KR100900998B1 - Refining method for low carbon steel - Google Patents
Refining method for low carbon steel Download PDFInfo
- Publication number
- KR100900998B1 KR100900998B1 KR20070140807A KR20070140807A KR100900998B1 KR 100900998 B1 KR100900998 B1 KR 100900998B1 KR 20070140807 A KR20070140807 A KR 20070140807A KR 20070140807 A KR20070140807 A KR 20070140807A KR 100900998 B1 KR100900998 B1 KR 100900998B1
- Authority
- KR
- South Korea
- Prior art keywords
- converter
- slug
- quicklime
- weight
- carbon steel
- Prior art date
Links
- 238000007670 refining Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 18
- 229910001209 Low-carbon steel Inorganic materials 0.000 title claims abstract description 13
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 96
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000000292 calcium oxide Substances 0.000 claims abstract description 48
- 235000012255 calcium oxide Nutrition 0.000 claims abstract description 48
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 26
- 239000010959 steel Substances 0.000 claims abstract description 26
- 229910052742 iron Inorganic materials 0.000 claims abstract description 25
- 239000011248 coating agent Substances 0.000 claims abstract description 13
- 238000000576 coating method Methods 0.000 claims abstract description 11
- 238000007664 blowing Methods 0.000 claims abstract description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 229910000514 dolomite Inorganic materials 0.000 claims description 9
- 239000010459 dolomite Substances 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims description 5
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 238000010079 rubber tapping Methods 0.000 abstract description 12
- 239000002994 raw material Substances 0.000 abstract description 2
- 238000005262 decarbonization Methods 0.000 abstract 2
- 239000002184 metal Substances 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 abstract 1
- 230000003647 oxidation Effects 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 abstract 1
- 241000237858 Gastropoda Species 0.000 description 8
- 238000005261 decarburization Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 230000029142 excretion Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001021 Ferroalloy Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000003923 scrap metal Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 240000006909 Tilia x europaea Species 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- -1 chlorite methane Chemical compound 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 238000005115 demineralization Methods 0.000 description 1
- 230000002328 demineralizing effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0087—Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/44—Refractory linings
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/068—Decarburising
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/16—Making or repairing linings ; Increasing the durability of linings; Breaking away linings
- F27D1/1678—Increasing the durability of linings; Means for protecting
- F27D1/1684—Increasing the durability of linings; Means for protecting by a special coating applied to the lining
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2200/00—Recycling of waste material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
본 발명은 전로공정에서 생산하는 극저탄소강 정련방법에 관한 것으로서, 보다 상세하게는 생석회등과 같은 부원료의 투입량을 감소시키면서도 적정 염기도를 유지할 수 있는 전로에서의 극저탄소강 정련방법에 관한 것이다. The present invention relates to a method for refining ultra low carbon steel produced in a converter process, and more particularly, to a method for refining ultra low carbon steel in a converter capable of maintaining proper basicity while reducing the input amount of ancillary materials such as quicklime and the like.
일반적으로 전로에서 정련된 용강을 래들로 이송시키는 출강단계에서 전로내의 슬러그가 나오는 시점에 출강을 완료하게 된다. 출강작업이 완료되면 전로를 전면으로 경동하여 노구를 이용하여 전로내에 남겨진 슬러그를 배재하게 된다.상기에 배재되는 전로의 종점 슬러그의 조성표는 다음과 같다.In general, in the tapping step of transferring the molten steel refined from the converter to the ladle, the tapping is completed at the time of slug in the converter. After the tapping work is completed, the converter is tilted to the front to remove the slugs left in the converter by using the furnace. The composition table of the end slug of the converter to be excluded is as follows.
표1)Table 1
전로정련에서 발생되는 슬러그는 용강Ton당 150Kg발생한다. 슬러그 배재가 완료되면 전로를 정립하여 전로내부에 표2의 화학성분을 가진 경소돌로마이트와 생돌로 마이트를 투입한다. 상기와 같이 경소돌로마이트와 생돌로마이트를 투입하는 이유은 슬러그중의 MgO를 상승시키면서 또한 슬러그중의 온도를 슬러그 코팅 가장 잘 이루어지는 온도로 떨어뜨리기 위해서이다. Slug generated from converter refining generates 150kg per ton of molten steel. When the slug is finished, the converter is established and the small dolomite and the chlorite methane having the chemical composition of Table 2 are introduced into the converter. The reason why the small dolomite and the fresh dolomite is added as described above is to raise the MgO in the slug and to lower the temperature in the slug to the temperature at which the slug coating is best.
표2)Table 2)
코팅제 투입이 완료되면 상부에서는 초음속의 질소를 분사시켜 전로내의 연와에 슬러그를 분사시켜 붙이는 작업을 1~2분정도 실시하게 된다.질소 분사코팅이 완료되면 전로의 장입측,출강측으로 전로를 경동시키면서 슬러그를 전로의 내화물에 붙도록 하는 슬러그 코팅작업을 실시하게 된다.전로경동을 2~3회 실시하고 전로에서 조업하기 용이하도록 잔류슬러그를 배재하게 되는데 이때 보통 슬러그를 작업자에 따라서 15~25톤사이로 남기게 된다. When the coating is finished, the upper part is sprayed with supersonic nitrogen and slugs are applied to the lead in the converter for about 1 to 2 minutes.When the nitrogen spray coating is completed, the converter is tilted to the charging side and the exit side of the converter. Slug coating is carried out to attach the slug to the refractory of the converter, and the slug is applied two to three times and the residual slug is disposed to facilitate the operation in the converter. Left.
코팅작업이 완료되면 고철와 용선을 장입하게 된다. 고로에서 공급되는 용선은 다음표와 같은 조성을 가진다.When the coating is completed, the scrap metal and the molten iron are charged. The molten iron supplied from the blast furnace has the composition shown in the following table.
표3)Table 3
상기의 용선성분 및 용선온도등의 조건을 이용하여 열정산을 실시하게 된다. 열정산은 전,후 차지(Charge)을 이용한다.일반적으로 용선중의 인을 제거하기 위해서 는 일반적으로 염기도를 4.5정도를 목표로 한다.Passion acid is carried out using the above-described molten iron component and molten iron temperature. Passion acid uses charge before and after. In general, to remove phosphorus from molten iron, the basicity is generally about 4.5.
다음 수학식1은 일반적인 염기도를 구하는 공식이다.Equation 1 is a formula for obtaining a general basicity.
[수학식 1][Equation 1]
일반적으로는 수학식 1과 같은 공식을 이용하여 슬러그중의 생석회(CaO)와 실리카(SIO2)를 이용하여 실제의 염기도를 구하게 된다.In general, an actual basicity is obtained by using quicklime (CaO) and silica (SIO 2 ) in the slug using a formula such as Equation 1.
그러나, 실 조업에서는 다음과 같은 식에 의해서 정련작업에 필요한 생석회 투입량을 산출하게 된다.However, in the actual operation, the quicklime input required for refining is calculated by the following equation.
[수학식2][Equation 2]
상기와 같은 수학식2에 의해서 생석회량을 투입하게 되며 조재제등은 생석회의 투입량에 따라서 달라지게 되며 냉각제의 경우에는 열정산시에 남는 열량이 있을 경우에 투입하게 된다.The amount of quicklime is added by Equation 2 as described above, and the preparation is changed depending on the amount of quicklime, and in the case of the coolant, the amount of calorie remaining in the passion acid is input.
고철과 용선의 장입이 완료하게 되면 먼저 일반조업의 작업 방법에 대해서 설명한다.When charging of scrap metal and molten iron is completed, the operation method of general operation is explained first.
일반조업시 취련을 개시하게 되면 상부에서는 랜스를 이용하여 초음속을 산소를 공급하면서 다음과 같은식에 의해서 용선중의 불순물을 제거하게 된다.When commencement of blow in general operation, the upper part is used to remove oxygen from the molten iron by the following equation while supplying oxygen at supersonic speed using a lance.
[수학식3][Equation 3]
[수학식4][Equation 4]
[수학식5][Equation 5]
[수학식6][Equation 6]
[수학식7][Equation 7]
상기의 식들에 의해서 용선 중의 불순물이 슬러그와 가스로 제거된다.일반조업의 경우에는 정련초기에 부원료(매용제와 냉각제)등을 초기에 투입하여 하게 되며 상 취인 랜스의 높이 및 유량 그리고,저취의 패턴은 전로정련의 진행에 따라 변하게 된다Impurities in molten iron are removed by slugs and gases by the above formulas. In general operations, subsidiary materials (solvents and coolants) are initially added at the initial stage of refining. Changes with the progress of converter refining
상기 수학식1에 의해서 용선중의 불순물이 제거된다.The impurity in the molten iron is removed by the above equation (1).
또한, 상기 열정산에서 산출된 산소량에 따라서 랜스에서 송산된 산소량이 산출된 산소량에 일치하면 전로정련을 종료하게 된다.전로 정련이 완료되면 정련이 완료된 용강을 래들로 이송하는 단계인 출강을 개시하게 된다. In addition, when the amount of oxygen transferred from the lance coincides with the calculated amount of oxygen according to the amount of oxygen calculated by the passion acid, the converter refining is terminated. When the converter refining is completed, the tapping, which is a step of transferring the molten steel to be refined, is started. .
출강 중에는 수요가가 요구하는 품질을 만들기 위해서 합금철을 투입하게 된다. 전로내의 용강이 래들로 전부 이송되는 순간에 출강을 완료하게 된다. During the tap, ferroalloy is added to make the quality demanded. The tapping is completed when the molten steel in the converter is completely transferred to the ladle.
에이피아이(API)재와 자동차 강판 등의 극저린강은 더블슬러그코팅을 실시하게 되는데,탈인 정련시에 표1와 같은 용선정보를 이용하여 [수학식2]의 생석회 투입량 산출식에 의해서 염기도 2를 목표로 하여 생석회를 투입하고,소결광 반광등을 투입하고 정해진 취련패턴에 따라 정련을 진행하고 슬러그의 볼륨이 최고인 시점인 총산소량의 15~30%시점에 탈인 전로정련작업을 완료한다. Ultra-low-lining steels such as API materials and automotive steel sheets are subjected to double slug coating.In the demineralization refining process, using the molten iron information as shown in Table 1, basic formula 2 is calculated according to the calculation formula of quicklime in [2]. It aims to inject quicklime, inject sintered semi-glow lamps, refines according to the specified blowing pattern, and finishes the decontamination converter at 15 to 30% of the total oxygen, the point at which the slug volume is the highest.
정련작업이 완료되면 슬러그를 배재하게 되는데 배재되는 슬러그의 량은 용철량의 1.5~2%로 배재를 하게 된다.이때 배재되는 슬러그의 조성(단위:wt%)은 다음과 같다.When the refining work is completed, the slugs are excluded. The amount of slugs excluded is excreted as 1.5 ~ 2% of molten iron. The composition of slugs (unit: wt%) is as follows.
표4)Table 4
또한 1차 정련이 완료된후의 용철의 성분(wt%)은 다음 표와 같다.In addition, the components (wt%) of molten iron after the first refining is completed are shown in the following table.
표5)Table 5
슬러그 배재가 완료되면 탈탄취련을 하게 되는데,이 때 취련 패턴에 따라 정련을 진행하면서 염기도 산정을 4.5수준으로 하여 생석회를 투입하면서 총산소량이 100%가 되면 전로 정련을 완료하게 된다. When slug excretion is completed, decarburization is performed. At this time, the refining process is completed according to the blowing pattern.
정련이 완료되면 출강작업을 하게 되며 출강작업중에 합금철을 투입하여 수요가가 요구하는 성질의 강을 제조하게 된다. 용강이 완전히 래들로 이송되는 즉, 슬러 그가 출강구로 나오는 순간 출강작업을 완료하게 된다.상기와 같은 정련작업시에는 다음과 같은 문제점이 있게된다.When refining is completed, tapping work is performed, and during the tapping work, ferroalloy is added to produce steel with the demanded properties. The molten steel is completely transferred to the ladle, that is, the slug is completed as soon as he exits the tap. The refining work as described above has the following problems.
1)전로 정련작업시에는 염기도를 산출할 때 잔류슬러그 중에 있는 생석회의 량을 고려하지 않고 산출하여 과다한 생석회 투입이 반복적으로 이루어졌다.1) In the converter refining process, excessive calcining was repeatedly performed without calculating the amount of quicklime in the residual slug when calculating the basicity.
2)더블 슬러그 조업시에도 염기도 목표를 2.0으로 하고 생석회를 투입하였으나, 코팅제 및 슬러그중의 염기도를 전혀 고려하지 않고 생석회를 투입하여 투입량이 증가하였다.2) In the operation of double slugs, quicklime was added with a basicity of 2.0, but the input amount was increased by adding quicklime without considering the basicity in the coating agent and slug.
3)슬러그량의 증가로 인한 슬러그 야드장의 업무부하가 증가하였다.3) Slug yard loads increased due to increased slug volume.
4)슬러그량 증가에 따른 슬러그 처리비용상승으로 용강제조원가가 상승되었다.4) Molten steel production costs rose due to higher slug treatment costs.
5)생석회 과잉 사용에 따른 석회공장의 업무부하가 증가 되었다.5) The work load at the lime plant increased due to the excessive use of quicklime.
6) 탈인 취련시 염기도가 높아 슬러그 볼륨이 낮아 슬러그가 배재되지 않아 ,탈탄정련시 투입되는 생석회량이 증가하게 된다.6) When dephosphorization is performed, the basicity is high and the slug volume is low, so slug is not excluded, and the amount of quicklime injected during decarburization is increased.
본 발명은 상술한 문제를 해결하기 위한 것으로서, 생석회등과 같은 부원료의 투입량을 감소시키면서도 적정 염기도를 유지할 수 있는 전로에서의 극저탄소강 정련방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for refining an ultra low carbon steel in a converter capable of maintaining an appropriate basicity while reducing the input amount of an auxiliary material such as quicklime or the like.
상기 목적을 달성하기 위해 본 발명은 전로에서 출강이 완료된 후 상기 전로내 슬러그를 슬러그 포트에 배재할때 상기 출강된 용강량의 4~10wt%에 해당하는 슬러그를 상기 전로에 잔류시키는 제1단계와, 상기 잔류된 슬러그를 상기 전로에 코팅하는 제2단계와, 상기 잔류된 슬러그에 포함되어 있는 생석회(CaO)의 중량과 1:1 내지 1:2.5 비율의 증량을 가지는 산화철(FeO)을 상기 전로에 투입하는 제3단계와, 상기 전로에 고철 및 용선을 장입하고 탈인 취련을 수행하는 제4단계와, 상기 제4단계에 의해 조재된 슬러그를 슬러그 포트에 배제하는 제5단계와, 탈탄 정련을 수행하는 제6단계를 포함하는 전로에서의 극저탄소강 정련방법에 특징이 있다.In order to achieve the above object, the present invention is the first step of leaving the slug corresponding to 4 ~ 10wt% of the amount of molten steel outgoing when the slug in the converter after the completion of the tapping in the converter to the slug port and And converting the remaining slug into the converter, and converting the iron oxide (FeO) having a weight ratio of quicklime (CaO) included in the remaining slug and an increase in the ratio of 1: 1 to 1: 2.5 into the converter. A third step of introducing into the furnace, a fourth step of charging scrap iron and molten iron in the converter and performing dephosphorization and a fifth step of excluding the slug prepared by the fourth step into the slug port, and decarburization refining It is characterized by an ultralow carbon steel refining method in a converter comprising a sixth step performed.
이상 설명한 본 발명에 의해 생석회등과 같은 부원료의 투입량을 감소시키면서도 적정 염기도를 유지할 수 있고, 탄소의 농도가 50ppm이하 이면서 용강중의 인[P]의 농도가 100 ~ 200 ppm 인 극저탄소강을 제조할 수 있는 효과가 있다.According to the present invention described above, it is possible to maintain an appropriate basicity while reducing the input amount of auxiliary raw materials such as quicklime, and the like to produce ultra low carbon steel having a concentration of phosphorus [P] in molten steel of 50 ppm or less and a concentration of phosphorus [P] in molten steel. It can be effective.
이상 설명한 바와 같이 본 발명은 탄소의 농도가 50ppm이하 이면서 용강중의 인[P]의 농도가 100 ~ 200 ppm 인 극저탄소강을 제조할 수 있는 방법이다.As described above, the present invention is a method for producing ultra low carbon steel having a carbon concentration of 50 ppm or less and a phosphorus [P] concentration in molten steel of 100 to 200 ppm.
즉, 상기 방법(S100)은 전로에서 출강이 완료된 후 상기 전로내 슬러그를 슬러그 포트에 배재할때 상기 출강된 용강량의 4~10wt%에 해당하는 슬러그를 상기 전로에 잔류시키는 제1단계(S110)와, 상기 잔류된 슬러그를 상기 전로에 코팅하는 제2단계(S120)와, 상기 잔류된 슬러그에 포함되어 있는 생석회(CaO)의 중량과 1:1 내지 1:2.5 비율의 중량을 가지는 산화철(FeO)을 상기 전로에 투입하는 제3단계(S130)와, 상기 전로에 고철 및 용선을 장입하고 탈인 취련을 수행하는 제4단계(S140)와,상기 제4단계(S140)에 의해 조재된 슬러그를 슬러그 포트에 배제하는 제5단계(S150)와, 탈탄 정련을 수행하는 제6단계(S160)를 포함한다.That is, the method (S100) is the first step (S110) to leave the slug corresponding to 4 ~ 10wt% of the amount of molten steel out when the slug in the converter after the completion of the tapping in the converter to the slug port (S110) ), And the second step (S120) of coating the remaining slug on the converter, and iron oxide having a weight ratio of 1: 1 to 1: 2.5 and a weight of quicklime (CaO) included in the remaining slug ( A third step (S130) of introducing FeO) into the converter, a fourth step (S140) of charging scrap iron and molten iron into the converter and performing dephosphorization and a slug prepared by the fourth step (S140) It includes a fifth step (S150) for excluding the slug port, and a sixth step (S160) for performing decarburization.
상기 제1단계(S110)는 용강을 전로에서 래들로 이송하는 단계인 출강단계가 완료되면 전로내 슬러그를 슬러그 포트에 배재할 때, 전로 내에 슬러그량을 전로내에서 정련할수 있는 용강량의 4~10wt%을 잔류시키는 단계(S110)로서, 장입될 용선의 성분에 따라 슬러그포트내에 설치된 평량기를 확인하여 전로내에 슬러그를 잔류 시킨다.The first step (S110) is 4 ~ of the amount of molten steel that can refine the slug in the converter when the slug in the converter when the tapping step, which is the step of transferring the molten steel to the ladle in the converter is completed to the slug port As a step (S110) of remaining 10wt%, by checking the basis weight installed in the slug port according to the component of the molten iron to be charged to leave the slug in the converter.
다음 표6은 용선내의 Si에 따른 잔류슬러그량을 나타낸 표이다.Table 6 below shows the amount of residual slug according to Si in the molten iron.
<표6><Table 6>
상기 제2단계(S120)는 상기 잔류된 슬러그를 상기 전로에 코팅하는 단계로서, 앞서 설명한 바와 같이 슬러그 배재가 완료되면 경소돌로마이트와 생돌로마이트를 투입하는 단계(S121)와, 상부에서 질소로 슬러그를 냉각시키면서 분사시키는 질소분사코팅단계(S122)와 전로내 남은 잔류슬러그를 이용하여 전로를 전,후로 경동하여 슬러그를 노체내에 부착하는 코팅단계(S123)를 포함한다.The second step (S120) is a step of coating the remaining slug on the converter, and as described above, when the slug excretion is completed, injecting small dolomite and fresh dolomite (S121), and slag with nitrogen from the top. Nitrogen spray coating step of spraying while cooling (S122) and the coating step (S123) to attach the slug into the furnace body by tilting the converter back and forth using the remaining slug in the converter.
즉, 슬러그 배재가 완료되면 전로를 정립한후 경소돌로마이트와 생돌로마이트를 부원료 호퍼를 통하여 전로내에 투입하여 슬러그중의 산화철의 농도를 낮추게 한후 상부에서 초음속의 질소를 분사시켜 전로 내화물에 슬러그를 부착하는 작업을 한다. That is, when the slug exclusion is completed, the converter is established, and then, the small dolomite and the raw dolomite are introduced into the converter through the sub-material hopper to lower the iron oxide concentration in the slug, and then the supersonic nitrogen is injected from the top to attach the slug to the converter refractory. Do the work.
질소분사코팅이 완료되면 전로를 전,후롤 180도 경동하면서 전로의 장입측와 출강측에 슬러그를 부착하게 된다.When the nitrogen spray coating is completed, slugs are attached to the charging side and the tapping side of the converter while tilting the converter 180 degrees forward and backward.
이와 같은 제2단계(S120)를 수행하고 나서 제3단계(S130)를 수행한다.After performing the second step S120, the third step S130 is performed.
상기 제3단계(S130)는 상기 잔류된 슬러그에 포함되어 있는 생석회(CaO)의 중량과 1:1 내지 1:2.5 비율의 중량을 가지는 산화철(FeO)을 상기 전로에 투입하는 단계이다. The third step (S130) is a step of introducing iron oxide (FeO) having a weight of 1: 1 to 1: 2.5 ratio of the weight of quicklime (CaO) contained in the remaining slug and the converter.
상기 잔류된 슬러그에 포함되어 있는 생석회의 중량은 상기 전로에 경소돌로마이트와 생돌로마이트를 포함하는 코팅제를 도포한 후 상기 슬러그에 포함되어 있는 생석회의 중량을 뜻하는 것으로서, 다음 표7에 나타나있는 바와 같이 반복적인 실험 결과 잔류 슬러그의 50wt% 내지 55wt%가 생석회의 중량임을 알 수 있었다.The weight of quicklime contained in the remaining slug refers to the weight of quicklime contained in the slug after applying a coating agent including light borodolite and dopelomite to the converter, as shown in Table 7 below. Repeated experiments showed that 50 wt% to 55 wt% of the residual slug was the weight of quicklime.
<표7><Table 7>
상기 표에 의해 생석회의 중량을 산출한 후 상기 생석회의 중량과 1:1 내지 1:2.5비율의 중량을 가지는 산화철을 상기 전로에 투입하게 된다.After calculating the weight of quicklime based on the table, iron oxide having a weight of the quicklime and a ratio of 1: 1 to 1: 2.5 is added to the converter.
상기 제3단계(S130)를 수행하고 나서 상기 전로에 고철 및 용선을 장입하고 탈인 취련을 수행하는 제4단계(S140)를 수행한다.After performing the third step (S130), a fourth step (S140) of charging scrap iron and molten iron in the converter and performing dephosphorization drilling is performed.
상기 제4단계(S140)의 탈인 정련이 시작되면 취련 패턴에 의해서 정련이 진행되게 되는데 이때 산화철와 표3에 도시한 실리콘(Si)와 잔류슬러그가 반응하면서 표6와 같은 조성을 잔류슬러그 용해온도가 2100도 수준이던 것을 1600도 수준까지 떨어뜨려 재화를 촉진하게 되었다.When the dephosphorization refining of the fourth step (S140) is started, refining is performed by the blowing pattern. At this time, iron oxide, silicon (Si) shown in Table 3, and residual slug react with each other. It was to promote the goods by dropping the level of the province to 1600 degrees.
이때 정련 완료 후의 염기도를 2로 설정하면 상기 잔류 슬러그의 염기도가 높아 생석회를 투입하지 않아도 된다. 또한, 상술한 바와 같이 염기도 2로 설정하면 탈인 취련의 제4단계(S140) 수행 후 슬러그의 부피가 가장 커서 슬러그 배재를 최대한 할 수 있는 조건이 되어 제5단계(S150)를 용이하게 수행할 수 있게 된다.At this time, when the basicity after the completion of refining is set to 2, the basicity of the residual slug is high, and it is not necessary to add quicklime. In addition, as described above, if the basicity is set to 2, the slug volume is the largest after performing the fourth step (S140) of dephosphorization, and thus, the fifth step (S150) can be easily performed. Will be.
이와 같은 제4단계(S140)를 수행후의 슬러그의 조성(단위 : wt%)은 다음 표8 과 같이 변화된다.The composition (unit: wt%) of the slug after performing the fourth step S140 is changed as shown in Table 8 below.
<표8><Table 8>
이상 설명한 제4단계(S140)와 제5단계(S150)를 수행하고 나서 제6단계(S160) 즉 탈탄 정련을 행하게 된다.After performing the fourth step S140 and the fifth step S150 described above, the sixth step S160, that is, decarburization and refining is performed.
상기 제6단계(S160)에서는 생석회 중량을 산출하는 단계(S161)와, 상기 단계(S161)에 의해 산출된 생석회 중량과 4:1 비율의 중량을 가지는 SiO2를 상기 생석회와 함께 투입하는 단계(S162)를 포함한다.In the sixth step S160, the step of calculating the quicklime weight (S161), and the step of injecting SiO2 having a weight ratio of the quicklime and 4: 1 ratio calculated by the step (S161) together with the quicklime (S162). ).
상기 생석회 중량을 산출하는 단계(S161)에서는 다음의 수학식8에 의해 구할 수 있다.In the step of calculating the quicklime weight (S161), it can be obtained by the following Equation (8).
[수학식8][Equation 8]
상기 수학식8에 의해 산출된 생석회 중량에 의해 SiO2의 중량도 산출할 수 있게 되어 앞서 설명한 바와 같이 생석회와 SiO2를 함께 투입할 수 있게 된다.The weight of SiO 2 can also be calculated by the quicklime weight calculated by Equation 8, and the quicklime and SiO 2 can be added together as described above.
이때 상기 염기도는 4로 설정하여 생석회의 중량을 구하는 것이 철강의 품질향상과 부원료 절감에 유리하다.At this time, the basicity is set to 4 to obtain the weight of quicklime, which is advantageous for improving the quality of steel and reducing side materials.
이하 표9에 의해 설명한 본 발명의 실시예와 비교예와 대비하여 다시 설명한다.It will be described again in contrast to the Examples and Comparative Examples of the present invention described by Table 9.
<표9>TABLE 9
앞서 설명한 바와 같이 본 발명은 탄소의 농도가 50ppm이하 이면서 용강중의 인[P]의 농도가 100 ~ 200 ppm 인 극저탄소강을 제조하는 방법에 관한 것이다.As described above, the present invention relates to a method for producing ultra low carbon steel having a concentration of carbon of 50 ppm or less and a concentration of phosphorus [P] in molten steel of 100 to 200 ppm.
상기 본 발명의 실시예1 내지 실시예5처럼 탈인 정련시 생석회를 투입하지 않고 잔류슬러그만으로 탈인후 용강[P]수준을 비교예와 같은 수준으로 유지하였다.(탈탄후 용강의 P 참조)As in Examples 1 to 5 of the present invention, the molten steel [P] level was maintained at the same level as the comparative example after dephosphorization with only residual slug without adding quicklime during dephosphorization. (See P of molten steel.)
또한 앞서 설명한 바와 같이 탈인 정련후 배재 작업시에도 슬러그 체적이 높아서 배재량도 2배이상 증가하였으며 도한 탈탄시 생석회 투입량도 용선실리콘대비 감소하여 투입하였다. 즉, 종래에는 평균 용강톤당 29Kg의 생석회를 투입하던 것을 20~22Kg으로 감소시켰다.In addition, as described above, the slug volume was also increased during the excavation work after dephosphorization and the excretion amount was more than doubled. Also, the quicklime input during decarburization was reduced compared to the molten silicon. That is, conventionally, 29 kg of quicklime was added to average molten steel to 20 to 22 kg.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20070140807A KR100900998B1 (en) | 2007-12-28 | 2007-12-28 | Refining method for low carbon steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20070140807A KR100900998B1 (en) | 2007-12-28 | 2007-12-28 | Refining method for low carbon steel |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100900998B1 true KR100900998B1 (en) | 2009-06-04 |
Family
ID=40982262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20070140807A KR100900998B1 (en) | 2007-12-28 | 2007-12-28 | Refining method for low carbon steel |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100900998B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101455596B1 (en) | 2013-02-27 | 2014-10-28 | 현대제철 주식회사 | Coating method of converter refractory bricks with slag |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000042510A (en) * | 1998-12-26 | 2000-07-15 | 이구택 | Method for refining electric furnace |
KR20040013225A (en) * | 2002-08-05 | 2004-02-14 | 주식회사 포스코 | Method for Refining Molten Steel Using Converter |
KR100749023B1 (en) * | 2006-05-26 | 2007-08-14 | 주식회사 포스코 | Method for refining extra low phosphorous steel in converter |
-
2007
- 2007-12-28 KR KR20070140807A patent/KR100900998B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000042510A (en) * | 1998-12-26 | 2000-07-15 | 이구택 | Method for refining electric furnace |
KR20040013225A (en) * | 2002-08-05 | 2004-02-14 | 주식회사 포스코 | Method for Refining Molten Steel Using Converter |
KR100749023B1 (en) * | 2006-05-26 | 2007-08-14 | 주식회사 포스코 | Method for refining extra low phosphorous steel in converter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101455596B1 (en) | 2013-02-27 | 2014-10-28 | 현대제철 주식회사 | Coating method of converter refractory bricks with slag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103627837B (en) | Iron and the method for phosphorus is reclaimed from copper smelter slag | |
KR100749023B1 (en) | Method for refining extra low phosphorous steel in converter | |
WO2013012039A9 (en) | Method for smelting molten pig iron | |
JP6164151B2 (en) | Method for refining molten iron using a converter-type refining furnace | |
CN104789738B (en) | A kind of method of less-slag melting super-purity ferrite stainless steel | |
JP4977870B2 (en) | Steel making method | |
KR100900998B1 (en) | Refining method for low carbon steel | |
KR100832527B1 (en) | Method for refining molten steel in converter | |
EP1457574B1 (en) | Method for pretreatment of molten iron and method for refining | |
JP2958848B2 (en) | Hot metal dephosphorization method | |
JP2002020816A (en) | Method for producing low nitrogen-containing chromium steel | |
JP4695312B2 (en) | Hot metal pretreatment method | |
CN103773918A (en) | Method for reducing resulfurization of semisteel-making converter | |
CN110423856B (en) | Low-temperature smelting method for dephosphorization and decarburization of low-silicon molten iron | |
KR100449234B1 (en) | A method for manufacturing of extra low phosphorous steel | |
JP2000109924A (en) | Method for melting extra-low sulfur steel | |
JP2001049320A (en) | Production of iron and steel using high phosphorus ore as raw material | |
KR100900997B1 (en) | Refining method low carbon steel | |
KR100946128B1 (en) | Method for Refining Molten Steel Using Converter | |
KR101091954B1 (en) | Method of manufacturing converter molten steel using dephosphorized molten metal | |
KR101045970B1 (en) | Converter refining method to control high end carbon | |
KR100910496B1 (en) | Method for Manufacturing Extra-Low Carbon Steel | |
KR100544466B1 (en) | Method for coating inside wall of convert with slag | |
JP3823623B2 (en) | Hot metal refining method | |
KR20040048269A (en) | A Method of Decreasing Oxygen Dencity in Converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130514 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140512 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150526 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160517 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170526 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20180525 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190523 Year of fee payment: 11 |