KR100873962B1 - New Methylbacterium fuzisawaens CMB 110 strain and plant growth promotion method using same - Google Patents
New Methylbacterium fuzisawaens CMB 110 strain and plant growth promotion method using same Download PDFInfo
- Publication number
- KR100873962B1 KR100873962B1 KR1020060039226A KR20060039226A KR100873962B1 KR 100873962 B1 KR100873962 B1 KR 100873962B1 KR 1020060039226 A KR1020060039226 A KR 1020060039226A KR 20060039226 A KR20060039226 A KR 20060039226A KR 100873962 B1 KR100873962 B1 KR 100873962B1
- Authority
- KR
- South Korea
- Prior art keywords
- strain
- cbmb
- plant growth
- plant
- present
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05F—ORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
- C05F11/00—Other organic fertilisers
- C05F11/08—Organic fertilisers containing added bacterial cultures, mycelia or the like
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Microbiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
본 발명은 신규 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주 및 이를 이용한 식물생장촉진 방법에 관한 것으로서, 보다 상세하게는 본 발명은 공중질소를 고정하고, 식물생장촉진 호르몬을 분비하고, 식물노화 호르몬의 생성을 억제하여 식물의 생장을 촉진시키는 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주 및 이를 이용한 식물생장촉진 방법에 관한 것이다. 본 발명에 따른 식물 생장 촉진 균주는 식물의 생산성을 증대하고 상기 균주를 이용하여 미생물 비료제의 제조에 유용하게 사용될 수 있다.The present invention relates to a novel methylobacterium fujisawaense ( Cethylobacterium fujisawaense ) CBMB 110 strain and a method for promoting plant growth using the same. More specifically, the present invention is to fix aerial nitrogen and secrete plant growth promoting hormones. , Methylobacterium Methylobacterium Promotes Plant Growth by Inhibiting the Production of Plant Aging Hormones fujisawaense ) CBMB 110 strain and a method for promoting plant growth using the same. Plant growth promoting strain according to the present invention can be used to increase the productivity of the plant and to prepare microbial fertilizers using the strain.
Description
도 1은 본 발명의 신규한 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주에 의해 식물체 내에서 증가된 식물 호르몬을 나타낸 결과이다.1 is a result showing the plant hormones increased in plants by the novel Methylobacterium fujisawaense CBMB 110 strain of the present invention.
도 2는 본 발명의 신규한 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주에 의해 감소된 식물체 내의 에틸렌 양을 나타낸 결과이다.Figure 2 is a result showing the amount of ethylene in the plant reduced by the novel Methylobacterium fujisawaense CBMB 110 strain of the present invention.
도 3은 본 발명의 신규한 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주에 의해 감소된 1-아미노사이클로프로판-1-카르복실산의 양을 나타낸 결과이다. Figure 3 is a result showing the amount of 1-aminocyclopropane-1-carboxylic acid reduced by the novel Methylobacterium fujisawaense CBMB 110 strain of the present invention.
본 발명은 신규한 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주 및 이를 이용한 식물 생장촉진 방법에 관한 것으로서, 보다 상세하게 본 발명은 공중질소를 고정하고, 식물생장촉진 호르몬의 분비, 식물노화 호르몬의 억제시켜 식물의 생장을 촉진시키는 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주 및 이를 이용한 식물 생장촉진 방법에 관한 것이다. The present invention relates to a novel methylobacterium fujisawaense (110) CBMB 110 strain and a method for promoting plant growth using the same. More specifically, the present invention provides a method for fixing aerial nitrogen, secreting plant growth promoting hormones, Methylobacterium fujisawaense CBMB 110 strain that promotes plant growth by inhibiting plant aging hormone, and a method for promoting plant growth using the same.
토양미생물을 이용한 농작물의 재배는 콩과식물에서 광범위하게 이루어지고 있다. 이러한 농작물의 재배에 주로 사용되는 미생물로는 라이조비움(Rhizobium; 뿌리혹박테리아)이 있는데, 이 균주에 의해 콩과식물이 감염되면 뿌리혹(root nodule)을 형성하며 기체상의 질소(N₂)를 수소와 결합된 상태의 암모니아태 질소(NH₃)로 전환시키는 질소고정(nitrogen fixiation)이 이루어지게 된다. 질소고정은 농업적으로 대단히 중요한 의미를 갖는다. 시비를 하지 않은 토양의 경우 질소 결핍은 당연한 결과이나 이와 같은 토양 조건하에서 뿌리혹을 가진 콩과식물은 질소결핍의 문제점을 스스로 해결하여 질소가 결핍되어 식물이 생장할 수 없는 토양 조건하에서도 생육이 가능하다(Stacey et al., Mol. Plant-Microbe Interact. 1991, 4:332-340).Cultivation of crops using soil microorganisms is widely done in legumes. Microorganisms mainly used for the cultivation of such crops include Rhizobium ( Rhizobium ). When a legume is infected by this strain, it forms a root nodule and combines gaseous nitrogen (N₂) with hydrogen. Nitrogen fixiation is performed to convert the nitrogen to ammonia nitrogen (NH₃). Nitrogen fixation is of great agricultural importance. In the case of unfertilized soil, nitrogen deficiency is a natural result, but under these soil conditions, legumes with root nodules solve the problem of nitrogen deficiency themselves, so they can grow under soil conditions where plants cannot grow due to nitrogen deficiency. Stacey et al., Mol. Plant-Microbe Interact . 1991, 4: 332-340.
토양미생물 중에서 기주식물과 공생관계를 갖지 않으면서 식물의 생장을 촉진시키는 미생물은 1980년 Kloepper 등에 의해서 밝혀진 식물 생장-촉진 리조박테리아[Plant growth-promoting rhizobacteria (PGPR)]가 있다. 상기의 균주에는 공 중질소를 고정하는 아조스퍼릴럼 속균[Azospirrilum (Okon, 1985)], 슈도모나스 속균[Pseudomonas (Kloepper 등, 1980)], 바실러스 속균[Bacillus (Backman 등, 1994)] 등이 대표적인 미생물로 포함된다. 이러한 식물생장촉진 미생물은 공중질소의 고정(Boddy와 Dobereiner, 1995), 식물생장촉진 호르몬의 생산, 식물의 양분흡수 촉진(Hallmann 등, 1997) 및 식물의 병 발생 억제(Pleban 등, 1995) 등 여러 가지 기능에 의해서 식물의 생장을 돕는 것으로 알려져 있다. Among soil microorganisms, microorganisms that promote plant growth without having a symbiotic relationship with host plants include plant growth-promoting rhizobacteria (PGPR), which was discovered by Kloepper et al. In 1980. Examples of the above strains include Azospirrilum (Okon, 1985), Pseudomonas (Kloepper et al., 1980), Bacillus sp. [ Bacillus (Backman et al., 1994)], which fixate co-nitrogen. It is included as a microorganism. These plant growth-promoting microorganisms include a variety of methods such as fixation of aerial nitrogen (Boddy and Dobereiner, 1995), production of plant growth hormone, promotion of plant nutrient absorption (Hallmann et al., 1997), and suppression of plant disease (Pleban et al., 1995) It is known to help plant growth by eggplant function.
한편, 식물호르몬인 에틸렌은 식물이 메티오닌을 S-아데노실메테티오닌을 경유해 1-아미노사이클로프로판-1-카르복실산(ACC)으로 전환시킨 후, 생성되는 것으로 알려졌으며, 식물의 수많은 생화학적 경로의 조절에 관여하여 노쇠, 개화, 과실 결실, 과실 숙성 등과 같은 과정에 영향을 끼치고 있는 것으로 알려지고 있다. 따라서, 에틸렌의 합성을 억제하거나 감소시켜 식물의 노화를 지연시키고 수명을 연장하게 하는 방법에 관한 기술들이 개발되고 있다. 이에 관한 종래 기술로는 에틸렌 합성을 조절하여 뿌리 생장을 촉진하는 기능을 가진 단백질을 코딩하는 신규한 유전자(대한민국특허 제0443488호), 에틸렌의 전구체인 1-아미노사이클로프로판-1-카르복실산(ACC)의 합성효소 활성 억제제를 포함하는 조성물로 장식용 식물의 꽃 수명을 연장시키고 식물에서의 개화를 가속화 및 연장시키는 방법(대한민국특허 제0271887) 및 에틸렌 생성을 억제하는 화합물에 관한 N-아세틸 아미노에톡시비닐글리신(AVG) 및 이를 포함하는 조성물(대한민국특허 제0562183호)이 있다.On the other hand, ethylene, a plant hormone, is known to be produced after plants convert methionine to 1-aminocyclopropane-1-carboxylic acid (ACC) via S-adenosylmethionine. It is known to be involved in the regulation of enemy pathways, affecting processes such as aging, flowering, fruiting, and fruit ripening. Accordingly, techniques have been developed for methods of inhibiting or reducing the synthesis of ethylene to delay plant aging and prolong life. In the related art, a novel gene encoding a protein having a function of regulating ethylene synthesis to promote root growth (Korean Patent No. 0443488), 1-aminocyclopropane-1-carboxylic acid which is a precursor of ethylene ( A composition comprising a synthase inhibitor of ACC), a method for prolonging the flower life of ornamental plants, accelerating and prolonging flowering in plants (Korean Patent No. 0271887) and N-acetyl amino for compounds that inhibit ethylene production. Oxyvinylglycine (AVG) and a composition comprising the same (Korean Patent No. 0562183).
그러나 상기의 내용들은 에틸렌 합성을 억제하는 유전자 및 화합물에 관한 것으로서 작물의 근권 및 엽권에 존재하며 작물체의 에틸렌을 조절하는 효소 단백질을 가지고 있는 미생물을 이용하여 식물의 성장에 적용한 예는 없다. However, the above contents are related to genes and compounds that inhibit ethylene synthesis, and there is no example applied to plant growth using microorganisms present in the root zone and the leaf zone of crops and having enzyme proteins that control ethylene of crops.
농업에서 비료는 작물의 수량을 결정짓는 중요한 농자재이다. 그러나 지나치게 많이 사용할 경우, 하천수의 부영양화, 지하수의 수질오염, 토양양분의 불균형, 및 작물의 생육불량 등의 원인으로 작용하여 작물의 수량감소는 물론 작물의 품질하락을 야기할 수 있다. 그러나, 산업의 발달 및 다양화로 인해 농경지 면적이 감소되고 있기 때문에 작물의 생산성을 높이기 위한 비료의 사용은 불가피한 것이며, 이에 따라 기존의 화학비료보다 미생물을 이용한 친환경적인 기능성 농자재의 개발을 위한 관심이 높아지고 있다.In agriculture, fertilizers are an important source of agricultural crops. However, when used too much, it may cause eutrophication of river water, water pollution of groundwater, imbalance of soil nutrients, and poor growth of crops, which may lead to a decrease in crop yield and a decrease in crop quality. However, the use of fertilizer to increase crop productivity is inevitable due to the reduction of agricultural land area due to the development and diversification of the industry. Accordingly, interest in developing eco-friendly functional agricultural materials using microorganisms is higher than conventional chemical fertilizers. have.
그러나, 지금까지는 특정 미생물의 한 종이 식물생장촉진 호르몬의 분비, 식물호르몬인 에틸렌 합성 조절, 공중질소 고정능력 및 식물생장을 촉진하는 등의 기능을 동시에 가지고 있는 균주에 대해서는 알려진 바가 없다.However, until now, there is no known strain which has a function of secreting a plant growth hormone, controlling ethylene synthesis, phytohormone fixing ability, and promoting plant growth.
이에 본 발명자들은, 공중질소를 고정하는 능력을 가진 신규한 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주를 토양으로부터 분리 및 동정하였고, 본 발명의 신규한 균주가 식물의 생장을 촉진하는 호르몬의 분비, 식물의 노화를 촉진하는 호르몬의 억제 및 식물의 생장을 촉진시키는 기능을 동시에 갖는다는 것을 발견하고 본 발명을 완성하였다. Accordingly, the present inventors have isolated and identified a novel Methylobacterium fujisawaense CBMB 110 strain having the ability to fix aerial nitrogen from soil, and the novel strain of the present invention promotes plant growth. The present invention has been found to have a function of simultaneously secreting hormones, inhibiting hormones that promote aging of plants, and promoting plant growth.
따라서 본 발명의 목적은, 공중질소 고정, 식물생장촉진 호르몬의 분비, 식물노화촉진 호르몬의 억제 및 식물생장을 촉진시키는 신규한 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주를 제공하는 것이다.Accordingly, an object of the present invention is to provide a novel Methylobacterium fujisawaense strain CBMB 110 which promotes nitrogen fixation, secretion of plant growth hormone, inhibition of plant aging hormone, and promoting plant growth. will be.
또한, 본 발명의 목적은 상기 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주를 유효성분으로 하는 미생물 제제를 제공하는 것이다.In addition, an object of the present invention is to provide a microbial preparation using the methylobacterium fujisawaense ( Methylobacterium fujisawaense ) CBMB 110 strain as an active ingredient.
또한, 본 발명의 다른 목적은 상기 상기 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주를 이용하여 식물의 생장을 촉진하는 방법을 제공하는 것이다. In addition, another object of the present invention is to provide a method for promoting the growth of plants using the methylobacterium fujisawaense ( Methylobacterium fujisawaense ) CBMB 110 strain.
상기와 같은 본 발명의 목적을 달성하기 위해서, 본 발명은 공중질소 고정, 식물생장촉진 호르몬의 분비, 식물노화촉진 호르몬의 억제 및 식물생장을 촉진하는 신규한 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주를 제공한다.In order to achieve the object of the present invention as described above, the present invention is a novel methyllobacterium fuzisawaens ( Methylobacterium) that promotes nitrogen fixation, secretion of plant growth hormone, suppression of plant aging hormone and plant growth fujisawaense ) provides 110 CBMB strains.
또한, 본 발명은 상기 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주를 유효성분으로 하는 미생물 제제를 제공한다.In another aspect, the present invention provides a microbial agent comprising the methylobacterium fujisawaense CBMB 110 strain as an active ingredient.
또한, 본 발명은 상기 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주를 이용하여 식물의 생장을 촉진하는 방법을 제공한다.In addition, the present invention provides a method for promoting the growth of plants using the Methylobacterium fujisawaense ( Cethylobacterium fujisawaense ) CBMB 110 strain.
이하, 본 발명을 보다 상세히 설명하기로 한다. Hereinafter, the present invention will be described in more detail.
본 발명의 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주는 공중질소를 고정하고 식물생장촉진 호르몬의 분비 및 식물노화촉진 호르몬의 생성 억제를 통해 식물의 발아 및 생장을 촉진하는 특징이 있다. 본 발명의 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주는 28 ℃, pH 6.8에서 최적 생장을 보이며 기타 생리 및 생화학적 하기 표 1과 같은 생리 및 생화학적 특성을 갖는다. Methylobacterium fujisawaense ( Cethylobacterium fujisawaense ) CBMB 110 strain of the present invention is characterized by promoting plant germination and growth through the immobilization of nitrogen and inhibition of plant growth hormone secretion and production of plant aging hormone have. Methylobacterium fujisawaense CBMB 110 strain of the present invention shows optimal growth at 28 ° C., pH 6.8, and has other physiological and biochemical properties as shown in Table 1 below.
[표 1] TABLE 1
본 발명의 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주는 기체상의 질소를 수소와 결합된 상태의 암모늄태 질소로 전환시키는 질소고정 능력이 있어서 질소가 결핍된 상황에서도 식물이 생장할 수 있음을 당업계에 공지된 아세틸렌 환원력을 측정함으로써 확인하였다(결과 미도시). Methylobacterium fujisawaense CBMB 110 strain of the present invention has a nitrogen fixing ability to convert gaseous nitrogen to ammonium nitrogen in a hydrogen-bonded state, so that plants can grow even in a nitrogen-deficient condition. It was confirmed by measuring the acetylene reducing power known in the art (results not shown).
또한, 본 발명의 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주는 식물의 생장을 촉진하는 호르몬인 IAA(인돌아세트산 또는 옥식이라고 함), 사이토카인인 t-ZR(트랜스-제아틴 리보시드) 및 iPA(이소펜테닐아데노신)의 분비를 촉진하고(도 1 참조), 반면 식물의 노화를 촉진하는 에틸렌의 합성은 억제하는 것으로 나타났다. 상기 에틸렌 합성 억제는 1- 아미노사이클로프로판-1-카르복실산(ACC) 디아미네이즈(deaminase)에 의하여 에틸렌 전구체인 ACC의 합성이 억제되는데, 본 발명의 균주가 이러한 ACC 디아미네이즈 활성을 가지고 있어서 식물체 내에서 ACC 및 에틸렌의 합성을 억제하는 것으로 나타났다. In addition, Methylobacterium fujisawaense CBMB 110 strain of the present invention is a hormone that promotes plant growth, IAA (called indole acetic acid or oxal), cytokine t-ZR (trans-zeatin Riboside) and iPA (isopentenyladenosine), which is shown to inhibit the synthesis of ethylene, which promotes the aging of plants (see FIG. 1). The inhibition of ethylene synthesis is inhibited by the synthesis of ethylene precursor ACC by 1-aminocyclopropane-1-carboxylic acid (ACC) deminase, the strain of the present invention has such ACC delamination activity It has been shown to inhibit the synthesis of ACC and ethylene in plants.
본 발명은 본 발명의 균주를 이용하여 식물의 생장을 촉진하는 미생물 제제를 제공한다. 상기 미생물 제제는 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110 균주를 유효성분으로 포함할 수 있다. 본 발명에 의한 미생물 제제는 통상적인 방법으로 식물 생장 촉진용으로 제형화할 수 있으며 건조분말 형태 또는 액상비료 형태로 제조할 수 있다. 그러나 그 제형에 특별히 한정되지 않는다. 바람직하게는 화학비료를 대체하기 위한 식물생장촉진 생물비료로 제형화할 수 있다.The present invention provides a microbial agent for promoting plant growth using the strain of the present invention. The microbial agent may include Methylobacterium fujisawaense CBMB 110 strain as an active ingredient. Microbial preparations according to the invention can be formulated for promoting plant growth in a conventional manner and can be prepared in the form of dry powder or liquid fertilizer. However, the formulation is not particularly limited. Preferably, it may be formulated as a plant growth promoting biofertilizer to replace the chemical fertilizer.
본 발명은 신균주 메틸로박테리움 푸지사와엔스(Methylobacterium fujisawaense) CBMB 110을 이용하여 식물의 생장을 촉진시키는 방법을 제공한다. 상기 식물의 생장을 촉진하는 방법으로는 메틸로박테리움 푸지사와엔 스(Methylobacterium fujisawaense) CBMB 110 균주를 배양한 배양액 및 상기 균주를 이용한 미생물 제제를 종자나 식물에 침지하거나 관주, 즉, 분무하여 수행할 수 있다. 침지하는 방법의 경우, 배양액 및 제제를 식물체 주변의 토양에 붓거나 또는 종자를 배양액 및 제제에 담가둘 수 있다. 분무할 경우에는 당해 분야에 널리 공지된 기술로 식물체에 줄줄 흐르도록 살포할 수 있다.The present invention provides a method for promoting plant growth by using the new strain Methylobacterium fujisawaense CBMB 110. As a method of promoting the growth of the plant, a culture medium in which Methylobacterium fujisawaense CBMB 110 strain is cultured and a microbial agent using the strain are immersed in a seed or plant, or irrigated, that is, sprayed Can be done. In the case of the dipping method, the culture and the preparation may be poured into the soil around the plant or the seeds may be immersed in the culture and the preparation. In the case of spraying, it can be sprayed in a streamlined plant by techniques well known in the art.
본 발명의 방법에 의해 생장을 촉진할 수 있는 식물로는 대부분의 식물이 모두 포함될 수 있으며, 특히 벼, 토마토, 카놀라, 고추 등에 효과적이다.Plants capable of promoting growth by the method of the present invention may include most of the plants, particularly effective in rice, tomatoes, canola, pepper, and the like.
이하, 실시예를 들어 본 발명을 더욱 구체적으로 설명하지만, 본 발명이 반드시 이들 실시예에 한정되는 것은 아니다. Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not necessarily limited to these Examples.
<실시예 1><Example 1>
균주의 분리Isolation of Strains
<1-1> 벼로부터 균주의 분리<1-1> Isolation of Strains from Rice
벼(Oryza sativa L.)에 서식하고 있는 균주를 분리하기 위하여, 벼를 마쇄한 후 0.5%의 메탄올이 유일한 탄소원으로 첨가된 암모늄 미네랄 염 최소 배지(AMS)를 이용하여 Holland 및 Polacco (1992)이 제시한 방법으로 균주를 분리하였다. In order to isolate strains in Oryza sativa L., Holland and Polacco (1992) were prepared using ammonium mineral salt minimal medium (AMS) after grinding the rice, with 0.5% methanol added as the only carbon source. Strains were isolated by the proposed method.
<1-2> 분리된 균주의 동정<1-2> Identification of Isolated Strains
당업계에 공지된 통상적인 방법에 따라 상기 선별된 유산균의 16S rDNA의 염기서열을 분석하였다. 그 결과, 상기 유산균의 16S rDNA 염기서열(서열번호 1)은 메틸로박테리움 푸지사와엔스의 16S rDNA 염기서열과 99 % 동일함을 확인할 수 있었다.The nucleotide sequence of 16S rDNA of the selected lactic acid bacteria was analyzed according to a conventional method known in the art. As a result, it was confirmed that the 16S rDNA nucleotide sequence of the lactic acid bacteria (SEQ ID NO: 1) is 99% identical to the 16S rDNA nucleotide sequence of methyllobacterium fuzisawaens.
따라서, 본 발명자들은 상기 균주를 "메틸로박테리움 푸지사와엔스 CBMB 110"으로 명명하였고, 이를 농업생명공학연구원에 2006년 1월 6일자로 기탁하였다(기탁번호: KACC-91211P) Therefore, the present inventors named the strain "Milobacterium fuzisawaens CBMB 110" and deposited it on January 6, 2006 with the Institute of Agricultural Biotechnology (Accession Number: KACC-91211P).
<실시예 2><Example 2>
신균주 CBMB 110에 의한 식물생장 호르몬 분비 및 사이토카인 저장력 측정Plant Growth Hormone Secretion and Cytokine Storage Capacity by New Bacteria CBMB 110
본 발명의 균주가 식물체 내에서 식물 성장 호르몬에 어떠한 영향을 주는지 확인하기 위하여, 카놀라 유묘 1 g을 TBS 용액(3.03 g의 트리즈마 베이스, 5.84 g 염화나트륨, 0.2 g 염화마그네슘 수화물,0.2 g 소듐 아자이드, pH 7.2)에서 균질화 시켰다. 상기 균질화된 용액을 5분간 3885× g로 원심분리한 뒤, 다시 3분간 3885× g로 원심분리 하였다. 원심 분리하여 얻은 식물 추출 상층액을 식물생장 호르몬인 IAA(옥신)과 식물의 사이토카인인 t-ZR(트랜스-제아틴 리보시드) 및 iPA(이소펜테닐아데노신)을 측정하는데 사용하였다. 측정 방법은 ELISA 테스트 킷(AGDIA사, 미국)을 사용하여 지침 방법에 의해 면역 분석방법으로 수행하였다. 상기 원심 분리하여 얻은 식물 추출액의 식물 호르몬(IAA) 및 사이토카인의 양은 발색 후 ELISA 플레이트 리더(바이오 라드 모델 550, 일본)를 사용하여 405 nm에서 흡광도 를 측정하여 확인하였다. 대조군으로는 신균주 CBMB 110이 배양된 배양액 대신 종자에 황산마그네슘을 처리한 카놀라의 유묘(control), 에틸렌 억제제로 알려진 AVG를 처리한 카놀라의 유묘, ACC 디아미네이즈 활성이 없는 균주인 E. cloacae UW4/AcdS- 및 MfT 가 배양된 배양액을 처리한 카놀라의 유묘를 사용하였다. 그 결과, 도 1에서 보는 바와 같이 본 발명의 균주인 메틸로박테리움속 CBMB 110을 처리한 식물에서 식물 성장 호르몬인 IAA(옥신) 및 식물 성장에 관여하는 사이토카인인 t-ZA 및 iPA의 농도가 대조군에 비해 월등이 높음을 확인할 수 있었다. To determine how the strain of the present invention affects plant growth hormone in plants, 1 g of canola seedlings were added to a TBS solution (3.03 g of Trizma base, 5.84 g sodium chloride, 0.2 g magnesium chloride hydrate, 0.2 g sodium azide , pH 7.2). The homogenized solution was centrifuged at 3885 × g for 5 minutes and then centrifuged at 3885 × g for 3 minutes. Plant extract supernatants obtained by centrifugation were used to measure plant growth hormone IAA (oxine) and plant cytokines t-ZR (trans-zeatine riboside) and iPA (isopentenyladenosine). The measurement method was performed by the immunoassay method by the guide method using an ELISA test kit (AGDIA, USA). The amount of plant hormone (IAA) and cytokine in the plant extract obtained by centrifugation was confirmed by measuring the absorbance at 405 nm using an ELISA plate reader (Biorad Model 550, Japan) after color development. As a control, seedling control of canola treated with magnesium sulfate on seed instead of culture medium in which the new strain CBMB 110 was cultured, seedling of canola treated with AVG known as an ethylene inhibitor, and E. cloacae , a strain without ACC deminination activity UW4 / AcdS - the T and Mf of the seedlings treated with the culture broth was used as canola. As a result, as shown in Figure 1 concentrations of plant growth hormone IAA (oxine) and cytokines t-ZA and iPA involved in plant growth in plants treated with the strain of the present invention Methylbacterium CBMB 110 Was found to be higher than the control group.
<실시예 3><Example 3>
1-아미노사이클로프로판-1-카르복실산(ACC) 디아미네이즈 활성측정 1-Aminocyclopropane-1-carboxylic Acid (ACC) Deamiase Activity Measurement
본 발명의 신균주가 ACC 디아미네이즈의 활성이 있는지 확인하기 위하여 본 발명의 신균주 CBMB 110을 DF 최소염 배지에서 배양하였다. 이때, 질소원으로 ACC를 이용하는지 확인하기 위하여 3 mM의 ACC를 첨가하였다. 이후,ACC 디아미네이즈에 의해 ACC가 잘려져 생성되는 알파-케토부티레이트(α-ketobutyrate)의 양을 540 nm의 흡광도에서 스펙트로포토미터를 이용하여 측정하였고 단백질의 농도는 로리 방법을 이용하여 측정하였다. 대조군으로는 메틸로박테리움 푸지사와엔스 타입의 다른 균주인 MfT 및 상기 실시예 1에서 분리된 메틸로박테리움 푸지사와엔스 CBMB 130을 이용하였다. 결과는 하기 표 2에 기재하였다. In order to check whether the new strain of the present invention has the activity of ACC diamines, the new strain CBMB 110 of the present invention was cultured in DF minimal salt medium. At this time, 3 mM ACC was added to confirm that ACC was used as the nitrogen source. Subsequently, the amount of alpha-ketobutyrate produced by ACC cleavage by ACC diamine was measured using a spectrophotometer at an absorbance of 540 nm, and the concentration of protein was measured using a Lori method. As a control, Mf T , which is another strain of methyllobacterium fuzisawaens type, and the methyllobacterium fuzisawaens CBMB 130 isolated in Example 1 were used. The results are shown in Table 2 below.
[표 2]TABLE 2
그 결과, 상기 표 1에서 보는 바와 같이, 본 발명의 신균주인 CBMB 110의 ACC 디아미네이즈 활성이 다른 대조군 균주인 CBMB 130 및 MfT 보다 월등히 우수한 것으로 나타났다.As a result, as shown in Table 1, the ACC delamination activity of the new strain CBMB 110 of the present invention was shown to be superior to the other control strains CBMB 130 and Mf T.
<실시예 4><Example 4>
신균주 CBMB 110에 의한 에틸렌 억제효과Inhibitory Effect of Ethylene on Ethylene by CBMB 110
배추의 일종인 캐놀라 종자 30개의 표면에 본 발명의 신균주인 CBMB 110 배양액(A600nm = 0.15)이 흡수되도록 하였다. 상기 종자를 120 ml 바이알에 물이 첨가된 멸균된 필터 종이 위에 놓고 생성되는 에틸렌의 양을 7일 동안 측정하였다. 각각의 바이알에 생성된 에틸렌의 양은 가스 크로마토그래피(DS 6200, 도남 기기사, 한국)를 이용하여 측정하였다. 대조군으로는 신균주 CBMB 110이 배양된 배양액 대신 종자에 황산마그네슘을 처리한 것, 에틸렌 억제제로 알려진 AVG를 처리한 것, ACC 디아미네이즈 활성이 없는 균주인 E. cloacae UW4/AcdS- 및 MfT 가 배양된 배양액으로 처리한 것을 사용하였다. 그 결과, 도 2에서 보는 바와 같이, 본 발명의 신균주인 CBMB 110이 배양된 배양액을 처리한 종자에서의 에틸렌 양이 황산마그네슘 및 E. cloacae UW4/AcdS- 의 배양액이 처리된 것보다 훨씬 적게 나타났고, 이것은 에틸렌 억제제(AVG)를 처리한 것과 거의 유사한 양의 에틸렌 양인 것으로 나타났다. CBMB 110 culture medium (A 600 nm = 0.15), a new strain of the present invention, was absorbed on the surface of 30 canola seeds, a type of cabbage. The seeds were placed on sterile filter paper with water added in 120 ml vials and the amount of ethylene produced was measured for 7 days. The amount of ethylene produced in each vial was measured using gas chromatography (DS 6200, Donam Instruments, Korea). As a control, the seed strain was treated with magnesium sulfate instead of the culture cultured with the new strain CBMB 110, AVG, which is known as an ethylene inhibitor, and E. cloacae UW4 / AcdS - and Mf T , strains without ACC deminination activity. Treated with the culture medium was used. As a result, as shown in Fig. 2, the amount of ethylene in the seed treated with the culture culture of the new strain CBMB 110 of the present invention was much less than that of the culture solution of magnesium sulfate and E. cloacae UW4 / AcdS − . It was shown that this was almost the same amount of ethylene as treated with ethylene inhibitor (AVG).
<실시예 5>Example 5
신균주 CBMB 110에 의한 ACC 억제효과Inhibitory effect of ACC by the new strain CBMB 110
에틸렌 전구체인 ACC가 본 발명의 신균주 CBMB 110에 의해 억제되는지 확인하기 위하여 질소 가스에 동결된 식물의 조직을 사용하였다. 동결 식물조직 1g을 산화방지제(BHT)가 들어있는 80% 메탄올로 추출하였고, 45분 동안 상온에서 배양하였다. 20℃에서 2000 g로 15분 동안 원심분리 하였고, 펠렛을 4ml의 메탄올로 용해시켰다. 상기 용해액을 진공상태에서 증발시켰다. 남은 잔여물을 2 ml의 물로 녹였고, 상기 용액에 포함된 ACC의 양을 Wachter 등(1999) 및 Lizada 등(1979)의 방법에 의해 측정하였다. 대조군들은 상기 실시예 4와 같은 것들을 사용하였다. 그 결과, 도 3에서 보는 것과 같이 본 발명의 신균주 CBMB 110에 의한 식물 조직 내에서의 ACC의 양이 에틸렌 억제제(AVG)를 처리한 것보다는 조금 많은 양이 확인 되었으나 다른 대조군에 비해서는 적은 양으로 존재함을 확인하였다. Tissues of plants frozen in nitrogen gas were used to confirm whether ACC, an ethylene precursor, was inhibited by the new strain CBMB 110 of the present invention. 1 g of frozen plant tissue was extracted with 80% methanol containing antioxidant (BHT) and incubated at room temperature for 45 minutes. Centrifuged at 2000 g at 20 ° C. for 15 minutes and the pellet was dissolved in 4 ml of methanol. The solution was evaporated in vacuo. The remaining residue was taken up with 2 ml of water and the amount of ACC contained in the solution was measured by the methods of Wachter et al. (1999) and Lizada et al. (1979). Controls were the same as in Example 4 above. As a result, as shown in FIG. 3, the amount of ACC in the plant tissue by the new strain CBMB 110 of the present invention was found to be a little higher than that of the ethylene inhibitor (AVG), but it was smaller than that of other controls. It was confirmed to exist.
<실시예 6><Example 6>
신균주 CBMB 110에 의한 식물생장 촉진효과Promoting Plant Growth by New Bacteria CBMB 110
본 발명의 메틸로박테리움 푸지사와엔스 CBMB 110의 식물생장촉진 효과를 측정하기 위하여 배추의 일종인 캐놀라의 종자를 대상으로 실험하였다. 먼저, 신균 주 CBMB 110을 AMS 배지에서 레이트 로그 상태가 될 때까지 호기조건에서 배양하였고, 그런 뒤 질소원인 ACC(3.0 mM)가 첨가된 DF염 배지로 옮겼다. 상기의 배양조건은 Penrose 및 Glick(2003)에 의한 방법으로 하였다. 상기의 배양액을 캐놀라의 종자에 처리 후 1시간 동안 배양하였다. 이후 20± 1℃의 온도에서 12시간씩 빛과 어두움을 반복하면서 5일간 배양하였고 종자의 표면에서 발아한 발아율을 측정하였다. 또한, 상기 발아된 캐놀라 묘목의 뿌리의 길이를 측정하였다. 대조군으로는 캐놀라의 종자에 신균주인 CBMB 110의 배양액을 처리하는 대신 황산마그네슘을 처리한 것, 에틸렌 억제제로 알려진 AVG를 처리한 것, ACC 디아미네이즈 활성이 없는 균주인 E. cloacae UW4/AcdS- 및 MfT 가 배양된 배양액을 처리한 것을 사용하였다.In order to measure the plant growth promoting effect of the methyllobacterium fuzisawaens CBMB 110 of the present invention was tested on the seeds of canola, a type of cabbage. First, the bacterial strain CBMB 110 was incubated in aerobic conditions until the rate log state in AMS medium, and then transferred to DF salt medium to which the nitrogen source ACC (3.0 mM) was added. The culture conditions were as described by Penrose and Glick (2003). The culture was incubated for 1 hour after treatment to the canola seeds. Thereafter, the cells were incubated for 5 days while repeating light and dark for 12 hours at a temperature of 20 ± 1 ° C., and the germination rate of germination on the surface of seeds was measured. In addition, the root length of the germinated canola seedlings was measured. As a control, the seeds of canola were treated with magnesium sulfate instead of the culture of CBMB 110, a new strain, treated with AVG, known as an ethylene inhibitor, and E. cloacae UW4 / AcdS, a strain without ACC deminination activity. - and Mf was used a T processes the cultured broth.
그 결과, 하기 표 3에 기재한 바와 같이, 본 발명의 신균주인 CBMB 110을 처리한 종자의 발아율이 최고 91.67%로 나타났고, 이는 다른 대조군에 비해 매우 우수하였다. 또한 뿌리의 생장도 다른 대조군에 비해 훨씬 높은 수치로 나타났다. As a result, as shown in Table 3, the germination rate of the seed treated with the CBMB 110, a new strain of the present invention, showed a maximum of 91.67%, which was very excellent compared to other controls. The growth of roots was also much higher than that of other controls.
[표 3]TABLE 3
본 발명의 균주에 의한 종자의 발아 및 뿌리 생장촉진 효과Seed germination and root growth promoting effect of the strain of the present invention
이상 살펴본 바와 같이, 본 발명의 신규한 메틸로박테리움 푸지사와엔 스(Methylobacterium fujisawaense) CBMB 110 균주는 공중질소를 고정하는 능력이 있고, 식물 생장 촉진 호르몬의 분비를 촉진하며 식물의 노화를 촉진하는 호르몬을 억제하는 활성을 가지고 있다. 따라서, 본 발명의 신규한 균주는 식물의 발아를 촉진시키며 생장을 촉진시키는 효과가 있어 이를 미생물 비료제의 제조에 사용하여 화학비료를 대체한 작물의 성장 및 작물의 수확량을 증대시키는데 이용될 수 있다. As described above, the novel Methylobacterium fujisawaense CBMB 110 strain of the present invention has the ability to fix the nitrogen, promote the secretion of plant growth promoting hormones and promote the aging of plants It has the activity of inhibiting hormones. Therefore, the novel strain of the present invention has the effect of promoting the germination and growth of the plant can be used in the production of microbial fertilizers can be used to increase the growth and crop yield of crops replaced with chemical fertilizers. .
<110> SA, DONGMIN <120> Novel Methylobacterium fujisawaense CBMB 110 and method of enhancing plant growth using the same <130> DPP060132KR <160> 1 <170> KopatentIn 1.71 <210> 1 <211> 1412 <212> DNA <213> Methylobacterium sp. <400> 1 gctcagagcg aacgctggcg gcaggcttaa cacatgcaag tcgagcggac ctttcggggt 60 cagcggcgga cgggtgagta acgcgtggga acgtgccttc cggttcggaa taaccctggg 120 aaactagggc taataccgga tacgccctta tggggaaagg tttactgccg gaagatcggc 180 ccgcgtctga ttagctagtt ggtggggtaa cggcctacca aggcgacgat cagtagctgg 240 tctgagagga tgatcagcca cactgggact gagacacggc ccagactcct acgggaggca 300 gcagtgggga atattggaca atgggcgcaa gcctgatcca gccatgccgc gtgagtgatg 360 aaggccttag ggttgtaaag ctcttttatc cgggacgata atgacggtac cggaggaata 420 agccccggct aacttcgtgc cagcagccgc ggtaatacga agggggctag cgttgctcgg 480 aatcactggg cgtaaagggc gcgtaggcgg cgttttaagt cgggggtgaa agcctgtggc 540 tcaaccacag aatggccttc gatactggga cgcttgagta tggtagaggt tggtggaact 600 gcgagtgtag aggtgaaatt cgtagatatt cgcaagaaca ccggtggcga aggcggccaa 660 ctggaccatt actgacgctg aggcgcgaaa gcgtggggag caaacaggat tagataccct 720 ggtagtccac gccgtaaacg atgaatgcca gctgttgggg tgcttgcacc gcagtagcgc 780 agctaacgct ttgagcattc cgcctgggag agtacggtcg caagattaaa actcaaagga 840 attgacgggg gcccgcacaa gcggtggagc atgtggttta attcgaagca acgcgcagaa 900 ccttaccatc ctttgacatg gcgtgttacc cagagagatt tggggtccac ttcggtggcg 960 cgcacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 1020 gcaacgagcg caacccacgt ccttagttgc catcattcag ttgggcactc tagggagact 1080 gccggtgata agccgcgagg aaggtgtgga tgacgtcaag tcctcatggc ccttacggga 1140 tgggctacac acgtgctaca atggcggtga cagtgggacg cgaaggagcg atctggagca 1200 aatccccaaa agccgtctca gttcggattg cactctgcaa ctcgagtgca tgaaggcgga 1260 atcgctagta atcgtggatc agcatgccac ggtgaatacg ttcccgggcc ttgtacacac 1320 cgcccgtcac accatgggag ttggtcttac ccgacggcgc tgcgccaacc gcaaggaggc 1380 aggcgaccac ggtagggtca gcgactgggg tg 1412 <110> SA, DONGMIN <120> Novel Methylobacterium fujisawaense CBMB 110 and method of enhancing plant growth using the same <130> DPP060132KR <160> 1 <170> KopatentIn 1.71 <210> 1 <211> 1412 <212> DNA <213> Methylobacterium sp. <400> 1 gctcagagcg aacgctggcg gcaggcttaa cacatgcaag tcgagcggac ctttcggggt 60 cagcggcgga cgggtgagta acgcgtggga acgtgccttc cggttcggaa taaccctggg 120 aaactagggc taataccgga tacgccctta tggggaaagg tttactgccg gaagatcggc 180 ccgcgtctga ttagctagtt ggtggggtaa cggcctacca aggcgacgat cagtagctgg 240 tctgagagga tgatcagcca cactgggact gagacacggc ccagactcct acgggaggca 300 gcagtgggga atattggaca atgggcgcaa gcctgatcca gccatgccgc gtgagtgatg 360 aaggccttag ggttgtaaag ctcttttatc cgggacgata atgacggtac cggaggaata 420 agccccggct aacttcgtgc cagcagccgc ggtaatacga agggggctag cgttgctcgg 480 aatcactggg cgtaaagggc gcgtaggcgg cgttttaagt cgggggtgaa agcctgtggc 540 tcaaccacag aatggccttc gatactggga cgcttgagta tggtagaggt tggtggaact 600 gcgagtgtag aggtgaaatt cgtagatatt cgcaagaaca ccggtggcga aggcggccaa 660 ctggaccatt actgacgctg aggcgcgaaa gcgtggggag caaacaggat tagataccct 720 ggtagtccac gccgtaaacg atgaatgcca gctgttgggg tgcttgcacc gcagtagcgc 780 agctaacgct ttgagcattc cgcctgggag agtacggtcg caagattaaa actcaaagga 840 attgacgggg gcccgcacaa gcggtggagc atgtggttta attcgaagca acgcgcagaa 900 ccttaccatc ctttgacatg gcgtgttacc cagagagatt tggggtccac ttcggtggcg 960 cgcacacagg tgctgcatgg ctgtcgtcag ctcgtgtcgt gagatgttgg gttaagtccc 1020 gcaacgagcg caacccacgt ccttagttgc catcattcag ttgggcactc tagggagact 1080 gccggtgata agccgcgagg aaggtgtgga tgacgtcaag tcctcatggc ccttacggga 1140 tgggctacac acgtgctaca atggcggtga cagtgggacg cgaaggagcg atctggagca 1200 aatccccaaa agccgtctca gttcggattg cactctgcaa ctcgagtgca tgaaggcgga 1260 atcgctagta atcgtggatc agcatgccac ggtgaatacg ttcccgggcc ttgtacacac 1320 cgcccgtcac accatgggag ttggtcttac ccgacggcgc tgcgccaacc gcaaggaggc 1380 aggcgaccac ggtagggtca gcgactgggg tg 1412
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060039226A KR100873962B1 (en) | 2006-05-01 | 2006-05-01 | New Methylbacterium fuzisawaens CMB 110 strain and plant growth promotion method using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060039226A KR100873962B1 (en) | 2006-05-01 | 2006-05-01 | New Methylbacterium fuzisawaens CMB 110 strain and plant growth promotion method using same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070106868A KR20070106868A (en) | 2007-11-06 |
KR100873962B1 true KR100873962B1 (en) | 2008-12-15 |
Family
ID=39062497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060039226A KR100873962B1 (en) | 2006-05-01 | 2006-05-01 | New Methylbacterium fuzisawaens CMB 110 strain and plant growth promotion method using same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100873962B1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100830703B1 (en) * | 2007-02-06 | 2008-05-20 | 이화여자대학교 산학협력단 | Methylobacterium sp. SY-NiR1 and method for organic acid production heavy metal contaminated-soil purification and plant growth promotion using the same |
AU2013267137B2 (en) | 2012-06-01 | 2018-03-15 | Newleaf Symbiotics, Inc. | Microbial fermentation methods and compositions |
WO2015085117A1 (en) | 2013-12-04 | 2015-06-11 | Newleaf Symbiotics, Inc. | Compositions and methods for improving fruit production |
US10212939B2 (en) | 2013-12-04 | 2019-02-26 | Newleaf Symbiotics, Inc. | Methylobacterium compositions and plants, plant parts and seeds coated therewith |
BR112016012880B1 (en) | 2013-12-04 | 2021-01-05 | Newleaf Symbiotics, Inc. | methods and compositions to improve soybean yield |
EP3076791B1 (en) | 2013-12-04 | 2021-01-27 | Newleaf Symbiotics, Inc. | Methods for improving corn yield |
MX2016011991A (en) | 2014-03-17 | 2016-11-30 | Newleaf Symbiotics Inc | Compositions and methods for improving tomato production. |
US10757946B2 (en) | 2014-09-16 | 2020-09-01 | Newleaf Symbiotic, Inc. | Microbial inoculant formulations |
CA2964122A1 (en) | 2014-10-27 | 2016-05-06 | Newleaf Symbiotics, Inc. | Methods and compositions for controlling corn rootworm |
JP7168160B2 (en) * | 2018-04-17 | 2022-11-09 | 白鶴酒造株式会社 | Method for increasing the yield of rice, method for cultivating a plant for cultivating rice, composition for increasing the yield of rice, composition containing fungal cell walls or dead cells |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268171A (en) | 1991-05-10 | 1993-12-07 | Polacco Joseph C | Method of altering the metabolism of a plant |
-
2006
- 2006-05-01 KR KR1020060039226A patent/KR100873962B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5268171A (en) | 1991-05-10 | 1993-12-07 | Polacco Joseph C | Method of altering the metabolism of a plant |
Non-Patent Citations (3)
Title |
---|
Appl Environ Microbiol. Vol.71, No.11, pp.7245-7252(2005.11) |
Korean J. Soil Sci. Fert. 37(4) pp.235~244 (2004)* |
Planta. 224(2), pp.268-78.(2006.6) |
Also Published As
Publication number | Publication date |
---|---|
KR20070106868A (en) | 2007-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100873961B1 (en) | Novel 20 strains of Methylbacterium fuzisawaens CMBM and methods for promoting plant growth using the same | |
KR100873962B1 (en) | New Methylbacterium fuzisawaens CMB 110 strain and plant growth promotion method using same | |
Rezakhani et al. | Phosphate–solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source | |
Kumar et al. | Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants | |
Uzma et al. | Drought tolerance induction and growth promotion by indole acetic acid producing Pseudomonas aeruginosa in Vigna radiata | |
KR101039176B1 (en) | Antagonistic bacteria for preventing and eliminating the bacterial wilt of continuous cropping tobacco and their microbial organic fertilizer | |
KR101091151B1 (en) | Novel Enterobacter sp. strains and method for stimulating the growth of plant by using them | |
Ji et al. | Bacillus subtilis HG‐15, a Halotolerant Rhizoplane Bacterium, Promotes Growth and Salinity Tolerance in Wheat (Triticum aestivum) | |
Hongjun et al. | Production of free amino acid and short peptide fertilizer from rapeseed meal fermentation using Bacillus flexus NJNPD41 for promoting plant growth | |
WO2000036085A9 (en) | Liquid nutrient plant formulation with microbial strains | |
Jha | The Importance of Zinc-Mobilizing Rhizosphere Bacteria to the Enhancement of Physiology and Growth Parameters for Paddy under Salt-Stress Conditions. | |
CN116144529B (en) | Rice saxophone OOR3-1 strain and application thereof | |
CN109735475B (en) | Acid-resistant acetoin-producing bacillus amyloliquefaciens and application thereof | |
KR20180114858A (en) | Bacillus mesonae strain promoting tolerance of plants and use thereof | |
EP0401560B1 (en) | Antibacterial, anti-nematode and/or plant-cell activating composition, and chitinolytic microorganisms for producing the same | |
KR101922428B1 (en) | New microorganism Bacillus toyonensis SB19 having growth promoting of Leafy vegetables and high temperature tolorance and drought resistance of leafy vegetables and microbial agent containing the same and biofertilizer containing the same | |
KR102000472B1 (en) | Bacillus aryabhattai strain promoting resistance of plants against abiotic stress and use thereof | |
EP3659440B1 (en) | Plant growth promoting microorganism and enzymes for soil biogenic cycles | |
KR20160128533A (en) | Soil-microbial product containing new microorganism enterobacter sp. 04-p-1 having soluble phosphate activity and manufacturing method thereof | |
CY et al. | Phosphate-solubilizing characteristics of yeasts | |
KR101830058B1 (en) | Micrococcus luteus PNL10-2 and uses thereof | |
KR102324981B1 (en) | Novel Pseudomonas Fluorescens Strain that Induces Resistance to Drought Stress in Plant and Uses Thereof | |
KR102476873B1 (en) | Bacillus toyonensis CWL-05 strain and composition for promoting plant growth comprising the same | |
KR20080097013A (en) | Methylobacterium suomiense cbmb120 strain and cbmb130 strain, and method for enhancing plant growth using the same | |
Rafedzi et al. | Effectiveness of the Drought-tolerant Plant Growth Promoting Rhizobacteria (PGPR) that Supports Paddy Growth in Drought Condition. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121203 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20131202 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20141202 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |