[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100759841B1 - Method for producing spherical silica nanoparticles - Google Patents

Method for producing spherical silica nanoparticles Download PDF

Info

Publication number
KR100759841B1
KR100759841B1 KR1020050095780A KR20050095780A KR100759841B1 KR 100759841 B1 KR100759841 B1 KR 100759841B1 KR 1020050095780 A KR1020050095780 A KR 1020050095780A KR 20050095780 A KR20050095780 A KR 20050095780A KR 100759841 B1 KR100759841 B1 KR 100759841B1
Authority
KR
South Korea
Prior art keywords
spherical silica
alcohol
silica nanoparticles
silicon alkoxide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020050095780A
Other languages
Korean (ko)
Other versions
KR20070040428A (en
Inventor
유중환
김현정
이동채
박석준
Original Assignee
요업기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 요업기술원 filed Critical 요업기술원
Priority to KR1020050095780A priority Critical patent/KR100759841B1/en
Publication of KR20070040428A publication Critical patent/KR20070040428A/en
Application granted granted Critical
Publication of KR100759841B1 publication Critical patent/KR100759841B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 졸-겔법을 이용하여 다양한 크기의 구형 실리카 입자를 선택적으로 제조할 수 있는 방법으로 실리카의 원료로 실리콘 알콕사이드(Silicon Alkoxide), 용매로는 알콜, 촉매로 암모니아수 그리고 물을 사용하여 반응물을 가수분해 및 축중합 반응을 통해 다양한 크기의 구형 실리카 나노 입자를 합성하였다. 합성된 실리카 나노입자는 실리콘 알콕사이드 및 알콜의 종류, 반응물/물/알콜의 비율, 반응물 농도, 반응온도에 따라 10~800㎚ 범위에서 조절 가능하였다. 이러한 구형의 실리카 나노입자는 실리콘 웨이퍼 CMP(Chemical Mechanical Polishing)용으로 평탄화를 향상시킬 수 있는 소재로 매우 유용하게 적용될 것으로 기대된다.The present invention is a method that can selectively produce spherical silica particles of various sizes using the sol-gel method, using silicon alkoxide as the raw material of silica, alcohol as the solvent, ammonia water as the catalyst and water to react the reactants. Spherical silica nanoparticles of various sizes were synthesized through hydrolysis and polycondensation. The synthesized silica nanoparticles were adjustable in the range of 10-800 nm according to the type of silicon alkoxide and alcohol, the reactant / water / alcohol ratio, the reactant concentration, and the reaction temperature. Such spherical silica nanoparticles are expected to be very useful as materials that can improve planarization for silicon wafer chemical mechanical polishing (CMP).

구형 실리카, 졸-겔법, 실리콘 알콕사이드, 입자크기 조절 Spherical Silica, Sol-Gel Method, Silicon Alkoxide, Particle Size Control

Description

구형 실리카 나노 입자의 제조방법{Preparation method for silica nanospheres}Preparation method of spherical silica nanoparticles {Preparation method for silica nanospheres}

도 1은 본 발명의 일실시예에 의해 제조된 구형 실리카 입자의 SEM 사진이다.1 is a SEM photograph of spherical silica particles prepared by one embodiment of the present invention.

본 발명은 구형 실리카 분말의 제조 방법에 관한 것으로, 보다 상세하게는 졸-겔 법을 이용하여 다양한 크기의 구형 실리카 입자를 제조할 수 있는 방법으로 실리콘 알콕사이드(Silicon Alkoxide), 알콜, 암모니아수 그리고 물을 사용하여 가수분해 및 축중합 반응을 통해 다양한 크기의 구형 실리카 나노 입자 제조에 관한 것이다. 합성된 실리카 나노입자는 실리콘 알콕사이드 및 알콜의 종류, 반응물/물/알콜의 비율, 반응물 농도, 반응온도에 따라 10~800 ㎚ 범위에서 조절 가능하였다. 이러한 구형의 실리카 나노입자는 실리콘 웨이퍼 CMP(Chemical Mechanical Polishing)용으로 평탄화를 향상시킬 수 있는 소재로 매우 유용하게 적용될 것으로 기대된다.The present invention relates to a method for producing spherical silica powder, and more specifically, to a method for preparing spherical silica particles of various sizes using a sol-gel method, silicon alkoxide, alcohol, ammonia water and water are prepared. And to the production of spherical silica nanoparticles of various sizes through hydrolysis and polycondensation reactions. The synthesized silica nanoparticles were adjustable in the range of 10-800 nm according to the type of silicon alkoxide and alcohol, the reactant / water / alcohol ratio, the reactant concentration, and the reaction temperature. Such spherical silica nanoparticles are expected to be very useful as materials that can improve planarization for silicon wafer chemical mechanical polishing (CMP).

마이크론 크기의 입자합성에는 졸-겔법, 금속 알콕사이드법, 에멀젼법 등과 같은 액상법을, 나노크기의 입자를 합성하는데 있어서는 기상법을 많이 사용하고 있는데, 액상법이 생산공정시 설치비가 저렴하다는 장점을 가지고 있는 반면, 기상법 대비 입자의 수율이 낮고 입경제어가 쉽지 않다는 단점이 있다. For the synthesis of micron-sized particles, liquid phase methods such as sol-gel method, metal alkoxide method, and emulsion method are used, and gas phase methods are used for synthesizing nano-sized particles, whereas liquid phase method has the advantage of low installation cost in the production process. In addition, the yield of the particles is low compared to the meteorological method, and it is not easy to enter the language.

SiO2는 유리 공업, 내화물 공업, 시멘트 공업 등 요업 분야에 전반적으로 사용되는 원료 중 하나이며 부식 방지용 도료, 분체 도료, 건축용 도료, 연마제 등에 광범위하게 응용되고 있다, 또한 균일한 크기와 모양을 가지는 입자들은 촉매. 도료, 의약품, 사진 감광제 등 매우 광범위한 분야에 활용되고 있어서 산업적인 부가가치가 높으므로 균일한 크기 분포를 갖는 입자 제조 분야에도 활발한 연구가 진행되고 있다. 특히 최근에는 트랜지스터 및 다이오드와 같은 미세회로 IC 등의 기판이 되는 실리콘 웨이퍼 및 배선이 설치된 반도체 디바이스 표면을 평탄화하는 화학적, 기계적 연마(Chemical and Mechanical Polishing) 과정의 연마제에 사용되는 중요한 원료이다. 더구나 구형의 실리카 입자는 연마속도를 유지하면서 평탄도를 향상시킬 수 있는 입자로 많은 관심의 대상이 되고 있으며, 기상법을 이용하여 제조된 실리카 입자는 크기 및 형상이 일정치 않고 형상이 날카로워 실리콘 산화막 연마제로 사용할 때 연마 후 평탄도가 일정치 않아 새로운 형상을 갖는 입자의 개발이 불가피한 상황이다.SiO 2 is one of the raw materials generally used in ceramics, refractory and cement industries, and is widely applied to corrosion prevention paints, powder paints, construction paints, abrasives, etc., and has uniform size and shape. Are catalysts. As it is used in a wide range of fields such as paints, pharmaceuticals, and photosensitizers, the industrial added value is high, and thus active research is being conducted in the field of particle manufacturing having a uniform size distribution. In particular, in recent years, it is an important raw material used in the polishing of the chemical and mechanical polishing process to planarize the surface of the semiconductor device provided with the silicon wafer and wiring to be a substrate such as a microcircuit IC such as transistors and diodes. Moreover, spherical silica particles have been attracting much attention as particles that can improve the flatness while maintaining the polishing rate.Since the silica particles produced by the vapor phase method are not uniform in size and shape and sharp in shape, silicon oxide film When used as an abrasive, the flatness after polishing is not constant, so it is inevitable to develop a particle having a new shape.

따라서, 본 발명의 목적은 다양한 반응조건하에서 실리카 구의 형상, 입자의 크기 및 분포를 조절하여 다양한 크기의 구형 실리카 입자를 제조할 수 있는 구형 실리카 나노 입자의 제조방법을 제공하는 것이다. Accordingly, it is an object of the present invention to provide a method for producing spherical silica nanoparticles which can produce spherical silica particles of various sizes by adjusting the shape, size and distribution of silica spheres under various reaction conditions.

상기한 목적을 달성한 본 발명은 구형 실리카 나노 입자의 제조에 있어서, 실리콘 알콕사이드(Silicon Alkoxides), 암모니아, 알콜 및 물을 혼합하여 되며, 일정비율의 실리콘 알콕사이드를 알콜에 녹이고, 다른 용기에는 암모니아 수, 물 및 알콜을 섞은 후 두 용액을 혼합 후 반응온도 15~80℃에서 촉매에 의해 실리콘 알콕사이드가 가수분해 및 축중합 반응을 통해 제조되며, 암모니아/실리콘 알콕사이드의 몰비가 0.1~7.0이고, 물/실리콘 알콕사이드의 몰비가 1.2~60인 것을 특징으로 하는 구형 실리카 나노 입자의 제조방법을 제공한다. In the production of spherical silica nanoparticles, the present invention has been achieved by mixing silicon alkoxides, ammonia, alcohol and water, dissolving a certain proportion of silicon alkoxide in alcohol, and in other containers ammonia water After mixing the two solutions after mixing water and alcohol, the silicon alkoxide is prepared by the hydrolysis and polycondensation reaction by a catalyst at a reaction temperature of 15 ~ 80 ℃, the molar ratio of ammonia / silicon alkoxide is 0.1 ~ 7.0, water / It provides a method for producing spherical silica nanoparticles, characterized in that the molar ratio of silicon alkoxide is 1.2 to 60.

또한, 본 발명은 상기와 같은 방법으로 제조되며 실리카 나노입자 크기가 10~800㎚인 것을 특징으로 하는 구형 실리카 나노 입자를 제공한다. In addition, the present invention provides a spherical silica nanoparticles, which is prepared by the above method and characterized in that the silica nanoparticle size is 10 ~ 800nm.

이하, 본 발명을 첨부된 도면을 참조하여 상세히 설명하기로 한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 졸-겔법을 이용하여 다양한 크기의 구형 실리카 입자를 제조할 수 있는 방법으로 실리카의 원료로 실리콘 알콕사이드(Silicon Alkoxide), 용매로는 알콜, 촉매로 암모니아수 그리고 물을 사용하여 반응물을 가수분해 및 축중합 반응을 통해 다양한 크기의 구형 실리카 나노 입자를 합성하였다. The present invention is a method for producing spherical silica particles of various sizes using the sol-gel method. Hydrolysis of the reactants using silicon alkoxide as a raw material of silica, alcohol as a solvent, ammonia water as a catalyst, and water And spherical silica nanoparticles of various sizes were synthesized through the polycondensation reaction.

좀 더 구체적으로 설명하면 일정비율의 실리콘 알콕사이드를 알콜에 녹이고, 다른 용기에는 암모니아 수, 물, 알콜을 섞은 후 두 용액을 혼합 후 교반하면서 반응하였다. 교반되면서 실리콘 알콕사이드가 촉매인 암모니아수에 의해 가수분해 및 중합되어 용액이 뿌옇게 변하게 되는데 이는 용액에 실리콘 입자가 형성되기 때문이다. In more detail, a certain ratio of silicon alkoxide was dissolved in alcohol, and in another vessel, ammonia water, water, and alcohol were mixed, and then the two solutions were mixed and reacted with stirring. While stirring, the silicon alkoxide hydrolyzes and polymerizes with ammonia water as a catalyst, causing the solution to become cloudy because silicon particles are formed in the solution.

상기 반응에 사용 실리콘 알콕사이드는 테트라메틸 오르소실리케이트(TMOS;Tetramethyl Orthosilicate), 테트라에틸 오르소실리케이트(TEOS; Tetraethyl Orthosilicate), 테트라프로필 오르소실리케이트(TPOS; Tetrapropyl Orthosilicate) 또는 테트라부틸 오르소실리케이트(TBOS; Tetrabutyl Orthosilicate)로 이루어진 군에서 선택되는 1종 또는 2종 이상의 것을 사용하고, 알콜은 메탄올, 에탄올, 프로판올 또는 부탄올로 이루어진 군에서 선택되는 것을 사용하며, 반응온도는 15~80℃에서 실리카 입자를 제조한다. The silicon alkoxide used in the reaction may be tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), tetrapropyl orthosilicate (TPOS) or tetrabutyl orthosilicate (TBOS). Tetrabutyl Orthosilicate) is used one or two or more selected from the group consisting of alcohol, alcohol is selected from the group consisting of methanol, ethanol, propanol or butanol, the reaction temperature is 15 to 80 ℃ silica particles Manufacture.

본 발명에 있어서, 실리콘 알콕사이드의 농도는 0.01~5M인 것이 바람직하고, 반응물들의 혼합비는 암모니아수/실리콘 알콕사이드의 몰비가 0.1~7.0이고, 물/실리콘 알콕사이드의 몰비가 1.2~60인 것이 바람직하다. In the present invention, the concentration of silicon alkoxide is preferably 0.01 ~ 5M, the mixing ratio of the reactants is preferably a molar ratio of ammonia water / silicon alkoxide is 0.1 ~ 7.0, the molar ratio of water / silicon alkoxide is 1.2 ~ 60.

또한, 상기 반응온도는 15~80℃에서 반응시키는 것이 바람직하며, 더욱 바람직하게는 25~60℃ 범위에서 반응시키는 것이 좋다. In addition, the reaction temperature is preferably reacted at 15 ~ 80 ℃, more preferably in the 25 ~ 60 ℃ range.

본 발명에 따르면, 상기 혼합후의 반응은 4 시간 동안 실시하였으며, 반응 후 용액을 원심분리기를 이용하여 분리한 후 3~4차례 증류수를 이용하여 세척한 후 80℃에서 24시간 건조하여 제조하였다.According to the present invention, the reaction after the mixing was carried out for 4 hours, after the reaction was separated by using a centrifuge and washed with distilled water 3-4 times and then prepared by drying at 80 ℃ for 24 hours.

이하, 본 발명을 바람직한 실시예에 의거하여 더욱 상세히 설명하면 다음과 같으며, 하기의 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail based on the preferred embodiments as follows, and the following examples are only for explaining the present invention more specifically, but the scope of the present invention is not limited to these examples. .

[실시예 1-3]Example 1-3

실시예 1은 실리카 원료로서 TEOS(Tetraethyl Orthosilicate) 0.5 M, 에탄올 10 ㎖, 물 6.0 M, 암모니아 수 0.7 M 조성하에서 25 oC에서 4시간 반응한 후 샘플링하여 입자를 분석하였다. 입자는 전반적으로 구형을 나타내었고 평균입자크기는 300㎚로 관찰되었다. 실시예 2와 3은 실시예 1과 동일조건으로 실리콘 알콕사이드를 TPOS(Tetrapropyl Orthosilicate)와 TBOS(Tetrabutyl Orthosilicate)를, 알콜을 프로판올과 부탄올을 각각 사용하여 실리카 입자를 제조하였다. 제조된 실리카 입자는 구형을 나타냈고 실리콘 알콕사이드의 길이가 증가할수록 구형의 실리카 입자 평균지름이 증가하였으며, 실리카입자의 평균입자크기는 하기의 표1에 나타내었다. In Example 1, the silica particles were reacted at 25 ° C. for 4 hours under TEOS (Tetraethyl Orthosilicate) 0.5 M, ethanol 10 ml, 6.0 M water, and 0.7 M ammonia water for 4 hours and then sampled. The particles were generally spherical and the average particle size was observed at 300 nm. In Examples 2 and 3, silica particles were prepared using silicon alkoxide as TPOS (Tetrapropyl Orthosilicate) and TBOS (Tetrabutyl Orthosilicate) and alcohol as propanol and butanol, respectively. The prepared silica particles showed a spherical shape, and as the length of the silicon alkoxide increased, the average diameter of the spherical silica particles increased, and the average particle size of the silica particles is shown in Table 1 below.

[실시예 4-5]Example 4-5

실시예 4는 실시예 1과 동일한 조건으로 단지 NH4OH/TEOS 비율을 1.4(실시예 1)에서 5(실시예 4)로 증가시켰을 때 평균입자 크기가 300㎚에서 430㎚로 증가하였다. 즉 촉매의 농도가 증가하였을 때 입자가 크게 성장하는 것으로 관찰되었다. 실시예 5는 H2O/실리콘 알콕사이드 비율을 감소하였을 때 구형 실리카 입자가 감소하 는 경향을 나타내었으며, 실리카입자의 평균입자크기는 하기의 표1에 나타내었다. Example 4 increased the average particle size from 300 nm to 430 nm only when the NH 4 OH / TEOS ratio was increased from 1.4 (Example 1) to 5 (Example 4) under the same conditions as in Example 1. That is, it was observed that when the concentration of the catalyst increases, the particles grow large. Example 5 showed a tendency to decrease the spherical silica particles when the H 2 O / silicon alkoxide ratio was reduced, the average particle size of the silica particles are shown in Table 1 below.

[실시예 6-8]Example 6-8

실시예 6-8은 실시예 4와 동일한 조건으로 단지 실리콘 알콕사이드의 농도를 0.5 M, 1.0 M, 2.0 M, 5.0 M로 증가하였을 때 입자의 형상 및 크기에 미치는 영향을 조사하였다. 즉 알콕사이드의 농도가 증가할수록 실리카 입자의 평균입자 크기가 감소하였다. 알콕사이드의 농도를 0.5 M, 1.0 M, 2.0 M, 5.0 M로 증가하였을 때 입자가 430㎚, 400㎚, 160㎚, 100㎚로 관찰되었다.Example 6-8 examined the effect on the shape and size of the particles when the concentration of only silicon alkoxide was increased to 0.5 M, 1.0 M, 2.0 M, 5.0 M under the same conditions as in Example 4. That is, as the alkoxide concentration increased, the average particle size of the silica particles decreased. When the concentration of the alkoxide was increased to 0.5 M, 1.0 M, 2.0 M, 5.0 M, particles were observed at 430 nm, 400 nm, 160 nm, and 100 nm.

[실시예 9-10]Example 9-10

실시예 9-10은 실시예 4와 동일한 조건으로 단지 반응온도를 25℃에서 40℃, 60℃로 올렸을 때 실리카 입자의 형상 및 크기에 미치는 영향을 조사하였다. 반응온도가 증가할수록 입자는 점진적으로 감소하였다.Example 9-10 examined the effect on the shape and size of the silica particles when the reaction temperature was raised from 25 ° C. to 40 ° C. and 60 ° C. under the same conditions as in Example 4. As the reaction temperature increased, the particles gradually decreased.

실시예Example 실리콘 알콕사이드(M)Silicon alkoxide (M) 알콜(㎖)Alcohol (ml) H2O(M)H 2 O (M) NH4OH(M)NH 4 OH (M) 반응온도 (℃)Reaction temperature (℃) 평균 구형 실리카 입자크기(㎚)Average spherical silica particle size (nm) 실시예1Example 1 TEOS 0.5TEOS 0.5 에탄올 10Ethanol 10 6.06.0 0.70.7 2525 300300 실시예2Example 2 TPOS 0.5TPOS 0.5 프로판올 10Propanol 10 6.06.0 0.70.7 2525 450450 실시예3Example 3 TBOS 0.5TBOS 0.5 부탄올 10Butanol 10 6.06.0 0.70.7 2525 10001000 실시예4Example 4 TEOS 0.5TEOS 0.5 에탄올 10Ethanol 10 6.06.0 2.52.5 2525 430430 실시예5Example 5 TEOS 0.7TEOS 0.7 에탄올 10Ethanol 10 6.06.0 0.70.7 2525 250250 실시예6Example 6 TEOS 1.0TEOS 1.0 에탄올 10Ethanol 10 6.06.0 2.52.5 2525 400400 실시예7Example 7 TEOS 2.0TEOS 2.0 에탄올 10Ethanol 10 6.06.0 2.52.5 2525 160160 실시예8Example 8 TEOS 5.0TEOS 5.0 에탄올 10Ethanol 10 6.06.0 2.52.5 2525 100100 실시예9Example 9 TEOS 0.5TEOS 0.5 에탄올 10Ethanol 10 6.06.0 2.52.5 4040 250250 실시예10Example 10 TEOS 0.5TEOS 0.5 에탄올 10Ethanol 10 6.06.0 2.52.5 6060 150150

이상 설명한 바와 같은 본 발명에 의하면, 다양한 조건하에서 합성된 실리카 나노입자는 실리콘 알콕사이드 및 알콜의 종류, 반응물/물/알콜의 혼합비율, 반응물 농도, 반응온도에 따라 10~800㎚ 범위에서 제조되었으며, 입자의 분포가 2중으로 분포된 것 또는 단일상으로 좁은 입도를 나타내었다. According to the present invention as described above, the silica nanoparticles synthesized under various conditions were prepared in the range of 10 to 800 nm according to the type of silicon alkoxide and alcohol, the reactant / water / alcohol mixing ratio, the reactant concentration, and the reaction temperature. The distribution of the particles was distributed in two or showed a narrow particle size in a single phase.

또한, 본 발명에 의해 제조된 구형 실리카 입자는 500~800℃에서 12시간 소성하여도 형상이 유지되는 것을 알 수가 있었다. In addition, it was found that the spherical silica particles produced according to the present invention retain their shape even after firing at 500 to 800 ° C for 12 hours.

이상에서 설명되지 않은 도 1은 본 발명의 일실시예에 의해 제조된 구형 실리카 입자의 SEM 사진을 도시한 것이다. FIG. 1, which is not described above, illustrates a SEM photograph of spherical silica particles prepared by one embodiment of the present invention.

이상 설명한 바와 같이 본 발명은 기존의 기상법으로 제조하기 어려운 구형의 실리카를 제조할 수 있고 입자의 분포도도 조절할 수 있다. 이러한 입자는 트랜지스터 및 다이오드와 같은 미세회로 IC 등의 기판이 되는 실리콘 웨이퍼 및 배선이 설치된 반도체 디바이스 표면을 평탄화하는 화학적, 기계적 연마(Chemical and Mechanical Polishing) 과정의 연마제에 사용될 수 있다. 연마제로 기존의 단점이었던 웨이퍼의 평탄도를 향상시킬 수 있어 중요한 원료로 사용될 수 있다. As described above, the present invention can produce spherical silica, which is difficult to prepare by the conventional gas phase method, and can control the distribution of particles. Such particles can be used in abrasives of chemical and mechanical polishing processes to planarize the surface of semiconductor devices on which silicon wafers and wirings, which are substrates such as microcircuit ICs such as transistors and diodes, are planarized. As an abrasive, it is possible to improve the flatness of the wafer, which has been a drawback, and thus can be used as an important raw material.

본 발명에서 사용된 졸-겔 법을 활용하면 비교적 저온에서 일정한 크기를 갖는 좁은 분포의 실리카 구를 제조할 수 있고, 소성 후 기계적/화학적으로 안정한 실리카 구를 제조할 수 있다는 장점이 있다. By using the sol-gel method used in the present invention it is possible to produce a narrow distribution of silica spheres having a constant size at a relatively low temperature, there is an advantage that can be prepared mechanically and chemically stable silica spheres after firing.

또한, 본 발명에 의해 제조된 구형 실리카 입자는 500~800℃에서 12시간 소성하여도 형상이 유지되는 장점이 있다. In addition, the spherical silica particles produced by the present invention has the advantage that the shape is maintained even after firing at 500 ~ 800 ℃ for 12 hours.

Claims (4)

졸-겔법을 이용하여 입자크기 10~800nm의 구형실키라 나노입자를 제조하는 방법에 있어서, 일정 비율의 실리콘옥사이드를 알콜에 녹인 제1용액과, 촉매인 암모니아수와 물 및 알콜을 혼합한 제2용액을 각각 제조하고, 상기 두용액을 혼합하여 가수분해 및 축중합반응시키는 것을 포함하며, 반응온도를 15~80℃ 범위내에서, 암모니아수/실리콘알콕사이드 몰비를 0.1~7.0의 범위내에서, 그리고 물/실리콘알콕사이드 몰비를 1.2~60의 범위내에서 조절하는 것에 의해 생성되는 구형실리카 나노입자의 크기를 조절하는 것을 특징으로 하는 졸-겔법을 이용한 구형 실리카 나노 입자의 제조방법. A method for producing spherical Silkyra nanoparticles having a particle size of 10 to 800 nm by using a sol-gel method, comprising: a first solution in which a predetermined proportion of silicon oxide is dissolved in alcohol, a second mixture of ammonia water, water, and alcohol Preparing a solution, and mixing the two solutions to hydrolysis and polycondensation reaction, the reaction temperature in the range of 15 ~ 80 ℃, ammonia water / silicon alkoxide molar ratio in the range of 0.1 ~ 7.0, and water A method for producing spherical silica nanoparticles using the sol-gel method, characterized in that the size of the spherical silica nanoparticles produced is controlled by controlling the molar ratio of silicon / alkoxyaloxide within the range of 1.2 to 60. 제 1항에 있어서, 상기 실리콘 알콕사이드는 테트라메틸 오르소실리케이트(TMOS), 테트라에틸 오르소실리케이트(TEOS), 테트라프로필 오르소실리케이트(TPOS) 또는 테트라부틸 오르소실리케이트(TBOS)로 이루어진 군에서 선택되며, 상기 알콜은 메탄올, 에탄올, 프로판올 또는 부탄올로 이루어진 군에서 선택되는 것을 특징으로 하는 졸-겔법을 이용한 구형 실리카 나노 입자의 제조방법.The method of claim 1, wherein the silicon alkoxide is selected from the group consisting of tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), tetrapropyl orthosilicate (TPOS) or tetrabutyl orthosilicate (TBOS) The alcohol is a method for producing spherical silica nanoparticles using the sol-gel method, characterized in that selected from the group consisting of methanol, ethanol, propanol or butanol. 제 1 항에 있어서, 상기 실리콘 알콕사이드의 농도는 0.01~5M인 것을 특징으로 하는 졸-겔법을 이용한 구형 실리카 나노 입자의 제조방법.The method for producing spherical silica nanoparticles using the sol-gel method according to claim 1, wherein the concentration of the silicon alkoxide is 0.01 to 5 M. 삭제delete
KR1020050095780A 2005-10-12 2005-10-12 Method for producing spherical silica nanoparticles Expired - Fee Related KR100759841B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050095780A KR100759841B1 (en) 2005-10-12 2005-10-12 Method for producing spherical silica nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050095780A KR100759841B1 (en) 2005-10-12 2005-10-12 Method for producing spherical silica nanoparticles

Publications (2)

Publication Number Publication Date
KR20070040428A KR20070040428A (en) 2007-04-17
KR100759841B1 true KR100759841B1 (en) 2007-09-18

Family

ID=38176131

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050095780A Expired - Fee Related KR100759841B1 (en) 2005-10-12 2005-10-12 Method for producing spherical silica nanoparticles

Country Status (1)

Country Link
KR (1) KR100759841B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279924B1 (en) * 2010-10-14 2013-07-04 주식회사 이에스티 The fabrication method of nano-silica coated with the organic catalyst to removal of aldehyde gas
KR20170012632A (en) 2015-07-21 2017-02-03 고려대학교 산학협력단 Method for preparing nanofibrous gelatin/silica hybrid microspheres and nanofibrous microspheres manufactured thereby

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101119466B1 (en) * 2010-01-08 2012-03-20 전남대학교산학협력단 Organic silica particles and Method of manufacturing the same
CN102646756B (en) * 2012-04-26 2015-02-18 深圳市科聚新材料有限公司 Preparation method for silicon dioxide block layer used for I-III-IV compound solar cell
KR101983027B1 (en) * 2013-01-31 2019-05-28 서울대학교산학협력단 Process for Preparing Water Dispersible Silica Nanoparticle
KR101582109B1 (en) * 2013-12-27 2016-01-04 한양대학교 산학협력단 preparation method for silica particles containing single or multiple functional groups and silica particles prepared thereby
CN107337424B (en) * 2017-08-30 2020-08-14 湖南天欣科技股份有限公司 Preparation method of fiber-reinforced silica aerogel
KR102485136B1 (en) 2020-03-31 2023-01-06 한밭대학교 산학협력단 Manufacturing method of silicon beads
CN116284802A (en) * 2023-02-02 2023-06-23 青岛科技大学 A kind of method utilizing Stöber method to prepare polysilazane nano microsphere
KR20240159126A (en) * 2023-04-28 2024-11-05 에스케이엔펄스 주식회사 Polishing composition for semiconductor process and polishing method of substrate using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230609A (en) 1986-04-01 1987-10-09 Asahi Glass Co Ltd Silica particle
KR20030055270A (en) * 2000-09-27 2003-07-02 미츠비시 레이온 가부시키가이샤 Non-porous spherical silica and method for production thereof
KR20040094584A (en) * 2003-05-03 2004-11-10 송석호 Preparation of monodisperse silica spheres and guarantee of its reappearance by sol-gel method
KR20050001887A (en) * 2003-06-26 2005-01-07 한국생산기술연구원 Method to product silica powder having huge particle, high purity and globular shape

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230609A (en) 1986-04-01 1987-10-09 Asahi Glass Co Ltd Silica particle
KR20030055270A (en) * 2000-09-27 2003-07-02 미츠비시 레이온 가부시키가이샤 Non-porous spherical silica and method for production thereof
KR20040094584A (en) * 2003-05-03 2004-11-10 송석호 Preparation of monodisperse silica spheres and guarantee of its reappearance by sol-gel method
KR20050001887A (en) * 2003-06-26 2005-01-07 한국생산기술연구원 Method to product silica powder having huge particle, high purity and globular shape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279924B1 (en) * 2010-10-14 2013-07-04 주식회사 이에스티 The fabrication method of nano-silica coated with the organic catalyst to removal of aldehyde gas
KR20170012632A (en) 2015-07-21 2017-02-03 고려대학교 산학협력단 Method for preparing nanofibrous gelatin/silica hybrid microspheres and nanofibrous microspheres manufactured thereby

Also Published As

Publication number Publication date
KR20070040428A (en) 2007-04-17

Similar Documents

Publication Publication Date Title
CN101641288B (en) Colloidal silica, and method for production thereof
KR101050136B1 (en) Method for producing cerium oxide powder using organic solvent and CPM slurry containing the powder
KR100812052B1 (en) Cerium carbonate powder, cerium oxide powder, method for preparing the same, and cmp slurry comprising the same
CN101547860B (en) How to make silicone
CN100567150C (en) Zeolite sol and method for producing same, composition for forming porous film, porous film and method for producing same, interlayer insulating film and semiconductor device
KR100759841B1 (en) Method for producing spherical silica nanoparticles
KR102563801B1 (en) Silica particle dispersion and method for producing same
JP2010526433A (en) Cerium oxide powder for abrasives and CMP slurry containing the same
CN107078054A (en) Nanoparticle-based cerium oxide slurries
KR100329123B1 (en) Preparations of silica slurry for wafer polishing
KR101121576B1 (en) A manufacturing method of colloidal silica for chemical mechenical polishing
EP2896672A2 (en) Manufacturing method of polishing agent, polishing method, and manufacturing method of semiconductor integrated circuit device
CN1368529A (en) Composition and method for synthesizing cerium oxide abrasive particles
KR102622058B1 (en) Manufacturing method of high purity quartz powder
CN114525003B (en) Optical film and preparation method thereof
TWI607969B (en) Method for manufacturing cerium dioxide powders and cerium dioxide powders
KR100417529B1 (en) Synthesis of nano size Cerium Oxide by Glycothermal Processing
JP4380011B2 (en) Method for producing spherical silica
TW202313474A (en) Synthesis technology of cerium oxide powders
KR101168154B1 (en) Method for preparing cerium carbonate
KR101184732B1 (en) Method for preparing cerium carbonate
KR20090027824A (en) Method for producing high purity spherical silica particles
CN116768220A (en) Method for rapidly synthesizing high-concentration non-spherical silica sol
KR100894795B1 (en) Method for producing colloidal silica by direct oxidation from metal silicon
CN119750592A (en) Colloidal silicon dioxide with low metal impurity content and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20051012

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20060929

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20070711

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20070912

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20070913

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
G170 Re-publication after modification of scope of protection [patent]
PG1701 Publication of correction
PR1001 Payment of annual fee

Payment date: 20100910

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20110907

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20120913

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20120913

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20130912

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20130912

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20140911

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20140911

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20150911

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20150911

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20160912

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20170912

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20170912

Start annual number: 11

End annual number: 11

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20190623