통과하면서 소음이 감쇄된 후 테일 배기 파이프를 통해 대기로 방출된다.In general, the exhaust gas emitted from the engine is guided to a catalytic converter disposed in the middle of the exhaust pipe, purified, passed through a muffler, noise is attenuated, and discharged to the atmosphere through the tail exhaust pipe.

OBD 규제에서는 날로 강화되는 배기가스(Emission)의 규제뿐만 아니라 배기가스 관련 부품의 고장, 열화정도까지 감지하도록 하는 진단 능력의 향상과 개선, 그리고 A/S(After Service) 시장에서의 표준화와 관련된 여러 가지 규정을 만족하도록 요구하고 있다.In the OBD regulation, not only the regulation of emission regulations, which is strengthened day by day, but also the improvement and improvement of the diagnostic ability to detect the failure and deterioration of exhaust components, and the standardization in the after service market It is required to satisfy several regulations.

디젤차량에 적용되는 배기가스 규제의 주요 대상은 NOx와 PM이다.NOx and PM are the main targets of exhaust gas regulation applied to diesel vehicles.

NOx는 연소가스의 온도에 강하게 의존되기 때문에 높은 온도영역에서 고농도의 NOx가 생성된다. Since NOx is strongly dependent on the temperature of the combustion gas, a high concentration of NOx is produced in the high temperature range.

따라서, NOx를 저감하기 위해서는 EGR 제어에 의한 연소온도의 저하가 유효한 방법이나 이러한 방법은 PM의 산화를 억제시켜 열효율을 악화시키는 원인이 되기도 한다.Therefore, in order to reduce NOx, the reduction of the combustion temperature by the EGR control is effective, but such a method may cause the oxidation efficiency of PM to deteriorate and thermal degradation.

이와 같은 이유로 디젤 엔진의 과제는 높은 열효율을 유지하면서 NOx 및 PM을 동시에 저감시키는 것에 있다.For this reason, the problem of diesel engines is to simultaneously reduce NOx and PM while maintaining high thermal efficiency.

북미디젤 Tier2 BIN5 규제나 유로 6 배기가스 규제 중에서 NOx 및 PM의 규제를 만족시키기 위하여 별도의 후처리계 시스템이 적용되고 있는데, 현재 디젤차량에 적용되는 시스템으로는 DOC(Diesel Oxidation Catalyst)와 DPF(Diesel Particulate Filter), LNT(Lean NOx Trap), 우레아(Urea)를 이용하는 SCR((Selective Catalytic Reduction) 등과 같은 DeNOx 촉매가 적용된다.In order to satisfy the NOx and PM regulations among North American diesel Tier 2 BIN5 regulations or Euro 6 emission regulations, a separate aftertreatment system is applied.Diesel Oxidation Catalyst (DOC) and DPF ( DeNOx catalysts such as Diesel Particulate Filter (LNT), Lean NOx Trap (LNT), and Selective Catalytic Reduction (SCR) using Urea are applied.

상기 LNT는 NOx 흡장촉매와 DOC가 하나의 담체에 구성되며, 희박(Lean) 운전영역에서 백금(Pt)과 같은 산화촉매, 산화바륨 등의 촉매 담층(Wash coat)에 NOx를 흡착하여 저장하고, 농후(Rich) 운전영역에서 디젤 연료를 환원제로 활용하여 촉매에 흡장된 NOx를 환원시켜 촉매를 재생한다. The LNT is composed of a NOx storage catalyst and a DOC in one carrier, and adsorbs and stores NOx in a catalyst coat layer such as platinum oxide and barium oxide in a lean driving region. In the rich operating region, diesel fuel is used as a reducing agent to regenerate the catalyst by reducing NOx occluded in the catalyst.

상기 LNT의 NOx 정화효율은 대략적으로 70 ~ 90% 이상이며, 활성온도는 대략적으로 200℃ 내지 500℃의 범위로, 디젤엔진의 부하와 배기가스의 온도 범위와 상관관계가 매우 양호하여 NOx의 정화효율이 높게 나타난다.The NOx purification efficiency of the LNT is approximately 70 to 90% or more, and the activation temperature is approximately 200 ° C to 500 ° C, and the purification of NOx is very good because of the correlation with the temperature range of the load of the diesel engine and the exhaust gas. High efficiency appears.

SCR 촉매는 NOx를 정화하기 위한 환원제로 우레아로부터 분해되는 암모니아(NH3)를 사용하는 것으로 NOx에 대한 선택도가 매우 우수할 뿐만 아니라 산소가 존재하는 경우에도 NOx와 암모니아 사이의 반응이 촉진되는 장점이 있다.SCR catalyst uses ammonia (NH3) which is decomposed from urea as a reductant to purify NOx. It has excellent selectivity for NOx and promotes the reaction between NOx and ammonia even in the presence of oxygen. have.

디젤차량에는 OBD-2의 규제에 따라 후처리계 시스템을 모니터링하여 촉매의 고장을 감지하도록 하고 있는데, 이를 위해 통상적으로 2개 산소센서 혹은 2개의 온도센서의 정보를 이용하고 있다.Diesel vehicles monitor the after-treatment system according to the regulations of OBD-2 to detect catalyst failure. For this purpose, information of two oxygen sensors or two temperature sensors is typically used.

그러나, 이러한 방법은 후처리계 시스템을 복잡하게 구성시키는 문제점과 원가 상승을 유발시키고, 이상여부의 진단에 있어 분석 인자가 너무 복잡하여 제어수단을 구성하는 프로세스의 성능을 저하시키게 되며, 안정되고 신뢰성 있는 고장 진단이 제공되지 못하는 문제점이 있다.However, this method leads to a problem of complicated composition of the post-processing system and an increase in cost, and an analysis factor is too complicated for diagnosis of abnormality, thus degrading the performance of the process constituting the control means. There is a problem that a fault diagnosis cannot be provided.

본 발명은 상기한 문제점을 해결하기 위하여 발명한 것으로, 그 목적은 디젤차량에서 연비 개선과 배기가스에 포함된 PM과 NOx의 정화효율을 높이는 후처리계 시스템을 제공하는데 있다.The present invention has been made to solve the above problems, and an object thereof is to provide a post-treatment system for improving fuel efficiency and improving the purification efficiency of PM and NOx contained in exhaust gas in a diesel vehicle.

또한, DFC의 하류측에 1개의 산소센서만을 설치하고, 이 하나의 산소센서의 정보를 이용하여 2차분사 인젝터 및 DFC의 이상여부를 진단하여 OBD-2의 규제를 만족하는 모니터링을 제공하는데 있다.In addition, only one oxygen sensor is installed downstream of the DFC, and the information of this oxygen sensor is used to diagnose abnormality of the secondary injection injector and the DFC to provide monitoring that satisfies the regulations of the OBD-2. .

본 발명은 하나의 산소센서를 이용하여 DFC의 산화작용과 그에 따른 배기가스의 교차 반응을 이용하여 DFC 및 2차분사 인젝터의 이상여부를 동시에 진단할 수 있도록 하는데 있다.The present invention is to enable the simultaneous diagnosis of the abnormality of the DFC and the secondary injection injector by using the oxidation of the DFC and the cross reaction of the exhaust gas by using one oxygen sensor.

상기한 목적을 실현하기 위한 본 발명의 특징에 따른 디젤차량의 후처리계 시스템은, After-treatment system of a diesel vehicle according to a feature of the present invention for realizing the above object,

배기 파이프에서 엔진이 결합되는 상류측에 설치되며, DOC 기능의 코팅영역이 배치되고, 상기 코딩영역의 후단에 PM을 포집하는 CPF가 배치되는 DPF;A DPF installed at an upstream side to which the engine is coupled in the exhaust pipe, a coating area having a DOC function is disposed, and a CPF collecting PM at a rear end of the coding area;

상기 DPF의 상류 및 하류측에 각각 설치되어 PM의 흡장량에 따라 변화되는 차압 정보를 ECU에 제공하는 차압센서;A differential pressure sensor provided on the upstream and downstream sides of the DPF to provide ECUs with differential pressure information that changes depending on the occlusion amount of the PM;

상기 DPF의 하류측에 배치되며, NOx흡장촉매와 DOC가 하나의 담체에 구성되어 희박 운전영역에서 촉매에 NOx를 흡착 저장하고, 농후 운전영역에서 디젤 연료를 환원제로 활용하여 촉매에 흡장된 NOx를 환원시키는 LNT;Disposed on the downstream side of the DPF, the NOx storage catalyst and the DOC are configured in one carrier to adsorb and store NOx in the catalyst in the lean operation region, and utilize NOx stored in the catalyst by using diesel fuel as a reducing agent in the rich operation region. Reducing LNT;

상기 배기 파이프에서 분기되어 상기 LNT와 연결되는 제2배기가스 배관;A second exhaust gas pipe branched from the exhaust pipe and connected to the LNT;

상기 제2배기가스 배관에 설치되어 디젤 연료를 분사하는 2차 분사 인젝터;A secondary injection injector installed in the second exhaust gas pipe to inject diesel fuel;

상기 2차 분사 인젝터의 하류측에 설치되어 분사되는 디젤 연료를 열분해하여 CnHx(n=1~5) 분자 형태의 환원제를 생성하는 DFC;A DFC installed at a downstream side of the secondary injection injector to pyrolyze the diesel fuel injected to generate a reducing agent in the form of CnHx (n = 1 to 5) molecules;

상기 DFC의 하류측에 설치되어 공연비 및 연료의 열분해에 따른 배기가스의 교차 반응을 검출하는 한 개의 산소센서;An oxygen sensor installed at a downstream side of the DFC to detect cross reaction of exhaust gas due to air-fuel ratio and pyrolysis of fuel;

상기 산소센서를 통해 검출되는 공연비 및 배기가스의 교차 반응을 설정된 계측값과 비교하여 2차 분사 인젝터 및 DFC의 이상여부를 진단하는 제어수단을 포함한다.And a control means for diagnosing the abnormality of the secondary injection injector and the DFC by comparing the cross-reaction of the air-fuel ratio and the exhaust gas detected by the oxygen sensor with a set measured value.

또한, 본 발명의 특징에 따른 디젤차량의 후처리계 시스템의 진단방법은, In addition, the diagnostic method of the after-treatment system of a diesel vehicle according to a feature of the present invention,

후처리계 시스템의 활성화 상태에서 NOx 센서의 신호를 검출하여 LNT의 NOx 정화율을 분석하는 과정;Analyzing the NOx purification rate of the LNT by detecting a signal of the NOx sensor in an activated state of the aftertreatment system;

상기 LNT의 NOx 정화율이 LNT 재생이 필요한 상태인지 판단하는 과정;Determining whether the NOx purification rate of the LNT is in a state requiring LNT regeneration;

LNT의 재생이 필요하면 2차 분사 인젝터를 통해 디젤 연료를 분사하여 DFC에 공급하는 과정;If the LNT needs to be regenerated, injecting diesel fuel through a secondary injection injector to supply the DFC;

2차 분사 인젝터 및 DFC의 고장감지모드인지 판단하여, 고장감지모드이면 DFC의 하류측에 설치된 산소센서의 신호를 검출 분석하여 2차 분사 인젝터 및 DFC의 고장 여부를 진단하는 과정을 포함한다.Determining whether the secondary injection injector and the DFC is a failure detection mode, and if the failure detection mode includes detecting and analyzing a signal of an oxygen sensor installed downstream of the DFC, diagnosing the failure of the secondary injection injector and the DFC.

전술한 구성에 의하여 본 발명은 강화되는 북미 및 유럽의 디젤 배기 규제를 만족하는 디젤 차량의 후처리계 시스템을 제공하고, 하나의 산소센서를 이용하여 DFC 및 2차분사 인젝터의 이상여부를 동시에 진단함으로써 시스템의 단순화 및 제품의 안정화가 제공되는 효과가 기대된다.According to the above configuration, the present invention provides a post-treatment system of a diesel vehicle that satisfies the diesel exhaust regulations of North America and Europe, which is strengthened, and simultaneously diagnoses an abnormality of a DFC and a secondary injection injector using one oxygen sensor. This is expected to provide the simplification of the system and the stabilization of the product.

아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.

본 발명은 여러 가지 상이한 형태로 구현될 수 있으므로 여기에서 설명하는 실시예에 한정되지 않으며, 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.Since the present invention can be implemented in various different forms, the present invention is not limited to the exemplary embodiments described herein, and parts not related to the description are omitted in the drawings in order to clearly describe the present invention.

도 1은 본 발명의 실시예에 따른 디젤차량의 후처리계 시스템의 구성을 도시한 도면이다.1 is a view showing the configuration of a post-processing system of a diesel vehicle according to an embodiment of the present invention.

본 발명은 배기 파이프(1)상에서 엔진이 결합되는 상류측에 CPF(11)가 내장된 DPF(10)가 설치되고, 그 후방에는 NOx 흡장촉매(21)와 DOC(22)가 직렬로 내장된 LNT(20)가 설치된다.In the present invention, a DPF (10) having a CPF (11) built in an upstream side to which an engine is coupled on an exhaust pipe (1) is installed, and a NOx storage catalyst (21) and a DOC (22) are built in series at a rear thereof. LNT 20 is installed.

상기 DPF(10)의 전단부에는 촉매 담지량을 높이기 위한 코팅영역(11a)이 설치되고, 이 후단에 PM을 포집하는 CPF(11)가 설치되며, 상기 촉매 담지량을 크게 한 코팅영역(11a)은 DOC의 효과를 갖는다.The front end of the DPF 10 is provided with a coating area 11a for increasing the catalyst loading amount, and a CPF 11 for collecting PM at the rear end thereof is provided, and the coating area 11a with the catalyst loading amount increasing is Has the effect of DOC.

상기 DPF(10)의 상류 및 하류측에는 차압센서(12)(13)가 설치되어 ECU(50)에 연결되며, DPF(10)에 포집되는 PM의 흡장량에 따라 변화되는 차압을 정보가 ECU(50)에 모니터링되어 DPF(10)의 재생시점이 판단된다.Differential pressure sensors 12 and 13 are installed on the upstream and downstream sides of the DPF 10 to be connected to the ECU 50, and information about the differential pressure that varies according to the occlusion amount of the PM collected by the DPF 10 is stored in the ECU ( 50), the regeneration time of the DPF 10 is determined.

DPF(10)의 재생은 ECU(50)가 차압센서(12)(13)에 의해 검출된 압력차(ΔP)로부터 재생시점임을 판단하게 되면 엔진의 연료 후분사를 수행하여 DPF(10)의 재생을 실행한다.The regeneration of the DPF 10 is performed after the fuel injection of the engine to regenerate the DPF 10 when the ECU 50 determines the regeneration time from the pressure difference ΔP detected by the differential pressure sensors 12 and 13. Run

상기 LNT(20)는 NOx 흡장촉매(21)와 DOC(22)가 하나의 담체에 구성되며, 희박(Lean) 운전영역에서 백금(Pt)과 같은 산화촉매, 산화바륨 등의 촉매 담층(Wash coat)에 NOx를 흡착하여 저장하고, 농후(Rich) 운전영역에서 디젤 연료를 환원제로 활용하여 촉매에 흡장된 NOx를 환원시켜 촉매를 재생한다. The LNT 20 includes a NOx storage catalyst 21 and a DOC 22 in one carrier, and a catalyst coating layer such as an oxide catalyst such as platinum (Pt), a barium oxide, etc. in a lean operation region. ) NOx is adsorbed and stored, and diesel fuel is used as a reducing agent in a rich operating region to reduce NOx stored in the catalyst to regenerate the catalyst.

또한, NOx 흡장촉매(21)의 재생에 따른 연비 악화와 NOx 흡장촉매(21)의 2차 분사 연료에 의한 촉매의 활성 저하, 그리고 CPF(11)의 재생이나 탈황 과정에서 고온의 배기가스가 통과할 경우 연료의 비정상 연소에 의한 촉매의 파손이 일어날 수 있는 문제점을 해결하고자, 2차 분사계와 DFC(30)를 별도의 배기가스 경로에 설치하여 NOx 흡장촉매(21)의 재생시 상기 DFC(30)에 의해 분해된 연료성분이 NOx 흡장촉매(21)에 유입되도록 한다.In addition, deterioration of fuel efficiency due to the regeneration of the NOx storage catalyst 21, deactivation of the catalyst by the secondary injection fuel of the NOx storage catalyst 21, and high temperature exhaust gas pass through the regeneration or desulfurization process of the CPF 11. In order to solve the problem that the catalyst may be damaged by abnormal combustion of the fuel, the secondary injection system and the DFC 30 may be installed in a separate exhaust gas path to regenerate the NOx storage catalyst 21. The fuel component decomposed by 30 is introduced into the NOx storage catalyst 21.

상기 DFC(30)는 DPF(10) 전방의 배기 파이프(1)상에서 분기시킨 별도의 배기가스 배관(2)에 설치되며, 이 배기가스 배관(2)의 출구(2a)를 NOx 흡장촉매(21)가 내장된 LNT(20) 내에 삽입시켜 연결 설치된다.The DFC 30 is installed in a separate exhaust gas pipe 2 branched on the exhaust pipe 1 in front of the DPF 10, and the outlet 2a of the exhaust gas pipe 2 is NOx storage catalyst 21. ) Is inserted into and installed in the built-in LNT (20).

상기 배기가스 배관(2)의 출구(2a)는 확산관 구조로 구비하고, 이 확산관 구조의 출구(2a)는 NOx 흡장촉매(21)의 전방에 위치시킨다.The outlet 2a of the exhaust gas pipe 2 is provided in a diffusion tube structure, and the outlet 2a of the diffusion tube structure is located in front of the NOx storage catalyst 21.

상기 DFC(30)의 상류측에 디젤 연료를 분사할 수 있는 2차 분사 인젝터(41)가 설치되며, 상기 배기가스 배관(2)의 도입부에는 배기가스 분배밸브(42)를 설치한다.A secondary injection injector 41 capable of injecting diesel fuel is provided upstream of the DFC 30, and an exhaust gas distribution valve 42 is provided at an inlet of the exhaust gas pipe 2.

따라서, LNT(20)를 구성하는 NOx 흡장촉매(21)를 재생할 때 DFC(30) 전방에 설치된 배기가스 분배밸브(42)가 개방되어 배기가스가 DFC(30)로 분배되어 흐르게 되는 바, 이 배기가스는 DFC(30) 반응에 필요한 열원으로서 작용하게 된다.Therefore, when regenerating the NOx storage catalyst 21 constituting the LNT 20, the exhaust gas distribution valve 42 provided in front of the DFC 30 is opened, and the exhaust gas is distributed to the DFC 30 to flow. The exhaust gas acts as a heat source required for the DFC 30 reaction.

또한, 2차 분사 인젝터(41)에서 분사된 연료는 DFC(30)를 거치면서 NOx 흡장촉매(21)에서 반응하기 쉽도록 분해(Cracking)되어 확산관 구조의 출구(2a)을 통해 NOx 흡장촉매(21)로 골고루 투입된다.In addition, the fuel injected from the secondary injection injector 41 is cracked so as to easily react with the NOx storage catalyst 21 while passing through the DFC 30, and the NOx storage catalyst is passed through the outlet 2a of the diffusion tube structure. It is evenly distributed to 21.

상기 DFC(30)는 200 ~ 400℃의 낮은 배기가스 온도 및 낮은 유량에서도 활성 이 유리하도록 알루미나를 주성분으로 하고 여기에 로듐이나 루세늄 또는 그 혼합성분을 담체의 전체 겉보기 부피에 대하여 1 ~ 10g/ℓ 담지시켜 제조한 것을 사용한다.The DFC 30 has alumina as a main component so that the activity is advantageous even at a low exhaust gas temperature and a low flow rate of 200 to 400 ° C, and rhodium or ruthenium or a mixture thereof is 1 to 10 g / g based on the total apparent volume of the carrier. Use prepared by supporting l.

상기 2차 분사 인젝터(41)는 LNT(20)에서 DeNOx에 필요한 환원제를 공급하기 위하여 ECU(50)의 제어에 따라 디젤연료를 분사하며, DFC(30)는 분사된 연료를 환원제로 사용 가능한 CnHx(n=1~5) 분자 형태로 열분해한다.The secondary injection injector 41 injects diesel fuel under the control of the ECU 50 to supply the reductant required for DeNOx from the LNT 20, and the DFC 30 uses the injected fuel as the reducing agent. (n = 1 ~ 5) Thermal decomposition in molecular form.

그리고, 산화작용을 통해 CO2 및 H2를 생성하여 LNT(20)에서 환원제로 사용할 수 있게 한다.In addition, CO2 and H2 are generated through oxidation to be used as a reducing agent in the LNT 20.

또한, 상기 DFC(30)의 하류측에 1개의 산소센서(32)를 설치하여 DFC(30)를 통과하는 배기가스에 포함된 산소의 농도가 ECU(50)에 검출되도록 하며, ECU(50)는 이를 통해 2차분 인젝터(41) 및 DFC(30)의 고장 여부를 모니터링한다.In addition, one oxygen sensor 32 is installed downstream of the DFC 30 so that the concentration of oxygen contained in the exhaust gas passing through the DFC 30 is detected by the ECU 50, and the ECU 50. This monitors the failure of the secondary injector 41 and the DFC (30).

산소센서(32)는 배기가스 중의 산소 분압에 반응하여 공연비를 측정하는 센서이나 산소 이외에 열분해에 따라 교차 반응하는 특정 가스가 출력 신호에 영향을 미치게 된다.Oxygen sensor 32 is a sensor for measuring the air-fuel ratio in response to the partial pressure of oxygen in the exhaust gas or a specific gas that cross-reacts due to thermal decomposition in addition to oxygen affects the output signal.

도 2는 DFC의 열분해에 따른 교차 반응에서 산소센서(32)의 출력 전류(Ip) 특성을 도시한 도면이다.2 is a diagram showing the output current (Ip) characteristics of the oxygen sensor 32 in the cross reaction according to the thermal decomposition of the DFC.

DFC(30)의 열분해에 따라 산소센서(32)의 출력 전류 특성에 영향을 미치는 가스와 그에 따른 교차 반응은 하기의 표 1과 같이 결정된다.Gases that affect the output current characteristics of the oxygen sensor 32 and the cross reaction according to the thermal decomposition of the DFC 30 is determined as shown in Table 1 below.

GASGAS 반응값(㎂/vol%)Response value (㎂ / vol%) H2H2 -226-226 COCO -56-56 Ethlene(C2H4)Ethlene (C2H4) -235-235 Propane(C3H8)Propane (C3H8) -352-352 Methane(CH4)Methane (CH4) -148-148

상기한 표 1에서 알 수 있는 바와 같이 배기가스에 이러한 가스들이 포함되는 경우 산소센서(32)는 1vol%당 표 1에 도시된 값만큼 적은 전류값을 출력하게 되고, 결과적으로 실제 배기가스의 공연비 보다 농후(Rich)하게 인식하게 된다.As can be seen from Table 1, when these gases are included in the exhaust gas, the oxygen sensor 32 outputs a current value as small as the value shown in Table 1 per 1 vol%, and as a result, the air-fuel ratio of the actual exhaust gas Richer perception.

상기 표 1의 가스는 DFC(30)에서 교차 반응으로 생성되는 가스로 상기의 결과를 이용하여 DFC(30)의 고장 감지에 활용할 수 있다. Gas of Table 1 is a gas generated by the cross-reaction in the DFC (30) can be utilized for the failure detection of the DFC (30) by using the above results.

상기 LNT(20)의 하류측, 좀 더 명확하게는 DOC(22)의 후방에 NOX 흡장촉매(21)의 재생시점을 판단하기 위한 NOx 센서(23)가 설치되어 ECU(50)에 연결된다. Downstream of the LNT 20, more specifically, behind the DOC 22, a NOx sensor 23 for determining the regeneration time of the NOX storage catalyst 21 is installed and connected to the ECU 50.

ECU(50)는 NOx 센서(23)의 신호를 통해 배기가스에 포함된 NOx의 양을 모니터링하여 기준치 이상의 NOx가 검출될 경우 재생시점인 것으로 판단한다.The ECU 50 monitors the amount of NOx contained in the exhaust gas through the signal of the NOx sensor 23 and determines that it is a regeneration time when NOx above the reference value is detected.

이때, ECU(50)는 배기가스 분배밸브(42)의 개방을 위한 제어신호를 출력하여 배기가스 배관(2)으로 배기가스가 흐르도록 하고, 2차 분사 인젝터(41)를 통해 연료를 분사한다.At this time, the ECU 50 outputs a control signal for opening the exhaust gas distribution valve 42 so that the exhaust gas flows into the exhaust gas pipe 2, and injects fuel through the secondary injection injector 41. .

따라서, 배기가스가 DFC(30)를 거치면서 열원으로 작용하게 되고, 2차 분사 인젝터(41)를 통해 분사된 연료를 열분해하여 환원제를 생성한 다음 LNT(20)에 인가하게 된다.Therefore, the exhaust gas acts as a heat source while passing through the DFC 30, and thermally decomposes the fuel injected through the secondary injection injector 41 to generate a reducing agent and then apply it to the LNT 20.

그러므로, LNT(20)의 NOx 흡장촉매(21)는 환원제로 사용하여 흡장된 NOx를 환원시켜 재생된다.Therefore, the NOx storage catalyst 21 of the LNT 20 is regenerated by reducing the NOx stored using the reducing agent.

전술한 바와 같은 기능을 포함하여 구성되는 본 발명에 따른 디젤차량의 후처리계 시스템에서 2차분사 인젝터 및 DFC의 이상 여부를 진단하는 동작에 대하여 설명하면 다음과 같다.Referring to the operation of diagnosing the abnormality of the secondary injection injector and DFC in the after-treatment system of the diesel vehicle according to the present invention including the function as described above is as follows.

디젤차량의 후처리계 시스템에서 배기가스 배관(2)에 설치되는 2차 분사 인젝터(41) 및 DFC(30)의 상태에 따라 산소센서(32)에서 출력되는 공연비 및 배기가스 특정은 하기의 표 2와 같다.The air-fuel ratio and exhaust gas specification output from the oxygen sensor 32 according to the state of the secondary injection injector 41 and the DFC 30 installed in the exhaust gas pipe 2 in the after-treatment system of a diesel vehicle are shown in the following table. Same as 2.

2차 분사 인젝터Secondary injection injector 정상normal 고장broken DFCDFC 정상normal λ<1, DFC 산소량 저감 검출, 교차 반응검출λ <1, DFC oxygen reduction detection, cross reaction detection λ>1λ> 1 고장broken λ<1, DFC 산소량 저감 없음, 교차 반응 없음λ <1, no DFC oxygen reduction, no cross reaction λ>1λ> 1

상기한 표 2의 결과를 정리하면 ECU(50)의 제어에 의해 2차 분사 인젝터(41)가 작동된 경우 산소센서(32)에서 검출되는 공연비(λ)가 기준값인 '1' 보다 크면 2차 분사 인젝터(41)는 고장인 상태이다.To summarize the results of Table 2, if the air-fuel ratio λ detected by the oxygen sensor 32 is greater than the reference value '1' when the secondary injection injector 41 is operated by the control of the ECU 50, the secondary The injection injector 41 is in a broken state.

그리고, 산소센서(32)에서 검출되는 공연비(λ)가 기준값인 '1' 보다 작은 상태로, 2차 분사 인젝터(41)가 정상인 상태에서 DFC(30)의 산소량 저감 및 교차 반응이 검출되어 계측값의 범위에 포함되면 DFC(30)에 대하여 정상으로 판정한다.In the state where the air-fuel ratio λ detected by the oxygen sensor 32 is smaller than the reference value '1', the amount of oxygen reduction and cross-reaction of the DFC 30 are detected and measured when the secondary injection injector 41 is normal. If it is in the range of the value, it is determined as normal with respect to the DFC 30.

그러나, 2차 분사 인젝터(41)가 정상인 상태에서 DFC(30)의 산소량 저감이 없고, 교차 반응이 검출되지 않으면 DFC(30)의 고장으로 판정한다.However, when the secondary injection injector 41 is in a normal state and there is no reduction in the amount of oxygen in the DFC 30, and no cross reaction is detected, it is determined that the DFC 30 is broken.

DFC(30)의 산소량 저감 및 교차 반응을 판별하기 위해서는 2차 분사 인젝터(41) 및 DFC(30)가 정상인 조건에서 2차 분사 인젝터(41)를 통해 분사되는 연료량에 따른 산소센서(32)의 출력 특성을 계측한다.In order to determine the amount of oxygen reduction and cross-reaction of the DFC 30, the secondary injection injector 41 and the oxygen sensor 32 according to the amount of fuel injected through the secondary injection injector 41 under the condition in which the DFC 30 is normal are used. Measure the output characteristics.

DFC(30)가 정상인 경우 산소량 저감 및 교차 반응이 발생하면 산소센서(32)의 출력 전류(Ip)가 작아져 출력값은 도 2에 도시된 바와 같이 농후(Rich)한 방향으로 이동된다.When the amount of oxygen decreases and cross-reaction occurs when the DFC 30 is normal, the output current Ip of the oxygen sensor 32 decreases, and the output value is moved in the rich direction as shown in FIG. 2.

그러나, 2차 분사 인젝터(41)는 정상이나 DFC(30)가 고장인 경우 산소센서(32)에서 출력되는 공연비(λ)는 기준값인 '1' 보다 작은 값으로 검출되나 산소 저감 및 교차 반응이 발생하지 않기 때문에 산소센서(32)의 출력 전류(Ip)는 커지게 되어 희박(Lean)한 방향으로 이동된다.However, if the secondary injection injector 41 is normal or the DFC 30 is broken, the air-fuel ratio λ output from the oxygen sensor 32 is detected to be smaller than the reference value '1', but the oxygen reduction and cross reaction are Since it does not occur, the output current Ip of the oxygen sensor 32 becomes large and moves in the lean direction.

따라서, 산소센서(32)를 통해 측정되는 공연비 및 계측된 값의 비교를 통해 DFC(30)의 고장 여부를 진단하게 된다.Therefore, it is possible to diagnose whether or not the DFC 30 has failed by comparing the air-fuel ratio and the measured value measured by the oxygen sensor 32.

이에 대한 동작을 도 2를 참조하여 좀 더 구체적으로 설명하면 다음과 같다.The operation thereof will be described in more detail with reference to FIG. 2 as follows.

디젤차량의 엔진 시동이 온을 유지하고(S101), 후처리 시스템이 활성화된 상태에서 ECU(50)는 LNT(20)의 하류측에 설치된 NOx 센서(23)의 신호를 검출하여(S103) LNT(20)의 재생, 바람직하게는 LNT(20)를 구성하는 NOx 흡장촉매(21)의 재생이 필요한 상태인지를 판단한다(S105).The engine start of the diesel vehicle is kept on (S101), while the aftertreatment system is activated, the ECU 50 detects a signal from the NOx sensor 23 installed downstream of the LNT 20 (S103). It is determined whether the regeneration of (20), preferably the regeneration of the NOx storage catalyst 21 constituting the LNT 20 is necessary (S105).

상기 S105의 판단에서 LNT(20)의 재생이 필요하지 않은 상태이면 상기 S103의 과정으로 리턴하고, LNT(20)의 재생이 필요한 상태이면 배기가스 분배밸브(42)를 제어하여 배기가스가 DFC(30)로 분배되어 흐르게 한다.If the regeneration of the LNT 20 is not necessary in the judgment of S105, the flow returns to the process of S103. If the regeneration of the LNT 20 is necessary, the exhaust gas distribution valve 42 is controlled to exhaust the gas. 30) to flow through.

그리고, 2차 분사 인젝터(41)를 작동시켜 DFC(30)의 상류측에 디젤연료를 분사한다(S106).Then, the secondary injection injector 41 is operated to inject diesel fuel upstream of the DFC 30 (S106).

이때, DFC(30)는 분사된 연료를 환원제로 사용 가능한 CnHx 분자 형태로 열분해하고, 산화작용을 통해 CO2 및 H2를 생성하여 LNT(20)의 재생에 필요한 환원제로 공급한다.At this time, the DFC 30 pyrolyzes the injected fuel in the form of CnHx molecules that can be used as a reducing agent, and generates CO 2 and H 2 through oxidation to supply the reducing agent for regeneration of the LNT 20.

상기와 같이 2차 분사 인젝터(41)를 작동시켜 DFC(30)의 상류측에 연료를 분사하는 상태에서 고장감지모드에 진입되었는지 판단한다(107).As described above, the secondary injection injector 41 is operated to determine whether the failure detection mode has been entered in the state of injecting fuel upstream of the DFC 30 (107).

상기 고장감지모드는 배기가스의 공연비에 변화가 없는 조건으로, 예를 들어 아이들(Idle), 오버런(Over Run), 애프터 런(After Run) 상태이다.The failure detection mode is a condition in which the air-fuel ratio of the exhaust gas does not change, for example, an idle state, an overrun state, or an after run state.

상기 S107의 판단에서 고장감지모드에 진입된 상태이면 DFC(30)의 하류측에 설치된 산소센서(32)의 신호를 검출한 다음 배기가스의 농도를 분석한다(S108).If the state of entering the failure detection mode in the determination of S107 detects the signal of the oxygen sensor 32 installed downstream of the DFC (30) and then analyzes the concentration of the exhaust gas (S108).

상기 분석된 배기가스의 농도에서 공연비(λ)가 설정된 기준값인 '1' 미만인지를 판단한다(S109).It is determined whether the air-fuel ratio λ is less than the set reference value '1' in the analyzed exhaust gas concentration (S109).

상기 S109에서 산소센서(32)에서 검출되는 공연비(λ)가 설정된 기준값인 '1' 미만이면 ECU(50)는 2차 분사 인젝터(41)의 고장으로 연료의 분사가 정상적으로 이루어지지 않는 상태로 판단하고(S110), 그에 따른 경고등을 점등한다(S111).If the air-fuel ratio λ detected by the oxygen sensor 32 is less than '1', which is a predetermined reference value in S109, the ECU 50 determines that fuel injection is not normally performed due to a failure of the secondary injection injector 41. (S110), the warning light is turned on accordingly (S111).

그러나, 상기 S109의 판단에서 산소센서(32)에서 검출되는 공연비(λ)가 설정된 기준값인 '1' 보다 큰 값을 갖는 상태이면 공연비가 미리 계측된 값의 범위에 포함되는지 판단한다(S121).However, if the air-fuel ratio λ detected by the oxygen sensor 32 has a value larger than the set reference value '1' in the determination of S109, it is determined whether the air-fuel ratio is included in a range of previously measured values (S121).

상기 S121의 판단에서 검출되는 공연비가 계측된 값의 범위에 포함되면 2차 분사 인젝터(41) 및 DFC(30)는 정상적인 작동이 유지되는 것으로 판단한다(S130).When the air-fuel ratio detected in the determination of S121 is included in the range of the measured value, the secondary injection injector 41 and the DFC 30 determine that normal operation is maintained (S130).

그러나, 공연비가 계측된 값의 범위에 포함되지 않으면 ECU(50)는 DFC(30)의 고장으로 인하여 DFC(30)에서 교차 반응이 정상적으로 이루어지지 않는 것으로 판단하여 DFC(30)의 고장을 판정하고(S122), 그에 따른 경고등을 점등한다(S123).However, if the air-fuel ratio is not within the range of the measured value, the ECU 50 determines that the cross reaction is not normally performed in the DFC 30 due to the failure of the DFC 30, and determines the failure of the DFC 30. (S122), turn on the warning light accordingly (S123).

이상의 본 발명에 따르면 LNT를 DPF 후방에 장착하고, 그 중간에 환원제 성분, 즉 연료의 분해성분이 주입되는 구조를 채택함으로써, NOx의 제거효율과 연비를 동시에 향상시키는 장점이 있다.According to the present invention, the LNT is mounted to the rear of the DPF, and adopting a structure in which a reducing agent component, that is, a decomposition component of the fuel is injected in the middle, has the advantage of simultaneously improving the NOx removal efficiency and fuel economy.

또한, DFC의 하류측에 하나의 산소센서만을 설치하여 DFC를 통해 배출되는 배기가스의 공연비 및 교차 반응하는 가스에 따른 계측값을 이용하여 2차 분사 인젝터 및 DFC의 고장을 간편하고, 신뢰성 있게 진단하는 장점이 있다.In addition, by installing only one oxygen sensor downstream of the DFC, the secondary injection injector and the DFC can be easily and reliably diagnosed using the measured values according to the air-fuel ratio of the exhaust gas discharged through the DFC and the cross reacting gas. There is an advantage.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 포함된다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It is included in the scope of rights.

도 1은 본 발명의 실시예에 따른 디젤차량의 후처리계 시스템의 구성을 도시한 도면이다.1 is a view showing the configuration of a post-processing system of a diesel vehicle according to an embodiment of the present invention.

도 2는 본 발명의 실시예에 따른 디젤차량의 후처리계 시스템에서 DFC의 열분에 따른 배기가스의 교차 반응 특성을 도시한 그래프이다.2 is a graph showing the cross-reaction characteristics of the exhaust gas according to the heat content of the DFC in the after-treatment system of a diesel vehicle according to an embodiment of the present invention.

도 3은 본 발명의 실시예에 따른 디젤차량의 후처리계 시스템의 진단 절차를 도시한 흐름도이다.3 is a flowchart illustrating a diagnosis procedure of the after-treatment system of a diesel vehicle according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : DPF 20 : LNT10: DPF 20: LNT

30 : DFC 32 : 산소센서30: DFC 32: oxygen sensor

41 : 2차 분사 인젝터 41: secondary injection injector

Claims (6)

배기 파이프에서 엔진이 결합되는 상류측에 설치되며, DOC 기능의 코팅영역이 배치되고, 상기 코딩영역의 후단에 PM을 포집하는 CPF가 배치되는 DPF;A DPF installed at an upstream side to which the engine is coupled in the exhaust pipe, a coating area having a DOC function is disposed, and a CPF collecting PM at a rear end of the coding area; 상기 DPF의 상류 및 하류측에 각각 설치되어 PM의 흡장량에 따라 변화되는 차압 정보를 ECU에 제공하는 차압센서;A differential pressure sensor provided on the upstream and downstream sides of the DPF to provide ECUs with differential pressure information that changes depending on the occlusion amount of the PM; 상기 DPF의 하류측에 배치되며, NOx흡장촉매와 DOC가 하나의 담체에 구성되어 희박 운전영역에서 촉매에 NOx를 흡착 저장하고, 농후 운전영역에서 디젤 연료를 환원제로 활용하여 촉매에 흡장된 NOx를 환원시키는 LNT;Disposed on the downstream side of the DPF, the NOx storage catalyst and the DOC are configured in one carrier to adsorb and store NOx in the catalyst in the lean operation region, and utilize NOx stored in the catalyst by using diesel fuel as a reducing agent in the rich operation region. Reducing LNT; 상기 배기 파이프에서 분기되어 상기 LNT와 연결되는 제2배기가스 배관;A second exhaust gas pipe branched from the exhaust pipe and connected to the LNT; 상기 제2배기가스 배관에 설치되어 디젤 연료를 분사하는 2차 분사 인젝터;A secondary injection injector installed in the second exhaust gas pipe to inject diesel fuel; 상기 2차 분사 인젝터의 하류측에 설치되어 분사되는 디젤 연료를 열분해하여 CnHx(n=1~5) 분자 형태의 환원제를 생성하는 DFC;A DFC installed at a downstream side of the secondary injection injector to pyrolyze the diesel fuel injected to generate a reducing agent in the form of CnHx (n = 1 to 5) molecules; 상기 DFC의 하류측에 설치되어 공연비 및 연료의 분사에 따른 배기가스의 교차 반응을 검출하는 한 개의 산소센서;An oxygen sensor installed at a downstream side of the DFC to detect cross reaction of exhaust gas according to an air-fuel ratio and fuel injection; 상기 산소센서를 통해 검출되는 공연비 및 배기가스의 교차 반응을 설정된 계측값과 비교하여 2차 분사 인젝터 및 DFC의 이상여부를 진단하는 제어수단;Control means for diagnosing abnormality of the secondary injection injector and the DFC by comparing the cross-reaction of the air-fuel ratio and the exhaust gas detected by the oxygen sensor with a set measurement value; 을 포함하는 디젤차량의 후처리계 시스템.After-treatment system of a diesel vehicle comprising a. 제1항에 있어서,The method of claim 1, 상기 제어수단은 2차 분사 인젝터가 작동된 상태에서 공연비(λ)가 기준값인 '1' 보다 크면 2차 분사 인젝터의 고장으로 판정하는 디젤차량의 후처리계 시스템.And the control means determines that the secondary injection injector has failed when the air-fuel ratio (λ) is larger than the reference value '1' while the secondary injection injector is operated. 제1항에 있어서,The method of claim 1, 상기 제어수단은 2차 분사 인젝터가 정상인 상태에서 산소센서에서 검출되는 교차 반응값이 설정된 계측량의 범위에 포함되면 DFC를 정상으로 판정하고, 계측값의 범위에 포함되지 않으면 DFC를 고장으로 판정하는 디젤차량의 후처리계 시스템.The control means determines that the DFC is normal when the cross-reaction value detected by the oxygen sensor in the state of the secondary injection injector is within the range of the set measurement amount, and determines the failure of the DFC if it is not within the range of the measured value. Aftertreatment system of diesel vehicle. 후처리계 시스템의 활성화 상태에서 NOx 센서의 신호를 검출하여 LNT의 NOx 정화율을 분석하는 과정;Analyzing the NOx purification rate of the LNT by detecting a signal of the NOx sensor in an activated state of the aftertreatment system; 상기 LNT의 NOx 정화율이 LNT 재생이 필요한 상태인지 판단하는 과정;Determining whether the NOx purification rate of the LNT is in a state requiring LNT regeneration; LNT의 재생이 필요하면 2차 분사 인젝터를 통해 디젤 연료를 분사하여 DFC에 공급하는 과정;If the LNT needs to be regenerated, injecting diesel fuel through a secondary injection injector to supply the DFC; 2차 분사 인젝터 및 DFC의 고장감지모드인지 판단하여, 고장감지모드이면 DFC의 하류측에 설치된 산소센서의 신호를 검출 분석하여 2차 분사 인젝터 및 DFC의 고장 여부를 진단하는 과정을 포함하는 디젤차량의 후처리계 시스템 진단방법. The diesel vehicle includes determining whether the secondary injection injector and the DFC are in a failure detection mode, and in the failure detection mode, detecting and analyzing a signal of an oxygen sensor installed downstream of the DFC to diagnose a failure of the secondary injection injector and the DFC. Method for Diagnosing Post-Processing System. 제4항에 있어서,The method of claim 4, wherein 상기 DFC 하류측에 설치된 산소센서의 신호에서 공연비(λ)가 기준값인 '1' 미만이면 2차 분사 인젝터의 고장으로 판정하여 경고등을 점등하는 과정을 더 포함 하는 디젤차량의 후처리계 시스템 진단방법. If the air-fuel ratio (λ) is less than the reference value '1' in the signal of the oxygen sensor installed on the downstream side of the DFC, it is determined that the secondary injection injector has a failure, and further comprising the step of turning on a warning light diesel vehicle after-treatment system diagnostic method . 제4항에 있어서,The method of claim 4, wherein 상기 DFC 하류측에 설치된 산소센서의 신호에서 공연비(λ)가 기준값인 '1'을 초과하는 2차 분사 인젝터의 정상 상태에서 DFC의 열분해에 따라 교차 반응되는 가스량이 설정된 계측값의 범위에 포함되면 DFC를 정상으로 판정하고, 설정된 계측값의 범위에 포함되지 않으면 DFC를 고장으로 판정하는 디젤차량의 후처리계 시스템 진단방법.In the normal state of the secondary injection injector whose air-fuel ratio (λ) exceeds the reference value '1' in the signal of the oxygen sensor installed downstream of the DFC, if the amount of gas cross reacted according to the thermal decomposition of the DFC falls within the range of the set measurement value A method for diagnosing the after-treatment system of a diesel vehicle in which the DFC is determined to be normal and the DFC is determined to be a failure if it is not within the range of the set measured value.
KR1020080027486A 2008-03-25 2008-03-25 System for emission reduce line of diesel vehicle and method of monitoring thereof KR100903338B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080027486A KR100903338B1 (en) 2008-03-25 2008-03-25 System for emission reduce line of diesel vehicle and method of monitoring thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080027486A KR100903338B1 (en) 2008-03-25 2008-03-25 System for emission reduce line of diesel vehicle and method of monitoring thereof

Publications (1)

Publication Number Publication Date
KR100903338B1 true KR100903338B1 (en) 2009-06-18

Family

ID=40982874

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080027486A KR100903338B1 (en) 2008-03-25 2008-03-25 System for emission reduce line of diesel vehicle and method of monitoring thereof

Country Status (1)

Country Link
KR (1) KR100903338B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101047608B1 (en) 2009-09-25 2011-07-07 기아자동차주식회사 Apparatus for reducing exhaust gas of diesel vehicles and diagnostic methods thereof
KR20150140465A (en) 2014-06-05 2015-12-16 현대자동차주식회사 Method for increasing the efficiency of fault diagnosis in pm sensor
KR20170112235A (en) 2016-03-31 2017-10-12 현대자동차주식회사 A method for correcting dpf differential-pressure sensor and an apparatus therefor
KR20200032837A (en) 2018-09-19 2020-03-27 현대자동차주식회사 Urea injection control method of selective catalytic reduction system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610425B1 (en) 2004-07-01 2006-08-08 현대자동차주식회사 NOx-PM simultaneous reduction system using fuel cracking catalyzer
KR100680792B1 (en) 2005-12-09 2007-02-08 현대자동차주식회사 Method and apparatus for controlling regeneration of simultaneous nox-pm reduction apparatus having lean nox trap and catalytic particulate filter
US20080000221A1 (en) 2006-06-29 2008-01-03 Silvis Thomas W Process and system for removing soot from particulate filters of vehicle exhaust systems
KR100807795B1 (en) 2006-04-12 2008-02-27 주식회사 유투에스 Apparatus and method for regenerating diesel particulate filter, and a medium having computer readable program executing the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100610425B1 (en) 2004-07-01 2006-08-08 현대자동차주식회사 NOx-PM simultaneous reduction system using fuel cracking catalyzer
KR100680792B1 (en) 2005-12-09 2007-02-08 현대자동차주식회사 Method and apparatus for controlling regeneration of simultaneous nox-pm reduction apparatus having lean nox trap and catalytic particulate filter
KR100807795B1 (en) 2006-04-12 2008-02-27 주식회사 유투에스 Apparatus and method for regenerating diesel particulate filter, and a medium having computer readable program executing the method
US20080000221A1 (en) 2006-06-29 2008-01-03 Silvis Thomas W Process and system for removing soot from particulate filters of vehicle exhaust systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101047608B1 (en) 2009-09-25 2011-07-07 기아자동차주식회사 Apparatus for reducing exhaust gas of diesel vehicles and diagnostic methods thereof
KR20150140465A (en) 2014-06-05 2015-12-16 현대자동차주식회사 Method for increasing the efficiency of fault diagnosis in pm sensor
KR20170112235A (en) 2016-03-31 2017-10-12 현대자동차주식회사 A method for correcting dpf differential-pressure sensor and an apparatus therefor
KR20200032837A (en) 2018-09-19 2020-03-27 현대자동차주식회사 Urea injection control method of selective catalytic reduction system

Similar Documents

Publication Publication Date Title
US8307699B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method for NOx sensor
KR101234637B1 (en) METHOD FOR PREDICTING NOx AMOUNT AMD EXHAUST SYSTEM USING THE SAME
US6892529B2 (en) Exhaust-gas purification system for an internal combustion engine
JP4475271B2 (en) NOx sensor abnormality diagnosis device and abnormality diagnosis method
AU2011342305B2 (en) Device for diagnosing causes of decreases in NOx conversion efficiency
KR101251505B1 (en) METHOD FOR PREDICTING NOx LOADING AT DeNOx CATALYST AND EXHAUST SYSTEM USING THE SAME
KR101048112B1 (en) Exhaust gas purification device of internal combustion engine and desulfurization method thereof
EP3058190B1 (en) An on-board diagnostics system for catalyzed substrate
WO2010079621A1 (en) Apparatus for determination of component passing through catalyst, and exhaust gas purification apparatus for internal combustion engine
JP2012107607A (en) Method for predicting amount of nitrogen oxide and exhaust system using the method
KR101189241B1 (en) METHOD FOR PREDICTING REGENERATION OF DeNOx CATALYST AND EXHAUST SYSTEM USING THE SAME
US20080302085A1 (en) Method, Device And Computer Program Product For Diagnosing An Oxidation Catalyst
KR100903338B1 (en) System for emission reduce line of diesel vehicle and method of monitoring thereof
KR100980875B1 (en) Exhaust post processing apparatus of diesel engine and regeneration method thereof
KR100610425B1 (en) NOx-PM simultaneous reduction system using fuel cracking catalyzer
KR102518593B1 (en) CORRECTION METHOD OF NOx PURIFYING EFFICIENCY OF SDPF
KR102451917B1 (en) Exhaust gas purification system and the control method thereof
KR100907067B1 (en) System for emission reduce line of diesel vehicle and method of monitoring thereof
KR102506942B1 (en) System and method of purifying exhaust gas
KR20110033369A (en) Catalytic converter for exhaust gas of diesel vehicle and method for on board diagnosis thereof
JP4605397B2 (en) NOx catalyst deterioration diagnosis device
JP5470808B2 (en) Exhaust gas purification system and exhaust gas purification method
KR20200134576A (en) Exhaust system and controlling the same
KR100901937B1 (en) Method for diagnosing function of reduction non-methanic hydrocarbon in selective catalytic reduction system
KR101040346B1 (en) System for emission reduce line of diesel vehicle and second injection control method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120531

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130531

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee