KR100773322B1 - Polymer electrolyte membrane for fuel cell containing crosslinked PI and method for manufacturing same - Google Patents
Polymer electrolyte membrane for fuel cell containing crosslinked PI and method for manufacturing same Download PDFInfo
- Publication number
- KR100773322B1 KR100773322B1 KR1020060133691A KR20060133691A KR100773322B1 KR 100773322 B1 KR100773322 B1 KR 100773322B1 KR 1020060133691 A KR1020060133691 A KR 1020060133691A KR 20060133691 A KR20060133691 A KR 20060133691A KR 100773322 B1 KR100773322 B1 KR 100773322B1
- Authority
- KR
- South Korea
- Prior art keywords
- polymer
- electrolyte membrane
- polymer electrolyte
- pbi
- acid
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 57
- 239000005518 polymer electrolyte Substances 0.000 title claims abstract description 38
- 239000000446 fuel Substances 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 229920000642 polymer Polymers 0.000 claims abstract description 33
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- 150000007522 mineralic acids Chemical class 0.000 claims description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- DPZVOQSREQBFML-UHFFFAOYSA-N 3h-pyrrolo[3,4-c]pyridine Chemical compound C1=NC=C2CN=CC2=C1 DPZVOQSREQBFML-UHFFFAOYSA-N 0.000 claims description 3
- 238000004132 cross linking Methods 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 abstract description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229920001643 poly(ether ketone) Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- -1 hydrogen ions Chemical class 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920000137 polyphosphoric acid Polymers 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229920008285 Poly(ether ketone) PEK Polymers 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- BWQOPMJTQPWHOZ-UHFFFAOYSA-N (2,3-difluorophenyl)-phenylmethanone Chemical compound FC1=CC=CC(C(=O)C=2C=CC=CC=2)=C1F BWQOPMJTQPWHOZ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical class BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- 230000031709 bromination Effects 0.000 description 1
- 238000005893 bromination reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/103—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2256—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/06—Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Fuel Cell (AREA)
Abstract
본 발명은 고분자와 크로스링크된 PBI 를 포함하는 고분자 전해질막, 그의 제조방법 및 상기 고분자 전해질막을 이용한 고분자 전해질막 연료전지에 관한 것이다. 고분자와 크로스링크된 PBI를 전해질막으로 사용함으로써 기존의 고분자 전해질막에서 PBI의 크기가 고온에서 줄어드는 문제를 해결할 수 있다. 이에 따른 성능 감소 문제도 해결할 수 있으므로 이러한 고분자를 고분자 전해질막으로 이용할 경우 높은 성능의 연료전지를 제작할 수 있다. The present invention relates to a polymer electrolyte membrane comprising a PBI crosslinked with a polymer, a method for manufacturing the same, and a polymer electrolyte membrane fuel cell using the polymer electrolyte membrane. By using PBI crosslinked with a polymer as an electrolyte membrane, the size of PBI in the existing polymer electrolyte membrane can be reduced at high temperature. As a result, the performance reduction problem can be solved, and thus, when the polymer is used as a polymer electrolyte membrane, a high performance fuel cell can be manufactured.
Description
도 1은 PBI와 크로스링크된 PBI의 I-V 곡선을 나타낸 그림이다.1 shows an I-V curve of a PBI crosslinked with a PBI.
본 발명은 고분자와 크로스링크된 PBI 를 포함하는 고분자 전해질막, 그의 제조방법 및 상기 고분자 전해질막을 이용한 고분자 전해질막 연료전지에 관한 것이다.The present invention relates to a polymer electrolyte membrane comprising a PBI crosslinked with a polymer, a method for manufacturing the same, and a polymer electrolyte membrane fuel cell using the polymer electrolyte membrane.
연료전지는 사용되는 전해질의 종류에 따라 고분자 전해질막 연료전지(PEMFC: polymer electrolyte membrane fuel cell), 인산 연료전지 (PAFC : phosphoric acid fuel cell), 용융탄산염 연료전지 (MCFC : molten carbonate fuel cell), 고체 산화물 연료전지 (SOFC : solid oxide fuel cell) 등으로 구분될 수 있다. 사용되는 전해질에 따라 연료전지의 작동온도 및 구성 부품의 재질 등이 달라진다.The fuel cell is a polymer electrolyte membrane fuel cell (PEMFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC) according to the type of electrolyte used, It may be classified into a solid oxide fuel cell (SOFC). Depending on the electrolyte used, the operating temperature of the fuel cell and the material of the components vary.
PEMFC의 기본 구조는 통상적으로 애노드(연료 전극), 캐소드(산화제 전극), 및 애노드와 캐소드 사이에 배치된 고분자 전해질막을 포함한다. PEMFC의 애노드에는 연료의 산화를 촉진시키기 위한 촉매층이 구비되어 있으며, PEMFC의 캐소드에는 산화제의 환원을 촉진시키기 위한 촉매층이 구비되어 있다.The basic structure of a PEMFC typically includes an anode (fuel electrode), a cathode (oxidant electrode), and a polymer electrolyte membrane disposed between the anode and the cathode. The anode of the PEMFC is provided with a catalyst layer for promoting the oxidation of the fuel, and the cathode of the PEMFC is provided with a catalyst layer for promoting the reduction of the oxidant.
PEMFC의 애노드에 공급되는 연료로서는 통상적으로 수소, 수소 함유 가스, 메탄올과 물의 혼합 증기, 메탄올 수용액 등이 사용된다. PEMFC의 캐소드에 공급되는 산화제는 통상적으로 산소, 산소 함유 가스 또는 공기이다. PEMFC의 애노드에서는 연료가 산화되어 수소이온과 전자가 생성된다. 수소 이온은 전해질막을 통하여 캐소드로 전달되며, 전자는 도선(또는 집전체)을 통하여 외부회로(부하)로 전달된다. PEMFC의 캐소드에서는 전해질막을 통하여 전달된 수소이온, 도선(또는 집전체)을 통하여 외부회로로부터 전달된 전자, 및 산소가 결합하여 물이 생성된다. 이 때, 애노드, 외부회로 및 캐소드를 경유하는 전자의 이동이 곧 전력이다.As a fuel supplied to the anode of PEMFC, hydrogen, a hydrogen containing gas, mixed vapor of methanol and water, aqueous methanol solution, etc. are used normally. The oxidant supplied to the cathode of the PEMFC is typically oxygen, an oxygen containing gas or air. At the anode of the PEMFC, the fuel is oxidized to produce hydrogen ions and electrons. Hydrogen ions are transferred to the cathode through the electrolyte membrane, and electrons are transferred to the external circuit (load) through the conductor (or current collector). In the cathode of the PEMFC, water is generated by combining hydrogen ions transferred through the electrolyte membrane, electrons transferred from an external circuit through a conductor (or current collector), and oxygen. At this time, the movement of electrons via the anode, the external circuit and the cathode is power.
PEMFC에 있어서 고분자 전해질막은 애노드로부터 캐소드로의 수소이온의 이동을 위한 이온전도체의 역할을 할 뿐만 아니라, 애노드와 캐소드의 기계적 접촉을 차단하는 격리막(separator)의 역할도 한다. 따라서 고분자 전해질막에 대하여 요구되는 특성은 우수한 이온전도도, 전기화학적 안전성, 높은 기계적 강도, 작동온도에서의 열안정성, 박막화의 용이성 등이다.In PEMFC, the polymer electrolyte membrane not only functions as an ion conductor for the migration of hydrogen ions from the anode to the cathode, but also serves as a separator that blocks mechanical contact between the anode and the cathode. Therefore, the properties required for the polymer electrolyte membrane are excellent ion conductivity, electrochemical stability, high mechanical strength, thermal stability at operating temperature, ease of thinning and the like.
고분자 전해질막의 재료로서는 일반적으로 불소화 알킬렌으로 구성된 주쇄와 말단에 술폰산기를 갖는 불소화비닐 에테르로 구성된 측쇄를 갖는 술포네이트 고불화 고분자(예: Nafion : Dupont사의 상표)와 같은 고분자 전해질이 사용되고 있다. 이러한 고분자 전해질막은 적정량의 물을 함습함으로써 우수한 이온 전도성을 발휘 하게 된다.As the material of the polymer electrolyte membrane, a polymer electrolyte such as a sulfonate high fluorinated polymer having a main chain composed of a fluorinated alkylene and a side chain composed of a fluorinated vinyl ether having a sulfonic acid group at its terminal (for example, Nafion: Dupont's trademark) is used. The polymer electrolyte membrane exhibits excellent ion conductivity by impregnating an appropriate amount of water.
그러나 이러한 전해질막은 100℃ 이상의 작동 온도에서 증발에 의한 수분손실로 인하여 이온 전도성이 심각하게 저하되어서 전해질막으로서의 기능을 상실하게 된다. 따라서 이러한 고분자 전해질막을 사용하는 PEMFC를 상압하에서 그리고 100℃ 이상의 온도에서 작동시키는 것은 거의 불가능하다. PEMFC의 작동온도를 100℃ 이상으로 상승시키기 위하여, PEMFC에 가습 장치를 장착하거나 PEMFC를 가압 조건 하에서 운전하는 방안, 가습을 요하지 않는 고분자 전해질을 사용하는 방안 등이 제안된 바 있다. 그러나 가압 시스템을 적용하거나 가습장치를 장착하면, PEMFC의 크기 및 중량이 매우 증가할 뿐만 아니라, 발전 시스템의 전체 효율도 감소한다. However, the electrolyte membrane is severely lowered in ionic conductivity due to moisture loss due to evaporation at an operating temperature of more than 100 ℃ to lose the function as an electrolyte membrane. Therefore, it is almost impossible to operate PEMFC using such a polymer electrolyte membrane under normal pressure and at a temperature of 100 ° C. or higher. In order to increase the operating temperature of the PEMFC to more than 100 ℃, a method of mounting a humidifier to the PEMFC or operating the PEMFC under pressurized conditions, a method of using a polymer electrolyte that does not require humidification has been proposed. However, applying a pressurized system or mounting a humidifier not only greatly increases the size and weight of the PEMFC, but also reduces the overall efficiency of the power generation system.
PEMFC의 활용범위를 극대화시킬 수 있는, 가습하지 않아도 우수한 이온 전도도를 발휘하는 "무가습 고분자 전해질막"로서, 폴리벤조이미다졸(PBI), 황산 또는 인산이 도핑된 폴리벤조이미다졸 등과 같은 재료가 개시되어 있다. 그러나 100℃ 내지 200℃의 온도에서 고분자 전해질막로서 PBI 계열의 전해질막을 사용하는 경우, 고온에서의 열 및 화학적 안정성은 우수하지만 장시간 사용시 고분자 물질의 크기가 줄어들어 장기적으로 성능이 감소되는 단점이 있다. It is a "humidification-free polymer electrolyte membrane" that exhibits excellent ionic conductivity without humidification, which can maximize the application range of PEMFC, and materials such as polybenzoimidazole (PBI), sulfuric acid or phosphoric acid-doped polybenzoimidazole Is disclosed. However, when the PBI-based electrolyte membrane is used as the polymer electrolyte membrane at a temperature of 100 ° C. to 200 ° C., the thermal and chemical stability at high temperatures are excellent, but the polymer material is reduced in the long term, resulting in a decrease in performance in the long term.
상기 문제를 해결하기 위하여, 본 발명은 기존의 무기산 도핑 PBI를 고분자와 크로스링크시킴으로써 PBI의 치수 불안정성이 해결된 고분자 전해질막을 제공하는 것을 목적으로 한다. 또한 상기 고분자 전해질막을 포함하는 연료전지를 제공하 는 것을 목적으로 한다. In order to solve the above problems, an object of the present invention is to provide a polymer electrolyte membrane in which dimensional instability of PBI is solved by crosslinking an existing inorganic acid-doped PBI with a polymer. It is also an object of the present invention to provide a fuel cell comprising the polymer electrolyte membrane.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 고분자 A를 제공한다.In order to achieve the above object, the present invention provides a polymer A represented by the following formula (1).
(X는 SO2 또는 CO; Y는 C(CH3)2, C(CF3)2, CH2 또는 no atom;(X is SO 2 or CO; Y is C (CH 3 ) 2 , C (CF 3 ) 2 , CH 2 or no atom;
n/m = 1/99 ~ 50/50, n + m = 500 ~ 10,000) n / m = 1/99 to 50/50, n + m = 500 to 10,000)
또한 본 발명은 상기 화학식 1로 표시되는 고분자 A; 및 폴리벤조이미다졸(PBI) 또는 폴리(2,5-벤즈이미다졸)(ABPBI)을 크로스링크 반응시킨 생성물을 포함하는 것을 특징으로 하는 고분자 전해질막을 제공한다.In addition, the present invention is a polymer A represented by the formula (1); And a product obtained by crosslinking polybenzoimidazole (PBI) or poly (2,5-benzimidazole) (ABPBI).
본 발명의 고분자 전해질막에 있어서, 무기산이 더 포함되는 것을 특징으로 하고, 상기 무기산은 인산, 질산, 염산 및 황산 중에 선택된 하나 이상인 것을 특징으로 한다. 또한 상기 반응하는 고분자A : PBI의 중량비 또는 고분자 A : ABPBI의 중량비는 1:10 ~ 10:1인 것을 특징으로 한다. In the polymer electrolyte membrane of the present invention, an inorganic acid is further included, and the inorganic acid is at least one selected from phosphoric acid, nitric acid, hydrochloric acid, and sulfuric acid. In addition, the weight ratio of the polymer A: PBI or the polymer A: ABPBI to the reaction is characterized in that 1:10 ~ 10: 1.
본 발명은 상기 화학식 1로 표시되는 고분자 A, 및 PBI 또는 ABPBI를 혼합하여 용매에 용해시키는 단계(S1); 상기 혼합물로 막을 캐스팅하는 단계(S2); 및 상 기 막에 UV를 조사하고 건조시키는 단계(S3)를 포함하는 것을 특징으로 하는 고분자 전해질막 제조방법을 제공한다.The present invention comprises the steps of mixing the polymer A, represented by the formula (1), and PBI or ABPBI dissolved in a solvent (S1); Casting the membrane with the mixture (S2); And it provides a polymer electrolyte membrane manufacturing method comprising the step (S3) of irradiating and drying the membrane UV.
본 발명의 고분자 전해질막 제조방법에 있어서, 상기 제조방법은 상기 S3 단계에서 건조된 막을 무기산에 담궈 도핑하는 단계를 더 포함하는 것을 특징으로 하고 상기 무기산은 인산, 질산, 염산 및 황산 중에 선택된 하나 이상인 것을 특징으로 한다. 또한 상기 S1 단계는 고분자 A 및 PBI, 또는 고분자 A 및 ABPBI를 1:10 내지 10:1의 중량비로 혼합하는 것을 특징으로 한다.In the manufacturing method of the polymer electrolyte membrane of the present invention, the method further comprises the step of immersing the membrane dried in the step S3 in the inorganic acid and the inorganic acid is at least one selected from phosphoric acid, nitric acid, hydrochloric acid and sulfuric acid. It is characterized by. In addition, the step S1 is characterized in that the polymer A and PBI, or polymer A and ABPBI are mixed in a weight ratio of 1:10 to 10: 1.
또한 본 발명은 상기 고분자 전해질막; 캐소드; 및 애노드를 포함하는 것을 특징으로 하는 고분자 전해질막 연료전지를 제공한다.In addition, the present invention is the polymer electrolyte membrane; Cathode; And it provides a polymer electrolyte membrane fuel cell comprising an anode.
이하 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
상기 화학식 1로 표시되는 고분자 A에서 n과 m의 합은 합성방법의 정교함에 따라 다르지만 500 ~ 10,000 이 바람직하고, n/m은 1/99 ~ 50/50이 바람직하다. 이는 1/99보다 작은 경우에는 크로스링크가 적게 되고 50/50보다 큰 경우에는 크로스링크가 너무 많아져 고분자막이 깨지기 쉬워지기 때문이다. In the polymer A represented by Formula 1, the sum of n and m is different depending on the sophistication of the synthesis method, but 500 to 10,000 is preferable, and n / m is preferably 1/99 to 50/50. This is because when the size is less than 1/99, the crosslink is small, and when the size is larger than 50/50, the crosslink is too large to easily break the polymer membrane.
상기 화학식 1로 표시되는 고분자 A 중 X가 SO2인 고분자 A를 제조하기 위해서는 폴리에테르케톤(PEK) 대신 폴리에테르설폰(Polyethersulfone)의 합성으로부터 상기 화학식 1로 표시되는 고분자 A를 제조한다.In order to prepare polymer A, wherein X is SO 2 in the polymer A represented by Formula 1, polymer A represented by Formula 1 is prepared from synthesis of polyethersulfone instead of polyether ketone (PEK).
상기 화학식 1로 표시되는 고분자 A와 크로스링크되는 화합물로는 PBI 대신 하기 화학식 2로 표시되는 ABPBI (poly(2,5-benzimidazole)를 사용하는 것이 가능 하다. It is possible to use ABPBI (poly (2,5-benzimidazole) represented by Formula 2 below instead of PBI as a compound crosslinked with the polymer A represented by Formula 1 above.
이하 하기 구체예를 통해 본 발명을 더욱 상세하게 설명한다. 하기 구체예들은 발명을 설명하기 위한 것이고 발명을 한정하기 위한 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. The following embodiments are intended to illustrate the invention and are not intended to limit the invention.
<실시예 1: 폴리에테르케톤(Polyetherketone, PEK) 합성>Example 1 Polyetherketone (PEK) Synthesis
100 mL 둥근바닥 플라스크에 디플루오로벤조페논(difluorobenzophenone)(4.364 g, 20 mmol), 4-메틸 하이드로퀴논(4-methyl hydroquione)(1.2414 g, 10 mmol), 비스페놀 A(Bisphenol A)(2.2829 g, 10 mmol), 포타슘 카보네이트(potassium carbonate)(5.5284 g, 40 mmol), DMAc(Dimethylacetamide) (20 mL)와 톨루엔(20 mL)을 넣고 질소 분위기 하에서 딘스탁(Deanstark trap)장치로 4시간 가열하였다. 그 후 플라스크 안의 톨루엔과 물은 1시간 간격으로 딘스탁 트랩을 통해 제거하고 플라스크를 180 ℃에서 20시간 교 반하면서 가열하였다. 반응이 종결된 후 플라스크를 실온으로 식히고, 점도가 증가한 고분자 혼합물에 NMP 20 mL를 넣어 완전히 용해시킨 후 메탄올 1L에 넣어 흰색의 침전을 얻었다. 상기 흰색의 고체를 진공 오븐 60℃에서 2시간동안 건조하고, 잔류하는 무기물 및 미반응 물질은 속슬렛(Soxhlet) 장치를 이용하여 제거한 후, 얻어진 고체를 다시 진공오븐 60℃에서 24시간동안 건조하여 PEK(반응식 1의 물질 1)를 얻었다.Difluorobenzophenone (4.364 g, 20 mmol), 4-methyl hydroquione (1.2414 g, 10 mmol), Bisphenol A (2.2829 g) in a 100 mL round bottom flask , 10 mmol), potassium carbonate (5.5284 g, 40 mmol), DMAc (Dimethylacetamide) (20 mL) and toluene (20 mL) were added and heated by a Deanstark trap device under a nitrogen atmosphere for 4 hours. . Toluene and water in the flask were then removed via a Deanstock trap at 1 hour intervals and the flask was heated with stirring at 180 ° C. for 20 hours. After the reaction was completed, the flask was cooled to room temperature, 20 mL of NMP was added to the polymer mixture having increased viscosity to completely dissolve it, and then put into 1 L of methanol to obtain a white precipitate. The white solid was dried in a vacuum oven at 60 ° C. for 2 hours, the remaining inorganic material and unreacted material were removed using a Soxhlet apparatus, and then the obtained solid was dried at 60 ° C. in a vacuum oven for 24 hours. PEK (Material 1 of Scheme 1) was obtained.
1H NMR (500 MHz, CDCl3, δ) 9.5-9.2 (8H, broad signal, ArH), 7.9-7.7 (8H, broad siganl, ArH), 7.1-6.8 (11H, broad signal, ArH) 2.3-2.1 (3H, broad signal, ArCH 3) 1.8-1.6 (6H, broad signal, 비스페놀 A로부터 2 x ArCH 3) 1 H NMR (500 MHz, CDCl 3, δ ) 9.5-9.2 (8H, broad signal, Ar H ), 7.9-7.7 (8H, broad siganl, Ar H ), 7.1-6.8 (11H, broad signal, ArH) 2.3 -2.1 (3H, broad signal, ArC H 3 ) 1.8-1.6 (6H, broad signal, 2 x ArC H 3 from bisphenol A)
<실시예 2: PEK의 브롬화 반응>Example 2: Bromination of PEK
둥근바닥 플라스크에서 상기 실시예 1에서 제조된 PEK(5 g)를 메틸렌 클로라이드(methylene chloride)(50 mL)에 녹였다. 고분자가 용매에 녹으면 CCl4 (100 ml) 와 DCM (50ml)을 혼합한 것과 N-브로모숙신이미드(bromosuccinimide, NBS)(1.88 g)를 넣고 UV를 10분간 조사하였다. 이후 용액을 질소하 실온에서 24시간 교반하여 얻어진 노란색의 액체를, 메탄올 1L에 넣어 침전을 석출시키고, 침전물은 필터 후 다시 물에 넣어 교반시키고 필터하였다. 얻어진 고체를 진공오븐에서 24시간 건조시켜 PEK 코폴리머 브로마이드(PEK copolymer bromide)(반응식 2의 물질 2)를 얻었다.PEK (5 g) prepared in Example 1 was dissolved in methylene chloride (50 mL) in a round bottom flask. When the polymer was dissolved in a solvent, a mixture of CCl 4 (100 ml) and DCM (50 ml) was added and N-bromosuccinimide (NBS) (1.88 g) was added thereto, followed by UV irradiation for 10 minutes. Then, the yellow liquid obtained by stirring the solution at room temperature under nitrogen for 24 hours was added to 1 L of methanol to precipitate a precipitate, and the precipitate was put in water again after the filter and stirred and filtered. The obtained solid was dried in a vacuum oven for 24 hours to obtain a PEK copolymer bromide (Material 2 of Scheme 2).
1H NMR (500 MHz, CDCl3, δ) 8.6-8.3 (8H, broad signal, ArH), 7.9-7.7 (8H, broad signal, ArH), 7.1-6.8 (11H, broad signal, ArH), 4.5-4.4 (2H, broad signal, ArCH 2Br), 1.8-1.6 (6H, broad signal, 비스페놀 A로부터 2 x ArCH 3). 1 H NMR (500 MHz, CDCl 3, δ ) 8.6-8.3 (8H, broad signal, Ar H ), 7.9-7.7 (8H, broad signal, Ar H ), 7.1-6.8 (11H, broad signal, ArH), 4.5-4.4 (2H, broad signal, ArC H 2 Br), 1.8-1.6 (6H, broad signal, 2 × ArC H 3 from bisphenol A).
<실시예 3:벤질 브로마이드의 치환>Example 3 Substitution of Benzyl Bromide
상기 반응식 2에서 제조된 PEK 코폴리머 브로마이드(PEK copolymer bromide)(3 g)를 DMF (50 mL)에 녹인 후, NaN3 (0.37 g)를 넣고 실온, 질소하에서 24시간 교반하였다. 반응이 종결된 후 얻어진 액체를 메탄올 500 mL에 넣어 결정으로 석출시키고 여과한 후 고체를 다시 증류수 1L에 넣어 닦아주었다. 얻어진 고체를 다시 진공 오븐에서 24시간 건조하여 고분자 A(반응식 3의 물질 3)를 얻었다.PEK copolymer bromide (3 g) prepared in Scheme 2 was dissolved in DMF (50 mL), NaN 3 (0.37 g) was added thereto, and the mixture was stirred at room temperature and nitrogen for 24 hours. After the reaction was completed, the obtained liquid was poured into 500 mL of methanol to precipitate crystals, filtered, and the solid was put back into 1 L of distilled water and washed. The obtained solid was again dried in a vacuum oven for 24 hours to obtain Polymer A (Material 3 of Scheme 3).
ν max (KBr)/cm-1 3432 (vinyl C-H), 3094 (C-H), 3056 (C-H), 2094 (N3), 1652 (C=O), 1601 (vinyl C=C), 1491 and 1232 ν max (KBr) / cm -1 3432 (vinyl CH), 3094 (CH), 3056 (CH), 2094 (N 3 ), 1652 (C = O), 1601 (vinyl C = C), 1491 and 1232
<실시예 4: PBI 합성>Example 4: PBI Synthesis
1L의 둥근 플라스크에 3.3'-디아미노벤지딘(3.3'-Diaminobenzidine)(12g)과 이소프탈릭산(Isophthalic acid)(9.3g)을 폴리포스포릭산(Polyphosphoric acid, PPA)에 넣고 질소분위기에서 220℃로 25시간 중합시킨다. 교반은 메카니칼 오버헤드 스터러(mechanical overhead stirrer)를 이용하였다. 교반속도는 상온에서 100RPM으로 맞추어주면, 온도가 증가함에 따라 PPA의 점성이 줄어들어 300RPM까지 증가하다가, 반응이 진행됨에 따라 용액의 점도가 증가하여 최종적으로는 180~200RPM이 되었다. 또한 반응이 진행되면 용액의 색깔도 황토색에서 진한 갈색으로 변했다. 이렇게 제조된 용액을 물에 침전시켜 고분자를 얻고 이 고분자를 100℃ 진공오븐에서 24시간 건조시켜 고유점도가 1.5~3.0dL/g 정도인 PBI 분말을 얻었 다. In a 1 L round flask, 3.3'-Diaminobenzidine (12g) and isophthalic acid (9.3g) were put in polyphosphoric acid (PPA) and heated at 220 ° C in a nitrogen atmosphere. To 25 hours. Stirring was used with a mechanical overhead stirrer. When the stirring speed was adjusted to 100 RPM at room temperature, the viscosity of the PPA decreased with increasing temperature and increased to 300 RPM, and as the reaction proceeded, the viscosity of the solution increased to finally 180 to 200 RPM. The color of the solution also changed from ocher to dark brown as the reaction proceeded. The solution thus prepared was precipitated in water to obtain a polymer, and the polymer was dried in a vacuum oven at 100 ° C. for 24 hours to obtain PBI powder having an intrinsic viscosity of about 1.5 to 3.0 dL / g.
<실시예 5: 크로스링크된 PBI 막 제조>Example 5: Crosslinked PBI Film Preparation
상기 실시예 4에서 제조된 PBI (5g)와 상기 실시예 3에서 제조된 고분자 A (2g)를 DMAc (100mL)에 용해시키고 유리판에 적당량을 부은 후 닥터블레이드(Doctor blade)로 막을 캐스팅하였다(PBI:고분자A=1:10~10:1). 이 고분자 용액 막에 UV를 10분간 조사하고 60℃ 진공 오븐에서 50시간 건조하여 크로스링크된 PBI 막을 제조하였다. 제조된 막을 60% 인산에 3일 동안 담구어 400%가 도핑된 고분자 전해질막을 얻었다. PBI (5 g) prepared in Example 4 and Polymer A (2 g) prepared in Example 3 were dissolved in DMAc (100 mL), poured into an appropriate amount on a glass plate, and the membrane was cast using a doctor blade (PBI). : Polymer A = 1: 10 ~ 10: 1). The polymer solution membrane was irradiated with UV for 10 minutes and dried in a vacuum oven at 60 ° C. for 50 hours to prepare a crosslinked PBI membrane. The prepared membrane was immersed in 60% phosphoric acid for 3 days to obtain a polymer electrolyte membrane doped with 400%.
<비교예: 기존의 PBI막> Comparative Example: Existing PBI Film
PBI(5g)를 DMAc (100mL)에 용해시키고 유리판에 적당량을 부은 후 닥터블레 이드로 막을 캐스팅하였다. 이것을 60℃ 진공 오븐에서 50시간 건조하여 PBI 막을 제조하였다. 제조된 막을 60% 인산에 3일 동안 담구어 400%가 도핑된 고분자 전해질막을 얻는다.PBI (5 g) was dissolved in DMAc (100 mL), an appropriate amount was poured on a glass plate, and the membrane was cast with a doctor blade. This was dried for 50 hours in a 60 ℃ vacuum oven to prepare a PBI film. The prepared membrane was immersed in 60% phosphoric acid for 3 days to obtain a polymer electrolyte membrane doped with 400%.
<실험예: 단위전지 성능 테스트>Experimental Example: Unit Battery Performance Test
상기 실시예 5에서 제조된 크로스링크된 PBI 막 및 비교예에서 제조된 PBI 막에 전극을 장착하여 핫프레스 작업 없이 연료전지를 제작하고 단위전지의 성능을 테스트하였다(조건 150℃, 수소/공기).The fuel cell was fabricated without hot press operation by mounting electrodes on the crosslinked PBI membrane prepared in Example 5 and the PBI membrane prepared in Comparative Example, and the performance of the unit cell was tested (condition 150 ° C., hydrogen / air). .
그 결과 I-V 곡선인 도 1에서 나타난 바와 같이, 실시예 5의 크로스링크된 PBI막을 구비한 전지의 단위전지성능이 비교예에 비하여 더 높음을 알 수 있었다.As a result, as shown in FIG. 1, which is an I-V curve, it was found that the unit cell performance of the battery having the crosslinked PBI film of Example 5 was higher than that of the comparative example.
이상에서 설명한 바와 같이, 고분자와 크로스링크된 PBI를 전해질막으로 사용함으로써 기존의 고분자 전해질막에서 PBI의 크기가 고온에서 줄어드는 문제를 해결할 수 있다. 이에 따른 성능 감소 문제도 해결할 수 있으므로 이러한 고분자를 고분자 전해질막으로 이용할 경우 높은 성능의 연료전지를 제작할 수 있다. As described above, by using the PBI crosslinked with the polymer as an electrolyte membrane, it is possible to solve the problem that the size of the PBI is reduced at a high temperature in the conventional polymer electrolyte membrane. As a result, the performance reduction problem can be solved, and thus, when the polymer is used as a polymer electrolyte membrane, a high performance fuel cell can be manufactured.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060133691A KR100773322B1 (en) | 2006-12-26 | 2006-12-26 | Polymer electrolyte membrane for fuel cell containing crosslinked PI and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060133691A KR100773322B1 (en) | 2006-12-26 | 2006-12-26 | Polymer electrolyte membrane for fuel cell containing crosslinked PI and method for manufacturing same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100773322B1 true KR100773322B1 (en) | 2007-11-05 |
Family
ID=39060804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060133691A KR100773322B1 (en) | 2006-12-26 | 2006-12-26 | Polymer electrolyte membrane for fuel cell containing crosslinked PI and method for manufacturing same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100773322B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017171239A1 (en) * | 2016-03-31 | 2017-10-05 | 주식회사 엘지화학 | Ion exchange separation membrane, electrochemical cell including same, flow cell and fuel cell, and manufacturing method thereof |
CN111342098A (en) * | 2018-12-18 | 2020-06-26 | 中国科学院大连化学物理研究所 | Preparation method of phosphoric acid-doped polybenzimidazole crosslinked membrane |
US11127967B2 (en) | 2019-09-03 | 2021-09-21 | Korea Institute Of Science And Technology | High temperature-type unitized regenerative fuel cell using water vapor and method of operating the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5599639A (en) | 1995-08-31 | 1997-02-04 | Hoechst Celanese Corporation | Acid-modified polybenzimidazole fuel cell elements |
JP2000247940A (en) | 1999-02-26 | 2000-09-12 | Sankyo Co Ltd | New benzylazide compound |
US6248469B1 (en) | 1997-08-29 | 2001-06-19 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
US6946211B1 (en) | 1999-09-09 | 2005-09-20 | Danish Power Systems Aps | Polymer electrolyte membrane fuel cells |
-
2006
- 2006-12-26 KR KR1020060133691A patent/KR100773322B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5599639A (en) | 1995-08-31 | 1997-02-04 | Hoechst Celanese Corporation | Acid-modified polybenzimidazole fuel cell elements |
US6248469B1 (en) | 1997-08-29 | 2001-06-19 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
JP2000247940A (en) | 1999-02-26 | 2000-09-12 | Sankyo Co Ltd | New benzylazide compound |
US6946211B1 (en) | 1999-09-09 | 2005-09-20 | Danish Power Systems Aps | Polymer electrolyte membrane fuel cells |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017171239A1 (en) * | 2016-03-31 | 2017-10-05 | 주식회사 엘지화학 | Ion exchange separation membrane, electrochemical cell including same, flow cell and fuel cell, and manufacturing method thereof |
CN111342098A (en) * | 2018-12-18 | 2020-06-26 | 中国科学院大连化学物理研究所 | Preparation method of phosphoric acid-doped polybenzimidazole crosslinked membrane |
CN111342098B (en) * | 2018-12-18 | 2021-06-08 | 中国科学院大连化学物理研究所 | A kind of preparation method of phosphoric acid doped polybenzimidazole cross-linked film |
US11127967B2 (en) | 2019-09-03 | 2021-09-21 | Korea Institute Of Science And Technology | High temperature-type unitized regenerative fuel cell using water vapor and method of operating the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11108071B2 (en) | Method for producing polymer electrolyte molded article, polymer electrolyte material, polymer electrolyte membrane, and polymer electrolyte fuel cell | |
KR100723391B1 (en) | Polymer electrolyte membrane and fuel cell having same | |
JP3645558B2 (en) | PROTON CONDUCTIVE POLYMER HAVING ACID GROUP ON SIDE CHAIN, METHOD FOR PRODUCING THE SAME, POLYMER MEMBRANE USING THE PROTON CONDUCTIVE POLYMER | |
KR101370806B1 (en) | Sulfonated polyethersulfone copolymer containing hydroxyl groups and preparation method thereof, polymer electrolyte membrane for fuel cells and membrane electrode assembly comprising the same | |
KR101193164B1 (en) | Organic polymer siloxane compounds containing sulfonic acid group and fuel cell comprising the same | |
EP2134768B1 (en) | Proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups and use thereof in proton exchange membrane fuel cells | |
JP2007107003A (en) | Ion conductive cross-linked copolymer, polymer electrolyte membrane, membrane electrode assembly, and fuel cell | |
JP2006261103A (en) | Polymer electrolyte material; and polymer electrolyte component, membrane-electrode assembly and polymer electrolyte fuel cell using it | |
JP4537065B2 (en) | Proton conducting electrolyte membrane, method for producing the same and use in fuel cell | |
KR100829060B1 (en) | Membrane-electrode binder having a double electrode, a manufacturing method thereof and a fuel cell comprising the same | |
KR100773322B1 (en) | Polymer electrolyte membrane for fuel cell containing crosslinked PI and method for manufacturing same | |
JP2004335472A (en) | Proton conductive polymer, proton conductive polymer membrane containing the above, manufacturing method of proton conductive polymer membrane, and fuel cell adopting polymer membrane | |
KR100948347B1 (en) | Method for producing partially crosslinked hydrogen ion conductive polymer electrolyte membrane, membrane-electrode assembly using partially crosslinked polymer electrolyte membrane prepared therefrom, and fuel cell employing the same | |
KR100953616B1 (en) | A polymer, a membrane-electrode assembly for a fuel cell comprising the same, and a fuel cell system comprising the same | |
JP2010238373A (en) | Polymer electrolyte membrane, its manufacturing method, and membrane electrode assembly as well as solid polymer fuel cell using the same | |
JP2015078373A (en) | Ionically conductive polymer for use in electrochemical device | |
JP5233065B2 (en) | Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell | |
KR100696460B1 (en) | Hydrogen ion conductive polymer | |
KR101573191B1 (en) | Polyphenyl ether-based copolymer, a method for producing the same, a polymer electrolyte membrane including the same, and a fuel cell employing the same | |
JP2006131745A (en) | Polymer having ionic group, polyelectrolyte material, polyelectrolyte part, membrane-electrode composite and polyelectrolyte type fuel cell | |
JP2005268145A (en) | Electrolyte film and its manufacturing method | |
KR101395040B1 (en) | Alkyl chain modified sulfonated poly(ether sulfone) copolymer and method for preparing the same | |
JP4992184B2 (en) | Polymer having ionic group, polymer electrolyte material, polymer electrolyte component, membrane electrode composite, and polymer electrolyte fuel cell | |
KR100823183B1 (en) | Method for producing polymer electrolyte membrane mixed with nano silica particles, polymer electrolyte membrane prepared therefrom and direct methanol fuel cell having same | |
KR20090055303A (en) | Method for producing a polymer having a hydrogen ion conductive group |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20061226 |
|
PA0201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20071024 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20071030 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20071031 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20101001 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20111007 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20111007 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20121011 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20121011 Start annual number: 6 End annual number: 6 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |