[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100880534B1 - Magnesium compound sol and its manufacturing method and manufacturing method of ceramic raw material using the same - Google Patents

Magnesium compound sol and its manufacturing method and manufacturing method of ceramic raw material using the same Download PDF

Info

Publication number
KR100880534B1
KR100880534B1 KR1020077004863A KR20077004863A KR100880534B1 KR 100880534 B1 KR100880534 B1 KR 100880534B1 KR 1020077004863 A KR1020077004863 A KR 1020077004863A KR 20077004863 A KR20077004863 A KR 20077004863A KR 100880534 B1 KR100880534 B1 KR 100880534B1
Authority
KR
South Korea
Prior art keywords
magnesium
sol
aqueous solvent
magnesium compound
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020077004863A
Other languages
Korean (ko)
Other versions
KR20070088497A (en
Inventor
타카시 하세가와
토시키 니시야마
야스나리 나카무라
쇼조 코지마
Original Assignee
가부시키가이샤 무라타 세이사쿠쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 무라타 세이사쿠쇼 filed Critical 가부시키가이샤 무라타 세이사쿠쇼
Publication of KR20070088497A publication Critical patent/KR20070088497A/en
Application granted granted Critical
Publication of KR100880534B1 publication Critical patent/KR100880534B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

본 발명은 마그네슘 화합물을 세라믹 분말 중에 균일하게 분산시키는 데 매우 적합한 수성 용매 마그네슘 화합물 졸을 제공하는 것을 목적으로 한다.The present invention aims to provide an aqueous solvent magnesium compound sol which is very suitable for uniformly dispersing the magnesium compound in the ceramic powder.

본 발명에 따르면, 카르보닐기를 갖는 카르복실산이 배위(配位)한 마그네슘 미셀 입자가 수성 용매 중에 분산한 마그네슘 화합물 졸을 제조할 때에, 수성 용매 중에서, 마그네슘 이온과, 구연산, 호박산 및 EDTA에서 선택되는 카르복실산을, 카르보닐기의 마그네슘에 대한 몰비가 1.2 이상 2 이하가 되도록 반응시켜서, 안정된 마그네슘 미셀 입자를 얻는다.According to the present invention, when preparing a magnesium compound sol in which magnesium micelles coordinated with a carboxylic acid having a carbonyl group are dispersed in an aqueous solvent, among the aqueous solvent, magnesium ions, citric acid, succinic acid and EDTA are selected. The carboxylic acid is reacted so that the molar ratio of the carbonyl group to magnesium is 1.2 or more and 2 or less to obtain stable magnesium micelle particles.

마그네슘 화합물 졸, 카르복실산, 카르보닐기, 수성 용매Magnesium compound sol, carboxylic acid, carbonyl group, aqueous solvent

Description

마그네슘 화합물 졸 및 그 제조방법, 및 그것을 사용한 세라믹 원료의 제조방법{MAGNESIUM COMPOUND SOL, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING CERAMIC MATERIAL USING SAME}Magnesium compound sol and its manufacturing method, and the manufacturing method of the ceramic raw material using the same {MAGNESIUM COMPOUND SOL, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING CERAMIC MATERIAL USING SAME}

본 발명은 수성 용매를 사용한 마그네슘 화합물 졸 및 그 제조방법, 및 세라믹 원료의 제조방법에 관한 것이다.The present invention relates to a magnesium compound sol using an aqueous solvent, a method for producing the same, and a method for producing a ceramic raw material.

종래부터, 적층 커패시터를 구성하는 고유전율계 유전체 재료로서, BaTiO3계 세라믹이 널리 사용되어 왔다. 그리고, 유전율의 온도특성의 조정, 신뢰성의 향상 또는 소결성의 향상 등을 목적으로 해서, 여러 가지 부성분이 첨가되는 것이 통례였다.Background Art Conventionally, BaTiO 3 -based ceramics have been widely used as high-k dielectric materials constituting multilayer capacitors. And it was customary to add various subcomponents for the purpose of adjusting the temperature characteristic of dielectric constant, improving reliability, or improving sinterability.

적층 커패시터는, 그 소형화 및 대용량화의 필요성에서 매년 박층화가 진행되고, 최근에 와서는 1층당의 두께가 수㎛ 이하인 것도 있다. 그러한 박층화가 진행된 적층 커패시터에서는 부성분의 분산성 향상이 종래보다도 한 층 요구된다. 그를 위해서는 마그네슘을 비롯한 부성분의 미립화가 필요해진다.The multilayer capacitors are thinned every year due to the necessity of miniaturization and large capacity, and in recent years, the thickness of each multilayer capacitor may be several μm or less. In the multilayer capacitor with such a thinning, improvement in dispersibility of subcomponents is further demanded. For that purpose, atomization of minor components including magnesium is required.

미립화된 부성분과 BaTiO3 등의 주성분을 균일하게 혼합하기 위해서는 부성분의 미립자가 응집하는 것을 방지하지 않으면 안 되고, 그를 위해서는 BaTiO3 등의 주성분과 혼합하기 전에 부성분이 졸(콜로이드 용액)로서 존재하는 것이 바람직하다. 또한, 졸의 용매는 수성인 것이 바람직하다. 가령, 유기계 용매의 경우는, 방폭장치를 설치할 필요가 있어, 제조비용이 높아지기 때문에 바람직하지 않다.In order to uniformly mix a main component, such as an atomization subcomponent and BaTiO 3, and must not prevent the fine particles of the sub-component flocculation, for him to the auxiliary component prior to mixing with the main component, such as BaTiO 3 is present as a sol (colloidal solution) desirable. In addition, the solvent of the sol is preferably aqueous. For example, in the case of an organic solvent, since an explosion-proof apparatus needs to be provided and manufacturing cost becomes high, it is unpreferable.

부성분의 대표적인 예로서는 마그네슘을 들 수 있다. 예를 들면 특허문헌 1에서는, 수성 용매를 사용하는 마그네슘 화합물 졸을 제조하는 방법이 제안되어 있다. 이 제조방법에서는, 초산마그네슘 사수화물에 탈수처리를 행한 초산마그네슘 또는 무수초산마그네슘을 물에 분산시킴으로써, 안정적인 콜로이드 입자가 얻어진다고 되어 있다.Representative examples of the subcomponents include magnesium. For example, Patent Document 1 proposes a method for producing a magnesium compound sol using an aqueous solvent. In this production method, stable colloidal particles are obtained by dispersing magnesium acetate or anhydrous magnesium acetate which has been subjected to dehydration treatment to magnesium acetate tetrahydrate in water.

특허문헌 1: 일본국 특허공개 평9-312132호 공보Patent Document 1: Japanese Patent Application Laid-Open No. 9-312132

그러나, 특허문헌 1에 기재된 마그네슘 화합물 졸의 제조방법에서는, 초산마그네슘 사수화물에 탈수처리를 행하지 않으면 안 되어, 그 공정이 번잡해진다. 또한, 마그네슘의 공급원이 초산마그네슘 화합물에 한정되기 때문에, 소재 선정에 제약이 가해진다. 또한, 특허문헌 1의 마그네슘 화합물 졸을 BaTiO3계 세라믹 원료의 부성분으로서 사용하는 경우, 희토류 화합물 졸 등의 다른 부성분 졸과 공존시키면, 응집이나 겔화 등의 문제가 발생할 우려가 있다.However, in the manufacturing method of the magnesium compound sol of patent document 1, the dehydration process must be performed to magnesium acetate tetrahydrate, and the process becomes complicated. In addition, since the source of magnesium is limited to the magnesium acetate compound, the selection of materials is restricted. Moreover, when using the magnesium compound sol of patent document 1 as a subcomponent of a BaTiO 3- based ceramic raw material, when coexisting with other subcomponent sols, such as a rare earth compound sol, there exists a possibility that problems, such as aggregation and gelation, may arise.

본 발명은 상술과 같은 사정을 감안하여 이루어진 것으로, 그 목적은, 여러 가지 금속 화합물 졸과 병용하더라도 수성 용매 중에서의 안정도가 높은 마그네슘 화합물 졸을 제공하는 데 있다.The present invention has been made in view of the above circumstances, and an object thereof is to provide a magnesium compound sol having high stability in an aqueous solvent even when used in combination with various metal compound sol.

또한, 본 발명의 다른 목적은, 마그네슘 공급원의 종류의 제약을 받지 않으며, 또한 탈수공정 등의 번잡한 공정을 거치지 않고 수성 용매 중에서의 안정도가 높은 마그네슘 화합물 졸을 간편하게 제조할 수 있는 마그네슘 화합물 졸의 제조방법을 제공하는 데 있다.In addition, another object of the present invention is to provide a magnesium compound sol which is not limited by the type of magnesium source and which can easily prepare a magnesium compound sol having high stability in an aqueous solvent without undergoing a complicated process such as dehydration. It is to provide a manufacturing method.

또한, 본 발명의 다른 목적은, 본 발명의 마그네슘 화합물 졸을 부성분으로서 혼합한 세라믹 원료를 제조할 수 있는 세라믹 원료의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method for producing a ceramic raw material capable of producing a ceramic raw material obtained by mixing the magnesium compound sol of the present invention as an auxiliary component.

본 발명의 청구항 1에 기재된 마그네슘 화합물 졸은, 카르보닐기를 갖는 카르복실산이 배위(配位)한 마그네슘 미셀(micelle) 입자가 수성 용매 중에 분산한 마그네슘 화합물 졸로서, 상기 카르복실산은 구연산, 호박산 및 EDTA에서 선택되는 적어도 1종이며, 또한 상기 카르보닐기의 상기 마그네슘에 대한 몰비가 1.2 이상 2 이하인 것을 특징으로 하는 것이다.The magnesium compound sol according to claim 1 of the present invention is a magnesium compound sol in which magnesium micelle particles in which a carboxylic acid having a carbonyl group is coordinated are dispersed in an aqueous solvent, wherein the carboxylic acid is citric acid, succinic acid and EDTA. It is at least 1 sort (s) chosen, It is characterized by the molar ratio with respect to the said magnesium of the said carbonyl group being 1.2 or more and 2 or less.

또한, 본 발명의 청구항 2에 기재된 마그네슘 화합물 졸은, 청구항 1에 기재된 발명에 있어서, 상기 수성 용매의 pH가 4 이상 11 이하인 것을 특징으로 하는 것이다.Moreover, in the magnesium compound sol of Claim 2 of this invention, pH of the said aqueous solvent is 4 or more and 11 or less in the invention of Claim 1, It is characterized by the above-mentioned.

또한, 본 발명의 청구항 3에 기재된 마그네슘 화합물 졸은, 청구항 1에 기재된 발명에 있어서, 상기 수성 용매의 pH가 8 이상 11 이하인 것을 특징으로 하는 것이다.Moreover, in the magnesium compound sol of Claim 3 of this invention, pH of the said aqueous solvent is 8 or more and 11 or less in the invention of Claim 1, It is characterized by the above-mentioned.

또한, 본 발명의 청구항 4에 기재된 마그네슘 화합물 졸의 제조방법은, 청구항 1 내지 청구항 3 중 어느 한 항에 기재된 마그네슘 화합물 졸을 제조하는 방법으로서, 마그네슘 이온 또는 마그네슘 화합물 입자가 분산한 수성 용매를 준비하는 공정과, 상기 수성 용매에, 카르복실산 또는 상기 카르복실산의 염을 투입하여, 상기 마그네슘 이온 또는 마그네슘 화합물 입자와 반응시키는 공정을 구비하는 것을 특징으로 하는 것이다.The method for producing a magnesium compound sol according to claim 4 of the present invention is a method for producing the magnesium compound sol according to any one of claims 1 to 3, wherein an aqueous solvent in which magnesium ions or magnesium compound particles are dispersed is prepared. And a step of introducing a carboxylic acid or a salt of the carboxylic acid into the aqueous solvent to react with the magnesium ions or magnesium compound particles.

또한, 본 발명의 청구항 5에 기재된 마그네슘 화합물 졸의 제조방법은, 청구항 4에 기재된 발명에 있어서, 염기성 물질을 상기 수성 용매에 용해시킴으로써, 상기 수성 용매의 pH를 조정하는 공정을 포함하는 것을 특징으로 하는 것이다.Furthermore, the manufacturing method of the magnesium compound sol of Claim 5 of this invention WHEREIN: The invention of Claim 4 WHEREIN: The process of adjusting the pH of the said aqueous solvent by dissolving a basic substance in the said aqueous solvent, It is characterized by the above-mentioned. It is.

또한, 본 발명의 청구항 6에 기재된 세라믹 원료의 제조방법은, 세라믹 분체(粉體)에 대하여, 청구항 1 내지 청구항 3 중 어느 한 항에 기재된 마그네슘 화합물 졸을 부성분으로서 혼합하는 것을 특징으로 하는 것이다.Moreover, the manufacturing method of the ceramic raw material of Claim 6 of this invention mixes the magnesium compound sol in any one of Claims 1-3 as a subcomponent with respect to the ceramic powder.

또한, 본 발명의 청구항 7에 기재된 세라믹 원료의 제조방법은, 청구항 6에 기재된 발명에 있어서, 상기 부성분이, 마그네슘 이외의 금속원소를 주성분으로 하는 졸을 포함하는 것을 특징으로 하는 것이다.Moreover, the manufacturing method of the ceramic raw material of Claim 7 of this invention WHEREIN: In the invention of Claim 6, the said subcomponent contains the sol which has a metal element other than magnesium as a main component.

<발명의 효과>Effect of the Invention

본 발명에 따르면, 세라믹 분체에 대하여 여러 가지 금속 화합물 졸과 병용하더라도 수성 용매 중에서의 안정도가 높은 마그네슘 화합물 졸을 제공할 수 있다.According to the present invention, a magnesium compound sol having high stability in an aqueous solvent can be provided even when used in combination with various metal compound sol in ceramic powder.

또한, 본 발명의 마그네슘 화합물 졸의 제조방법에 따르면, 마그네슘 공급원의 종류의 제약을 받지 않으며, 또한 탈수공정 등의 번잡한 공정을 거치지 않고 수성 용매 중에서의 안정도가 높은 마그네슘 화합물 졸을 간편하게 얻을 수 있다.In addition, according to the method for producing a magnesium compound sol of the present invention, magnesium compound sol having high stability in an aqueous solvent can be easily obtained without being restricted by the kind of magnesium source and without a complicated process such as dehydration. .

또한, 본 발명의 세라믹 원료의 제조방법에 따르면, 본 발명의 수성 용매 마그네슘 화합물 졸을 부성분으로서 혼합시킨 세라믹 원료를 제조할 수 있다.Moreover, according to the manufacturing method of the ceramic raw material of this invention, the ceramic raw material which mixed the aqueous solvent magnesium compound sol of this invention as a subcomponent can be manufactured.

본 발명의 마그네슘 화합물 졸은, 수성 용매와, 그 안에 분산하고 있는 마그네슘 미셀 입자를 포함하는 것이다. 이 마그네슘 미셀 입자는 카르보닐기를 갖는 카르복실산이, 마그네슘에 배위해서 착체(錯體)를 형성하고, 그 착체가 집합함으로써 형성된다.The magnesium compound sol of the present invention contains an aqueous solvent and magnesium micelle particles dispersed therein. These magnesium micelle particles are formed by the formation of a complex in which a carboxylic acid having a carbonyl group is coordinated with magnesium to form a complex.

여기에서, 수성 용매란, 그 용매의 주성분이 물이며, 유기계의 용매가 아니라고 하는 것을 의미한다. 단, 수성 용매 중에, 에탄올 등의 수용성 유기 화합물이 소량 용해하고 있는 것도 본 발명의 수성 용매에 포함된다. 여기에서 말하는 소량이란, 방폭설비 등이 필요해지지 않을 정도의 양을 말한다.Here, an aqueous solvent means that the main component of this solvent is water, and is not an organic solvent. However, a small amount of water-soluble organic compounds such as ethanol dissolved in the aqueous solvent is also included in the aqueous solvent of the present invention. The small amount here means the quantity which does not require explosion-proof installations.

마그네슘 미셀 입자가 수성 용매 중에 안정적인 콜로이드 입자로서 존재하기 위해서는, 마그네슘에 배위시키는 카르복실산의 종류나 양이 중요해진다. 가령, 안정적인 콜로이드 입자의 상태로 있을 수 없게 되었을 때는, 수성 용매 중에 용해하거나, 반대로 겔화하거나, 침전을 생기게 한다.In order for magnesium micelle particle to exist as a stable colloidal particle in an aqueous solvent, the kind and quantity of the carboxylic acid coordinated to magnesium become important. For example, when it becomes impossible to be in the form of stable colloidal particles, it dissolves in an aqueous solvent, conversely gels, or causes precipitation.

마그네슘에 배위시키는 카르복실산은 카르보닐기를 가지며, 마그네슘에의 배위에 의해 마그네슘 미셀 입자를 생성할 수 있는 것이면 특별히 제한되지 않는다. 마그네슘에 배위하는 카르복실산으로서는, 구연산, 호박산 및 EDTA에서 선택되는 적어도 1종이 사용된다.The carboxylic acid coordinated with magnesium does not have a restriction | limiting in particular as long as it has a carbonyl group and can produce magnesium micelle particle | grains by coordinating to magnesium. As the carboxylic acid coordinated to magnesium, at least one selected from citric acid, succinic acid and EDTA is used.

마그네슘 미셀 입자가 생성하기 위해서는 마그네슘에 대한 카르복실산의 양이 중요한 것은 전술한 바와 같다. 그래서, 카르복실산으로서 구연산, 호박산, EDTA를 사용한 경우에 있어서의, 마그네슘에 대한 카르복실산의 양에 대해서 설명한다. 마그네슘 미셀 입자의 안정도에 기여하는 것은 마그네슘에 대한 카르보닐기의 몰비(카르보닐기/마그네슘)이며, 그 몰비는 1.2 이상 2 이하이다. 예를 들면 카르복실산으로서 구연산을 사용하는 경우에는, 구연산은 1분자에 대하여 3개의 카르보닐기를 갖기 때문에, 마그네슘 1몰에 대하여 구연산을 0.4∼0.666몰 반응시키면 되게 된다.It is as described above that the amount of carboxylic acid to magnesium is important for the production of magnesium micelle particles. Then, the amount of carboxylic acid with respect to magnesium in the case of using citric acid, succinic acid, and EDTA as carboxylic acid is demonstrated. Contributing to the stability of the magnesium micelle particles is a molar ratio of carbonyl group to magnesium (carbonyl group / magnesium), and the molar ratio is 1.2 or more and 2 or less. For example, when citric acid is used as the carboxylic acid, citric acid has three carbonyl groups per molecule, so 0.4 to 0.666 mol of citric acid is reacted with 1 mol of magnesium.

상기 몰비가 1.2 미만이 되면, 마그네슘 미셀 입자의 용해도가 저하하여, 겔화하거나, 또는 침전을 발생시킨다. 또한, 몰비가 2.0을 넘으면, 마그네슘 미셀 입자가 너무 작아져서, 수성 용매에 용해해 버려, 졸이 얻어지지 않을 우려가 있다. 마그네슘 화합물 졸의 안정도를 더욱 향상시키는 경우는, 마그네슘에 대한 카르보닐기의 몰비를 1.5 이상 1.8 이하로 하는 것이 바람직하다.When the molar ratio is less than 1.2, the solubility of the magnesium micelle particles is lowered, causing gelation or precipitation. Moreover, when molar ratio exceeds 2.0, magnesium micelle particle will become too small, it will melt | dissolve in an aqueous solvent, and there exists a possibility that a sol may not be obtained. When further improving the stability of the magnesium compound sol, the molar ratio of carbonyl group to magnesium is preferably 1.5 or more and 1.8 or less.

또한, 상기 마그네슘 미셀 입자가 수성 용매 중에서 안정되기 위해서는, 수성 용매의 pH는 4 이상 11 이하인 것이 바람직하다. pH가 4 미만이 되면, 마그네슘 화합물이 수성 용매에 용해하기 쉬워져서, 안정된 마그네슘 미셀 입자가 생성하지 않으며, 졸이 되지 않는다. 또한 pH가 11을 넘으면, 마그네슘 화합물이 침전을 일으켜, 이것도 안정된 마그네슘 미셀 입자가 생성하지 않으며, 졸이 되지 않는다.In addition, in order for the said magnesium micelle particle to be stabilized in an aqueous solvent, it is preferable that pHs of an aqueous solvent are 4 or more and 11 or less. When pH is less than 4, a magnesium compound will become easy to melt | dissolve in an aqueous solvent, stable magnesium micelle particle | grains will not produce | generate and it will not become a sol. Moreover, when pH exceeds 11, a magnesium compound will precipitate, and this also will not produce stable magnesium micelle particle | grains, and will not become a sol.

본 발명의 마그네슘 화합물 졸을, 예를 들면 티탄산바륨계 화합물을 주성분으로 하는 유전체 세라믹 원료 등의 세라믹 원료의 부성분으로서 사용하는 경우에는, 수성 용매의 pH는 8 이상 11 이하인 것이 바람직하다. pH가 8 미만이 되면, 티탄산바륨계 화합물이 물에 용출(溶出)하기 쉽기 때문이다.When using the magnesium compound sol of this invention as a subcomponent of ceramic raw materials, such as a dielectric ceramic raw material which has a barium titanate type compound as a main component, it is preferable that pH of an aqueous solvent is 8 or more and 11 or less. This is because when the pH is less than 8, the barium titanate-based compound is likely to elute in water.

한편, 본 발명의 마그네슘 화합물 졸에는, 본 발명의 목적을 방해하지 않는 한, 다른 이온 등이 혼입해 있어도 좋다. 예를 들면, 마그네슘의 공급원이 되는 마그네슘 화합물로서 초산마그네슘을 사용한 경우, 수성 용매 중에는 상당량의 초산 이온이 존재하고 있으며, 또한 마그네슘 미셀 입자 중에도 미량의 초산이 배위하고 있는 경우가 있다. 그러나, 이것은 본 발명의 마그네슘 화합물 졸의 안정성에 악영향을 미치는 것은 아니다. 또한, 미량의 다른 금속성분 등의 불순물에 대해서도, 본 발명의 목적을 방해하지 않는 한 혼입해 있어도 좋다.In addition, another ion etc. may be mixed in the magnesium compound sol of this invention, unless the objective of this invention is interrupted. For example, when magnesium acetate is used as a magnesium compound serving as a magnesium source, a considerable amount of acetic acid ions are present in the aqueous solvent, and a small amount of acetic acid is also coordinated in the magnesium micelle particles. However, this does not adversely affect the stability of the magnesium compound sol of the present invention. Also, impurities such as trace amounts of other metal components may be mixed as long as they do not interfere with the object of the present invention.

이어서, 본 발명의 마그네슘 화합물 졸의 제조방법에 대해서 설명한다.Next, the manufacturing method of the magnesium compound sol of this invention is demonstrated.

본 발명의 마그네슘 화합물 졸의 제조방법은, 마그네슘 이온 또는 마그네슘 화합물 입자가 분산한 수성 용매를 준비하는 제1의 공정과, 상기 수성 용매에, 카르복실산 또는 상기 카르복실산의 염을 투입하여, 상기 마그네슘 이온 또는 마그네슘 화합물 입자와 반응시키는 제2의 공정을 구비하고 있다.In the method for producing a magnesium compound sol of the present invention, a first step of preparing an aqueous solvent in which magnesium ions or magnesium compound particles are dispersed, and a carboxylic acid or a salt of the carboxylic acid is added to the aqueous solvent, The 2nd process which makes it react with the said magnesium ion or magnesium compound particle is provided.

제1의 공정에서는, 우선, 마그네슘 공급원이 되는 마그네슘 화합물을 수성 용매에 용해시켜, 마그네슘 이온을 포함하는 수성 용매를 얻는다. 이때, 마그네슘 화합물의 종류는, 상기 카르복실산이 배위한 마그네슘 미셀 입자가 안정된 콜로이드 입자를 생성하는 것이면 특별히 제한되는 것은 아니다. 또한, 카르복실산을 배위시키기 전의 마그네슘 화합물 단체의 물에의 용해도는 문제가 되지 않는다. 예로서는, 물에의 용해도가 높은 초산마그네슘(수화물을 포함해도 좋다)이 바람직하다. 한편, 산화마그네슘은 용해시에 있어서의 발열이 크고, 경우에 따라서는 제조공정이 번잡해질 우려도 있으나, 생성한 마그네슘 화합물 졸의 안정성에 악영향을 미치는 것은 아니다. 수성 용매에 용해하기 어려운 마그네슘 화합물, 예를 들면 수산화마그네슘 등을 사용하는 경우는, 수산화마그네슘 입자를 수중(水中)에 분산시키고, 이것을 수성 용매로 해도 좋다.In the first step, first, a magnesium compound serving as a magnesium source is dissolved in an aqueous solvent to obtain an aqueous solvent containing magnesium ions. In this case, the type of magnesium compound is not particularly limited as long as the magnesium micelles to which the carboxylic acid is coordinated produce stable colloidal particles. In addition, the solubility of the magnesium compound alone in water before coordinating the carboxylic acid is not a problem. As an example, magnesium acetate (which may contain a hydrate) with high solubility in water is preferable. On the other hand, magnesium oxide has a high heat generation during dissolution and, in some cases, the manufacturing process may be complicated, but it does not adversely affect the stability of the resulting magnesium compound sol. When using a magnesium compound which is hard to dissolve in an aqueous solvent, for example, magnesium hydroxide, etc., magnesium hydroxide particles may be dispersed in water, and this may be used as an aqueous solvent.

또한, 제2의 공정에서는, 제1의 공정에서 준비한 마그네슘 이온 또는 마그네슘 화합물 입자를 분산시킨 수성 용매에 대하여, 소정의 카르복실산 또는 카르복실산염을 투입하고, 이 수성 용매를 잘 교반하면서, 마그네슘 이온 또는 마그네슘 화합물 입자와 카르복실산을 반응시킨다. 교반시의 온도는 실온이어도 좋으나, 가열을 행하면 반응의 속도가 빨라진다. 이 반응에 의해, 마그네슘에 카르복실산이 배위한 마그네슘 미셀 입자가 생성한다. 이 마그네슘 미셀 입자가 안정적인 콜로이드 입자의 상태가 됨으로써, 안정된 마그네슘 화합물 졸이 생성한다.In addition, in a 2nd process, predetermined carboxylic acid or a carboxylate is thrown in the aqueous solvent which disperse | distributed the magnesium ion or magnesium compound particle prepared in the 1st process, and this magnesium was stirred well, stirring this aqueous solvent. The ionic acid or magnesium compound particles are reacted with the carboxylic acid. Although the temperature at the time of stirring may be room temperature, heating speeds up reaction. This reaction produces magnesium micelle particles in which carboxylic acid is coordinated with magnesium. The magnesium micelle particles are brought into stable colloidal particles, whereby a stable magnesium compound sol is produced.

또한, 상술한 카르복실산 또는 카르복실산염의 첨가에 의해, 수성 용매의 pH가 낮아지는 경우가 있다. 이 경우, 수산화나트륨, 수산화칼륨, 아민계 화합물, 암모니아계 화합물 등의 염기성 물질을 pH 조정제로서 첨가하여, pH를 적정한 값으로 조정할 수 있다.Moreover, the pH of an aqueous solvent may fall by addition of the carboxylic acid or carboxylate mentioned above. In this case, basic substances, such as sodium hydroxide, potassium hydroxide, an amine compound, and an ammonia compound, can be added as a pH adjuster, and pH can be adjusted to an appropriate value.

이어서, 본 발명의 세라믹 원료의 제조방법에 대해서 설명한다. 본 발명에서는, 세라믹 분체에 대하여 상기 마그네슘 화합물 졸을 부성분으로서 혼합시킨다. 세라믹 분체로서는 유전체 세라믹이 바람직하며, 유전체 세라믹의 주성분으로서는 예를 들면 티탄산바륨계 화합물이 바람직하다.Next, the manufacturing method of the ceramic raw material of this invention is demonstrated. In this invention, the said magnesium compound sol is mixed as a subcomponent with respect to ceramic powder. As ceramic powder, a dielectric ceramic is preferable and as a main component of a dielectric ceramic, a barium titanate type compound is preferable, for example.

마그네슘 화합물 졸을 혼합시키는 방법으로서는, 마그네슘 화합물 입자를 균일하게 분산시킬 수 있으면, 특별히 제한되는 것은 아니다. 예를 들면, 세라믹 분체와 순수한 물을 혼합한 슬러리를 준비하고, 그 슬러리를 용기 안에서 교반하면서, 본 발명의 마그네슘 화합물 졸을 적하하는 방법이 바람직하다.The method for mixing the magnesium compound sol is not particularly limited as long as the magnesium compound particles can be uniformly dispersed. For example, the method of preparing the slurry which mixed the ceramic powder and the pure water, and stirring this slurry in a container, and dropping the magnesium compound sol of this invention is preferable.

상기 세라믹 원료의 부성분으로서, 본 발명의 마그네슘 화합물 졸 외에, 다른 금속원소, 예를 들면 희토류 원소 화합물의 졸을 첨가하고 있어도 좋다. 본 발명의 마그네슘 화합물 졸은, 동시에 다른 금속원소의 졸과 공존해도, 그 안정성이 손상되지 않는 것이다.As a subcomponent of the ceramic raw material, in addition to the magnesium compound sol of the present invention, a sol of another metal element, for example, a rare earth element compound, may be added. Even if the magnesium compound sol of the present invention coexists with the sol of another metal element at the same time, the stability thereof is not impaired.

<실시예><Example>

다음으로, 본 발명을 보다 구체적인 실시예에 기초해서 설명한다. 한편, 본 발명의 범위 내에 있어서의 실시 가능한 형태이면, 이하에서 설명하는 본 실시예만으로 제한되는 것이 아님은 말할 것도 없다.Next, the present invention will be described based on more specific examples. In addition, it cannot be overemphasized that it is not limited only to this Example demonstrated below, as long as it can be implement | achieved within the scope of this invention.

실시예 1Example 1

본 실시예에서는, 카르복실산의 종류 및 마그네슘에 대한 카르보닐기의 몰비의 영향에 대해서 조사하였다. 즉, 마그네슘 화합물 졸의 원료로서, 소정량의 초산마그네슘(수화물을 포함한다), 염화마그네슘, 질산마그네슘의 분말을 준비하고, 물에 용해시켰다. 또한, 수산화마그네슘의 분말을 물에 투입하고, 교반하여, 수산화마그네슘 입자를 물에 분산시켰다. 이에 비해서, 표 1에 나타내는 소정의 카르복실산 또는 카르복실산염을, 마그네슘에 대한 몰비가 표 1에 나타내는 값이 되도록, 교반하면서 투입하고, 또한 소정량의 모노에탄올아민을 pH가 9.5가 되도록 첨가해 서 교반하였다. 얻어진 생성물의 상태와, 그 평균 입자경을 니혼 루후토사(NIHON RUFUTO CO., LTD.) 제품 DT1200에 의해 측정하고, 그 결과를 표 1에 나타내었다. 또한, 각각의 시료에 있어서, 별도로, 마그네슘과 카르복실산의 몰비가 1:1이 되도록 반응시켰을 때의 용해도를 구하고, 그 결과를 표 1에 나타내었다. 한편, 표 1에 있어서, *표를 붙인 시료는 본 발명의 범위 외의 것이다.In this Example, the influence of the kind of carboxylic acid and the molar ratio of the carbonyl group to magnesium was investigated. That is, as a raw material of the magnesium compound sol, powders of a predetermined amount of magnesium acetate (including hydrates), magnesium chloride, and magnesium nitrate were prepared and dissolved in water. Further, powder of magnesium hydroxide was added to water and stirred to disperse the magnesium hydroxide particles in water. On the other hand, the predetermined carboxylic acid or carboxylate shown in Table 1 is added while stirring so that the molar ratio with respect to magnesium becomes the value shown in Table 1, and a predetermined amount of monoethanolamine is added so that pH may be 9.5. Stirring. The state of the obtained product and the average particle diameter thereof were measured by DT1200 manufactured by NIHON RUFUTO CO., LTD., And the results are shown in Table 1. In addition, in each sample, the solubility at the time of reacting so that the molar ratio of magnesium and carboxylic acid might be 1: 1 was calculated | required, and the result is shown in Table 1. In Table 1, samples marked with * are outside the scope of the present invention.

표 2에 나타내는 결과에 따르면, 시료번호 1∼12의 시료는, 카르복실산에 구연산, 호박산, EDTA 또는 그들의 염을 사용하고, 마그네슘에 대한 카르보닐기의 몰비가 1.2 이상 2 이하가 되도록 반응시킨 시료이기 때문에, 안정된 마그네슘 화합물 졸이 얻어졌다.According to the result shown in Table 2, the sample of the sample Nos. 1-12 is a sample which reacted so that the molar ratio of carbonyl group to magnesium might be 1.2 or more and 2 or less using citric acid, succinic acid, EDTA, or salts thereof to carboxylic acid. Thus, a stable magnesium compound sol was obtained.

그러나, 시료번호 13, 14는 카르복실산으로서 주석산 및 주석산염을 사용한 시료인데, 주석산 및 주석산염이 본 발명에 사용되는 카르복실산이 아니기 때문에, 마그네슘에 주석산이 배위한 마그네슘 미셀의 용해도가 낮고, 마그네슘 미셀 입자가 백색의 겔형상이 되어, 졸이 얻어지지 않았다.However, Sample Nos. 13 and 14 are samples using tartaric acid and tartarate as carboxylic acids. Since tartaric acid and tartarate are not carboxylic acids used in the present invention, the solubility of magnesium micelles in which tartaric acid is coordinated with magnesium is low. Magnesium micelle particles became a white gel and no sol was obtained.

시료번호 15, 16은 카르복실산으로서 각각 젖산 및 수산(蓚酸)을 사용한 시료인데, 젖산 및 수산이 모두 본 발명에 사용되는 카르복실산이 아니기 때문에, 젖산 및 수산이 마그네슘에 충분히 배위하지 않고, 수산화마그네슘의 침전이 발생하여, 졸이 얻어지지 않았다.Sample Nos. 15 and 16 are samples each using lactic acid and hydroxyl as carboxylic acid. Since lactic acid and hydroxyl are not both carboxylic acids used in the present invention, lactic acid and hydroxyl are not sufficiently coordinated with magnesium, Precipitation of magnesium occurred and no sol was obtained.

시료번호 17은 카르복실산으로서 구연산을 사용한 시료인데, 마그네슘에 대한 카르보닐기의 몰비가 0.6으로 작았기 때문에, 마그네슘 미셀 입자의 용해도가 낮아 백색의 겔형상이 되어, 졸이 얻어지지 않았다.Sample No. 17 is a sample using citric acid as the carboxylic acid. Since the molar ratio of carbonyl group to magnesium was small at 0.6, the solubility of magnesium micelle particles was low, resulting in a white gel, and no sol was obtained.

시료번호 18, 19는 카르복실산으로서 각각 구연산을 사용한 시료인데, 마그네슘에 대한 카르보닐기의 몰비가 각각 2보다 컸기 때문에, 마그네슘 미셀 입자가 생성되지 않고 용액형상이 되어, 졸이 얻어지지 않았다. Sample Nos. 18 and 19 are samples each using citric acid as the carboxylic acid. Since the molar ratio of carbonyl group to magnesium was greater than 2, magnesium micelle particles were not produced but were in solution form, and a sol was not obtained.

시료 번호Sample number 마그네슘 원료Magnesium raw material 카르복실산Carboxylic acid 카르복실산/ 마그네슘 몰비Carboxylic Acid / Magnesium Molar Ratio 카르보닐기/ 마그네슘 몰비Carbonyl / Magnesium Molar Ratio 용해도 [중량%]Solubility [wt%] 생성물의 상태State of the product 평균 입자경 [nm]Average particle diameter [nm] 1One 초산마그네슘Magnesium acetate 구연산Citric acid 0.550.55 1.651.65 2727 Sol 6060 22 초산마그네슘Magnesium acetate 구연산삼암모늄Triammonium citrate 0.550.55 1.651.65 2727 Sol 6060 33 초산마그네슘Magnesium acetate 호박산Succinic acid 0.830.83 1.661.66 2020 Sol 3434 44 초산마그네슘Magnesium acetate EDTA이칼륨EDTA Dipotassium 0.970.97 1.941.94 1010 Sol 4040 55 산화마그네슘Magnesium oxide 구연산Citric acid 0.650.65 1.951.95 2727 Sol 6060 66 수산화마그네슘Magnesium hydroxide 구연산Citric acid 0.600.60 1.801.80 2727 Sol 7575 77 염화마그네슘Magnesium chloride 구연산Citric acid 0.550.55 1.651.65 2727 Sol 6565 88 질산마그네슘Magnesium nitrate 구연산Citric acid 0.550.55 1.651.65 2727 Sol 6565 99 초산마그네슘Magnesium acetate 구연산Citric acid 0.400.40 1.201.20 2727 Sol 6868 1010 초산마그네슘Magnesium acetate 구연산Citric acid 0.500.50 1.501.50 2727 Sol 5050 1111 초산마그네슘Magnesium acetate 구연산Citric acid 0.600.60 1.801.80 2727 Sol 7070 1212 초산마그네슘Magnesium acetate 구연산Citric acid 0.670.67 2.002.00 2727 Sol 7272 *13* 13 초산마그네슘Magnesium acetate 주석산Tartaric acid 0.830.83 1.661.66 0.050.05 백색 졸White pawns -- *14* 14 초산마그네슘Magnesium acetate 주석산이나트륨Disodium Tartrate 0.830.83 1.661.66 0.050.05 백색 졸White pawns -- *15* 15 초산마그네슘Magnesium acetate 젖산Lactic acid 1.651.65 1.651.65 0.100.10 침전Sedimentation -- *16* 16 초산마그네슘Magnesium acetate 수산Fisheries 0.830.83 1.661.66 0.020.02 침전Sedimentation -- *17* 17 초산마그네슘Magnesium acetate 구연산Citric acid 0.200.20 0.600.60 2727 백색 졸White pawns -- *18* 18 초산마그네슘Magnesium acetate 구연산Citric acid 0.700.70 2.102.10 2727 용액solution -- *19* 19 초산마그네슘Magnesium acetate 구연산Citric acid 1.001.00 3.003.00 2727 용액solution --

실시예 2Example 2

본 실시예에서는, 구연산 또는 호박산을 사용할 때의 수성 용매의 pH의 영향에 대해서 조사하였다. 즉, 초산마그네슘(수화물을 포함한다)의 분말을 준비하고, 물에 용해시켰다. 이것에 표 2에 나타내는 카르복실산을, 마그네슘 1몰에 대한 카르보닐기의 몰비가 표 2에 나타내는 값이 되도록 교반하면서 투입하고, 또한 수성 용매의 pH 조정제로서 표 2에 나타내는 염기성 물질을, 표 2에 나타내는 pH가 되도록 첨가해서 교반하였다. 얻어진 생성물의 상태와, 그 평균 입자경을 표 2에 나타내었다. 한편, 표 1에 있어서, *표를 붙인 시료는 본 발명의 범위 외의 것이다.In this example, the influence of the pH of the aqueous solvent when citric acid or succinic acid is used was investigated. That is, a powder of magnesium acetate (including hydrate) was prepared and dissolved in water. To this, the carboxylic acid shown in Table 2 is added while stirring so that the molar ratio of the carbonyl group to 1 mol of magnesium becomes the value shown in Table 2, and the basic substance shown in Table 2 as the pH adjuster of the aqueous solvent is shown in Table 2. It added and stirred so that it might become a pH shown. The state of the obtained product and its average particle diameter are shown in Table 2. In Table 1, samples marked with * are outside the scope of the present invention.

표 2에 나타내는 결과에 따르면, 시료번호 22∼28, 및 시료번호 31∼37의 시료는, 수성 용매의 염기성 물질로 pH를 본 발명의 범위 내인 4∼11로 조정한 시료이기 때문에, 안정된 마그네슘 화합물 졸이 얻어졌다.According to the result shown in Table 2, the sample of the sample numbers 22-28 and the sample numbers 31-37 is a stable magnesium compound because it is a sample which adjusted pH to 4-11 within the range of this invention with the basic substance of an aqueous solvent. A sol was obtained.

이에 비해서, 시료번호 21, 30의 시료는, pH가 4보다 낮은 시료이기 때문에, 마그네슘 미셀 입자가 생성되지 않고 용액형상이 되어, 졸이 얻어지지 않았다.On the other hand, since the samples of samples Nos. 21 and 30 were samples having a pH lower than 4, magnesium micelle particles were not produced and were in solution form, and no sol was obtained.

시료번호 29의 시료는, pH가 11보다 높은 시료이기 때문에, 수산화마그네슘의 침전이 발생하여, 졸이 얻어지지 않았다.Since the sample of the sample number 29 is a sample whose pH is higher than 11, precipitation of magnesium hydroxide generate | occur | produced and the sol was not obtained.

시료 번호Sample number 카르복실산Carboxylic acid 카르복실산/ 마그네슘 몰비Carboxylic Acid / Magnesium Molar Ratio 카르보닐기/ 마그네슘 몰비Carbonyl / Magnesium Molar Ratio 염기성 물질A basic substance pHpH 생성물의 상태State of the product 평균 입자경[nm]Average particle diameter [nm] *21* 21 구연산Citric acid 0.550.55 1.651.65 없음none 3.93.9 용액solution -- 2222 구연산Citric acid 0.550.55 1.651.65 모노에탄올아민Monoethanolamine 4.24.2 Sol 4343 2323 구연산Citric acid 0.550.55 1.651.65 모노에탄올아민Monoethanolamine 4.94.9 Sol 3939 2424 구연산Citric acid 0.550.55 1.651.65 모노에탄올아민Monoethanolamine 6.06.0 Sol 4646 2525 구연산Citric acid 0.550.55 1.651.65 모노에탄올아민Monoethanolamine 7.87.8 Sol 4848 2626 구연산Citric acid 0.550.55 1.651.65 모노에탄올아민Monoethanolamine 8.98.9 Sol 4949 2727 구연산Citric acid 0.550.55 1.651.65 모노에탄올아민Monoethanolamine 10.010.0 Sol 6060 2828 구연산Citric acid 0.550.55 1.651.65 수산화나트륨Sodium hydroxide 11.011.0 Sol 8080 *29* 29 구연산Citric acid 0.550.55 1.651.65 수산화나트륨Sodium hydroxide 12.012.0 침전Sedimentation -- *30* 30 호박산Succinic acid 0.830.83 1.661.66 없음none 3.83.8 용액solution -- 3131 호박산Succinic acid 0.830.83 1.661.66 모노에탄올아민Monoethanolamine 4.14.1 Sol 4343 3232 호박산Succinic acid 0.830.83 1.66 1.66 모노에탄올아민Monoethanolamine 4.54.5 Sol 4545 3333 호박산Succinic acid 0.830.83 1.661.66 모노에탄올아민Monoethanolamine 5.35.3 Sol 6363 3434 호박산Succinic acid 0.830.83 1.661.66 모노에탄올아민Monoethanolamine 6.06.0 Sol 6666 3535 호박산Succinic acid 0.830.83 1.661.66 모노에탄올아민Monoethanolamine 7.27.2 Sol 7171 3636 호박산Succinic acid 0.830.83 1.661.66 모노에탄올아민Monoethanolamine 8.78.7 Sol 8181 3737 호박산Succinic acid 0.830.83 1.661.66 모노에탄올아민Monoethanolamine 9.59.5 Sol 3434

실시예 3Example 3

본 실시예에서는, 본 발명의 마그네슘 화합물 졸과 다른 금속 화합물 졸을 부성분으로서 세라믹 원료를 제조하였다. 즉, 세라믹 분체로서 티탄산바륨의 분체를 준비하고, 이것을 볼 밀에 의해 물과 혼합하여, 티탄산바륨 분체를 포함하는 슬러리를 얻었다. 다음으로, 본 발명의 실시예 1의 시료번호 1의 마그네슘 화합물 졸을 준비하였다. 또한, 마그네슘 이외의 금속원소를 주성분으로 하는 금속 화합물 졸로서, 홀뮴에 구연산이 배위한 홀뮴 미셀 입자가 수중에 분산한, 홀뮴 화합물 졸을 준비하였다.In the present Example, the ceramic raw material was manufactured as a subcomponent from the magnesium compound sol of this invention and another metal compound sol. That is, the powder of barium titanate was prepared as ceramic powder, this was mixed with water by the ball mill, and the slurry containing barium titanate powder was obtained. Next, the magnesium compound sol of sample No. 1 of Example 1 of the present invention was prepared. As a metal compound sol mainly composed of metal elements other than magnesium, a holmium compound sol was prepared in which holmium micelle particles in which citric acid was distributed to holmium were dispersed in water.

상기 슬러리를 교반하면서, 상기 슬러리 중에 마그네슘 화합물 졸과 홀뮴 화합물 졸을 적하하였다. 이때, 적하량은 티탄산바륨 100몰에 대하여 마그네슘이 2몰, 홀뮴이 1몰이 되도록 제어하였다. 충분히 교반한 결과, 마그네슘 화합물 졸과 홀뮴 화합물 졸은 슬러리 중에 충분히 분산하여, 응집이나 겔화 등의 문제는 발생하지 않았다. 이 슬러리를 건조해서, 마그네슘과 홀뮴이 충분히 분산한 티탄산바륨의 분체, 즉 유전체 세라믹의 원료를 얻었다.While stirring the slurry, a magnesium compound sol and a holmium compound sol were added dropwise into the slurry. At this time, the dropping amount was controlled so that 2 mol of magnesium and 1 mol of holmium were 100 mol with respect to 100 mol of barium titanate. As a result of sufficient stirring, the magnesium compound sol and the holmium compound sol were sufficiently dispersed in the slurry, and problems such as aggregation and gelation did not occur. This slurry was dried to obtain powder of barium titanate sufficiently dispersed in magnesium and holmium, that is, a raw material of a dielectric ceramic.

Claims (7)

카르보닐기를 갖는 카르복실산이 배위(配位)한 마그네슘 미셀 입자가 pH 4~11인 수성 용매 중에 분산된 마그네슘 화합물 졸로서,As a magnesium compound sol in which magnesium micelle particles in which a carboxylic acid having a carbonyl group is coordinated are dispersed in an aqueous solvent having a pH of 4 to 11, 상기 카르복실산은 구연산, 호박산 및 EDTA에서 선택되는 적어도 1종이며, 또한 상기 카르보닐기의 상기 마그네슘에 대한 몰비가 1.2 이상 2 이하인 것을 특징으로 하는 마그네슘 화합물 졸.The said carboxylic acid is at least 1 sort (s) chosen from a citric acid, a succinic acid, and EDTA, and the magnesium compound sol of the said carbonyl group whose molar ratio with respect to the said magnesium is 1.2 or more and 2 or less. 삭제delete 제1항에 있어서, 상기 수성 용매의 pH가 8 이상 11 이하인 것을 특징으로 하는 마그네슘 화합물 졸.The magnesium compound sol according to claim 1, wherein the pH of the aqueous solvent is 8 or more and 11 or less. 제1항 또는 제3항에 기재된 마그네슘 화합물 졸을 제조하는 방법으로서, 마그네슘 이온 또는 마그네슘 화합물 입자가 분산한 수성 용매를 준비하는 공정과, 상기 수성 용매에, 카르복실산 또는 상기 카르복실산의 염을 투입하여, 상기 마그네슘 이온 또는 마그네슘 화합물 입자와 반응시키는 공정을 구비하는 것을 특징으로 하는 마그네슘 화합물 졸의 제조방법.A method for producing the magnesium compound sol according to claim 1 or 3, comprising the steps of preparing an aqueous solvent in which magnesium ions or magnesium compound particles are dispersed, and a carboxylic acid or a salt of the carboxylic acid in the aqueous solvent. The method for producing a magnesium compound sol comprising the step of reacting with the magnesium ions or magnesium compound particles. 제4항에 있어서, 수산화나트륨, 수산화칼륨, 아민계 화합물 및 암모니아계 화합물로 이루어진 군에서 선택된 염기성 물질을 상기 수성 용매에 용해시킴으로써, 상기 수성 용매의 pH를 조정하는 공정을 포함하는 것을 특징으로 하는 마그네슘 화합물 졸의 제조방법.The method of claim 4, further comprising the step of adjusting the pH of the aqueous solvent by dissolving a basic material selected from the group consisting of sodium hydroxide, potassium hydroxide, an amine compound and an ammonia compound in the aqueous solvent. Method for preparing magnesium compound sol. 삭제delete 삭제delete
KR1020077004863A 2005-03-30 2006-03-09 Magnesium compound sol and its manufacturing method and manufacturing method of ceramic raw material using the same Active KR100880534B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005098923 2005-03-30
JPJP-P-2005-00098923 2005-03-30

Publications (2)

Publication Number Publication Date
KR20070088497A KR20070088497A (en) 2007-08-29
KR100880534B1 true KR100880534B1 (en) 2009-01-28

Family

ID=37114933

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077004863A Active KR100880534B1 (en) 2005-03-30 2006-03-09 Magnesium compound sol and its manufacturing method and manufacturing method of ceramic raw material using the same

Country Status (5)

Country Link
JP (1) JP4530041B2 (en)
KR (1) KR100880534B1 (en)
CN (1) CN1989072B (en)
TW (1) TW200706495A (en)
WO (1) WO2006112199A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983118B1 (en) * 2007-12-07 2010-09-17 삼성전기주식회사 Manufacturing method of magnesium oxide nanoparticles and manufacturing method of magnesium oxide nanosol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000057151A (en) * 1996-11-20 2000-09-15 무라타 야스타카 Barium titanate-base semiconducting ceramic composition
KR20010034928A (en) * 1998-06-23 2001-04-25 마싸 앤 피네간 Barium Titanate Dispersions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798680B2 (en) 1989-11-13 1995-10-25 堺化学工業株式会社 Method for producing raw material powder of lead-based perovskite ceramics
IT1276322B1 (en) * 1994-07-21 1997-10-28 Vbc Srl PROCEDURE FOR THE PURIFICATION OF MAGNESIUM HYDROXIDE
JPH09310033A (en) 1996-05-23 1997-12-02 Dainippon Printing Co Ltd Sol solution and membrane formation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000057151A (en) * 1996-11-20 2000-09-15 무라타 야스타카 Barium titanate-base semiconducting ceramic composition
KR20010034928A (en) * 1998-06-23 2001-04-25 마싸 앤 피네간 Barium Titanate Dispersions

Also Published As

Publication number Publication date
TWI315719B (en) 2009-10-11
JPWO2006112199A1 (en) 2008-12-04
WO2006112199A1 (en) 2006-10-26
TW200706495A (en) 2007-02-16
CN1989072A (en) 2007-06-27
CN1989072B (en) 2010-05-19
KR20070088497A (en) 2007-08-29
JP4530041B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
EP2055676A2 (en) Barium carbonate particle powder, production method thereof, and production method of perovskite barium titanate
KR101295161B1 (en) Method for manufacturing composite oxide powder
KR20120083707A (en) Glass powder and method for preparing the same
CN114105191A (en) Nano-grade barium titanate powder and preparation process thereof
US8592491B2 (en) Water-based rare earth metal compound sol, manufacturing method thereof, and method for manufacturing ceramic powder using the same
KR100880534B1 (en) Magnesium compound sol and its manufacturing method and manufacturing method of ceramic raw material using the same
US20040009351A1 (en) Process for coating ceramic particles and compositions formed from the same
TWI877312B (en) Method for producing calcium-titanium ore type compound and calcium-titanium ore type compound
KR100955802B1 (en) Process for preparing fine barium titanate based composite oxide
KR101539851B1 (en) Perovskite powder, manufacturing method thereof and paste composition for internal electrode comprising the same
JPH0665603B2 (en) Method for producing composite oxide ceramic powder
KR101802067B1 (en) Synthesis method of oxide powder with perovskite structure and oxide powder formed by the synthesis method
CN1569738A (en) Barium titanate based multilayer ceramic capacitor nanopowder for nickel electrode and production method thereof
US20220388857A1 (en) Moderately dispersed nano dy2o3
CN117295688A (en) Composition for forming dielectric ceramic and dielectric ceramic material
JPS623004A (en) Production of easily sintering perovskite raw material powder by wet method
KR100921352B1 (en) Method for preparing fine barium titanate powder
WO2024225268A1 (en) Perovskite compound and method for producing same
JP2022062686A (en) Aminopolycarboxylic acid complex powder, additive and ceramic powder manufacturing method
JP3149467B2 (en) Method for producing fine powder for semiconductor porcelain
CN118833853A (en) Barium titanate powder and preparation method and application thereof
JPH06501445A (en) Method for producing mixed metal oxide powder
JP2685687B2 (en) Method for producing rare earth element oxide particles
CN112341194A (en) Dielectric powder
JP2004323320A (en) Manufacturing method of multilayer ceramic component, multilayer ceramic component using the same, and green sheet used for the same

Legal Events

Date Code Title Description
A201 Request for examination
PA0105 International application

Patent event date: 20070228

Patent event code: PA01051R01D

Comment text: International Patent Application

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20080226

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20080804

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20090115

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20090119

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20090119

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20120110

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20121220

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20140103

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20150105

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20150105

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20160108

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20160108

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20170106

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20170106

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20180112

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20180112

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20200109

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20200109

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20210107

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20230105

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20240111

Start annual number: 16

End annual number: 16