KR100856501B1 - Integrated nuclear reactor safety equipment using driven sprinkling system - Google Patents
Integrated nuclear reactor safety equipment using driven sprinkling system Download PDFInfo
- Publication number
- KR100856501B1 KR100856501B1 KR1020070034360A KR20070034360A KR100856501B1 KR 100856501 B1 KR100856501 B1 KR 100856501B1 KR 1020070034360 A KR1020070034360 A KR 1020070034360A KR 20070034360 A KR20070034360 A KR 20070034360A KR 100856501 B1 KR100856501 B1 KR 100856501B1
- Authority
- KR
- South Korea
- Prior art keywords
- pipe
- reactor
- safety
- tank
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/18—Emergency cooling arrangements; Removing shut-down heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/16—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
- F22B1/162—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour in combination with a nuclear installation
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C15/00—Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
- G21C15/24—Promoting flow of the coolant
- G21C15/243—Promoting flow of the coolant for liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma & Fusion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
본 발명은 피동살수계통을 이용한 일체형원자로 안전설비에 관한 것으로서, 더욱 상세하게는 안전보호용기 내부에 원자로집합체용기의 상부에 위치하도록 설치되어 냉각재상실사고 발생시 중력에 의해 냉각수를 살수함으로써 파단 배관을 통해 방출되는 증기의 응축 효율을 향상시켜주는 피동살수계통과, 피동살수계통에 의해 살수되는 냉각수와 파단 배관을 통해 방출되는 증기의 응축수를 수집하여 원자로집합체용기 내부로 주입하는 집수조를 포함하도록 구성되어, 냉각재상실사고 초기에 안전보호용기의 내부 압력을 효과적으로 감소시켜주고 사고 중후반까지 원자로집합체용기 내의 수위를 안정적으로 유지시켜주는 일체형원자로의 안전설비에 관한 것이다.The present invention relates to an integrated nuclear reactor safety equipment using a driven sprinkling system, and more particularly, is installed to be located in the upper part of the reactor assembly container inside the safety protection vessel, and by spraying the cooling water by gravity in the event of a loss of coolant accident through the broken pipe It is configured to include a driven sprinkling system for improving the condensation efficiency of the discharged steam, and a collecting tank for collecting the condensed water of the steam discharged through the cooling pipe and the break pipe piped by the driven sprinkling system and injected into the reactor assembly container, The present invention relates to a safety facility for an integrated reactor that effectively reduces the internal pressure of the safety protection vessel in the early stage of the loss of coolant and maintains the water level in the reactor assembly container until the middle and second half of the accident.
본 발명에 따른 피동살수계통을 이용한 일체형원자로 안전설비는, 원자로집합체용기보다 높은 위치에 설치되어 중력에 의해 냉각수를 살수시키는 피동살수계통과; 상기 원자로집합체용기의 주위에 설치되고, 연결배관을 통해 상기 원자로집합체용기에 연결되는 집수조와; 상기 원자로집합체용기, 피동살수계통 및 집수조를 내부에 포함하도록 구성되는 안전보호용기; 및 주증기배관을 따라 증기발생기로부터 방출되는 증기가 상기 안전보호용기 외부에 설치된 핵연료재장전수탱크의 내부에 구비되는 응축열교환기를 통과한 후 주급수배관을 따라 상기 증기발생기로 다시 유입되도록 구성되는 피동잔열제거계통을 포함하여 구성되는 점을 특징으로 한다.The integrated reactor safety equipment using the driven sprinkling system according to the present invention includes: a driven sprinkling system installed at a position higher than the reactor assembly container to spray cooling water by gravity; A collecting tank installed around the reactor assembly container and connected to the reactor assembly container through a connection pipe; A safety protective container configured to include the reactor assembly container, a driven sprinkling system, and a water collecting tank therein; And a steam discharged from the steam generator along the main steam pipe passes through a condensation heat exchanger provided inside the nuclear fuel storage tank installed outside the safety protective container and then flows back into the steam generator along the main water supply pipe. Characterized in that it comprises a residual heat removal system.
Description
도 1은 본 발명이 적용되는 일체형원자로의 구조를 나타내는 단면도.1 is a cross-sectional view showing the structure of an integrated reactor to which the present invention is applied.
도 2는 본 발명의 일실시예에 따른 피동살수계통을 이용한 일체형원자로 안전설비의 시스템 구성을 나타내는 도면.Figure 2 is a view showing the system configuration of the safety equipment of the integrated reactor using the driven sprinkler system according to an embodiment of the present invention.
도 3은 도 2에 도시된 살수탱크의 내부 구조를 나타내는 도면.3 is a view showing the internal structure of the watering tank shown in FIG.
도 4는 도 2에 도시된 피동안전설비의 작동 상태를 나타내는 도면.4 is a view showing an operating state of the blood-to-electric equipment shown in FIG.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
11 : 원자로집합체용기 12 : 노심11: reactor assembly container 12: core
13 : 원자로냉각재펌프 14 : 증기발생기13: reactor coolant pump 14: steam generator
16 : 주증기배관 17 : 주급수배관16: main steam pipe 17: main water supply pipe
20 : 안전보호용기 30 : 피동잔열제거계통20: safety protective container 30: passive residual heat removal system
31 : 응축열교환기 32 : 증기배관31: condensation heat exchanger 32: steam piping
41 : 핵연료재장전수탱크 50 : 피동살수계통41: nuclear fuel reload tank 50: passive sprinkling system
51 : 살수탱크 52 : 살수배관51: watering tank 52: watering pipe
53 : 살수노즐 54 : 상부배관53: water spray nozzle 54: upper piping
55 : 스탠드파이프 56 : 유로구55: stand pipe 56: euro ball
18, 19, 57, 67, 87 : 밸브 60 : 집수조18, 19, 57, 67, 87: valve 60: sump
61 : 연결배관 68, 78 : 체크밸브61:
70 : 안전주입탱크 71 : 안전주입배관70: safety injection tank 71: safety injection piping
81 : 방출배관81: discharge piping
본 발명은 피동살수계통을 이용한 일체형원자로 안전설비에 관한 것으로서, 더욱 상세하게는 안전보호용기 내부에 원자로집합체용기의 상부에 위치하도록 설치되어 냉각재상실사고 발생시 중력에 의해 냉각수를 살수함으로써 파단 배관을 통해 방출되는 증기의 응축 효율을 향상시켜주는 피동살수계통과, 피동살수계통에 의해 살수되는 냉각수와 파단 배관을 통해 방출되는 증기의 응축수를 수집하여 원자로집합체용기 내부로 주입하는 집수조를 포함하도록 구성되어, 냉각재상실사고 초기에 안전보호용기의 내부 압력을 효과적으로 감소시켜주고 사고 중후반까지 원자로집합체용기 내의 수위를 안정적으로 유지시켜주는 일체형원자로의 안전설비에 관한 것이다.The present invention relates to an integrated nuclear reactor safety equipment using a driven sprinkling system, and more particularly, is installed to be located in the upper part of the reactor assembly container inside the safety protection vessel, and by spraying the cooling water by gravity in the event of a loss of coolant accident through the broken pipe It is configured to include a driven sprinkling system for improving the condensation efficiency of the discharged steam, and a collecting tank for collecting the condensed water of the steam discharged through the cooling pipe and the break pipe piped by the driven sprinkling system and injected into the reactor assembly container, The present invention relates to a safety facility for an integrated reactor that effectively reduces the internal pressure of the safety protection vessel in the early stage of the loss of coolant and maintains the water level in the reactor assembly container until the middle and second half of the accident.
일반적으로 분리형 가압경수로(이하, 분리형원자로라 칭함)에서는 가압기, 증기발생기 및 원자로냉각재펌프 등의 주요기기가 원자로용기의 외부에 설치되며, 이들 주요기기는 대형 배관으로 서로 연결된다.In general, in a separate type pressurized water reactor (hereinafter referred to as a separate type reactor), main equipment such as a pressurizer, a steam generator, and a reactor coolant pump are installed outside the reactor vessel, and these main equipment are connected to each other by a large pipe.
이에 비하여 일체형 가압경수로(이하, 일체형원자로라 칭함)는 상기한 주요기기들이 원자로집합체용기의 내부에 설치되는 원자로로서, 원자로집합체용기의 외부에 분리형원자로에서와 같은 대형 배관이 구비될 필요가 없어 분리형원자로에서 발생할 수 있는 대형 냉각재상실사고(Loss of Coolant Accident; LOCA)를 근원적으로 배제하여 안전성을 보다 향상시킬 수 있다. 이와 같이 일체형원자로에서는 대형 냉각재상실사고가 배제됨이 따라 냉각재상실사고에 대비한 설비를 별도로 갖출 필요가 없기 때문에 경제성의 향상을 도모할 수 있다.In contrast, an integrated pressurized water reactor (hereinafter referred to as an integrated reactor) is a reactor in which the above-mentioned main devices are installed inside the reactor assembly vessel, and there is no need to provide a large size pipe such as a separate reactor outside the reactor assembly vessel. Safety can be further improved by fundamentally eliminating the Loss of Coolant Accident (LOCA) that may occur in a reactor. In this way, since a large coolant loss accident is excluded from an integrated reactor, it is not necessary to equip a facility for a coolant loss accident, thereby improving economic efficiency.
종래의 분리형원자로에 적용되고 있는 안전계통으로는, 능동형과 피동형을 복합해서 사용하는 안전계통(이하, 능동형안전계통이라 칭함)과, AP1000과 같이 피동형 안전계통 만을 사용하는 안전계통(이하, 피동형안전계통이라 칭함)이 있다.Safety systems applied to conventional separate reactors include safety systems using a combination of active and passive types (hereinafter referred to as active safety systems) and safety systems using only passive safety systems such as AP1000 (hereinafter referred to as passive safety). System line).
먼저, 능동형안전계통은 종래의 분리형원자로에서 대부분 적용하고 있는 것으로서, 격납용기, 핵연료재장전수조, 안전주입탱크, 안전주입펌프, 살수계통, 감압계통, 재순환계통 등과 이들 기기에 전원을 공급하기 위한 디젤발전기 등으로 구성되어 있다. 이러한 능동형안전계통은 지난 수십 년간 대부분의 분리형원자로에서 성공적으로 운영되어 그 안정성이 입증된 바 있다.First of all, active safety systems are mostly applied in conventional separate reactors, and are used for supplying power to these devices such as containment vessels, nuclear fuel storage tanks, safety injection tanks, safety injection pumps, spraying systems, decompression systems, recirculation systems, etc. It is composed of a diesel generator and the like. This active safety system has been successfully operated in most of the separate reactors for decades and has proven its stability.
그러나 능동형안전계통을 적용한 분리형원자로는 냉각재상실사고 후 짧은 시간 내에 냉각수원 전환을 위한 관련 밸브의 재정열 등과 같은 운전원 조치가 요구되어 운전원의 실수를 유발할 가능성이 있고, 사고시 안전주입펌프와 같은 펌프의 장시간 사용이 요구되어 펌프 고장이 발생할 가능성이 있으며, 능동 계통과 관련된 많은 설비들이 포함되어 있어 건설비용이 증가하고 이들 설비의 유지보수 및 운전 상의 운영비용이 증가하게 되는 문제점이 있다.However, separate reactors with an active safety system require operator actions such as rearrangement of the associated valves for switching the coolant source within a short time after a coolant accident, which may cause operator error. There is a possibility that pump failure may occur due to long time use, and many facilities related to the active system are included, which increases the construction cost and increases the operation and maintenance costs of these facilities.
한편, 피동형안전계통은 상술한 능동형안전계통의 문제점을 보완하기 위해 개발된 것으로서, 중력, 가스 압축력 등의 자연력을 이용하여 피동적으로 작동할 수 있는 안전계통이다.On the other hand, the passive safety system was developed to supplement the problems of the active safety system described above, and is a safety system that can be passively operated using natural forces such as gravity and gas compression force.
일반적으로 분리형원자로에는 주요기기를 연결하는 대형 배관으로 인해 대형냉각재상실사고가 발생할 경우를 대비하여 다량의 냉각수방출을 수용할 수 있는 대형의 격납용기가 설치된다. 이들 원자로에서 대형냉각재상실사고가 발생하는 경우, 능동형의 분리형원자로에서는 능동살수계통이 작동되도록 하고, 피동형으로 구현된 분리형원자로에서는 격납용기 외부를 공기 또는 중력에 의한 살수를 이용해서 냉각해 격납용기 온도를 낮은 온도로 유지함으로써 격납용기 내부의 증기가 격납용기 내벽에 응축되도록 하여, 격납용기 내부압력을 설계압력 이하로 유지한다. 이러한 분리형원자로는 대형배관이 파단되는 경우에 원자로용기의 압력이 빠른 시간 내에 대기압으로 감압되어 격납용기와 원자로용기 사이에 압력 평형이 이루어지고, 압력 평형이 잘 이루어지지 않은 소형파단이 발생하는 경우에는 자동감압계통이 작동되어 압력 평형을 이루도록 설계된다.In general, separate containment vessels are equipped with large containment vessels that can accommodate a large amount of coolant discharge in case of large coolant loss accidents due to the large piping connecting the main equipment. In the case of a large loss of coolant accident in these reactors, the active sprinkling system is operated in the active split type reactor, and in the split type reactor implemented in the passive type, the outside of the containment vessel is cooled by using water or sprayed by gravity to store the temperature of the container. By keeping the temperature at a low temperature, the vapor inside the containment container is condensed on the inner wall of the containment container, and the inside pressure of the containment container is kept below the design pressure. In the case of such a large-scale pipe breakage, if the pressure of the reactor vessel is reduced to atmospheric pressure within a short time, pressure equilibrium is formed between the containment vessel and the reactor vessel, and in the case of small breakage that is not well balanced The auto decompression system is designed to achieve pressure balance.
반면 일체형원자로는 대형배관이 존재하지 않아 분리형원자로에 비해 배관파단의 크기가 매우 작으며, 냉각재상실사고가 발생하는 경우에도 원자로집합체용기의 내부압력이 서서히 감소하므로, 일체형원자로에 상술한 바와 같이 분리형원자로에서 사용하는 대형 격납용기를 설치하는 경우, 격납용기와 원자로집합체용기 사이의 압력 평형을 이루는데 많은 소요 시간이 소요되어 사고초기부터 중력을 이용한 피동안전설비 개념을 적용하기가 어렵게 된다. On the other hand, since there is no large sized pipe in an integrated reactor, the pipe breakage is much smaller than that of a separate reactor, and even in the event of a loss of coolant, the internal pressure of the reactor assembly vessel gradually decreases. In the case of installing a large containment vessel used in a nuclear reactor, it takes a long time to achieve a pressure balance between the containment vessel and the reactor assembly vessel, which makes it difficult to apply the concept of blood-borne equipment using gravity from the beginning of the accident.
분리형원자로에 피동형 설비만을 도입하여 피동형안전계통을 구현한 경우로는 AP1000(또는 AP600)을 예로 들 수 있다. AP1000의 안전계통은 격납용기, 격납용기의 온도를 낮추기 위한 피동살수계통, 피동잔열제거계통, 노심보충탱크, 안전주입탱크와 유사한 축압기, 자동감압밸브 및 격납용기내부에 설치되는 핵연료재장전수조 등으로 구성된다. 여기서, AP1000의 격납용기는 그 크기가 매우 크므로 냉각재상실사고가 발생하는 경우 격납용기 외부에 설치된 피동살수계통을 통해 격납용기의 외벽에 냉각수를 살수해 격납용기의 온도를 낮춤으로서, 원자로용기에서 방출되는 증기를 응축시키기 위한 충분한 응축면적을 확보할 수 있다.For example, AP1000 (or AP600) may be implemented when the passive safety system is implemented by introducing only passive equipment into a separate reactor. AP1000's safety system includes a containment vessel, a driven sprinkling system to reduce the temperature of the containment vessel, a passive residual heat removal system, a core replenishment tank, a accumulator similar to a safety injection tank, an automatic pressure reducing valve, and a nuclear fuel storage tank installed inside the containment vessel. And the like. Here, the containment vessel of AP1000 is very large, so in the event of a loss of coolant, the coolant is sprayed on the outer wall of the containment vessel to lower the temperature of the containment vessel through the driven sprinkling system installed outside the containment vessel. Sufficient condensation area can be secured to condense the vapor released.
그러나 AP1000과 같은 분리형원자로에서는 대형냉각재상실 사고를 고려하여 안전계통을 설계하므로, 대형냉각재상실 사고 가능성이 배제되는 일체형원자로의 안전계통과는 상이한 점이 있다.However, in the case of a separate reactor such as AP1000, the safety system is designed in consideration of a large coolant loss accident, which is different from the safety system of an integrated reactor in which the possibility of a large coolant loss accident is excluded.
일체형원자로에 피동형안전계통을 도입한 경우가 한국등록특허 제 10-0419194호(발명의 명칭:원자로보호용기와 압축탱크를 이용한 비상노심냉각 방법과장치)에서와 같이 제안된 바 있다. 상기 문헌에는 일체형원자로에 안전보호용기, 안전주입탱크 및 피동잔열제거계통 등을 도입하여 안전계통을 구현함으로써, 안전보호용기에 의한 누출제한 및 안전주입탱크를 이용한 장시간 안전주입을 구현한 개념이 기재되어 있다. 그러나 이 경우는 비교적 고압에 견딜 수 있는 안전보호용기를 사용하는 경우에만 적용이 가능하며, 화학 및 체적제어계통 등 일부기기를 안전보호용기 내부에 설치하고자 하는 경우에는 안전보호용기의 자유체적이 넓어져 압력 평형을 이루는 압력이 낮아지므로 추가적인 냉각수의 보충이 요구된다는 문제점이 있다.The introduction of a passive safety system into an integrated reactor has been proposed as in Korean Patent Registration No. 10-0419194 (name of the invention: emergency core cooling method and apparatus using a reactor protection vessel and a compression tank). This document describes the concept of implementing safety system by introducing safety protection container, safety injection tank and passive residual heat removal system into an integrated reactor, and implementing the restriction of leakage by safety protection container and long-term safety injection using safety injection tank. It is. However, this case is applicable only to the use of safety protective containers that can withstand relatively high pressures.In case of installing some equipment such as chemical and volume control systems inside the safety protective container, the free volume of the safety protective container is large. There is a problem that the additional pressure of the cooling water is required because the pressure to achieve the pressure balance lowered.
일체형원자로에 피동형안전계통을 도입한 또 다른 경우로 미국의 웨스팅하우스에서 개발된 일체형원자로인 IRIS(한국특허출원 제 10-2004-0068264호)가 있는다. IRIS는 안전보호용기와 유사한 역할을 수행하는, 고압에서 견딜 수 있는 소형의 격납용기, 피동잔열제거계통, 냉각재상실사고 초기 격납용기의 내부 압력을 낮추어 주고 후반부 안전주입수를 공급해 주기 위한 응축탱크 및 격납용기와 원자로집합체용기 사이의 압력 평형을 가속하기 위한 자동감압계통 등을 적용하여 안전계통을 구성하고 있다.Another case of introducing a passive safety system into an integrated reactor is IRIS (Korean Patent Application No. 10-2004-0068264), which is an integrated reactor developed at the Westinghouse in the United States. IRIS acts like a safety protective container, a small, high-resistance containment vessel, passive residual heat removal system, a condensate tank to reduce the internal pressure of the initial containment vessel and to supply the safety injection in the second half. A safety system is constructed by applying an automatic pressure reduction system to accelerate the pressure balance between the containment vessel and the reactor assembly vessel.
여기서, 응축탱크는 격납용기의 설계압력을 낮추기 위해 비등형 가압경수로에 적용되는 응축탱크의 개념을 도입한 것으로서, 냉각재상실사고로 격납용기 내부로 방출되는 증기로 인해 격납용기 내부 압력이 상승하여 격납용기와 응축탱크 사이의 압력차가 발생하는 경우, 격납용기로부터 증기와 가스의 혼합 유체가 응축탱크로 유입되게 한다. 응축탱크로 유입된 증기는 응축탱크의 물에서 냉각 응축되고 가스는 응축탱크의 가스 공간으로 유입되어, 격납용기와 응축탱크가 평형을 이루는 순간까지 격납용기의 압력을 낮추어 주는 기능을 수행하게 된다. 이후 응축탱크의 냉각수는 격납용기가 냉각되면서 응축탱크의 압력이 격납용기의 압력보다 높아지는 경우에는 격납용기로 방출되고, 응축탱크와 원자로의 압력 평형이 이루어지는 경우에는 원자로로 주입된다.Here, the condensation tank introduces the concept of a condensation tank applied to a boiling pressurized water reactor in order to lower the design pressure of the containment vessel, and the pressure inside the containment vessel increases due to the steam released into the containment vessel due to the loss of coolant. If a pressure differential occurs between the vessel and the condensation tank, the mixed fluid of vapor and gas is introduced into the condensation tank from the containment vessel. The steam introduced into the condensation tank is cooled and condensed in the water of the condensation tank, and the gas is introduced into the gas space of the condensation tank, thereby reducing the pressure of the containment container until the equilibrium between the containment container and the condensation tank. Thereafter, the cooling water of the condensation tank is discharged to the containment vessel when the pressure of the condensation tank becomes higher than the pressure of the containment vessel while the containment vessel is cooled, and is injected into the reactor when the pressure balance between the condensation tank and the reactor is achieved.
그러나 이런 형태의 원자로에서는 안전주입수의 공급시점이 격납용기 및 원자로와 응축탱크의 압력차에 따라 유동적으로 변할 수 있기 때문에, 안전주입수의 공급시점을 조절하기 위해서는 응축탱크의 설계에 어려움이 따르게 된다. 또한 원자로에서부터 응축탱크로 자동감압계통의 방출배관이 연결되기 때문에 응축탱크가 자동감압계통의 방출압력을 수용해야 하고, 이에 따라 응축탱크의 설계압력을 높여 주어야 하는 동시에 응축탱크 내에 충분한 가스공간을 확보하기 위해 설치공간이 커지게 되므로 응축탱크의 제작비용 증가가 예상된다.However, in this type of reactor, since the supply point of the safety injection water can be changed flexibly according to the pressure difference between the containment vessel and the reactor and the condensation tank, it is difficult to design the condensation tank to control the supply point of the safety injection water. do. In addition, since the discharge line of the automatic decompression system is connected from the reactor to the condensation tank, the condensation tank must accommodate the discharge pressure of the auto decompression system, thereby increasing the design pressure of the condensation tank and securing sufficient gas space in the condensation tank. In order to increase the installation space, the manufacturing cost of the condensation tank is expected to increase.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위한 것이다. 즉, 본 발명의 목적은, 안전보호용기 내부에 원자로집합체용기의 상부에 위치하도록 설치되는 피동살수계통을 이용하여 냉각재상실사고 발생시 중력에 의해 냉각수를 살수함으로써, 사고 초기에 파단 배관을 통해 방출되는 증기의 응축 효율을 향상시켜 안전보호용기의 내부 압력을 감소시켜주고, 살수되는 냉각수를 집수조에 수집하여 원자로집합체용기 내부로 주입하는 냉각수원으로 활용함으로써, 장기간 원자로집합체용기 내의 수위를 안정적으로 유지시켜주는 일체형원자로의 안전설비를 제공하는 데에 있다.The present invention solves the problems of the prior art described above. That is, an object of the present invention, by using the driven sprinkling system installed to be located above the reactor assembly container inside the safety protective container by spraying the coolant by gravity in the event of a coolant loss accident, is discharged through the break pipe at the beginning of the accident It improves the condensation efficiency of the steam to reduce the internal pressure of the safety protection container, and utilizes as a cooling water source to collect the sprinkled cooling water in the collection tank and inject it into the reactor assembly container, thereby keeping the water level in the reactor assembly container stable for a long time. The state is to provide safety facilities for integrated reactors.
또한, 중력 또는 가스 압력과 같은 피동력 만으로 작동되도록 안전설비를 구성하여, 냉각재상실사고시 펌프와 같은 능동기기를 사용하지 않고도 피동적으로 작동됨에 따라 안전계통의 신뢰성 및 안전성을 향상시키고, 소요되는 밸브, 관련배관 및 제어케이블 등의 설비 수를 줄여 원자력발전소의 제작 비용을 절감함으로써 경 제성을 향상시키는 데에 또 다른 목적이 있다.In addition, by configuring the safety equipment to operate only by the driving force such as gravity or gas pressure, in the event of a coolant loss, it is passively operated without using an active device such as a pump, thereby improving the reliability and safety of the safety system. Another objective is to improve economics by reducing the number of facilities such as related piping and control cables, thereby reducing the cost of manufacturing nuclear power plants.
상기의 목적을 달성하기 위한 기술적 사상으로서의 본 발명은, 원자로집합체용기보다 높은 위치에 설치되어 중력에 의해 냉각수를 살수시키는 피동살수계통과; 상기 원자로집합체용기의 주위에 설치되고, 연결배관을 통해 상기 원자로집합체용기에 연결되는 집수조와; 상기 원자로집합체용기, 피동살수계통 및 집수조를 내부에 포함하도록 구성되는 안전보호용기; 및 주증기배관을 따라 증기발생기로부터 방출되는 증기가 상기 안전보호용기 외부에 설치된 핵연료재장전수탱크의 내부에 구비되는 응축열교환기를 통과한 후 주급수배관을 따라 상기 증기발생기로 다시 유입되도록 구성되는 피동잔열제거계통을 포함하여 구성되는 것을 특징으로 하는 피동살수계통을 이용한 일체형원자로 안전설비를 제공한다.The present invention as a technical idea for achieving the above object, the drive sprinkling system which is installed at a position higher than the reactor assembly container to spray the cooling water by gravity; A collecting tank installed around the reactor assembly container and connected to the reactor assembly container through a connection pipe; A safety protective container configured to include the reactor assembly container, a driven sprinkling system, and a water collecting tank therein; And a steam discharged from the steam generator along the main steam pipe passes through a condensation heat exchanger provided inside the nuclear fuel storage tank installed outside the safety protective container and then flows back into the steam generator along the main water supply pipe. It provides an integrated nuclear reactor safety equipment using a passive sprinkling system, characterized in that configured to include a residual heat removal system.
이하, 본 발명의 바람직한 실시예를 첨부 도면에 의거하여 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명이 적용되는 일체형원자로의 구조를 나타내는 단면도이다.1 is a cross-sectional view showing the structure of an integrated reactor to which the present invention is applied.
본 발명이 적용되는 일체형원자로는, 도 1에 도시된 바와 같이, 노심(12), 가압기(15), 원자로냉각재펌프(13) 및 증기발생기(14) 등의 주요기기가 원자로집합체용기(11) 내부에 설치되는 원자로로서, 노심(12)을 냉각하는 일차냉각계통이 외부로 노출되는 배관 없이 원자로집합체용기(11) 내부에 구성된다.As the integrated reactor to which the present invention is applied, as shown in FIG. 1, main equipment such as the
이와 같이 구성된 일체형원자로의 일차냉각계통에서 냉각재가 순환되는 과정 을 살펴보면 다음과 같다.Looking at the process of circulating the coolant in the primary cooling system of the integral reactor configured as described above are as follows.
노심(12)에서 가열된 냉각재는 원자로냉각재펌프(13)로 공급되고, 원자로냉각재펌프(13)를 지나면서 흐름 방향이 아래로 전환되어 증기발생기(14) 상부의 환형공동으로 공급된다. 이어서, 냉각재는 증기발생기(14) 내부를 통과하며 열교환에 의해 냉각된 후 노심(12)으로 공급되며, 노심(12)에서 가열되어 다시 원자로냉각재펌프(13)로 공급되는 순환 과정을 반복하게 된다.The coolant heated in the
도 2는 본 발명의 일실시예에 따른 피동살수계통을 이용한 일체형원자로 안전설비의 시스템 구성을 나타내는 도면이다.2 is a view showing the system configuration of the safety equipment of the integrated reactor using the driven sprinkler system according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명의 일실시예에 따른 피동살수계통을 이용한 일체형원자로 안전설비는, 안전주입배관(71)을 통해 원자로집합체용기(11)에 연결되는 안전주입탱크(70)와, 원자로집합체용기(11)보다 높은 위치에 설치되어 냉각재상실사고 발생시 중력에 의해 냉각수를 살수시키는 피동살수계통(50)과, 원자로집합체용기(11)의 주위에 설치되어 연결배관(61)을 통해 원자로집합체용기(11)에 연결되는 집수조(60)와, 상기 원자로집합체용기(11), 피동살수계통(50) 및 집수조(60)를 둘러싸도록 구비되는 안전보호용기(20)를 포함하여 구성된다. 또한, 안전보호용기(20)의 외부에 설치된 핵연료재장전수탱크(41)의 내부에 구비되는 응축열교환기(31)를 통해 증기발생기(14)에서 방출되는 증기를 물로 응축시켜 증기발생기(14)로 다시 유입시키도록 구성되는 피동잔열제거계통(30)이 구비된다.As shown in FIG. 2, the safety facility for the integrated reactor using the driven sprinkling system according to an embodiment of the present invention is connected to the
안전보호용기(20)는 원자로집합체용기(11)의 외부를 둘러싸도록 구비되어, 냉각재상실사고시 원자로집합체용기(11)로부터 방출되는 방사성 물질이 외부환경으로 누출되지 않도록 냉각재 및 가스의 누출을 방지해줌으로써, 통상적인 상용 분리형원자로의 격납용기와 같은 기능을 수행한다.The safety
또한, 안전보호용기(20)는 냉각재상실사고시 원자로집합체용기와 빠른 시간 내에 압력 평형을 이루어 중력에 의해 작동되는 피동살수계통(50) 등의 피동형 안전설비가 동작 가능한 상태를 만들어 주어야 하므로, 분리형원자로의 대형 격납용기보다 고압에 더 잘 견딜 수 있도록 설계되어야 한다.In addition, the safety
피동잔열제거계통(30)은 냉각재상실사고시 또는 비냉각재상실사고 발생시 노심(12)의 잔열을 제거하기 위한 계통으로서, 증기발생기(14) 출구의 주증기배관(16)에서 분기되는 증기배관(32)과, 안전보호용기(20) 외부에 증기발생기(14)보다 높은 위치에 설치된 핵연료재장전수탱크(41)의 내부에 구비되어, 입구측이 증기배관(32)과 연결되는 응축열교환기(31)와, 응축열교환기(31)의 출구와 증기발생기(14)의 주급수배관(17)을 연결하는 냉각수배관(33)으로 구성되는 폐회로를 형성한다.The passive residual
증기배관(32)과 냉각수배관(33) 상에는 각각 격리밸브(36, 37)가 설치되는데, 냉각재상실사고가 발생하여 피동잔열제거계통(30)에 대한 작동신호가 발생하면, 피동잔열제거계통(30)의 격리밸브(36, 37)가 자동으로 개방되고, 주증기배관(16) 및 주급수배관(17)의 격리밸브(18, 19)가 자동으로 폐쇄되면서 피동잔열제거계통(30)의 운전이 시작된다. 피동잔열제거계통(30)의 작동이 시작되면, 노심(12)의 잔열에 의해 증기발생기(14) 이차회로에 형성되는 증기는 주증기배관(16) 과 증기배관(32)을 거쳐 응축열교환기(31)로 공급되며, 응축열교환기(31)를 통과하는 과정에서 응축된다. 응축된 냉각수는 냉각수배관(33)과 주급수배관(17)을 통해 증기발생기(14)로 다시 유입되어 재순환되는 과정을 반복한다.
이와 같이 피동잔열제거계통(30)은 펌프와 같은 능동기기의 도움을 받지 않고 증기와 물의 밀도 차이에 의한 자연력에 의해 순환된다. 냉각재상실사고가 발생하는 경우에 피동잔열제거계통(30)과 안전보호용기(20)의 냉각성능은 원자로집합체용기(11)와 안전보호용기(20) 사이의 평형 압력을 결정하는 중요한 요소로서, 피동잔열제거계통(30)의 성능이 우수할 수록 원자로집합체용기(11) 내부의 압력을 조기에 낮춤으로서 원자로집합체용기(11)와 안전보호용기(20) 사이의 압력 평형 시기가 앞당겨진다.As described above, the passive residual
안전주입탱크(70)는 종래의 분리형원자로에 적용되는 안전주입탱크(또는 축압기)에 대응하는 것으로서, 내부에 원자로집합체용기(11)로 주입시키기 위한 냉각수를 저장해두고 미리 질소 등의 가스에 의해 설정 압력으로 가압되어 있는데, 냉각재상실사고로 인해 원자로집합체용기(11)의 압력이 설정 압력보다 감소하게 되면 압력차에 의해 내부의 냉각수가 원자로집합체용기(11)로 자동으로 주입된다. 안전주입탱크(70)를 원자로집합체용기(11)와 연결하는 안전주입배관(71)에는 체크밸브가 설치되어 원자로집합체용기(11)로부터 안전주입탱크(70)로의 역류를 방지한다.The
피동살수계통(50)은 냉각수를 저장해두는 살수탱크(51)와, 살수탱크(51) 내부의 냉각수를 외부로 유출시킬 수 있도록 살수탱크(51)와 연결되는 살수배관(52)과, 살수배관(52)에 설치되어 살수탱크(51)로부터 살수배관(52)을 통해 유출되는 냉각수를 하부로 살수시켜주는 다수의 살수노즐(53)로 구성되어, 냉각재상실사고가 발생하여 안전보호용기(20)의 내부 압력이 허용치 이상 상승하거나 원자로집합체용기(11)의 압력 또는 수위가 감소하는 경우 자동적으로 발생하는 살수신호에 따라, 살수노즐(53)을 통해 살수탱크(51) 내부의 냉각수를 중력에 의해 살수시키게 된다.The driven sprinkling
본 발명이 적용되는 일체형원자로에는 다양한 크기의 배관파단사고가 일어날 수 있다. 고압에 견딜 수 있도록 설계되는 소형의 안전보호용기(20)가 설치되는 일체형원자로에서, 배관이 부분적으로 파단되는 소형 배관 파단이 발생하는 경우, 사고의 진행속도가 늦어, 원자로집합체용기(11)로부터 방출되는 증기는 대부분 안전보호용기(20) 내벽 등에서 응축되고, 안전보호용기(20) 외벽은 지속적으로 공기에 의해 냉각되어, 안전보호용기(20)의 압력을 크게 상승시키지 않는다. 그러나 비교적 큰 배관 파단이 발생하는 경우, 사고 초중반에는 안전보호용기(20) 내벽에서 응축될 수 있는 이상의 비교적 다량의 냉각재가 방출되어 안전보호용기(20) 내부압력을 높이게 된다. 이때, 소형 안전보호용기(20)는 대형 격납용기에 비해 상대적으로 응축면적이 작아 원자로집합체용기(11)로부터 방출되는 증기의 응축에 의해 내부압력을 감소되는 효과가 크지 않으므로, 일체형원자로에서 비교적 큰 배관(분리형원자로에 비해서는 소형임)이 파단되는 냉각재상실사고는 안전보호용기(20)의 압력상승을 야기하는 대부분의 시기가 사고 초중반에 집중된다.Integral reactors to which the present invention is applied may cause pipe breaking accidents of various sizes. In an integrated reactor in which a small safety
따라서, 본 실시예에서는 냉각재상실사고 발생 초중반에 다량의 저온 냉각수를 살수하여 응축면적을 증가시켜주는 피동살수계통(50)을 구비하여, 원자로집합체용기(11)의 배관 파단부로부터 안전보호용기(20) 내부로 방출되는 증기의 응축 효 율을 향상시켜줌으로써, 비교적 큰 배관 파단이 일어나는 냉각재상실사고시에도 안전보호용기(20)의 내부 압력을 설계 압력 이하로 유지시킬 수 있다. 여기서, 살수된 냉각수는 원자로집합체용기(11) 주변의 공동(42)과 집수조(60) 등으로 수집되게 하고, 압력 평형이 요구되는 중후반에는 살수탱크(51)의 냉각수가 고갈 되어 살수기능이 정지되도록 설계된다.Therefore, the present embodiment is provided with a
살수탱크(51)의 상부에는 상단이 개구되어 살수탱크(51)와 안전보호용기(20) 사이에 압력 평형을 이루어주는 상부배관(54)이 연결되어 있다. 또한, 살수탱크(51)의 냉각수 저장용량은 냉각재상실사고 초중반에 안전보호용기(20)의 내부 압력을 감압하기 위해 필요한 유량과, 냉각재상실사고 중후반에 살수되어 집수조(60)에 수집되는 냉각수를 연결배관(61) 또는 배관 파단부 등을 통해 원자로집합체용기(11) 내부로 주입되는 안전주입수로 이용하기 위해 필요한 유량을 모두 고려하여 결정하는 것이 바람직하다. 여기서, 살수탱크(51)의 내부에는 사고 발생 이후 시간 경과에 따라 적절한 유량이 유출될 수 있도록 유량을 조절해주는 스탠드파이프(55)가 구비되는 것이 바람직한데, 이와 같은 살수탱크(51)의 내부 구조에 대해서는 후술하여 상세히 설명하기로 한다.The upper portion of the watering
살수배관(52)에는 냉각재상실사고시 발생하는 살수신호에 의해 개방되는 살수밸브(57)가 장착되며, 살수노즐(53)은 안전보호용기(20)의 감압을 위해 요구되는 유량을 공급할 수 있도록 살수배관(52) 상에 충분한 개수가 설치된다. 여기서, 살수배관(52)은 살수탱크(51)의 하부에 연결되어 하방으로 연장되고 관로 상에 살수밸브(57)가 장착되는 수직배관(52a)과, 수직배관(52a)과 연결되고 관로 상에 다수 의 살수노즐(53)이 설치되는 적어도 하나 이상의 수평배관(52b)으로 구성되어, 안전보호용기(20) 내부에 넓은 영역에 걸쳐 살수가 가능하도록 구비되는 것이 바람직하다.The sprinkling
이와 같이 구성된 피동살수계통(50)을 사용하여 냉각재상실사고 초중기의 안전보호용기(20)로 방출되는 다량의 증기를 응축시킴으로써, 안전보호용기(20)의 설계압력을 낮추어 그 제작비용을 절감할 수 있게 된다.By condensing a large amount of steam discharged into the
집수조(60)는 원자로집합체용기(11) 주위에 연결배관(61)을 통해 원자로집합체용기(11)에 연결되도록 설치되어, 원자로집합체용기(11)로부터 방출되는 냉각재 및 피동살수계통(50)에 의해 살수되는 냉각수를 수집하여 원자로집합체용기(11)로 다시 주입하기 위한 장치로서, 안전주입계통의 배관과 연결되는 원자로집합체용기(11)의 안전주입노즐(미도시)보다 높은 위치에 설치된다.The
연결배관(61)은 안전주입탱크(70)로부터 원자로집합체용기(11)로 냉각수를 수송하는 안전주입배관(71)과 연결되어, 안전보호용기(20)와 원자로집합체용기(11)가 압력 평형을 이룬 후 수집된 물이 중력에 의해 연결배관(61) 및 안전주입배관(71)을 거쳐 원자로집합체용기(11) 내부로 주입되도록 구성된다. 여기서, 연결배관(61)은 안전주입배관(71)이 아닌 원자로집합체용기(11)의 안전주입노즐에 직접 연결되어, 수집된 물이 연결배관(61)을 통해 원자로집합체용기(11)의 내부로 바로 주입되도록 구성될 수도 있다.The
연결배관(61) 상에는, 안전주입신호에 의해 작동되는 집수조연결밸브(67)와 안전주입탱크(70)로부터의 냉각수 유입을 차단하기 위한 제1 체크밸브(68)가 설치 된다. 또한, 안전주입배관(71) 상에는 안전주입탱크(70)의 출구와 연결배관(61) 연결 지점 사이에 제2 체크밸브(78)가 설치되어, 집수조(60) 및 원자로집합체용기(11)로부터의 역류를 방지해준다. 안전주입탱크(70)로부터 원자로집합체용기(11)로의 안전주입이 완료되고 원자로집합체용기(11)와 안전보호용기(20)의 압력이 서로 평형을 이루면, 집수조(60)에 수집된 물이 집수조(60)와 원자로집합체용기(11)의 수두차에 의해 원자로집합체용기(11)로 공급된다. 이와 같이 안전주입탱크(70)와 집수조(60)를 이용하여 원자로집합체용기(11)로 물을 공급해주는 구조는 원자로집합체용기(11)와 안전보호용기(20)의 압력 평형 이후 원자로집합체용기(11)의 수위를 장기간 안정적으로 유지해 줄 수 있다.On the
한편, 배관이 부분적으로 파단되는 소형 배관 파단이 발생하는 경우에는, 전술한 바와 같이 파단부로부터 방출되는 대부분의 증기가 안전보호용기(20) 등에서 응축되어 안전보호용기(20)의 압력이 크게 상승하지 않으며, 이에 비해 안전보호용기(20)의 내부 압력은 크게 감소하지 않기 때문에, 원자로집합체용기(11)와 안전보호용기(20)의 압력 평형을 달성하기가 용이하지 않다.On the other hand, when a small pipe rupture occurs in which the pipe partially breaks, as described above, most of the steam discharged from the rupture portion condenses in the safety
따라서, 일단이 원자로집합체용기(11)와 연결되고 타단은 집수조(60)로 연결되는 방출배관(81)을 통해 원자로집합체용기(11) 내의 고압 증기를 집수조(60)의 물 영역으로 방출하여 응축시키도록 구성되는 자동감압계통을 구비하여, 소형 배관 파단과 같이 원자로집합체용기(11)와 안전보호용기(20) 간의 압력 평형이 지연되는 경우, 원자로집합체용기(11)의 내부 압력을 추가로 감소시켜 압력 평형을 촉진시켜주는 것이 바람직하다.Therefore, one end is connected to the
방출배관(81)에는 소형 배관 파단시 안전보호용기(20)의 압력 감소가 느리게 진행되어 압력 평형이 지연되는 경우 자동적으로 개방되는 자동감압밸브(87)가 설치되는데, 자동감압밸브(87)의 개방에 따라 원자로집합체용기(11)의 압력 감소가 빠르게 진행되고 안전보호용기(20)와 원자로집합체용기(11)는 점차 압력 평형을 이루게 된다.The
도 3는 도 2에 도시된 살수탱크의 내부 구조를 나타내는 도면이다.3 is a view showing the internal structure of the watering tank shown in FIG.
도 3에 도시된 바와 같이, 살수탱크(51)의 내부에는, 일단이 살수탱크(51)의 내부와 연결되고 타단은 살수배관(52)과 연결되며, 길이 방향으로 다수의 유로구(56)가 형성되어 있는 스탠드파이프(55)가 수직으로 구비된다.As shown in Figure 3, the inside of the watering
이와 같이 살수탱크(51)의 내부에 수직으로 구비되는 스탠드파이프(55)는 길이 방향을 따라 다수의 유로구(56)가 형성되어 있어, 살수탱크(51)의 수위가 낮아질수록 냉각수가 유출되는 유로구(56)의 개수가 감소하에 따라 냉각수의 유출량이 감소하게 된다. 즉, 사고 초기 안전보호용기(20)의 내부 압력이 최대치에 달할 때 살수되는 냉각수의 유량이 최대가 되게 하고, 그 이후 시간이 경과함에 따라 살수되는 냉각수의 유량이 점차 감소하도록 유량을 제어할 수 있게 된다. 여기서, 살수탱크(51)로부터 유출되는 냉각수의 유량은 스탠드파이프(55)의 길이 방향을 따라 형성되어 있는 유로구(56)의 총 개수 및 배치 간격을 통해 용이하게 조절할 수 있다.As described above, the
도 4는 도 2에 도시된 피동안전설비의 작동 상태를 나타내는 도면으로서, 냉 각재상실사고 후 본 실시예에 따른 피동안전설비를 이용하여 장기냉각운전을 진행하는 상태를 보여주고 있다.FIG. 4 is a view showing an operating state of the pre-fungal equipment shown in FIG. 2, and shows a state in which a long-term cooling operation is performed by using the pre-fungal equipment according to the present embodiment after a cooling material loss accident.
이하, 도 4를 참조하여 냉각재상실사고 발생시 본 발명의 일실시예에 따른 피동안전설비의 작동 과정을 설명하기로 한다.Hereinafter, with reference to Figure 4 will be described the operation of the blood-holding equipment according to an embodiment of the present invention when a coolant loss accident occurs.
배관 파단으로 인한 냉각재상실사고가 발생하여 살수신호가 작동되면, 피동살수계통(50)의 살수배관(52)에 설치되는 살수밸브(57)가 개방되어 피동살수계통(50)이 작동된다. 피동살수계통(50)의 작동에 의해 살수탱크(51) 내부의 냉각수가 살수됨에 따라 안전보호용기(20) 내부의 응축면적이 증가하게 되고, 그로 인해 배관의 파단부를 통해 원자로집합체용기(11)에서 방출되는 증기는 안전보호용기(20) 내에서 충분히 응축되어 안전보호용기(20)의 내부 압력이 지나치게 상승하지 않고 설계 압력 이하로 유지된다. 여기서, 피동살수계통(50)으로부터 방출된 냉각수는 원자로집합체용기(11) 주변의 공동(42)과 집수조(60)를 채우게 된다.When a coolant loss accident occurs due to the pipe breakage and the watering signal is operated, the watering
이 때, 배관 파단부를 통한 냉각재 방출로 인해 원자로집합체용기(11) 내부의 압력이 계속 감소하여 안전주입탱크(70)의 설정 압력 이하로 낮아지면, 압력차에 의해 안전주입탱크(70)의 냉각수가 원자로집합체용기(11)로 주입되어 원자로집합체용기(11) 내의 수위가 유지된다.At this time, when the pressure inside the
또한, 피동잔열제거계통(30)에 대한 작동신호에 의해 피동잔열제거계통(30)의 격리밸브(36, 37)가 개방되고, 주증기배관(16) 및 주급수배관(17)의 격리밸브(18, 19)가 폐쇄되면, 피동잔열제거계통(30)의 운전이 시작되어 노심(12)의 잔열을 제거해준다.In addition, the
이와 함께 안전주입신호에 의해 집수조(60)와 안전주입배관(71)을 연결하는 연결배관(61)에 설치된 집수조연결밸브(67)가 개방되는데, 안전보호용기(20)와 원자로집합체용기(11)가 압력 평형을 이루게 되면, 집수조(60) 내에 수집된 물, 즉 피동살수계통(50)에 의해 살수되는 냉각수와 원자로집합체용기(11)로부터 방출되는 증기의 응축수가 집수조(60) 내에 모인 물이 중력에 의해 연결배관(61) 및 안전주입배관(71)을 거쳐 원자로집합체용기(11) 내부로 공급된다. 이와 같이 안전주입탱크(70)의 냉각수가 고갈된 이후에도 집수조(60) 내에 수집되는 물을 원자로집합체용기(11) 내에 지속적으로 주입해줌으로써, 안전보호용기(20)와 원자로집합체용기(11)가 압력 평형을 이루는 사고 중기 이후 장기간 동안 원자로집합체용기(11) 내의 수위를 유지시켜 노심 노출을 방지해줄 수 있다.With the safety injection signal, the
이상에서 설명한 바와 같이, 본 발명에서는 일체형원자로의 냉각재상실사고에 대비한 안전설비를 안전보호용기(20), 안전주입탱크(70), 피동살수계통(50), 피동잔열제거계통(30), 자동감압계통, 집수조(60) 등의 피동력(중력, 가스압력) 만을 이용하는 기기들로 구성하여 계통의 신뢰성을 향상시키고, 사고시 작동이 요구되는 펌프를 제거하는 동시에 계통을 단순화시켜 밸브 및 관련배관 등의 설비 수를 줄여줌으로써 원전의 제작비용을 절감할 수 있다.As described above, in the present invention, the safety equipment for the accident of loss of coolant in the integrated reactor includes a safety
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은 본 발명이 속하는 기술분야에서 통상의 지식 을 가진 자에게 있어 명백하다 할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible in the art without departing from the technical spirit of the present invention. It will be obvious to those with ordinary knowledge.
이상에서와 같이, 본 발명에 따른 피동살수계통을 이용한 일체형원자로 안전설비는, 안전보호용기 내부의 상부에 설치되는 피동살수계통을 이용하여 냉각재상실사고 초기에 안전보호용기의 내부 압력을 감소시켜줌으로써, 안전보호용기의 설계압력을 낮추어 그 제작 비용을 절감할 수 있을 뿐만 아니라, 살수되는 냉각수를 집수조에 수집하여 원자로집합체용기 내부로 주입하는 냉각수원으로도 활용함으로써, 장기간 원자로집합체용기 내의 수위를 안정적으로 유지시켜 사고시의 안정성을 향상시킬 수 있는 효과가 있다.As described above, the integrated nuclear reactor safety equipment using the driven sprinkling system according to the present invention, by reducing the internal pressure of the safety protective vessel at the beginning of the loss of coolant by using the driven sprinkling system installed in the upper portion of the safety protection vessel. In addition, the design pressure of the safety protection vessel can be lowered to reduce the manufacturing cost, and the water level in the reactor assembly container can be stabilized for a long time by utilizing it as a cooling water source for collecting the sprinkled coolant into the sump and injecting it into the reactor assembly container. It is effective to improve the stability at the time of accident by maintaining.
또한, 중력 또는 가스 압력과 같은 피동력 만으로 작동되도록 안전설비를 구성함으로써 계통의 신뢰성을 향상시키고, 밸브 및 관련배관 등의 설비 수를 줄여줌으로써 원전의 제작비용을 절감할 수 있는 효과도 있다.In addition, by configuring the safety equipment to operate only by the driving force such as gravity or gas pressure, it is possible to improve the reliability of the system, and to reduce the number of facilities such as valves and related pipes, thereby reducing the production cost of nuclear power plants.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070034360A KR100856501B1 (en) | 2007-04-06 | 2007-04-06 | Integrated nuclear reactor safety equipment using driven sprinkling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070034360A KR100856501B1 (en) | 2007-04-06 | 2007-04-06 | Integrated nuclear reactor safety equipment using driven sprinkling system |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100856501B1 true KR100856501B1 (en) | 2008-09-04 |
Family
ID=40022395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070034360A Active KR100856501B1 (en) | 2007-04-06 | 2007-04-06 | Integrated nuclear reactor safety equipment using driven sprinkling system |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100856501B1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101071415B1 (en) * | 2011-04-15 | 2011-10-07 | 한국수력원자력 주식회사 | High pressure safety injection tank system for SCO and LOCA |
KR101172901B1 (en) | 2011-05-31 | 2012-08-20 | 한국원자력연구원 | Apparatus and method for controlling pressure of integral reactor |
KR101250479B1 (en) | 2011-06-23 | 2013-04-08 | 한국원자력연구원 | Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof |
KR101364646B1 (en) | 2012-07-30 | 2014-02-19 | 한국원자력연구원 | Passive safety system using small safe guard vessel and integral reactor having the same |
WO2014058090A1 (en) * | 2012-10-12 | 2014-04-17 | 한국수력원자력 주식회사 | Apparatus for replenishing coolant for passive auxiliary feedwater syatem of nuclear power plant |
US20140226778A1 (en) * | 2013-02-14 | 2014-08-14 | Korea Atomic Energy Research Institute | Multi stage safety injection device and passive safety injection system having the same |
KR101441488B1 (en) | 2013-08-14 | 2014-09-17 | 한국원자력연구원 | Passive safety system and nuclear reactor having the same |
US20140270044A1 (en) * | 2013-03-12 | 2014-09-18 | Babcock & Wilcox Mpower, Inc. | Refueling water storage tank (rwst) with tailored passive emergency core cooling (ecc) flow |
CN104143361A (en) * | 2013-05-09 | 2014-11-12 | 韩国原子力研究院 | Passive containment sprinkler system |
KR101473378B1 (en) | 2013-05-10 | 2014-12-16 | 한국원자력연구원 | Passive safety system and nuclear reactor having the same |
KR101502395B1 (en) * | 2014-04-28 | 2015-03-13 | 한국원자력연구원 | Passive containment spray and cooling system and nuclear power plant having the same |
KR101513166B1 (en) * | 2014-02-20 | 2015-04-21 | 한국원자력연구원 | Self cooling passive reactor having sub heat exchange system |
US9583224B2 (en) | 2012-07-13 | 2017-02-28 | Korea Atomic Energy Research Institute | Passive safety system of integral reactor |
US10720248B2 (en) | 2013-03-15 | 2020-07-21 | Bwxt Mpower, Inc. | Passive techniques for long-term reactor cooling |
KR20220029928A (en) * | 2020-09-02 | 2022-03-10 | 한국원자력연구원 | Passive cooling installation of atomic reactor and passive cooling method thereof |
KR20220146933A (en) * | 2021-04-26 | 2022-11-02 | 한국원자력연구원 | Passive cooling installation |
US20220351871A1 (en) * | 2019-12-04 | 2022-11-03 | Shanghai Nuclear Engineering Research & Design Institute Co., Ltd. | An integrated passive reactor system |
KR20240111093A (en) | 2023-01-09 | 2024-07-16 | 한국수력원자력 주식회사 | Coolant control system for small modular reactor maintenance |
KR20250017999A (en) | 2023-07-28 | 2025-02-04 | 한국수력원자력 주식회사 | Device of the jet collision load reduction due to steam release from nuclear reactor vessel |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR870011626A (en) * | 1986-05-22 | 1987-12-24 | 삐에르 쇼뮈죠 | Small Natural Circulation Pressurized Water Reactor |
JPH0440397A (en) * | 1990-06-05 | 1992-02-10 | Toshiba Corp | Nuclear reactor pressure vessel cooling device |
JPH05249273A (en) * | 1991-11-05 | 1993-09-28 | Enel Spa | Method and apparatus for protecting base of reactor container |
KR100419194B1 (en) | 2000-11-13 | 2004-02-19 | 한국전력공사 | Emergency Core Cooling System Consists of Reactor Safeguard Vessel and Accumulator |
KR20060020756A (en) * | 2004-08-28 | 2006-03-07 | 웨스팅하우스 일레트릭 캄파니 엘엘씨 | Integrated pressurized water reactor with various emergency cooling facilities and its operation method |
-
2007
- 2007-04-06 KR KR1020070034360A patent/KR100856501B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR870011626A (en) * | 1986-05-22 | 1987-12-24 | 삐에르 쇼뮈죠 | Small Natural Circulation Pressurized Water Reactor |
JPH0440397A (en) * | 1990-06-05 | 1992-02-10 | Toshiba Corp | Nuclear reactor pressure vessel cooling device |
JPH05249273A (en) * | 1991-11-05 | 1993-09-28 | Enel Spa | Method and apparatus for protecting base of reactor container |
KR100419194B1 (en) | 2000-11-13 | 2004-02-19 | 한국전력공사 | Emergency Core Cooling System Consists of Reactor Safeguard Vessel and Accumulator |
KR20060020756A (en) * | 2004-08-28 | 2006-03-07 | 웨스팅하우스 일레트릭 캄파니 엘엘씨 | Integrated pressurized water reactor with various emergency cooling facilities and its operation method |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9129713B2 (en) | 2011-04-15 | 2015-09-08 | Korea Atomic Energy Research Institute | Passive high pressure safety injection tank system (HPSIT) for responding to station blackout (SBO) and loss-of-coolant accidents (LOCA) |
KR101071415B1 (en) * | 2011-04-15 | 2011-10-07 | 한국수력원자력 주식회사 | High pressure safety injection tank system for SCO and LOCA |
KR101172901B1 (en) | 2011-05-31 | 2012-08-20 | 한국원자력연구원 | Apparatus and method for controlling pressure of integral reactor |
KR101250479B1 (en) | 2011-06-23 | 2013-04-08 | 한국원자력연구원 | Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof |
US9583224B2 (en) | 2012-07-13 | 2017-02-28 | Korea Atomic Energy Research Institute | Passive safety system of integral reactor |
KR101364646B1 (en) | 2012-07-30 | 2014-02-19 | 한국원자력연구원 | Passive safety system using small safe guard vessel and integral reactor having the same |
WO2014058090A1 (en) * | 2012-10-12 | 2014-04-17 | 한국수력원자력 주식회사 | Apparatus for replenishing coolant for passive auxiliary feedwater syatem of nuclear power plant |
US20140226778A1 (en) * | 2013-02-14 | 2014-08-14 | Korea Atomic Energy Research Institute | Multi stage safety injection device and passive safety injection system having the same |
US9761334B2 (en) * | 2013-02-14 | 2017-09-12 | Korea Atomic Energy Research Institute | Multi stage safety injection device and passive safety injection system having the same |
US20140270044A1 (en) * | 2013-03-12 | 2014-09-18 | Babcock & Wilcox Mpower, Inc. | Refueling water storage tank (rwst) with tailored passive emergency core cooling (ecc) flow |
US11373768B2 (en) * | 2013-03-12 | 2022-06-28 | Bwxt Mpower, Inc. | Refueling water storage tank (RWST) with tailored passive emergency core cooling (ECC) flow |
US10720248B2 (en) | 2013-03-15 | 2020-07-21 | Bwxt Mpower, Inc. | Passive techniques for long-term reactor cooling |
US11355253B2 (en) | 2013-03-15 | 2022-06-07 | Bwxt Mpower, Inc. | Passive techniques for long-term reactor cooling |
CN104143361A (en) * | 2013-05-09 | 2014-11-12 | 韩国原子力研究院 | Passive containment sprinkler system |
US10319481B2 (en) | 2013-05-09 | 2019-06-11 | Korea Atomic Energy Research Institute | Passive containment spray system |
KR101473378B1 (en) | 2013-05-10 | 2014-12-16 | 한국원자력연구원 | Passive safety system and nuclear reactor having the same |
KR101441488B1 (en) | 2013-08-14 | 2014-09-17 | 한국원자력연구원 | Passive safety system and nuclear reactor having the same |
KR101513166B1 (en) * | 2014-02-20 | 2015-04-21 | 한국원자력연구원 | Self cooling passive reactor having sub heat exchange system |
KR101502395B1 (en) * | 2014-04-28 | 2015-03-13 | 한국원자력연구원 | Passive containment spray and cooling system and nuclear power plant having the same |
US20220351871A1 (en) * | 2019-12-04 | 2022-11-03 | Shanghai Nuclear Engineering Research & Design Institute Co., Ltd. | An integrated passive reactor system |
US11894151B2 (en) * | 2019-12-04 | 2024-02-06 | Shanghai Nuclear Engineering Research & Design Institute Co., Ltd. | Integrated reactor system having passive removal of residual heat |
GB2593389B (en) * | 2019-12-04 | 2025-03-26 | Shanghai Nuclear Eng Res & Design Inst Co Ltd | An Integrated passive reactor system |
KR20220029928A (en) * | 2020-09-02 | 2022-03-10 | 한국원자력연구원 | Passive cooling installation of atomic reactor and passive cooling method thereof |
KR102458247B1 (en) * | 2020-09-02 | 2022-10-24 | 한국원자력연구원 | Passive cooling installation of atomic reactor and passive cooling method thereof |
KR20220146933A (en) * | 2021-04-26 | 2022-11-02 | 한국원자력연구원 | Passive cooling installation |
KR102582411B1 (en) * | 2021-04-26 | 2023-09-25 | 한국원자력연구원 | Passive cooling installation |
KR20240111093A (en) | 2023-01-09 | 2024-07-16 | 한국수력원자력 주식회사 | Coolant control system for small modular reactor maintenance |
KR20250017999A (en) | 2023-07-28 | 2025-02-04 | 한국수력원자력 주식회사 | Device of the jet collision load reduction due to steam release from nuclear reactor vessel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100856501B1 (en) | Integrated nuclear reactor safety equipment using driven sprinkling system | |
US9583224B2 (en) | Passive safety system of integral reactor | |
US8559583B1 (en) | Passive cooling and depressurization system and pressurized water nuclear power plant | |
KR101473377B1 (en) | Passive containment spray system | |
KR102111813B1 (en) | Small modular reactor safety systems | |
KR101242746B1 (en) | Integrated passive safety system outside containment for nuclear power plants | |
KR101242743B1 (en) | Integrated nuclear power plants using integral passive safety tank | |
KR101447029B1 (en) | Multi-stage safety injection device and passive safety injection system having the same | |
US20180350472A1 (en) | Passive safe cooling system | |
KR100813939B1 (en) | Passive emergency core cooling system with integrated nuclear reactor with safety protective container | |
KR101463440B1 (en) | Passive safety system and nuclear power plant having the same | |
KR100419194B1 (en) | Emergency Core Cooling System Consists of Reactor Safeguard Vessel and Accumulator | |
JPH0648473Y2 (en) | Nuclear reactor equipment | |
KR101250479B1 (en) | Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof | |
KR101364646B1 (en) | Passive safety system using small safe guard vessel and integral reactor having the same | |
KR20200027883A (en) | Nuclear reactor long-term cooling system and nuclear plant having the same | |
KR101505475B1 (en) | Passive containment cooling system and nuclear power plant having the same | |
CN205789133U (en) | An auxiliary depressurization system for passive nuclear power plants | |
KR101502395B1 (en) | Passive containment spray and cooling system and nuclear power plant having the same | |
KR101473378B1 (en) | Passive safety system and nuclear reactor having the same | |
KR101502393B1 (en) | Passive safety system and nuclear reactor having the same | |
KR101441488B1 (en) | Passive safety system and nuclear reactor having the same | |
CN113593733A (en) | Passive steel containment heat exporting system | |
KR20060020756A (en) | Integrated pressurized water reactor with various emergency cooling facilities and its operation method | |
JPH01308997A (en) | Shroud tank and injection tube for boiling water type nuclear reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20070406 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20080228 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20080814 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20080828 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20080829 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20110711 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20120711 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20130607 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20130607 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140703 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20140703 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20141230 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20141230 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20160607 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20160607 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20170629 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20170629 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20180702 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20180702 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20190626 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20190626 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20200713 Start annual number: 13 End annual number: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20250623 Start annual number: 18 End annual number: 18 |