[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100857652B1 - 새로운 유기 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

새로운 유기 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
KR100857652B1
KR100857652B1 KR1020070036803A KR20070036803A KR100857652B1 KR 100857652 B1 KR100857652 B1 KR 100857652B1 KR 1020070036803 A KR1020070036803 A KR 1020070036803A KR 20070036803 A KR20070036803 A KR 20070036803A KR 100857652 B1 KR100857652 B1 KR 100857652B1
Authority
KR
South Korea
Prior art keywords
group
formula
light emitting
emitting device
compound represented
Prior art date
Application number
KR1020070036803A
Other languages
English (en)
Inventor
이정섭
홍진석
이은정
김태형
김경수
이상도
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Priority to KR1020070036803A priority Critical patent/KR100857652B1/ko
Application granted granted Critical
Publication of KR100857652B1 publication Critical patent/KR100857652B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/08Radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/08Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/08Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 유기 화합물, 보다 구체적으로는 나프탈렌기를 코어로 하고, 전자 전달 능력을 갖는 치환기로서 벤즈이미다졸(benzimidazole)기, 벤조티아졸(benzothiazole)기 및 벤즈옥사졸(benzoxazole)기 중에서 선택되는 1이상의 치환기를 포함하는 화합물에 관한 것이다. 또한, 본 발명은 상기 유기 화합물을 함유한 유기물층을 포함하는 유기 발광 소자에 관한 것이다.

Description

새로운 유기 화합물 및 이를 이용한 유기 발광 소자{NEW ORGANIC COMPOUND AND ORGANIC LIGHT EMITTING DEVICE USING THE SAME}
도 1은 본 발명에 따른 유기 발광 소자 구조의 일 예를 나타내는 단면도이다.
본 발명은 신규한 유기 화합물 및 이를 이용한 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 즉, 양극(anode)과 음극(cathode) 사이에 유기물층을 위치시켰을 때 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 된다. 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되고, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
유기 발광 소자를 효율적으로 만들기 위한 한 방법으로서 소자내의 유기물층을 단층 대신 다층 구조로 제조하는 연구가 진행되어 왔다. 현재 사용되는 대부분 의 유기 발광 소자는 전극과 유기물층이 증착된 구조를 가지고 있는데, 상기 유기물층이 정공주입층, 정공수송층, 발광층 및 전자수송층 등으로 이루어진 다층 구조인 것이 많이 사용되고 있다.
1987년 탕(Tang)이 진공증착법에 의한 EL 소자를 처음 개발한 이후 십수년간 많은 사람들이 재료 개발을 이루어 왔으나, 아직까지도 장시간 사용 후 발광의 휘도 및 열화에 의한 내구성이 불충분하여 개선의 여지가 많이 남아 있다.
전자 수송층은 유기 단분자 물질로는 전자에 대한 안정도와 전자 이동 속도가 상대적으로 우수한 유기 금속착제들이 좋은 후보들이다. 그 중에서 안정성이 우수하고 전자 친화도가 큰 Alq3가 가장 우수한 것으로 보고 되었으나 청색 발광소자에 사용할 경우 엑시톤 디퓨젼(exciton diffusion)에 의한 발광 때문에 색순도가 떨어지는 문제점이 있다. 또한, 종래에 공지된 전자 수송용 물질로는 산요(Sanyo)사에서 발표한 플라본(flavon)유도체 또는 치소(Chisso)사의 게르마늄 및 실리콘시클로페타디엔 유도체 등이 알려져 있다. (일본공개특허공보 제1998-017860호, 일본공개특허공보 제1999-087067호).
또한, 종래의 전자 주입 및 수송층용 물질로는 이미다졸기, 옥사졸기, 티아졸기를 가진 유기 단분자 물질들이 많이 보고되었다. 그러나 이러한 물질들이 전자수송용 물질로 보고되기 이전에 모토롤라(Motorola)사의 EU 0700917 A2에 이러한 물질들의 금속착체 화합물들이 유기 발광 소자의 청색 발광층 또는 청록색 발광층에 적용된 것이 이미 보고되었다.
1996년도에 코닥사에서 발표하고 미국 특허 제5,645,948호에 기재된 TPBI는 이미다졸기를 가진 대표적인 전자 수송층용 물질로 알려져 있으며, 그 구조는 벤젠의 1,3,5 치환 위치에 세 개의 N-페닐 벤즈이미다볼기를 함유하고 기능적으로는 전자를 전달하는 능력뿐 아니라 발광층에서 넘어오는 정공을 차단하는 기능도 있으나, 실제 소자에 적용하기에는 안정성이 낮은 문제점을 가지고 있다.
또한, 일본 공개특허공보 평11-345686호에 개시된 전자수송용 물질들은 옥사졸기, 티아졸기를 함유하고 있고 발광층에도 적용할 수 있다고 보고하고 있으나, 구동전압, 휘도 및 소자의 수명 측면에서 실용화에 도달하지 못하고 있다.
따라서, 상기와 같은 종래 기술의 문제점을 극복하고 유기 발광 소자의 특성을 더욱 향상시키기 위하여, 유기 발광 소자에서 전자 수송용 물질로 사용될 수 있는 보다 안정적이고 효율적인 재료에 대한 개발이 계속 요구되고 있다.
본 발명은 나프탈렌 코어와 전자 전달 능력을 갖는 치환기를 포함하는 화합물로서, 유기 발광 소자에 적용하여 발광효율, 안정성 및 소자 수명을 향상시킬 수 있는 신규 화합물을 제공하고자 한다.
또한, 본 발명은 상기 화합물을 이용한 유기 발광 소자를 제공하는 것을 목적으로 하고 있다.
본 발명은 하기 화학식 1로 표시되는 화합물, 하기 화학식 2로 표시되는 화합물, 하기 화학식 3으로 표시되는 화합물, 하기 화학식 4로 표시되는 화합물 및 하기 화학식 5로 표시되는 화합물을 제공한다.
[화학식 1]
Figure 112007028681567-pat00001
상기 화학식 1에서, X1은 N-R7, S 및 O 중에서 선택되며;
R1 내지 R7은 각각 독립적으로 H, C1~C30의 알킬기, 알케닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴알킬기, 아릴옥시기, 아릴기 및 헤테로아릴기 중에서 선택된다.
[화학식 2]
Figure 112007028681567-pat00002
상기 화학식 2에서, X1은 N-R7, S 및 O 중에서 선택되며;
R1 내지 R7은 각각 독립적으로 H, C1~C30의 알킬기, 알케닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴알킬기, 아릴옥시기, 아릴기 및 헤테로아릴기 중에서 선택되며;
Ar1은 C5~C30의 아릴기, 헤테로아릴기 및 트리페닐 아민 중에서 선택된다.
[화학식 3]
Figure 112007028681567-pat00003
상기 화학식 3에서, X1은 N-R7, S 및 O 중에서 선택되며; X2는 N-R8, S 및 O 중에서 선택되며;
R1 내지 R8은 각각 독립적으로 H, C1~C30의 알킬기, 알케닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴알킬기, 아릴옥시기, 아릴기 및 헤테로아릴기 중에서 선택된다.
[화학식 4]
Figure 112007028681567-pat00004
상기 화학식 4에서, X1은 N-R7, S 및 O 중에서 선택되며; X2는 N-R8, S 및 O 중에서 선택되며;
R1 내지 R8은 각각 독립적으로 H, C1~C30의 알킬기, 알케닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴알킬기, 아릴옥시기, 아릴기 및 헤테로아릴기 중에서 선 택되며;
Ar1 및 Ar2는 각각 독립적으로 C5~C30의 아릴기, 헤테로아릴기 및 트리페닐 아민 중에서 선택된다.
[화학식 5]
Figure 112007028681567-pat00005
상기 화학식 5에서, X1은 N-R7, S 및 O 중에서 선택되며; X2는 N-R8, S 및 O 중에서 선택되며;
R1 내지 R8은 각각 독립적으로 H, C1~C30의 알킬기, 알케닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴알킬기, 아릴옥시기, 아릴기 및 헤테로아릴기 중에서 선택되며;
Ar1은 C5~C30의 아릴기, 헤테로아릴기 및 트리페닐 아민 중에서 선택된다.
또한, 본 발명은 양극, 1층 이상의 유기물층 및 음극을 순차적으로 포함하는 유기 발광 소자로서,
상기 1층 이상의 유기물층 중 적어도 하나의 층은 상기 화학식 1로 표시되는 화합물, 상기 화학식 2로 표시되는 화합물, 상기 화학식 3으로 표시되는 화합물, 상기 화학식 4로 표시되는 화합물 및 상기 화학식 5로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하는 것이 특징인 유기 발광 소자를 제공한다.
이하, 본 발명을 상세하게 설명하면 다음과 같다.
본 발명에 따른 상기 화학식 1로 표시되는 화합물 내지 화학식 5로 표시되는 화합물은 각각 나프탈렌기를 코어로 하고, 전자 전달 능력을 갖는 치환기로서 벤즈이미다졸(benzimidazole)기, 벤조티아졸(benzothiazole)기 및 벤즈옥사졸(benzoxazole)기 중에서 선택되는 1이상의 치환기를 포함하는 것이 특징이다.
보다 구체적으로, 상기 화학식 1로 표시되는 화합물은 나프탈렌기를 코어로 하고, 상기 나프탈렌기의 2번 탄소, 3번 탄소, 6번 탄소 및 7번 탄소 중 하나의 탄소 위치에 벤즈이미다졸기, 벤조티아졸기, 또는 벤즈옥사졸기가 치환된 구조를 갖는 것이 특징이다.
상기 화학식 2로 표시되는 화합물은 나프탈렌기를 코어로 하고, 상기 나프탈렌기의 2번 탄소, 3번 탄소, 6번 탄소 및 7번 탄소 중 하나의 탄소에 C5~C30의 아릴렌기, 헤테로아릴렌기 및 트리페닐 아민 중에서 선택되는 방향족기가 치환되어 있고, 상기 방향족기에 벤즈이미다졸기, 벤조티아졸기, 또는 벤즈옥사졸기가 치환된 구조를 갖는 것이 특징이다.
상기 화학식 3로 표시되는 화합물은 나프탈렌기를 코어로 하고, 상기 나프탈렌기의 2번 탄소 및 6번 탄소(또는 3번 탄소 및 7번 탄소)에는 각각 독립적으로 벤즈이미다졸기, 벤조티아졸기, 또는 벤즈옥사졸기가 치환된 구조를 갖는 것이 특징 이다.
상기 화학식 4로 표시되는 화합물은 나프탈렌기를 코어로 하고, 상기 나프탈렌기의 2번 탄소 및 6번 탄소(또는 3번 탄소 및 7번 탄소)에는 각각 독립적으로 C5~C30의 아릴렌기, 헤테로아릴렌기 및 트리페닐 아민 중에서 선택되는 방향족기가 도입되어 있고, 상기 각각의 방향족기에는 각각 독립적으로 벤즈이미다졸기, 벤조티아졸기, 또는 벤즈옥사졸기가 치환된 구조를 갖는 것이 특징이다.
또한, 상기 화학식 5로 표시되는 화합물은 나프탈렌기를 코어로 하고, 상기 나프탈렌기의 2번 탄소 및 6번 탄소(또는 3번 탄소 및 7번 탄소) 중 하나의 탄소에는 벤즈이미다졸기, 벤조티아졸기, 또는 벤즈옥사졸기가 치환된 방향족기가 치환되어 있고, 2번 탄소 및 6번 탄소(또는 3번 탄소 및 7번 탄소) 중 나머지 탄소에는 벤즈이미다졸기, 벤조티아졸기, 또는 벤즈옥사졸기가 치환된 구조를 갖는 것이 특징이다. 이때, 상기 방향족기는 C5~C30의 아릴렌기, 헤테로아릴렌기 및 트리페닐 아민 중에서 선택될 수 있다.
또한, 본 발명에 따른 상기 화학식 1로 표시되는 화합물 내지 화학식 5로 표시되는 화합물에 있어서, 나프탈렌기에는 수소원자 이외에도 C1~C30의 알킬기, 알케닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴알킬기, 아릴옥시기, 아릴기 및 헤테로아릴기 중 1이상의 치환기가 도입될 수 있다. 또한, 상기 벤즈이미다졸기, 벤조티아졸기, 및 벤즈옥사졸기는 각각 독립적으로 C1~C30의 알킬기, 알케닐기, 시클로알킬기, 헤테로시클로알킬기, 아릴알킬기, 아릴옥시기, 아릴기 및 헤테로아릴기 중 1이상의 치환기가 치환된 것일 수 있다.
또한, 상기 화학식 1 내지 화학식 5에서 Ar1 및 Ar2는 각각 독립적으로 C5~C30의 아릴렌기, 헤테로아릴렌기 및 트리페닐 아민 중에서 선택되는 방향족 고리기이면 특별히 한정되지 않는다. 이의 예로는, 페닐렌, 나프탈레닐렌, 바이페닐렌, 안트라센닐렌, 트리페닐 아민 등이 있으나, 이에 한정되는 것은 아니다.
상기 화학식 1로 표시되는 화합물 내지 화학식 5로 표시되는 화합물을 보다 자세하게 표현하면 하기 화합물들과 같으나, 본 발명에 따른 화합물들은 하기 예시된 것들에 한정되는 것은 아니다.
[화학식 1-1]
Figure 112007028681567-pat00006
[화학식 1-2]
Figure 112007028681567-pat00007
[화학식 1-3]
Figure 112007028681567-pat00008
[화학식 1-4]
Figure 112007028681567-pat00009
[화학식 2-1]
Figure 112007028681567-pat00010
[화학식 2-2]
Figure 112007028681567-pat00011
[화학식 2-3]
Figure 112007028681567-pat00012
[화학식 2-4]
Figure 112007028681567-pat00013
[화학식 2-5]
Figure 112007028681567-pat00014
[화학식 2-6]
Figure 112007028681567-pat00015
[화학식 3-1]
Figure 112007028681567-pat00016
[화학식 3-2]
Figure 112007028681567-pat00017
[화학식 3-3]
Figure 112007028681567-pat00018
[화학식 3-4]
Figure 112007028681567-pat00019
[화학식 3-5]
Figure 112007028681567-pat00020
[화학식 3-6]
Figure 112007028681567-pat00021
[화학식 4-1]
Figure 112007028681567-pat00022
[화학식 4-2]
Figure 112007028681567-pat00023
[화학식 4-3]
Figure 112007028681567-pat00024
[화학식 4-4]
Figure 112007028681567-pat00025
[화학식 4-5]
Figure 112007028681567-pat00026
[화학식 5-1]
Figure 112007028681567-pat00027
[화학식 5-2]
Figure 112007028681567-pat00028
[화학식 5-3]
Figure 112007028681567-pat00029
[화학식 5-4]
Figure 112007028681567-pat00030
[화학식 5-5]
Figure 112007028681567-pat00031
본 발명에 따른 상기 화학식 1로 표시되는 화합물 내지 화학식 5로 표시되는 화합물의 제조방법은 특별히 한정되지 않고, 당업계에 알려진 반응들을 적절히 적 용할 수 있다. 비제한적인 예를 들면, 본 발명에 따른 상기 화학식 1로 표시되는 화합물 내지 화학식 5로 표시되는 화합물 각각은 알데히드기가 1개 또는 2개 치환된 나프탈렌 유도체를 다이아미노벤젠 유도체, 아미노벤젠티올 유도체, 또는 아미노페놀 유도체와 반응시켜 제조될 수 있다.
또한, 비제한적인 예로, 상기 알데히드기가 1개 또는 2개 치환된 나프탈렌 유도체는 알코올 유도체로부터 PCC 등과 같은 당업계에 알려진 통상의 산화제를 사용하여 제조할 수 있고, 상기 알코올 유도체는 에스테르 유도체로부터 환원제를 사용하여 제조할 수 있으나, 특별히 상기 경로로 한정되는 것은 아니다. 또한, 상기 알데히드기가 1개 또는 2개 치환된 나프탈렌 유도체는 환원제를 적절히 선택함으로써 에스테르 유도체로부터 알데히드 유도체로 직접 환원시킬 수도 있다. 또한, 나프탈렌기에 방향족기를 도입하는 것은 당업계에 알려진 통상의 반응을 통해 수행될 수 있고, 비제한적인 예로 유기금속 화합물을 사용하는 반응을 통해 도입될 수 있다.
이상에서 예시한 제조방법은, 본 발명에 따른 상기 화학식 1로 표시되는 화합물 내지 화학식 5로 표시되는 화합물을 제조하기 위한 방법을 예로 들어 설명한 것일 뿐 상기 예시된 제조방법에 한정되는 것은 아니다.
본 발명은 양극, 1층 이상의 유기물층 및 음극을 순차적으로 포함하는 유기 발광 소자로서, 상기 1층 이상의 유기물층 중 적어도 하나의 층은 상기 화학식 1로 표시되는 화합물, 상기 화학식 2로 표시되는 화합물, 상기 화학식 3으로 표시되는 화합물, 상기 화학식 4로 표시되는 화합물 및 상기 화학식 5로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하는 것이 특징인 유기 발광 소자를 제공한다.
상기 유기물층은 유기 발광 소자에서 정공주입층, 정공수송층, 발광층, 및/또는 전자수송층일 수 있다.
바람직하게는, 상기 화학식 1로 표시되는 화합물 내지 화학식 5로 표시되는 화합물로 이루어진 군에서 선택되는 물질은 전자 수송층용 물질로서 유기 발광 소자에 포함될 수 있고, 이 경우 발광효율, 안정성 및 소자 수명이 향상될 수 있다. 따라서, 바람직하게는, 상기 화학식 1로 표시되는 화합물, 상기 화학식 2로 표시되는 화합물, 상기 화학식 3으로 표시되는 화합물, 상기 화학식 4로 표시되는 화합물 및 상기 화학식 5로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하는 유기물층은 전자 수송층일 수 있다.
전자 수송층용 물질은 분자 내 전자 밀도가 높은 물질일수록 좋은 결과를 나타내며, 일반적으로 헤테로 아민 계열의 화합물이 이에 해당될 수 있다. 그 중 전자 수송용 치환체로서 알려진 종래 벤즈이미다졸 유도체들은 분자의 안정성이 문제가 되었다. 따라서, 본 발명에서는 전자 수송용 유기물의 열안정성을 높이기 위해 코어 부분을 컨쥬게이션된 방향족 유도체(conjugated aromatic derivative), 바람직하게는 나프탈렌 유도체를 사용하여 분자의 열안정성을 높였고, 이에 의해 효율 및 수명 상승을 꾀하였다.
도 1은 본 발명에 따른 유기 발광 소자 구조의 일 예를 나타내는 단면도로 서, 기판(101), 양극(102), 정공 주입층(103), 정공 수송층(104), 발광층(105), 전자 수송층(106) 및 음극(107)이 순차적으로 적층되어 있다. 상기 전자 수송층(106) 위에는 전자 주입층이 위치할 수도 있다.
본 발명의 유기 발광 소자는 전술한 바와 같이 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조 뿐만 아니라, 전극과 유기물층 계면에 절연층 또는 접착층이 삽입될 수 있다.
본 발명의 유기 발광 소자에 있어서, 상기 화학식 1로 표시되는 화합물 내지 화학식 5로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하는 상기 유기물층은 진공증착법이나 용액 도포법에 의하여 형성될 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이들에만 한정되지 않는다.
상기 화학식 1로 표시되는 화합물 내지 화학식 5로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하는 상기 유기물층의 두께는 50 ~ 1000 Å일 수 있다. 상기 두께가 1000 Å을 초과할 경우 두께 때문에 통과하는 빛의 색순도가 떨어지고 구동 전압이 증가하여 전제 효율이 감소하며, 두께가 50 Å 미만 시에는 전자 이동도가 낮아지기 때문에 효율 및 수명 감소의 문제가 있다.
본 발명의 유기 발광 소자는 유기물층 중 1층 이상을 본 발명의 화합물을 포함하도록 형성하는 것을 제외하고는 당 기술 분야에 알려져 있는 재료 및 방법을 이용하여 유기물층 및 전극을 형성함으로써 제조될 수 있다.
예컨대, 기판(101)으로는 실리콘 웨이퍼, 석영 또는 유리판, 금속판, 플라스 틱 필름이나 시트 등이 사용될 수 있다.
양극(102) 물질로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자; 또는 카본블랙 등이 있으나, 이들에만 한정되는 것은 아니다.
음극 물질로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
또한, 상기 정공 주입층(103), 정공 수송층(104) 및 발광층(105)은 특별히 한정되는 것은 아니며, 당업계에 알려진 통상의 물질이 사용될 수 있다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[실시예 1] 화학식 3-6으로 표시되는 화합물의 합성
[실시예 1-1]
Figure 112007028681567-pat00032
다이메틸 2,6-나프탈렌다이카르복실레이트 50g (0.2 mol)을 THF 1.5L에 녹였다. 그런 다음 Ice bath 0℃ 하에서 리튬알루미늄하이드라이드 16.2g (35.95mol)을 질소 하에서 서서히 첨가한 후 상온에서 반응혼합물을 6시간 동안 교반 하였다. 반응이 종결되었는지는 TLC로 확인하며, 반응이 종결되면 다시 0℃하에서 포화된 소듐바이카보네이트 용액을 서서히 첨가하였다. 반응액을 감압 filter 후 여액을 감압증류하여 용매를 제거한 후, EA: Hex = 1: 1(v: v) 용액을 이용하여 크로마토 그래피를 하여 원하는 흰색 고체의 생성물 35g을 75.2%의 수율로 얻었다.
[실시예 1-2]
Figure 112007028681567-pat00033
피리디늄 클로로크로메이트 82.4g (0.382 mol)과 모레큘라시브 4Å 20g을 각각 첨가 후 MC 1.5L에 녹였다. 여기에 실시예 1-1에서 합성한 2,6-다이메틸알코올나프탈렌 30g (0.159 mol) 천천히 나누어 첨가한 후 5시간 동안 교반시켰다. 반응물을 Short silica gel filter 후, 여액을 감압 증류하였다. MC: n-Hex = 1: 4(v: v)으로 크로마토 그래피하여 17g의 흰색의 고체를 57.9%의 수율로 얻었다.
[실시예 1-3]
Figure 112007028681567-pat00034
실시예 1-2에서 얻은 2,6-다이카보닐알데하이드나프탈렌 1.5g (8.14mmol)과 N-페닐벤젠-1,2-다이아민 3.3g (17.91mmol)을 아세트산 10ml, Toluene 40ml (1:4)을 혼합한 용액에 녹인 다음, 3일 동안 환류 교반시켰다. 톨루엔층을 추출한 후 물로 씻고, 무수 마그네슘황산으로 건조시킨 후 실리카겔 층을 통과시키고, 용매를 제거하여 고체 화합물을 얻었다. 컬럼 크로마토 그래피를 통하여 ETL-1 0.37g (수율 27%)을 얻었다. 최대 흡수파장은 342nm, 최대 발광 파장은 410nm 이었다.
1H NMR (500MHz, THF-d8): 7.21 (t, 2H), 7.28 (t, 2H), 7.3 (d, 4H), 7.53(t, 2H), 7.55(m, 4H), 7.92(d, 2H), 9.09 (d, 2H).
[실시예 2] 화학식 1-2로 표시되는 화합물의 합성
[실시예 2-1]
Figure 112007028681567-pat00035
질소 하에서 1-나프틸보로닉에시드 15.57g (90.53mmol)과 메틸 6-브로모-2-나프토에이트(methyl 6-bromo-2-naphthoate) 20g (75.44mmol)을 Toluene 150ml에 녹인 후, 테트라키스트리페닐포스핀팔라듐 2.62g (2.26mmol) 및 포타슘카보네이트 20.85g 첨가하였다. 상기 혼합용액을 120℃로 13시간 동안 가열 교반시킨 후, 셀라이드 패드위에 혼합 용액을 Filter하고, 여액을 감압 증류하여 용매를 제거하였다. 얻어진 고체를 컬럼크로마토 그래피 EA:Hex = 3: 7(v: v) 로 컬럼 하여 흰색 고체 23g, 수율 97.6%을 얻었다.
[실시예 2-2]
Figure 112007028681567-pat00036
Compound A 23g (73.63 mmol)을 THF 150ml에 녹였다. Ice bath 0℃ 하에서 리튬알루미늄하이드라이드 5.59g (147.27mmol)을 질소 하에서 서서히 첨가한 후, 상온에서 반응혼합물을 4시간 동안 교반시켰다. 반응이 종결되었는지는 TLC로 확인하며, 반응이 종결되면 다시 0℃ 하에서 포화된 소듐바이카보네이트 용액을 서서히 첨가하였다. 반응액을 감압 filter하고 여액을 감압증류하여 용매를 제거한 후, EA: Hex = 4: 6(v: v) 용액을 이용하여 크로마토 그래피를 하여 원하는 흰색 고체의 생성물 19.44g을 92.8%의 수율로 얻었다.
[실시예 2-3]
Figure 112007028681567-pat00037
피리디늄 클로로크로메이트 29.5g (136.73mmol)과 모레큘라시브 4Å 20g을 각각 첨가 후 MC 250ml에 녹였다. 여기에 Compound B 19.44g (68.37mmol) 천천히 나누어 첨가한 후, 5시간 동안 교반하였다. 반응물을 Short silica gel filter 후, 여액을 감압 증류시켰다. MC: n-Hex = 4: 6(v: v)으로 크로마토 그래피하여 14.78g의 흰색의 고체를 76.6%의 수율로 얻었다.
[실시예 2-4]
Figure 112007028681567-pat00038
Compound C 7g (24.80mmol)과 N-페닐벤젠-1,2-다이아민 4.57g (24.80mmol)을 아세트산 30ml, Toluene 120ml (1:4)을 Mix 한 용액에 녹인 다음, 3일 동안 환류 교반시켰다. 톨루엔층을 추출 한 후 물로 씻고, 무수 마그네슘황산으로 건조시킨 후 실리카겔 층을 통과시키고, 용매를 제거하여 고체 화합물을 얻었다. 컬럼 크로마토 그래피를 통하여 ETL-2 3.8g (수율 34.3%)을 얻었다.
1H NMR (500MHz, THF-d8): 7.21 (t, 1H), 7.28 (t, 1H), 7.3 (d, 2H), 7.32(t, 1H), 7.46(t, 1H) 7.53(t, 1H), 7.55(m, 2H), 7.58(d, 1H), 7.61 (t, 1H), 7.63 (t, 2H), 7.73 (d, 1H), 7.92(d, 2H), 8.42 (d, 1H), 8.55(d, 1H), 9.09 (d, 1H).
[실시예 3] 화학식 2-6으로 표시되는 화합물의 합성
[실시예 3-1]
Figure 112007028681567-pat00039
질소 하에서 2-나프틸보로닉에시드 4.22g (24.52mmol)과 메틸-6-브로모-2-나프토에이트 5g (18.86mmol)을 Toluene 150ml에 녹인 후, 테트라키스트리페닐포스핀팔라듐 0.65g (0.57mmol), 나트륨카보네이트 6.00g (56.58mmol) 첨가하였다. 이 혼합용액을 120℃로 가열 교반하였다. 13시간 교반 후 셀라이드 패드위에 혼합 용액을 Filter한 후 여액을 감압 증류하여 용매를 제거하였다. 얻어진 고체를 컬럼크로마토 그래피 EA: Hex = 3: 7(v: v)로 컬럼 하여 흰색 고체 5.3g, 수율 90.0%을 얻었다.
[실시예 3-2]
Figure 112007028681567-pat00040
Compound D 5.3g (16.98 mmol)을 THF 150ml에 녹였다. Ice bath 0℃하에서 리튬알루미늄하이드라이드 1.42g (37.36mmol)을 질소 하에서 서서히 첨가한 후 상온에서 반응혼합물을 4시간 동안 교반시켰다. 반응이 종결되었는지는 TLC로 확인하며, 반응이 종결되면 다시 0℃하에서 포화된 소듐바이카보네이트 용액을 서서히 첨가하였다. 반응액을 감압 filter하고 여액을 감압증류하여 용매를 제거한 후, EA: Hex = 4: 6(v: v) 용액을 이용하여 크로마토 그래피를 하여 원하는 흰색 고체의 생 성물 4.3g을 89.1%의 수율로 얻었다
[실시예 3-3]
Figure 112007028681567-pat00041
피리디늄 클로로크로메이트 6.52g (30.27mmol)과 모레큘라시브 4Å 5g을 각각 첨가 후 MC 100ml에 녹였다. 여기에 Compound E 4.3g (15.13mmol) 천천히 나누어 첨가한 후, 5시간 동안 교반시켰다. 반응물을 Short silica gel filter 후, 여액을 감압 증류하였다. MC: n-Hex = 4: 6(v: v)으로 크로마토 그래피하여 3.11g의 흰색의 고체를 72.8%의 수율로 얻었다.
[실시예 3-4]
Figure 112007028681567-pat00042
Compound F 3.11g (11.02mmol)과 N-페닐벤젠-1,2-다이아민 2.03g (11.02mmol)을 아세트산 30ml, Toluene 120ml (1:4)을 혼합한 용액에 녹인 다음, 3일 동안 환류 교반시켰다. 톨루엔층을 추출 한 후 물로 씻고, 무수 마그네슘황산으로 건조시킨 후 실리카겔 층을 통과시키고, 용매를 제거하여 고체 화합물을 얻었다. 컬럼 크로마토 그래피를 통하여 노란색 고체인 ETL-3 1.22g (수율 24.8%)을 얻었다.
1H NMR (500MHz, THF-d8): 7.21 (t, 2H), 7.28 (t, 2H), 7.3 (d, 4H), 7.53(t, 2H), 7.55(m, 4H), 7.58(d, 2H), 7.59 (m, 3H), 7.73 (d, 2H), 7.92 (t, 1H), 8.01(t, 1H), 8.11(t, 1H) 7.92(d, 2H), 9.09 (d,, 2H).
[실시예 4] 화학식 4-1으로 표시되는 화합물의 합성
[실시예 4-1]
Figure 112007028681567-pat00043
다이브로모나프탈렌 10g (0.0349mol)과 포밀페닐보로닉에시드 6.3g (0.042mol), 테트라키스트리페닐포스핀팔라듐 2g (1.74mmol), 포타슘카보네이트 4.3g (0.042mol), Toluene 450ml/H2O 50ml를 혼합한 용액에 녹인 다음 환류 교반시켰다. 톨루엔층을 추출 한 후 물로 씻고, 무수 마그네슘황산으로 건조시킨 후 실리카겔 층을 통과시키고, 용매를 제거하여 고체 화합물을 얻었다. 컬럼 크로마토 그래피를 통하여 흰색 고체인 Compound G 10.43g (수율 88.9%)을 얻었다.
[실시예 4-2]
Figure 112007028681567-pat00044
Compound G 10g (0.0297mol)과 N-페닐벤젠-1,2-다이아민 16.41g (0.0891mol) 을 아세트산 50ml, Toluene 200ml (1:4)을 혼합한 용액에 녹인 다음, 3일 동안 환류 교반시켰다. 톨루엔층을 추출 한 후 물로 씻고, 무수 마그네슘황산으로 건조시킨 후 실리카겔 층을 통과시키고, 용매를 제거하여 고체 화합물을 얻었다. 컬럼 크로마토 그래피를 통하여 노란색 고체인 ETL-4 5.23g (수율 26.5%)을 얻었다.
1H NMR (500MHz, THF-d8): 7.21 (t, 2H), 7.25(d, 2H) 7.28 (t, 2H), 7.3 (d, 4H), 7.53(m, 4H), 7.55(m, 4H), 7.92(d, 2H), 9.09 (d, 2H).
[실시예 5] 화학식 5-1으로 표시되는 화합물의 합성
[실시예 5-1]
Figure 112007028681567-pat00045
메틸-6-브로모-2-나프토에이트 5g (0.0188mol)를 THF 100ml에 녹였다. Ice bath 0℃ 하에서 리튬알루미늄하이드라이드 0.85g (0.0226mol)을 질소 하에서 서서히 첨가한 후, 상온에서 반응혼합물을 4시간 동안 교반시켰다. 반응이 종결되었는지는 TLC로 확인하며, 반응이 종결되면 다시 0℃ 하에서 포화된 소듐바이카보네이트 용액을 서서히 첨가하였다. 반응액을 감압 filter하고 여액을 감압증류하여 용매를 제거한 후, EA: Hex = 4: 6(v: v) 용액을 이용하여 크로마토 그래피를 하여 원하는 흰색 고체(Compound H)의 생성물 4.05g을 91%의 수율로 얻었다.
[실시예 5-2]
Figure 112007028681567-pat00046
피리디늄 클로로크로메이트 7.3g (0.0337mol)과 모레큘라시브 4Å 2g을 각각 첨가 후 MC 150ml에 녹였다. 여기에 Compound H 4g (0.0168mol) 천천히 나누어 첨가한 후, 5시간 동안 교반시켰다. 반응물을 Short silica gel filter 후, 여액을 감압 증류하였다. MC: n-Hex = 4: 6(v: v)으로 크로마토 그래피하여 3.0g의 흰색의 고체(Conpound I)를 76.2%의 수율로 얻었다.
[실시예 5-3]
Figure 112007028681567-pat00047
Compound I 5g (0.0213mol)과 포밀페닐보로닉엑시드 3.82g (0.0255mol), 테트라키스트리페닐포스핀팔라듐 0.73g (0.63mmol), 포타슘카보네이트 3.52g (0.0255mol), Toluene 150ml/ H2O 20ml을 혼합한 용액에 녹인 다음 환류 교반시켰다. 톨루엔층을 추출 한 후 물로 씻고, 무수 마그네슘황산으로 건조시킨 후 실리카겔 층을 통과시키고, 용매를 제거하여 고체 화합물을 얻었다. 컬럼 크로마토 그래피를 통하여 흰색 고체인 Compound J 5.1g (수율 92%)을 얻었다.
[실시예 5-4]
Figure 112007028681567-pat00048
Compound J 5g (0.0192mol)과 N-페닐벤젠-1,2-다이아민 10.61g (0.0576mol)을 아세트산 40ml, Toluene 160ml (1:4)을 혼합한 용액에 녹인 다음, 3일 동안 환류 교반시켰다. 톨루엔층을 추출 한 후 물로 씻고, 무수 마그네슘황산으로 건조시킨 후 실리카겔 층을 통과시키고, 용매를 제거하여 고체 화합물을 얻었다. 컬럼 크로마토 그래피를 통하여 노란색 고체인 ETL-5 3.07g (수율 27.2%)을 얻었다.
1H NMR (500MHz, THF-d8): 7.21 (t, 2H), 7.25(d, 2H) 7.28 (t, 2H), 7.3 (d, 4H), 7.53(m, 4H), 7.55(m, 4H), 7.73 (d, 2H), 7.92(d, 2H), 8.49(d, 2H), 9.09 (d, 2H).
[실시예 6~8 및 비교예 1] 유기 발광 소자 제조
ITO (Indium tin oxide)가 1500Å의 두께가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 이송 시킨 다음 산소 플라즈마를 이용하여 상기 기판을 5분간 세정 한 후 진공 층착기로 기판을 이송하였다.
이렇게 준비된 ITO 투명 전극 위에 아릴아민유도체 (제품명 DS-205, 두산社, 이하 DS-205로 표기함)를 600Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 그 위에 정공을 이송하는 물질인 NPB를 150Å 증착한 후 발광 층 역할을 하는 Alq3 및 C-545T를 300Å 증착하였다.
발광층 위에 전자의 주입 및 이송 역할을 하는 물질로서 ETL-1(실시예 6), ETL-2(실시예 7), ETL-3(실시예 8) 또는 비교물질인 Alq3(비교예 1)을 각각 250Å의 두께로 증착하였다. 상기 전자 주입 및 수송층 위에 순차적으로 10 Å의 두께로 LiF와 2,000Å 두께의 Al을 증착하여 음극을 형성하여 소자를 제조하였다.
실시예 6 내지 실시예 8의 유기 발광 소자 각각의 구조는 하기 표 1에 기재하였고, 비교예 1의 유기 발광 소자의 구조는 하기 표 2에 기재하였다. 또한, 실시예 6의 유기 발광 소자의 특성은 하기 표 3에 기재하였고, 실시예 7의 유기 발광 소자의 특성은 하기 표 4에 기재하였고, 실시예 8의 유기 발광 소자의 특성은 하기 표 5에 기재하였고, 비교예 1의 유기 발광 소자의 특성은 하기 표 6에 기재하였다.
  HIL HTL EML ETL EIL Cathode
Materials DS-205 NPB Alq3 + C-545T ETL-1(실시예6) ETL-2(실시예7) ETL-3(실시예8) LiF Al
Thickness / Å 600 150 294 + 6 250 10 2,000
Evapo. Temp. /℃ 330 ~ 340 240 ~ 250 Alq3 : 260 ~ 270 C-545T : 150 ~ 160 210 ~ 220 - -
Vacuum / torr 15.5×10-8 1.6×10-7 1.3×10-7 1.3×10-7
  HIL HTL EML ETL EIL Cathode
Materials DS-205 NPB Alq3 + C-545T Alq3 LiF Al
Thickness / Å 600 150 294 + 6 250 10 2,000
Evapo. Temp. /℃ 330 ~ 340 240 ~ 250 Alq3 : 240 ~ 250 C-545T : 150 ~ 160 260 ~ 270 - -
Vacuum / torr 15.5×10-8 1.6×10-7 5.7×10-7 5.7×10-7    
Current Density (mA/cm2) Voltage (V) Luminance (cd/m2) CIE index (x, y) Peak λ (nm) Efficiency (cd/A) Efficiency (lm/W)
10 5.3 1653 0.322, 0.635 524 16.5 9.8
25 6.2 4083 0.321, 0.636 525 16.3 8.3
50 6.9 8031 0.321, 0.636 525 16.1 7.3
100 7.8 15670 0.320, 0.635 524 15.7 6.3
150 8.3 23520 0.319, 0.635 524 15.7 5.9
Current Density (mA/cm2) Voltage (V) Luminance (cd/m2) CIE index (x, y) Peak λ (nm) Efficiency (cd/A) Efficiency (lm/W)
10 5.3 1645 0.322, 0.635 524 16.1 9.6
25 6.2 4033 0.321, 0.635 524 15.9 8.2
50 6.9 7919 0.320, 0.635 524 15.7 7.2
100 7.7 15470 0.319, 0.635 524 15.5 6.3
150 8.2 23220 0.319, 0.635 524 15.5 5.9
Current Density (mA/cm2) Voltage (V) Luminance (cd/m2) CIE index (x, y) Peak λ (nm) Efficiency (cd/A) Efficiency (lm/W)
10 5.3 1645 0.322, 0.635 524 16.1 9.7
25 6.2 4033 0.321, 0.635 524 16.0 8.0
50 6.9 7919 0.320, 0.635 524 15.8 7.2
100 7.7 15470 0.319, 0.635 524 15.5 6.3
150 8.2 23220 0.319, 0.635 524 15.5 6.0
Current Density (mA/cm2) Voltage (V) Luminance (cd/m2) CIE index (x, y) Peak λ (nm) Efficiency (cd/A) Efficiency (lm/W)
10 4.6 1219 0.315, 0.639 523 12.2 8.3
25 5.4 3093 0.314, 0.639 523 12.4 7.2
50 6.2 6217 0.314, 0.639 523 12.4 6.3
100 7.0 12450 0.313, 0.638 523 12.5 5.6
150 7.4 19010 0.312, 0.638 523 12.7 5.4
이상에서 살펴본 바와 같이, 본 발명에 따른 화합물은 종래 Alq3보다 약 1.3배의 효율 향상의 효과를 얻어낼 수 있었다. 이로써 본 발명에 의한 화합물들은 유기 EL소자의 EL 성능을 개선하는데 크게 기어 할 수 있으며 특히 이러한 전자 수송 성능 향상은 풀 칼라 유기 EL 패널에서 성능 극대화에도 큰 효과가 있을 것으로 기대되었다.

Claims (7)

  1. 삭제
  2. 하기 화학식 2로 표시되는 화합물.
    [화학식 2]
    Figure 712008002421917-pat00050
    상기 화학식 2에서, X1은 N-R7, S 및 O 중에서 선택되며;
    R1, R2, R3, R4 및 R6은 각각 독립적으로 H, C1~C30의 알킬기, C2~C30의 알케닐기, C3~C30의 시클로알킬기, C2~C30의 헤테로시클로알킬기, C5~C30의 아릴알킬기, C5~C30의 아릴옥시기, C5~C30의 아릴기 및 C5~C30의 헤테로아릴기 중에서 선택되며;
    R7은 C5~C30의 아릴기 또는 C5~C30의 헤테로아릴기이며;
    Ar1은 단일결합, C5~C30의 아릴기, C5~C30의 헤테로아릴기 및 트리페닐 아민 중에서 선택되며;
    R5는 H, C1~C30의 알킬기, C2~C30의 알케닐기, C3~C30의 시클로알킬기, C2~C30의 헤테로시클로알킬기, C5~C30의 아릴알킬기, C5~C30의 아릴옥시기, C5~C30의 아릴기(이때 안트라센닐기는 제외됨), C5~C30의 헤테로아릴기 중에서 선택된다.
  3. 삭제
  4. 삭제
  5. 삭제
  6. 양극, 1층 이상의 유기물층 및 음극을 순차적으로 포함하는 유기 발광 소자로서,
    상기 1층 이상의 유기물층 중 적어도 하나의 층은 하기 화학식 2로 표시되는 화합물을 포함하는 것이 특징인 유기 발광 소자.
    [화학식 2]
    Figure 112008006794457-pat00055
    상기 화학식에서, X1, R1 내지 R6 및 Ar1은 제2항에 정의한 바와 동일하다.
  7. 제6항에 있어서, 상기 화학식 2로 표시되는 화합물을 포함하는 유기물층은 전자 수송층인 것이 특징인 유기 발광 소자.
KR1020070036803A 2007-04-16 2007-04-16 새로운 유기 화합물 및 이를 이용한 유기 발광 소자 KR100857652B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070036803A KR100857652B1 (ko) 2007-04-16 2007-04-16 새로운 유기 화합물 및 이를 이용한 유기 발광 소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070036803A KR100857652B1 (ko) 2007-04-16 2007-04-16 새로운 유기 화합물 및 이를 이용한 유기 발광 소자

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020080053153A Division KR100857655B1 (ko) 2008-06-05 2008-06-05 새로운 유기 화합물 및 이를 이용한 유기 발광 소자

Publications (1)

Publication Number Publication Date
KR100857652B1 true KR100857652B1 (ko) 2008-09-08

Family

ID=40022829

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070036803A KR100857652B1 (ko) 2007-04-16 2007-04-16 새로운 유기 화합물 및 이를 이용한 유기 발광 소자

Country Status (1)

Country Link
KR (1) KR100857652B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154236A (ja) * 1998-11-20 2000-06-06 Shikoku Chem Corp エポキシ樹脂組成物
KR20070031812A (ko) * 2005-09-15 2007-03-20 주식회사 엘지화학 신규 유기 화합물 및 이를 사용한 유기 발광 소자
KR20070062920A (ko) * 2005-12-13 2007-06-18 주식회사 엘지화학 신규한 이미다조퀴나졸린 유도체, 이의 제조방법 및 이를이용한 유기전기소자
KR20070074095A (ko) * 2006-01-06 2007-07-12 한양대학교 산학협력단 금속 화합물 및 이를 포함하는 유기 전계 발광 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000154236A (ja) * 1998-11-20 2000-06-06 Shikoku Chem Corp エポキシ樹脂組成物
KR20070031812A (ko) * 2005-09-15 2007-03-20 주식회사 엘지화학 신규 유기 화합물 및 이를 사용한 유기 발광 소자
KR20070062920A (ko) * 2005-12-13 2007-06-18 주식회사 엘지화학 신규한 이미다조퀴나졸린 유도체, 이의 제조방법 및 이를이용한 유기전기소자
KR20070074095A (ko) * 2006-01-06 2007-07-12 한양대학교 산학협력단 금속 화합물 및 이를 포함하는 유기 전계 발광 소자

Similar Documents

Publication Publication Date Title
EP1828343B1 (en) Pyrene derivatives and organic electronic device using pyrene derivatives
KR102134523B1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
KR101011857B1 (ko) 벤조플루오란센 유도체 및 이를 이용한 유기 발광 소자
JP5432147B2 (ja) 有機金属錯体誘導体およびこれを用いた有機発光素子
JP5844384B2 (ja) 新規な化合物およびこれを用いた有機発光素子
JP4308663B2 (ja) 新しい電子輸送用物質及びこれを利用した有機発光素子
JP5165671B2 (ja) 新規なジアミン誘導体、その製造方法およびそれを用いた有機電気素子
JP5703394B2 (ja) 新規な化合物およびこれを含む有機発光素子
KR101247626B1 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
KR101218029B1 (ko) 방향족 아민을 포함하는 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101452578B1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
JP2013510141A (ja) 有機光電素子用化合物およびこれを含む有機光電素子
KR20100017737A (ko) 유기 전계 발광 소자용 화합물 및 유기 전계 발광 소자
JP6207632B2 (ja) 新規な化合物およびこれを用いた有機電子素子
KR20130007934A (ko) 트리페닐렌계 화합물 및 이를 이용한 유기 전계 발광 소자
JP2009269909A (ja) 新規な電子材料用化合物及びこれを使用する有機電子素子
JP2009501790A (ja) インデン誘導体およびこれを用いた有機発光素子
EP2390249B1 (en) Novel cycloalkene derivatives and organic electronic devices using the same
KR101380008B1 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기 전자 소자
KR100857655B1 (ko) 새로운 유기 화합물 및 이를 이용한 유기 발광 소자
KR101274926B1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR101960977B1 (ko) N-사이클로알킬알킬 트리스카바졸
KR100857652B1 (ko) 새로운 유기 화합물 및 이를 이용한 유기 발광 소자
KR20200062066A (ko) 유기 발광 소자
KR102485738B1 (ko) 화합물 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
A107 Divisional application of patent
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120904

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130807

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141216

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150824

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160822

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180806

Year of fee payment: 11