[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100799261B1 - Sludge Recycling Method Using Titanium Salt as Dehydration Aid - Google Patents

Sludge Recycling Method Using Titanium Salt as Dehydration Aid Download PDF

Info

Publication number
KR100799261B1
KR100799261B1 KR20070010638A KR20070010638A KR100799261B1 KR 100799261 B1 KR100799261 B1 KR 100799261B1 KR 20070010638 A KR20070010638 A KR 20070010638A KR 20070010638 A KR20070010638 A KR 20070010638A KR 100799261 B1 KR100799261 B1 KR 100799261B1
Authority
KR
South Korea
Prior art keywords
sludge
dehydration
titanium
titanium salt
aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR20070010638A
Other languages
Korean (ko)
Inventor
김종호
손호경
조동련
최병철
김건중
카꼬우 히로노리
이근선
최호덕
김영규
조재원
김인수
김명완
김종범
박희주
Original Assignee
(주) 빛과환경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 빛과환경 filed Critical (주) 빛과환경
Priority to KR20070010638A priority Critical patent/KR100799261B1/en
Application granted granted Critical
Publication of KR100799261B1 publication Critical patent/KR100799261B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/02Gases or liquids enclosed in discarded articles, e.g. aerosol cans or cooling systems of refrigerators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/30Incineration ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Treatment Of Sludge (AREA)
  • Catalysts (AREA)

Abstract

A sludge dewatering method is provided to produce sludge with a low water content by using a titanium salt as a dewatering aid, and improve dewatering of sludge and enable sludge to be recycled by incinerating the produced sludge with a low water content and recovering incineration ash containing titanium dioxide that exhibits photocatalytic activities. A sludge recycling method using a titanium salt as a dewatering aid comprises the steps of: (a) adding a titanium salt as a dewatering aid into sludge to be treated; (b) applying sludge obtained in the step(a) to a dewatering equipment to perform a dewatering process; (c) removing filtrate and obtaining a sludge cake by the dewatering process of the step(b); and (d) incinerating the sludge cake in a temperature range of 500 to 1000 deg.C to recover incineration ash containing titanium dioxide having photocatalytic activities. The sludge recycling method further comprises the step of drying the sludge cake between the steps (c) and (d). The dewatering process of the step(b) is carried out by injecting sludge obtained in the step(a) between filter fabrics and applying a predetermined pressure to the filter fabrics to separate sludge into filtrate and sludge cake.

Description

탈수보조제로서 티탄염을 이용한 슬러지 재활용 방법{METHOD FOR DEWATERING SLUDGE TO ENHANCE ITS RECYCLING USABILITY WITH TITANIUM SALTS AS DEWATERING COAGULANT AID}Sludge recycling method using titanium salt as dehydration aid {METHOD FOR DEWATERING SLUDGE TO ENHANCE ITS RECYCLING USABILITY WITH TITANIUM SALTS AS DEWATERING COAGULANT AID}

도 1은 본 발명에 따른 슬러지의 탈수방법의 바람직한 구현예를 보여주는 공정의 개략도이다.1 is a schematic diagram of a process showing a preferred embodiment of the method for dewatering sludge according to the invention.

도 2는 탈수보조제로서 티탄염의 첨가량에 따른 탈수 후 슬러지의 함수율 변화를 나타낸 그래프이다.Figure 2 is a graph showing the water content change of the sludge after dehydration according to the addition amount of titanium salt as a dehydration aid.

도 3은 비교의 목적하에 무기 탈수보조제의 종류에 따른 슬러지 케이크의 크기를 비교한 그래프이다.Figure 3 is a graph comparing the size of the sludge cake according to the type of inorganic dehydrating aid for the purpose of comparison.

도 4는 500℃의 온도에서 소결하여 얻어진 티타늄 소결 분말의 XRD 패턴이다.4 is an XRD pattern of titanium sintered powder obtained by sintering at a temperature of 500 ° C.

도 5는 본 발명의 방법에 의해 최종적으로 얻어지는 산화티탄의 SEM 사진이다.5 is a SEM photograph of titanium oxide finally obtained by the method of the present invention.

도 6은 본 발명에 따른 슬러지의 재활용 방법에 의해 최종적으로 얻어지는 산화티탄의 맵핑 사진이다.6 is a mapping photograph of titanium oxide finally obtained by the sludge recycling method according to the present invention.

도 7은 본 발명에 따른 슬러지의 재활용 방법에 의해 얻어지는 최종 부산물의 아세트알데히드 기상분해반응의 실험결과를 보여주는 그래프이다.7 is a graph showing the experimental results of acetaldehyde gas phase decomposition reaction of the final by-product obtained by the sludge recycling method according to the present invention.

본 발명은 티탄염을 이용한 슬러지 재활용 방법에 관한 것이다. 보다 구체적으로, 본 발명은 탈수보조제로 티탄염을 사용함으로써, 저함수율의 슬러지를 생산하고, 이를 소각하여 광촉매활성을 나타내는 산화티탄(TiO2)을 함유하는 소각재를 회수하여, 탈수보조제로서 티탄염을 사용한 향상된 탈수 효율과 재활용이 증진된 슬러지의 탈수방법에 관한 것이다.The present invention relates to a sludge recycling method using titanium salts. More specifically, the present invention uses a titanium salt as a dehydration aid to produce sludge of low water content, incinerate it to recover an incineration material containing titanium oxide (TiO 2 ) exhibiting photocatalytic activity, and as a dehydration aid, titanium salt. The present invention relates to a method for dewatering sludge with improved dewatering efficiency and recycling.

정수 및 폐수처리 과정에서 액체로부터 고형물이 분리되어 형성되는 물질을 널리 슬러지라 칭한다. 상기 슬러지는 하수 및 정수처리장에서 발생하는 슬러지, 화학공장, 제철소, 염색공장, 제지공장 등의 산업폐수 처리장에서 배출되는 슬러지, 그리고 축산 및 분뇨시설에서 발생되는 슬러지 등이 있다. 환경의 중요성이 점차 강조됨에 따라, 슬러지의 감량화에 대한 다양한 연구가 수행되고 있다.Substances formed by separating solids from liquids during water purification and wastewater treatment are widely referred to as sludge. The sludge includes sludge generated from sewage and water treatment plants, sludge discharged from industrial wastewater treatment plants such as chemical plants, steel mills, dyeing plants, and paper mills, and sludge generated from livestock and manure facilities. As the importance of the environment is increasingly emphasized, various studies on the reduction of sludge have been conducted.

특히, 유기성 슬러지는 미소화된 슬러지로서 탈수에 어려움이 있다. 일반적으로 이러한 슬러지의 함수율은 약 95%이상이다. 따라서, 슬러지의 고형물을 더욱 효율적으로 처리하기 위하여 농축(중력식, 부상식), 안정화(혐기성, 호기성, 습식산화, 임호프탱크), 개량(세척, 약품처리, 열처리), 탈수(진공여과, 가압여과, 원심분리, 건조), 소각 (다단로형태, 유동상소각기), 처분(토양살포, 매립, 해양투기, 퇴비화) 등으로 슬러지를 가공하고 있다. 현재 슬러지 처분은 매립 24%와 해양 투기 43%로 처리되고 있으며 약 12%는 재활용되고 있다. 그러나, 슬러지의 처분이 2003년부터 매립시 함수율 75 wt% 이하의 슬러지로 한정하고 있으며, 런던덤핑 조약에 의해 2010년부터는 해양투기도 금지되어 있어 그 처분에 대한 문제점이 심각하게 대두되어 오고 있다.In particular, organic sludge is difficult to dehydrate as micronized sludge. Generally, the water content of these sludges is about 95% or more. Therefore, in order to treat sludge solids more efficiently, it is concentrated (gravity and flotation), stabilized (anaerobic, aerobic, wet oxidation, impregnated tank), improved (washing, chemical treatment, heat treatment), dehydration (vacuum filtration, pressurization). Sludge is processed by filtration, centrifugation, drying), incineration (multi-stage type, fluidized bed incinerator), and disposal (soil spraying, landfill, ocean dumping, composting). Sludge disposal is currently being treated as 24% landfill and 43% ocean dumping, with about 12% being recycled. However, since the disposal of sludge has been limited to sludge with a water content of 75 wt% or less since 2003, marine dumping has been banned since 2010 under the London Dumping Treaty.

슬러지 개량은 탈수 성질을 높이기 위해 사용되고 가장 효율적인 슬러지 처리 방법 중 하나이다. 세정은 중탄산염 등과 같은 무기염을 사용할 때 많은 화학제 양을 소모케하는 미세 고형물 성분을 제거하기 위해 물로서 슬러지를 세척한다. 열처리는 폐활성 슬러지 개량에 주로 이용하며, 열처리는 미생물의 파괴, 해리되고 높은 수분 함량을 가진 세포간의 수분 방출을 위한 사용된다. 슬러지의 효율적 개량을 위한 방법의 하나로서, 탈수보조제가 사용되어 왔다. 탈수 보조제를 이용한 슬러지 탈수방법의 예로는 한국공개특허 제2004-80643호 및 2005-38948호를 참고하기 바란다. 탈수보조제는 크게 유기 탈수보조제와 무기 탈수보조제로 분류된다. 유기 탈수보조제로서 주로 유기 고분자가 사용되고 있다. 다만, 이들 유기 고분자는 재활용이 곤란하고, 유기 고분자에 의한 환경오염을 야기하는 문제점을 안고 있다. 무기 탈수보조제로서, 알루미늄 무기 화합물(예: Al2(SO4)3·8H2O 또는 Al(OH)2Cl), 철무기화합물(예: FeCl3·H2O, FeSO4·H2O 또는 Fe2(SO4)3·H2O) 또는 칼슘무기화합물(예: Ca(OH)2)이 사용되고 있다. 그러나, 이러한 탈수보조제도 만족스러운 결과를 제공해주지는 못하는 실정이다.Sludge improvement is used to increase dewatering properties and is one of the most efficient sludge treatment methods. Rinsing cleans the sludge with water to remove fine solids components that consume a large amount of chemicals when using inorganic salts such as bicarbonate and the like. Heat treatment is mainly used to improve waste activated sludge, and heat treatment is used to destroy microorganisms, dissociate and release water between cells with high water content. As one of the methods for the efficient improvement of the sludge, dehydration aids have been used. For examples of sludge dewatering methods using dehydration aids, see Korean Patent Publication Nos. 2004-80643 and 2005-38948. Dehydration aids are largely classified into organic dehydration aids and inorganic dehydration aids. Organic polymers are mainly used as organic dehydration aids. However, these organic polymers are difficult to recycle and have a problem of causing environmental pollution by organic polymers. As inorganic dehydration aids, aluminum inorganic compounds such as Al 2 (SO 4 ) 3 · 8H 2 O or Al (OH) 2 Cl), iron inorganic compounds (eg FeCl 3 · H 2 O, FeSO 4 · H 2 O) Or Fe 2 (SO 4 ) 3 · H 2 O) or calcium inorganic compounds (eg Ca (OH) 2 ). However, these dehydration aids do not provide satisfactory results.

본 발명의 목적은 탈수보조제로서 티탄염을 이용한 슬러지 재활용 방법을 제공하는 것이다. 보다 구체적으로, 본 발명의 목적은 탈수보조제로 티탄염을 사용함으로써, 저함수율의 슬러지를 생산하고, 이를 소각하여 광촉매활성을 나타내는 산화티탄 (TiO2)을 함유하는 소각재를 회수하여, 향상된 탈수와 자원의 재활용을 가능케하는 슬러지의 탈수방법을 제공하는 것이다.An object of the present invention is to provide a sludge recycling method using titanium salt as a dehydration aid. More specifically, an object of the present invention is to use a titanium salt as a dehydration adjuvant, to produce a sludge of low water content, to incinerate it to recover the incineration material containing titanium oxide (TiO 2 ) exhibiting photocatalytic activity, to improve the dehydration and It is to provide a sludge dewatering method that allows the recycling of resources.

본 발명의 바람직한 구현예를 따르면, a) 처리하고자 하는 슬러지에 티탄염 탈수보조제로서 첨가하는 단계, b) 상기 단계 a)에서 얻어진 슬러지를 탈수장치에 적용시켜 탈수공정을 수행하는 단계, c) 단계 b)의 탈수공정에 의해, 여액을 제거하고, 슬러지 케이크를 수득하는 단계, 및 d) 상기 슬러지 케이크를 소각하여 광촉매활성을 갖는 산화티탄을 함유하는 소각재를 회수하는 단계를 포함하여 이루어진, 티탄염을 이용한 슬러지 재활용 방법이 제공된다. 여기서, 탈수보조제로서 사용되는 티탄염은 가수분해성 티탄염인 것이 바람직하다. 사용가능한 티탄염의 예로서, 티타늄 트리클로라이드, 티타늄 테트라클로라이드, 티타닐 설페이트, 티타늄 설페이트, 티타늄 옥시설페이트 및 티타늄 철 설페이트를 들 수 있다.According to a preferred embodiment of the present invention, a) adding a sludge dehydration aid to the sludge to be treated, b) applying the sludge obtained in step a) to a dehydration apparatus to perform a dehydration process, c) step titanium salt, comprising the step of removing the filtrate by dehydration of b) to obtain a sludge cake, and d) recovering the incineration ash containing titanium oxide having photocatalytic activity by incineration of the sludge cake. A sludge recycling method is provided. Here, it is preferable that the titanium salt used as a dehydration adjuvant is a hydrolysable titanium salt. Examples of titanium salts that can be used include titanium trichloride, titanium tetrachloride, titanyl sulfate, titanium sulfate, titanium oxysulfate and titanium iron sulfate.

본 발명의 보다 바람직한 구현예에 따르면, 상기 단계 d)의 소각(incineration) 공정은 500-1000℃, 보다 바람직하게는 500-650℃에서 수행된다. 이러한 소각은 아나타제 결정구조를 갖는 산화티탄을 형성한다. 이 때, 상기 산화티탄에는, 슬러지에 포함된 유기/무기물의 함량에 따라, 탄소(C), 인(P), 미량의 Si, Fe, S, Al, V, Ca, Na, Cr 및 Cl이 도핑되어 있으며, 이러한 유/무기원소로 도 핑된 산화티탄은 광촉매활성을 유지한다.According to a more preferred embodiment of the invention, the incineration process of step d) is carried out at 500-1000 ° C., more preferably at 500-650 ° C. This incineration forms titanium oxide having an anatase crystal structure. At this time, the titanium oxide, carbon (C), phosphorus (P), trace amounts of Si, Fe, S, Al, V, Ca, Na, Cr and Cl, depending on the organic / inorganic content contained in the sludge Doped titanium oxide doped with organic / inorganic elements maintains photocatalytic activity.

도 1은 본 발명에 따른 슬러지 탈수방법의 바람직한 구현예를 보여주는 공정도이다. 우선, 티탄염이 탈수보조제로서 처리하고자 하는 슬러지에 첨가된다. 티탄염 탈수보조제는, 슬러지의 전체 부피를 기준으로, 3 mg/L - 9 mg/L의 티타늄 함량을 갖도록 첨가되는 것이 바람직하다. 티탄염의 바람직한 예로는 가수분해성 티탄염이다. 사용가능한 티탄염의 예로서, 티타늄 트리클로라이드, 티타늄 테트라클로라이드, 티타닐 설페이트, 티타늄 설페이트, 티타늄 옥시설페이트 및 티타늄 철 설페이트를 들 수 있다. 상기 티탄염은 다른 탈수보조제와 함께 첨가되어도 무방하다. 다른 탈수보조제로서, 기존의 유기 탈수보조제와 무기 탈수보조제를 들 수 있다. 바람직하게는 무기 탈수보조제이다. 유기 탈수 보조제는 소각시 분해되어 제거된다. 무기 탈수보조제는 무기 화합물이 산화티탄에 도핑되어 존재하게 된다. 바람직한 무기 탈수보조제의 예로는 철 탈수보조제와 알루미늄 탈수보조제이다. 티탄염 탈수보조제와 철 탈수보조제의 조합은 상대적으로 낮은 초기 흡착을 나타내었으나, 아세트 알데히드의 분해 성능은 상대적으로 높은 활성을 나타내었다. 가장 바람직하게는, 티타늄 탈수보조제를 단독으로 사용하는 것이다. 티탄염 탈수보조제와 알루미늄 탈수보조제의 조합은 상대적으로 높은 초기 흡착을 나타내었으나, 분해능은 상대적으로 낮았다. 슬러지의 pH는 1-13, 바람직하게는 3-8, 가장 바람직하게는 7-8의 범위에서 조정되는 것이다. 슬러지의 pH를 적절히 조절하고, 탈수효과를 보다 강화하기 위해, 염기성 화합물이 함께 사용될 수 있다. 본 발명이 적용가능한 슬러 지의 예로는 특별히 제한되지 아니하며, 상수, 하수, 산업폐수 슬러지가 모두 적용가능하다. 특히 유기 슬러지의 처리에 적합하다. 일반적으로, 침전조에서 얻어진 슬러지는 농축조에서 추가로 농축되고, 저류조에 예비적으로 저장된다. 그 후, 펌프의 도움하에, 탈수장치에 적용된다. 이 때, 상기 탈수보조제로서의 티탄염은 저류조에 통상 공급된다. 필요할 경우, 상기 농축조와 저류조의 사이에, 또는 저류조와 탈수장치의 사이에 혼합조를 추가하고, 여기에 탈수보조제가 첨가될 수 있다. 가장 바람직하게는, 농축조와 저류조의 사이에 혼합조가 구비되고, 여기에 탈수보조제가 공급되는 것이다.1 is a process chart showing a preferred embodiment of the sludge dewatering method according to the present invention. First, titanium salt is added to the sludge to be treated as a dehydration aid. The titanium salt dehydration aid is preferably added to have a titanium content of 3 mg / L-9 mg / L, based on the total volume of the sludge. Preferred examples of titanium salts are hydrolyzable titanium salts. Examples of titanium salts that can be used include titanium trichloride, titanium tetrachloride, titanyl sulfate, titanium sulfate, titanium oxysulfate and titanium iron sulfate. The titanium salt may be added together with other dehydration aids. Other dehydration aids include conventional organic dehydration aids and inorganic dehydration aids. Preferably it is an inorganic dehydration adjuvant. Organic dehydration aids are decomposed and removed upon incineration. The inorganic dehydration aid is present in which the inorganic compound is doped with titanium oxide. Examples of preferred inorganic dehydration aids are iron dehydration aids and aluminum dehydration aids. The combination of the titanium salt dehydration adjuvant and the iron dehydration adjuvant showed relatively low initial adsorption, but the decomposition performance of acetaldehyde showed relatively high activity. Most preferably, the titanium dehydration aid is used alone. The combination of titanium salt dehydration adjuvant and aluminum dehydration adjuvant showed relatively high initial adsorption, but the resolution was relatively low. The pH of the sludge is adjusted in the range of 1-13, preferably 3-8, most preferably 7-8. In order to properly adjust the pH of the sludge and to further enhance the dehydration effect, a basic compound may be used together. Examples of sludge to which the present invention is applicable are not particularly limited, and water, sewage, and industrial wastewater sludge are all applicable. It is especially suitable for the treatment of organic sludge. Generally, the sludge obtained in the settling tank is further concentrated in the thickening tank and preliminarily stored in the storage tank. Then, with the help of the pump, it is applied to the dehydrator. At this time, the titanium salt as said dehydration adjuvant is normally supplied to a storage tank. If necessary, a mixing tank may be added between the concentration tank and the storage tank, or between the storage tank and the dehydration device, and a dehydration aid may be added thereto. Most preferably, a mixing tank is provided between the concentration tank and the storage tank, and a dehydration adjuvant is supplied thereto.

티탄염 탈수보조제는 물속에서 티타늄 수화물을 형성하여 슬러지의 음전하에 흡착하여 물속을 불안정화시켜 작은 크기의 슬러지를 서로 응집하여 큰 물질의 응집체를 형성하게 된다. 이 때, 응집체의 크기가 클수록, 탈수효과가 증진된다. 본 발명의 구체적 실험예에 따르면, 티탄염 탈수보조제는 약 47.54 μm의 응집체를 형성하였으며, 동일한 함량의 알루미늄 계열 응집체 16.91 μm 및 철 계열 응집체 42.50 μm 보다 향상된 응집효과를 제공하였다. 탈수보조제가 첨가된 슬러지는 탈수장치에 적용되어 탈수공정이 수행된다. 상기 탈수공정은 통상 가압에 의해 수행된다. 구체적으로, 탈수보조제가 추가된 슬러지를 여과포 사이로 주입하고 이러한 여과포에 일정압력을 가해주어 슬러지를 수분(여액)과 고형분(슬러지 케이크)으로 분리한다. 가압식 탈수장치의 구체적 예로는 벨트프레스, 필터프레스, 스크루데칸터 또는 원심분리 장치가 있다. 벨트프레스 탈수장치는 현재 가장 보편적으로 보급 및 사용되어지고 있는 탈수장비로 상여과포와 하여과포를 롤러로 이동 및 압착시키 며 그 사이에 슬러지를 주입, 여과하는 방식의 탈수장치이다. 필터프레스 탈수장치는 일정한 체질을 갖는 다수의 여과판을 유압실린더로 압착한 후 그 공간속에 슬러지를 투입하여 슬러지 슬러지 케이크를 여과판 안쪽에 압착, 농축시키고 여액을 배출하는 방식을 취하고 있다. 스크루데칸터는 회전 보울(Bowl) 내부에 연속적으로 피드 파이프(Feed pipe)를 통해 사전 응집반응 없이 슬러지와 응집제를 동시에 투입하면 중력의 수천배로 원심 압밀력이 가해져 고형물과 수분이 분리되고 고형물은 전단력과 압착력 작용에 의해 케이크로 배출되는 탈수장치이다. 또한 원심분리장치는 원심분리의 원리를 이용한 것으로 비교적 적은 용량을 연속적으로 탈수하는 경우에 널리 사용된다. 얻어진 상기 슬러지 케이크는 함수율에 따라 처리비용 및 처리효율성에 영향을 미친다. 평균 47.54 ㎛의 크기를 형성하는 티탄염 탈수보조제는, 종래의 알루미늄 계열 탈수보조제 16.91 ㎛ 및 철 계열 탈수보조제 42.50 ㎛ 보다 높은 응집효과를 제공하였으며, 이것은 함수율의 향상된 저하와 처리효율의 증진을 제공한다.Titanium salt dehydration adjuvant forms titanium hydrate in water and adsorbs on the negative charge of sludge to destabilize the water to agglomerate small sludges to form agglomerates of large substances. At this time, the larger the size of the aggregate, the better the dehydration effect. According to a specific experimental example of the present invention, the titanium salt dehydrating adjuvant formed an aggregate of about 47.54 μm, and provided an improved aggregation effect than the same amount of aluminum-based aggregates 16.91 μm and iron-based aggregates 42.50 μm. Sludge added with a dehydration aid is applied to a dehydration device to perform a dehydration process. The dehydration process is usually carried out by pressurization. Specifically, the sludge to which the dehydration aid is added is injected between the filter cloths and a predetermined pressure is applied to the filter cloths to separate the sludge into water (filtrate) and solids (sludge cake). Specific examples of the pressurized dewatering device include a belt press, a filter press, a screw decanter or a centrifugal separator. The belt press dewatering device is the most widely used dehydration equipment. It is a dehydration device that moves and compresses the superfiling fabric and subfoam with a roller, and injects and filters sludge therebetween. The filter press dewatering device compresses a plurality of filter plates having a certain constitution with a hydraulic cylinder, and then inserts sludge into the space to compress and concentrate the sludge sludge cake inside the filter plate and discharge the filtrate. When the screw decanter is continuously fed into the rotating bowl through feed pipe without sludge and flocculant at the same time, centrifugal consolidation force is applied to thousands of times of gravity to separate solids and water, and solids It is a dewatering device discharged to the cake by the action of the pressing force. In addition, the centrifugal separator uses the principle of centrifugal separation and is widely used when continuously dehydrating a relatively small volume. The sludge cake obtained affects treatment costs and treatment efficiency depending on the moisture content. The titanium salt dehydration aid, which forms an average size of 47.54 μm, provided a cohesive effect higher than that of the conventional aluminum-based dehydration aid 16.91 μm and the iron-based dehydration aid 42.50 μm, which provides improved water content and improved treatment efficiency. .

탈수공정이 수행된 후 얻어진 슬러지 케이크는 소각공정에 적용된다. 필요할 경우, 상기 슬러지 케이크는 탈수공정과 소각공정의 사이에 건조 공정이 추가될 수 있다. 건조공정은 상온에서의 자연건조가 수행될 수 있다. 바람직하게는 상기 건조공정은 90℃ - 150℃, 가장 바람직하게는 100℃ - 120℃의 온도에서 건조공정이 수행되는 것이다. The sludge cake obtained after the dehydration process is subjected to the incineration process. If necessary, the sludge cake may be added a drying process between the dehydration process and the incineration process. The drying process may be natural drying at room temperature. Preferably the drying process is a drying process is carried out at a temperature of 90 ℃-150 ℃, most preferably 100 ℃-120 ℃.

본 발명에 따른 바람직한 실시예에 따르면, 상기 소각 공정은 500℃ 이상, 바람직하게는 500-1000℃, 보다 바람직하게는 500-650℃에서 수행된다. 상기 소각 공정에 의해 잉여의 물과 유기화합물이 분해되어 제거되고, 소각재가 얻어진다. 이 때 소각재는 광촉매 활성을 갖는 산화티탄을 함유한다. 즉, 광촉매 활성을 갖는 산화티탄을 함유하는 소각재가 최종적으로 얻어지며, 이들은 광촉매 활성을 요구하는 건축재료로서 사용되거나, 매립장 또는 토양오염지역에 매립되어 태양광을 이용한 광촉매 활성에 의해 유기물과 병원성 미생물의 제거에 이용될 수 있다. 이것은 소각 공정에 의해 얻어진 산물이 재활용될 수 있음을 의미한다.According to a preferred embodiment according to the invention, the incineration process is carried out at 500 ° C. or higher, preferably 500-1000 ° C., more preferably 500-650 ° C. By the incineration step, excess water and organic compounds are decomposed and removed to obtain an incineration ash. At this time, the incineration ash contains titanium oxide having photocatalytic activity. That is, an incineration ash containing titanium oxide having photocatalytic activity is finally obtained, and these are used as building materials requiring photocatalytic activity, or they are embedded in a landfill or soil polluted area, and organic and pathogenic microorganisms are formed by photocatalytic activity using sunlight. It can be used for the removal of. This means that the product obtained by the incineration process can be recycled.

이하, 실시예를 참조하여 본 발명을 보다 상세히 설명하도록 한다. 다만 이 들 실시예는 본 발명의 이해를 위해 제시되는 것으로서 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니라고 이해되어야 한다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are presented for understanding the present invention, it should be understood that the scope of the present invention is not limited by these examples.

실시예Example

실시예 1: 함수율 측정Example 1: Moisture Content Measurement

슬러지의 함수율은 하수 처리장에서 발생되는 슬러지를 사용하여 테스트하였다. 고형분 함량이 5%인 하수슬러지에 다른 농도의 티타늄 클로라이드(TiCl4)를 투여하여 벨트프레스로 탈수 후에 그 함수율을 측정하였으며, 그 결과를 도 2에 도시하였다. 도 2에 도시한 바와 같이, 산화티탄의 농도가 증가할수록 슬러지의 함수율이 감소하였으며, 최대로 70%까지 함수율이 감소되어졌다.The water content of the sludge was tested using the sludge generated in the sewage treatment plant. Titanium chloride (TiCl 4 ) of different concentrations was administered to the sewage sludge having a solid content of 5%, and the water content was measured after dehydration by a belt press. The results are shown in FIG. 2. As shown in FIG. 2, as the concentration of titanium oxide was increased, the water content of the sludge decreased, and the water content was reduced up to 70%.

실시예 2: 다른 무기 탈수보조제와의 비교실험Example 2: Comparative experiment with other inorganic dehydration aids

고형분 함량이 5%인 하수슬러지 1L에 무기 탈수보조제 Alum, FeCl3, TiCl4 를 각각 Al, Fe, Ti 함량이 13 mg/L가 되도록 첨가한 후, 생성된 슬러리 케이크의 크 기를 LS 230 (Beckman Coulter, Inc., Great British)를 이용하여 측정하였으며, 그 결과를 도 3에 도시하였다. 도 3에 도시한 바와 같이 티탄염 탈수보조제, 철 탈수보조제 및 알루미늄 탈수보조제는 각각 47.54 ㎛, 42.50 ㎛ 및 16.91 ㎛의 크기를 가졌다. 이것은 티탄염 탈수보조제의 탈수효율이 보다 향상됨을 의미한다.After adding the inorganic dehydrating aids Alum, FeCl 3 , TiCl 4 to 13 mg / L, respectively, to 1L of sewage sludge with 5% solids, the size of the resulting slurry cake was LS 230 (Beckman Coulter, Inc., Great British), and the results are shown in FIG. 3. As shown in FIG. 3, the titanium salt dehydration aid, the iron dehydration aid and the aluminum dehydration aid had sizes of 47.54 μm, 42.50 μm, and 16.91 μm, respectively. This means that the dehydration efficiency of the titanium salt dehydration aid is further improved.

실시예 3: 슬러지 응집체로부터 티타늄 산화물의 제조Example 3 Preparation of Titanium Oxide from Sludge Aggregates

고형분 함량이 5%인 하수슬러지에 티타늄 클로라이드(TiCl4)를 Ti 염 함량이 13mg/L가 되도록 투여하여 벨트프레스로 탈수하고, 105℃에서 건조한 후, 소각하여 산화티탄 소각재를 얻었다. 얻어진 산화티탄의 XRD 패턴을 측정하였으며, 그 결과를 도 4에 도시하였다. 온도가 증가함에 따라 소결 분말은 흑색에서 백색 분말로 바뀌어졌다. 500℃에서 XRD 패턴이 아나타제 결정을 보였다. 이는 유/무기 원소들이 산화물 형태로 독립적으로 생성되지 않고 TiO2에 도핑되어 있음을 말해준다. 그 이전 온도에서는 무정형의 분말이 형성되었다. 원소함량을 측정하였으며, 그 결과를 아래의 표 1에 도시하였다.Titanium chloride (TiCl 4 ) was administered to a Ti salt content of 13 mg / L in a sewage sludge having a solid content of 5%, dehydrated by a belt press, dried at 105 ° C., and incinerated to obtain a titanium oxide incinerator. The XRD pattern of the obtained titanium oxide was measured, and the results are shown in FIG. As the temperature increased, the sintered powder changed from black to white powder. At 500 ° C., the XRD pattern showed anatase crystals. This indicates that organic / inorganic elements are doped independently of TiO 2 without being formed independently in oxide form. At that temperature, amorphous powder formed. The elemental content was measured and the results are shown in Table 1 below.

Figure 112007009979319-pat00001
Figure 112007009979319-pat00001

상기 표 1에 보여진 바와 같이, 다양한 유기원소(C, P, S, Cl, Br 등) 및 무기원소(Si, Fe, Al, V, Ca, Na, Cr, Ni)가 도핑된 기능성 산화티탄이 형성되었다. 도 5 및 도 6은 제조된 산화티탄의 SEM 사진과 맵핑(Mapping) 사진을 각각 보여준다. 산화티탄의 특성 결과, 약 10 nm 크기의 나노 파티클이 형성되었으며, 유무기 원소 성분들이 고르게 TiO2에 도핑되어 있음을 확인하였다.As shown in Table 1, functional titanium oxide doped with various organic elements (C, P, S, Cl, Br, etc.) and inorganic elements (Si, Fe, Al, V, Ca, Na, Cr, Ni) Formed. 5 and 6 show SEM and mapping pictures of the prepared titanium oxide, respectively. As a result of the characteristics of the titanium oxide, nanoparticles having a size of about 10 nm were formed, and it was confirmed that organic and inorganic element components were evenly doped in TiO 2 .

실시예 4: 슬러지 응집체로부터 제조한 티타늄 산화물의 유기물 광분해 Example 4 Organic Photolysis of Titanium Oxide Prepared from Sludge Aggregates

고형분 함량이 5%인 하수슬러지에 티타늄 클로라이드(TiCl4)를 티타늄 함량이 13mg/L가 되도록 투여하고 탈수 후 소성하여 얻어진 TiO2 분말과, 티타늄 함량이 6.5 mg/L인 티타늄 클로라이드(TiCl4)에 Al, Fe함량이 각각 6.5mg/L인 알루미늄 탈수 보조제(Al2(SO4)3·8H2O)와 철탈수보조제(FeCl3)를 혼합한 탈수보조제를 투여하고 탈수 후 소성하여 얻어진 TiO2-Al, TiO2-Fe 분말의 광분해 능력을 알아보기 위해 아세트알데히드 기상분해반응을 실시하였다. 도 7는 아세트알데히드 기상분해반응의 실험결과를 보여주는 그래프이다. 밀폐된 광촉매 기상 반응기에 0.5 g의 산화티타늄 분말을 넣고 2000 ppm의 아세트알데이드를 주입 한 후 1시간 동안 흡착시키고, UV 램프를 조사하면서 복수의 샘플을 채취하였다. TiO 2 powder obtained by administering titanium chloride (TiCl 4 ) to 13 mg / L of titanium in a sewage sludge having a solid content of 5%, dehydrated and calcined, and titanium chloride (TiCl 4 ) of 6.5 mg / L in titanium TiO obtained by administering aluminum dehydration aid (Al 2 (SO 4 ) 3 · 8H 2 O) and iron dehydration adjuvant (FeCl 3 ) mixed with Al and Fe contents each to 6.5 mg / L. Acetaldehyde gas phase decomposition was conducted to investigate the photodegradability of 2 -Al and TiO 2 -Fe powders. 7 is a graph showing the experimental results of acetaldehyde gas phase decomposition reaction. 0.5 g of titanium oxide powder was added to a sealed photocatalytic gas phase reactor, 2000 ppm of acetaldehyde was injected, adsorbed for 1 hour, and a plurality of samples were taken while irradiating a UV lamp.

샘플들에 함유된 아세트알데히드의 농도를 분석한 결과, TiO2 단독의 탈수보조제(TiO2), TiO2와 알루미늄 무기화합물의 조합으로 이루어진 탈수보조제(TiO2-Al), TiO2와 철무기화합물의 조합으로 이루어진 탈수보조제(TiO2-Fe) 모두 만족스런 광촉매 활성을 나타내었다. 특히 TiO2 분말은 UV 조사 후 40분 정도에 수십 ppm 정도 까지 아세트알데히드를 분해시켰다. As a result of analyzing the concentration of acetaldehyde contained in the samples, the dehydration aid (TiO 2 ) of TiO 2 alone, the dehydration aid (TiO 2 -Al) consisting of TiO 2 and aluminum inorganic compounds, TiO 2 and iron inorganic compounds Dehydration adjuvant (TiO 2 -Fe) consisting of a combination of all showed satisfactory photocatalytic activity. In particular, TiO 2 powder decomposed acetaldehyde up to several tens of ppm in about 40 minutes after UV irradiation.

본 발명은 슬러지 처리시, 가장 주된 문제로 부각되고 있는 함수율과 처분을 해결할 수 있는 새로운 슬러지 탈수보조제를 제안하였다. 티탄염을 탈수보조제로 이용하여 슬러지 함수율을 감소시킨 후에, 소각하여 상업적으로 유용한 물질인 산화티탄을 함유하는 소각재를 생성하여 건축재료로 사용하거나, 쓰레기 매립장, 토양 오염지역 등에 살포하여 환경 정화 등에 재활용될 수 있다.The present invention proposed a new sludge dewatering aid that can solve the water content and disposal, which are the main problems in sludge treatment. After reducing the sludge moisture content by using titanium salt as a dehydration aid, incineration material containing titanium oxide, which is a commercially useful material, can be incinerated to be used as a building material, or used as a building material, or recycled to environmental purification by spraying to landfills or soil-contaminated areas. Can be.

Claims (9)

a) 처리하고자 하는 슬러지에 티탄염을 탈수보조제로서 첨가하는 단계,a) adding titanium salt to the sludge to be treated as a dehydration aid, b) 상기 단계 a)에서 얻어진 슬러지를 탈수장치에 적용시켜 탈수공정을 수행하는 단계,b) performing the dehydration process by applying the sludge obtained in step a) to the dehydration apparatus, c) 단계 b)의 탈수공정에 의해, 여액을 제거하고, 슬러지 케이크를 수득하는 단계,c) removing the filtrate by the dehydration process of step b) to obtain a sludge cake, d) 상기 슬러지 케이크를 소각하여 광촉매활성을 갖는 산화티탄을 함유하는 소각재를 회수하는 단계를 포함하여 이루어진, 탈수보조제로서 티탄염을 이용한 슬러지 재활용 방법.and d) recovering the incineration material containing titanium oxide having photocatalytic activity by incineration of the sludge cake, wherein the sludge recycling method using titanium salt as a dehydration aid. 제1항에 있어서, 상기 단계 c)와 상기 단계 d)의 사이에, 상기 슬러지 케이크를 건조하는 단계를 추가적으로 포함하는 것을 특징으로 하는, 탈수보조제로서 티탄염을 이용한 슬러지 재활용 방법.According to claim 1, Between the step c) and the step d), characterized in that it further comprises the step of drying the sludge cake, sludge recycling method using titanium salt as a dehydration aid. 제1항에 있어서, 상기 티탄염이 가수분해성 티탄염인 것을 특징으로 하는, 탈수보조제로서 티탄염을 이용한 슬러지 재활용 방법.The sludge recycling method using titanium salt as a dehydration aid according to claim 1, wherein the titanium salt is a hydrolyzable titanium salt. 제3항에 있어서, 상기 티탄염이 티타늄 트리클로라이드, 티타늄 테트라클로라이드, 티타닐 설페이트, 티타늄 설페이트, 티타늄 옥시설페이트 및 티타늄 철 설 페이트로 구성되는 군에서 선택되는 것을 특징으로 하는, 탈수보조제로서 티탄염을 이용한 슬러지 재활용 방법.The titanium salt as a dehydration aid according to claim 3, wherein the titanium salt is selected from the group consisting of titanium trichloride, titanium tetrachloride, titanyl sulfate, titanium sulfate, titanium oxalate and titanium iron sulfate. Sludge Recycling Method 제1항에 있어서, 상기 단계 a)의 티탄염 탈수보조제가 유기 탈수보조제 또는 무기 탈수보조제와 함께 첨가되는 것을 특징으로 하는, 탈수보조제로서 티탄염을 이용한 슬러지 재활용 방법.The sludge recycling method using titanium salt as a dehydration aid according to claim 1, wherein the titanium salt dehydration aid of step a) is added together with an organic dehydration aid or an inorganic dehydration aid. 제5항에 있어서, 상기 무기 탈수보조제가 철 탈수보조제 또는 알루미늄 탈수보조제인 것인 특징으로 하는, 탈수보조제로서 티탄염을 이용한 슬러지 재활용 방법.The sludge recycling method using titanium salt as a dehydration aid according to claim 5, wherein the inorganic dehydration aid is an iron dehydration aid or an aluminum dehydration aid. 제6항에 있어서, 상기 단계 d)의 소각이 500-1000℃에서 수행되는 것을 특징으로 하는, 탈수보조제로서 티탄염을 이용한 슬러지 재활용 방법.The sludge recycling method using titanium salt as a dehydration adjuvant according to claim 6, wherein the incineration of step d) is performed at 500-1000 ° C. 제1항에 있어서, 상기 단계 b)의 탈수공정이 가압에 의해 수행되는 것을 특징으로 하는, 탈수보조제로서 티탄염을 이용한 슬러지 재활용 방법.The sludge recycling method of claim 1, wherein the dehydration process of step b) is performed by pressurization. 제1항에 있어서, 상기 단계 b)의 탈수공정이 단계 a)에서 얻어진 슬러지를 여과포 사이로 주입하고 상기 여과포에 일정압력을 가해주어 슬러지를 여액과 슬러지 케이크로 분리하는 것에 의해 수행되는 것을 특징으로 하는, 탈수보조제로서 티 탄염을 이용한 슬러지 재활용 방법.The method of claim 1, wherein the dehydration process of step b) is carried out by injecting the sludge obtained in step a) between the filter cloth and applying a constant pressure to the filter cloth to separate the sludge into the filtrate and the sludge cake. , Sludge recycling method using titanium salt as dehydration aid.
KR20070010638A 2007-02-01 2007-02-01 Sludge Recycling Method Using Titanium Salt as Dehydration Aid Active KR100799261B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20070010638A KR100799261B1 (en) 2007-02-01 2007-02-01 Sludge Recycling Method Using Titanium Salt as Dehydration Aid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20070010638A KR100799261B1 (en) 2007-02-01 2007-02-01 Sludge Recycling Method Using Titanium Salt as Dehydration Aid

Publications (1)

Publication Number Publication Date
KR100799261B1 true KR100799261B1 (en) 2008-01-29

Family

ID=39219693

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20070010638A Active KR100799261B1 (en) 2007-02-01 2007-02-01 Sludge Recycling Method Using Titanium Salt as Dehydration Aid

Country Status (1)

Country Link
KR (1) KR100799261B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101000971B1 (en) * 2008-12-23 2010-12-13 전남대학교산학협력단 Sludge solubilization treatment method and sludge recycling method
CN109336352A (en) * 2018-11-05 2019-02-15 李舒馨 A kind of method for sludge treatment
KR102514816B1 (en) 2021-10-29 2023-03-29 (주)벤텍프런티어 continuous kiln for producing titanium oxide from sludges
KR102561763B1 (en) * 2023-02-20 2023-07-31 주식회사 인터퓨어 Manufacturing method of composition for removing sludge
KR20230148437A (en) * 2022-04-15 2023-10-25 주식회사 에스비이앤이 Apparatus for producing photocatalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783265A (en) 1984-04-11 1988-11-08 Hydro International Limited Water treatment
KR20030081268A (en) * 2003-09-24 2003-10-17 (주)늘푸른기술 The microbe killer into activated sludge by the “environmental protection raw materials”

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783265A (en) 1984-04-11 1988-11-08 Hydro International Limited Water treatment
KR20030081268A (en) * 2003-09-24 2003-10-17 (주)늘푸른기술 The microbe killer into activated sludge by the “environmental protection raw materials”

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101000971B1 (en) * 2008-12-23 2010-12-13 전남대학교산학협력단 Sludge solubilization treatment method and sludge recycling method
CN109336352A (en) * 2018-11-05 2019-02-15 李舒馨 A kind of method for sludge treatment
KR102514816B1 (en) 2021-10-29 2023-03-29 (주)벤텍프런티어 continuous kiln for producing titanium oxide from sludges
KR20230148437A (en) * 2022-04-15 2023-10-25 주식회사 에스비이앤이 Apparatus for producing photocatalyst
KR102746506B1 (en) 2022-04-15 2024-12-27 주식회사 에스비이앤이 Apparatus for producing photocatalyst
KR102561763B1 (en) * 2023-02-20 2023-07-31 주식회사 인터퓨어 Manufacturing method of composition for removing sludge

Similar Documents

Publication Publication Date Title
Hu et al. Banana peel biochar with nanoflake-assembled structure for cross contamination treatment in water: Interaction behaviors between lead and tetracycline
CN101234841B (en) Sludge concentration dehydration method
KR100799261B1 (en) Sludge Recycling Method Using Titanium Salt as Dehydration Aid
CN101786787A (en) Sludge dewatering integrated process
CN104788002B (en) A kind of sludge pretreatment equipment
CN105461183A (en) Treatment method for excess activated sludge in AOX pollution
Li et al. Enhanced catalytic degradation of amoxicillin with TiO 2–Fe 3 O 4 composites via a submerged magnetic separation membrane photocatalytic reactor (SMSMPR)
Xu et al. Removal of nitrogen and phosphorus from water by sludge-based biochar modified by montmorillonite coupled with nano zero-valent iron
JP5997755B2 (en) Sludge treatment method and carbide utilization method
KR101000971B1 (en) Sludge solubilization treatment method and sludge recycling method
Samanta et al. Recycle of water treatment plant sludge and its utilization for wastewater treatment
CN107032567B (en) Method for deodorizing and reducing municipal sludge
Gu et al. Graphitic carbon nitride–doped sewage sludge as a novel material for photodegradation of Eriochrome Black T
JP2004275884A (en) Wastewater treatment method, wastewater treatment device and treatment system
CN107512746B (en) Filtering agent produced by municipal sludge and used for treating sewage and preparation method thereof
KR20050048447A (en) Method for dewatering sewage sludge using radiation and starfish powder
KR101967898B1 (en) Dehydrating and drying method of sludge using chlorine dioxide and polar organic chemicals
CN108341583A (en) A kind of sludge dehydration conditioner and its dewatering
Patil et al. Kinetics of photocatalytic degradation of methylene blue by ZnO-bentonite nanocomposite
CN106517265A (en) Recycling utilization method of biochemical sludge
JP3971988B2 (en) Contaminated soil purification method
KR100781123B1 (en) Sludge Treatment System Using Microorganism and Mechanism
Tie et al. Performance of Tetracycline Hydrochloride Removal Using Acidized and Magnetized Waterworks Sludge as Adsorbent.
CA3129430A1 (en) Organic waste treatment process
CN112441716A (en) Comprehensive treatment system and comprehensive treatment method for riverway dredging sediment

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20070201

PA0201 Request for examination
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20071130

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20080123

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20080123

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20110112

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20120119

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20130123

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20130123

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20140123

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20140123

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20150123

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20150123

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20160121

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20160121

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20180123

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20180123

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20190105

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20190105

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20200128

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20200128

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20201124

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20211109

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20230125

Start annual number: 16

End annual number: 16

PR1001 Payment of annual fee

Payment date: 20240411

Start annual number: 17

End annual number: 17