KR100759841B1 - Method for producing spherical silica nanoparticles - Google Patents
Method for producing spherical silica nanoparticles Download PDFInfo
- Publication number
- KR100759841B1 KR100759841B1 KR1020050095780A KR20050095780A KR100759841B1 KR 100759841 B1 KR100759841 B1 KR 100759841B1 KR 1020050095780 A KR1020050095780 A KR 1020050095780A KR 20050095780 A KR20050095780 A KR 20050095780A KR 100759841 B1 KR100759841 B1 KR 100759841B1
- Authority
- KR
- South Korea
- Prior art keywords
- spherical silica
- alcohol
- silica nanoparticles
- silicon alkoxide
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 27
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 31
- 239000010703 silicon Substances 0.000 claims abstract description 31
- -1 silicon alkoxide Chemical class 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 11
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 10
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 10
- 238000003980 solgel method Methods 0.000 claims abstract description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 230000007062 hydrolysis Effects 0.000 claims abstract description 5
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 5
- 238000006068 polycondensation reaction Methods 0.000 claims abstract description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 15
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 8
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 7
- 229940095070 tetrapropyl orthosilicate Drugs 0.000 claims description 7
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 claims description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 1
- 239000000376 reactant Substances 0.000 abstract description 9
- 239000003054 catalyst Substances 0.000 abstract description 6
- 238000005498 polishing Methods 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 2
- 239000002904 solvent Substances 0.000 abstract description 2
- 238000009826 distribution Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- 150000004703 alkoxides Chemical class 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000003082 abrasive agent Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
본 발명은 졸-겔법을 이용하여 다양한 크기의 구형 실리카 입자를 선택적으로 제조할 수 있는 방법으로 실리카의 원료로 실리콘 알콕사이드(Silicon Alkoxide), 용매로는 알콜, 촉매로 암모니아수 그리고 물을 사용하여 반응물을 가수분해 및 축중합 반응을 통해 다양한 크기의 구형 실리카 나노 입자를 합성하였다. 합성된 실리카 나노입자는 실리콘 알콕사이드 및 알콜의 종류, 반응물/물/알콜의 비율, 반응물 농도, 반응온도에 따라 10~800㎚ 범위에서 조절 가능하였다. 이러한 구형의 실리카 나노입자는 실리콘 웨이퍼 CMP(Chemical Mechanical Polishing)용으로 평탄화를 향상시킬 수 있는 소재로 매우 유용하게 적용될 것으로 기대된다.The present invention is a method that can selectively produce spherical silica particles of various sizes using the sol-gel method, using silicon alkoxide as the raw material of silica, alcohol as the solvent, ammonia water as the catalyst and water to react the reactants. Spherical silica nanoparticles of various sizes were synthesized through hydrolysis and polycondensation. The synthesized silica nanoparticles were adjustable in the range of 10-800 nm according to the type of silicon alkoxide and alcohol, the reactant / water / alcohol ratio, the reactant concentration, and the reaction temperature. Such spherical silica nanoparticles are expected to be very useful as materials that can improve planarization for silicon wafer chemical mechanical polishing (CMP).
구형 실리카, 졸-겔법, 실리콘 알콕사이드, 입자크기 조절 Spherical Silica, Sol-Gel Method, Silicon Alkoxide, Particle Size Control
Description
도 1은 본 발명의 일실시예에 의해 제조된 구형 실리카 입자의 SEM 사진이다.1 is a SEM photograph of spherical silica particles prepared by one embodiment of the present invention.
본 발명은 구형 실리카 분말의 제조 방법에 관한 것으로, 보다 상세하게는 졸-겔 법을 이용하여 다양한 크기의 구형 실리카 입자를 제조할 수 있는 방법으로 실리콘 알콕사이드(Silicon Alkoxide), 알콜, 암모니아수 그리고 물을 사용하여 가수분해 및 축중합 반응을 통해 다양한 크기의 구형 실리카 나노 입자 제조에 관한 것이다. 합성된 실리카 나노입자는 실리콘 알콕사이드 및 알콜의 종류, 반응물/물/알콜의 비율, 반응물 농도, 반응온도에 따라 10~800 ㎚ 범위에서 조절 가능하였다. 이러한 구형의 실리카 나노입자는 실리콘 웨이퍼 CMP(Chemical Mechanical Polishing)용으로 평탄화를 향상시킬 수 있는 소재로 매우 유용하게 적용될 것으로 기대된다.The present invention relates to a method for producing spherical silica powder, and more specifically, to a method for preparing spherical silica particles of various sizes using a sol-gel method, silicon alkoxide, alcohol, ammonia water and water are prepared. And to the production of spherical silica nanoparticles of various sizes through hydrolysis and polycondensation reactions. The synthesized silica nanoparticles were adjustable in the range of 10-800 nm according to the type of silicon alkoxide and alcohol, the reactant / water / alcohol ratio, the reactant concentration, and the reaction temperature. Such spherical silica nanoparticles are expected to be very useful as materials that can improve planarization for silicon wafer chemical mechanical polishing (CMP).
마이크론 크기의 입자합성에는 졸-겔법, 금속 알콕사이드법, 에멀젼법 등과 같은 액상법을, 나노크기의 입자를 합성하는데 있어서는 기상법을 많이 사용하고 있는데, 액상법이 생산공정시 설치비가 저렴하다는 장점을 가지고 있는 반면, 기상법 대비 입자의 수율이 낮고 입경제어가 쉽지 않다는 단점이 있다. For the synthesis of micron-sized particles, liquid phase methods such as sol-gel method, metal alkoxide method, and emulsion method are used, and gas phase methods are used for synthesizing nano-sized particles, whereas liquid phase method has the advantage of low installation cost in the production process. In addition, the yield of the particles is low compared to the meteorological method, and it is not easy to enter the language.
SiO2는 유리 공업, 내화물 공업, 시멘트 공업 등 요업 분야에 전반적으로 사용되는 원료 중 하나이며 부식 방지용 도료, 분체 도료, 건축용 도료, 연마제 등에 광범위하게 응용되고 있다, 또한 균일한 크기와 모양을 가지는 입자들은 촉매. 도료, 의약품, 사진 감광제 등 매우 광범위한 분야에 활용되고 있어서 산업적인 부가가치가 높으므로 균일한 크기 분포를 갖는 입자 제조 분야에도 활발한 연구가 진행되고 있다. 특히 최근에는 트랜지스터 및 다이오드와 같은 미세회로 IC 등의 기판이 되는 실리콘 웨이퍼 및 배선이 설치된 반도체 디바이스 표면을 평탄화하는 화학적, 기계적 연마(Chemical and Mechanical Polishing) 과정의 연마제에 사용되는 중요한 원료이다. 더구나 구형의 실리카 입자는 연마속도를 유지하면서 평탄도를 향상시킬 수 있는 입자로 많은 관심의 대상이 되고 있으며, 기상법을 이용하여 제조된 실리카 입자는 크기 및 형상이 일정치 않고 형상이 날카로워 실리콘 산화막 연마제로 사용할 때 연마 후 평탄도가 일정치 않아 새로운 형상을 갖는 입자의 개발이 불가피한 상황이다.SiO 2 is one of the raw materials generally used in ceramics, refractory and cement industries, and is widely applied to corrosion prevention paints, powder paints, construction paints, abrasives, etc., and has uniform size and shape. Are catalysts. As it is used in a wide range of fields such as paints, pharmaceuticals, and photosensitizers, the industrial added value is high, and thus active research is being conducted in the field of particle manufacturing having a uniform size distribution. In particular, in recent years, it is an important raw material used in the polishing of the chemical and mechanical polishing process to planarize the surface of the semiconductor device provided with the silicon wafer and wiring to be a substrate such as a microcircuit IC such as transistors and diodes. Moreover, spherical silica particles have been attracting much attention as particles that can improve the flatness while maintaining the polishing rate.Since the silica particles produced by the vapor phase method are not uniform in size and shape and sharp in shape, silicon oxide film When used as an abrasive, the flatness after polishing is not constant, so it is inevitable to develop a particle having a new shape.
따라서, 본 발명의 목적은 다양한 반응조건하에서 실리카 구의 형상, 입자의 크기 및 분포를 조절하여 다양한 크기의 구형 실리카 입자를 제조할 수 있는 구형 실리카 나노 입자의 제조방법을 제공하는 것이다. Accordingly, it is an object of the present invention to provide a method for producing spherical silica nanoparticles which can produce spherical silica particles of various sizes by adjusting the shape, size and distribution of silica spheres under various reaction conditions.
상기한 목적을 달성한 본 발명은 구형 실리카 나노 입자의 제조에 있어서, 실리콘 알콕사이드(Silicon Alkoxides), 암모니아, 알콜 및 물을 혼합하여 되며, 일정비율의 실리콘 알콕사이드를 알콜에 녹이고, 다른 용기에는 암모니아 수, 물 및 알콜을 섞은 후 두 용액을 혼합 후 반응온도 15~80℃에서 촉매에 의해 실리콘 알콕사이드가 가수분해 및 축중합 반응을 통해 제조되며, 암모니아/실리콘 알콕사이드의 몰비가 0.1~7.0이고, 물/실리콘 알콕사이드의 몰비가 1.2~60인 것을 특징으로 하는 구형 실리카 나노 입자의 제조방법을 제공한다. In the production of spherical silica nanoparticles, the present invention has been achieved by mixing silicon alkoxides, ammonia, alcohol and water, dissolving a certain proportion of silicon alkoxide in alcohol, and in other containers ammonia water After mixing the two solutions after mixing water and alcohol, the silicon alkoxide is prepared by the hydrolysis and polycondensation reaction by a catalyst at a reaction temperature of 15 ~ 80 ℃, the molar ratio of ammonia / silicon alkoxide is 0.1 ~ 7.0, water / It provides a method for producing spherical silica nanoparticles, characterized in that the molar ratio of silicon alkoxide is 1.2 to 60.
또한, 본 발명은 상기와 같은 방법으로 제조되며 실리카 나노입자 크기가 10~800㎚인 것을 특징으로 하는 구형 실리카 나노 입자를 제공한다. In addition, the present invention provides a spherical silica nanoparticles, which is prepared by the above method and characterized in that the silica nanoparticle size is 10 ~ 800nm.
이하, 본 발명을 첨부된 도면을 참조하여 상세히 설명하기로 한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 졸-겔법을 이용하여 다양한 크기의 구형 실리카 입자를 제조할 수 있는 방법으로 실리카의 원료로 실리콘 알콕사이드(Silicon Alkoxide), 용매로는 알콜, 촉매로 암모니아수 그리고 물을 사용하여 반응물을 가수분해 및 축중합 반응을 통해 다양한 크기의 구형 실리카 나노 입자를 합성하였다. The present invention is a method for producing spherical silica particles of various sizes using the sol-gel method. Hydrolysis of the reactants using silicon alkoxide as a raw material of silica, alcohol as a solvent, ammonia water as a catalyst, and water And spherical silica nanoparticles of various sizes were synthesized through the polycondensation reaction.
좀 더 구체적으로 설명하면 일정비율의 실리콘 알콕사이드를 알콜에 녹이고, 다른 용기에는 암모니아 수, 물, 알콜을 섞은 후 두 용액을 혼합 후 교반하면서 반응하였다. 교반되면서 실리콘 알콕사이드가 촉매인 암모니아수에 의해 가수분해 및 중합되어 용액이 뿌옇게 변하게 되는데 이는 용액에 실리콘 입자가 형성되기 때문이다. In more detail, a certain ratio of silicon alkoxide was dissolved in alcohol, and in another vessel, ammonia water, water, and alcohol were mixed, and then the two solutions were mixed and reacted with stirring. While stirring, the silicon alkoxide hydrolyzes and polymerizes with ammonia water as a catalyst, causing the solution to become cloudy because silicon particles are formed in the solution.
상기 반응에 사용 실리콘 알콕사이드는 테트라메틸 오르소실리케이트(TMOS;Tetramethyl Orthosilicate), 테트라에틸 오르소실리케이트(TEOS; Tetraethyl Orthosilicate), 테트라프로필 오르소실리케이트(TPOS; Tetrapropyl Orthosilicate) 또는 테트라부틸 오르소실리케이트(TBOS; Tetrabutyl Orthosilicate)로 이루어진 군에서 선택되는 1종 또는 2종 이상의 것을 사용하고, 알콜은 메탄올, 에탄올, 프로판올 또는 부탄올로 이루어진 군에서 선택되는 것을 사용하며, 반응온도는 15~80℃에서 실리카 입자를 제조한다. The silicon alkoxide used in the reaction may be tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), tetrapropyl orthosilicate (TPOS) or tetrabutyl orthosilicate (TBOS). Tetrabutyl Orthosilicate) is used one or two or more selected from the group consisting of alcohol, alcohol is selected from the group consisting of methanol, ethanol, propanol or butanol, the reaction temperature is 15 to 80 ℃ silica particles Manufacture.
본 발명에 있어서, 실리콘 알콕사이드의 농도는 0.01~5M인 것이 바람직하고, 반응물들의 혼합비는 암모니아수/실리콘 알콕사이드의 몰비가 0.1~7.0이고, 물/실리콘 알콕사이드의 몰비가 1.2~60인 것이 바람직하다. In the present invention, the concentration of silicon alkoxide is preferably 0.01 ~ 5M, the mixing ratio of the reactants is preferably a molar ratio of ammonia water / silicon alkoxide is 0.1 ~ 7.0, the molar ratio of water / silicon alkoxide is 1.2 ~ 60.
또한, 상기 반응온도는 15~80℃에서 반응시키는 것이 바람직하며, 더욱 바람직하게는 25~60℃ 범위에서 반응시키는 것이 좋다. In addition, the reaction temperature is preferably reacted at 15 ~ 80 ℃, more preferably in the 25 ~ 60 ℃ range.
본 발명에 따르면, 상기 혼합후의 반응은 4 시간 동안 실시하였으며, 반응 후 용액을 원심분리기를 이용하여 분리한 후 3~4차례 증류수를 이용하여 세척한 후 80℃에서 24시간 건조하여 제조하였다.According to the present invention, the reaction after the mixing was carried out for 4 hours, after the reaction was separated by using a centrifuge and washed with distilled water 3-4 times and then prepared by drying at 80 ℃ for 24 hours.
이하, 본 발명을 바람직한 실시예에 의거하여 더욱 상세히 설명하면 다음과 같으며, 하기의 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail based on the preferred embodiments as follows, and the following examples are only for explaining the present invention more specifically, but the scope of the present invention is not limited to these examples. .
[실시예 1-3]Example 1-3
실시예 1은 실리카 원료로서 TEOS(Tetraethyl Orthosilicate) 0.5 M, 에탄올 10 ㎖, 물 6.0 M, 암모니아 수 0.7 M 조성하에서 25 oC에서 4시간 반응한 후 샘플링하여 입자를 분석하였다. 입자는 전반적으로 구형을 나타내었고 평균입자크기는 300㎚로 관찰되었다. 실시예 2와 3은 실시예 1과 동일조건으로 실리콘 알콕사이드를 TPOS(Tetrapropyl Orthosilicate)와 TBOS(Tetrabutyl Orthosilicate)를, 알콜을 프로판올과 부탄올을 각각 사용하여 실리카 입자를 제조하였다. 제조된 실리카 입자는 구형을 나타냈고 실리콘 알콕사이드의 길이가 증가할수록 구형의 실리카 입자 평균지름이 증가하였으며, 실리카입자의 평균입자크기는 하기의 표1에 나타내었다. In Example 1, the silica particles were reacted at 25 ° C. for 4 hours under TEOS (Tetraethyl Orthosilicate) 0.5 M, ethanol 10 ml, 6.0 M water, and 0.7 M ammonia water for 4 hours and then sampled. The particles were generally spherical and the average particle size was observed at 300 nm. In Examples 2 and 3, silica particles were prepared using silicon alkoxide as TPOS (Tetrapropyl Orthosilicate) and TBOS (Tetrabutyl Orthosilicate) and alcohol as propanol and butanol, respectively. The prepared silica particles showed a spherical shape, and as the length of the silicon alkoxide increased, the average diameter of the spherical silica particles increased, and the average particle size of the silica particles is shown in Table 1 below.
[실시예 4-5]Example 4-5
실시예 4는 실시예 1과 동일한 조건으로 단지 NH4OH/TEOS 비율을 1.4(실시예 1)에서 5(실시예 4)로 증가시켰을 때 평균입자 크기가 300㎚에서 430㎚로 증가하였다. 즉 촉매의 농도가 증가하였을 때 입자가 크게 성장하는 것으로 관찰되었다. 실시예 5는 H2O/실리콘 알콕사이드 비율을 감소하였을 때 구형 실리카 입자가 감소하 는 경향을 나타내었으며, 실리카입자의 평균입자크기는 하기의 표1에 나타내었다. Example 4 increased the average particle size from 300 nm to 430 nm only when the NH 4 OH / TEOS ratio was increased from 1.4 (Example 1) to 5 (Example 4) under the same conditions as in Example 1. That is, it was observed that when the concentration of the catalyst increases, the particles grow large. Example 5 showed a tendency to decrease the spherical silica particles when the H 2 O / silicon alkoxide ratio was reduced, the average particle size of the silica particles are shown in Table 1 below.
[실시예 6-8]Example 6-8
실시예 6-8은 실시예 4와 동일한 조건으로 단지 실리콘 알콕사이드의 농도를 0.5 M, 1.0 M, 2.0 M, 5.0 M로 증가하였을 때 입자의 형상 및 크기에 미치는 영향을 조사하였다. 즉 알콕사이드의 농도가 증가할수록 실리카 입자의 평균입자 크기가 감소하였다. 알콕사이드의 농도를 0.5 M, 1.0 M, 2.0 M, 5.0 M로 증가하였을 때 입자가 430㎚, 400㎚, 160㎚, 100㎚로 관찰되었다.Example 6-8 examined the effect on the shape and size of the particles when the concentration of only silicon alkoxide was increased to 0.5 M, 1.0 M, 2.0 M, 5.0 M under the same conditions as in Example 4. That is, as the alkoxide concentration increased, the average particle size of the silica particles decreased. When the concentration of the alkoxide was increased to 0.5 M, 1.0 M, 2.0 M, 5.0 M, particles were observed at 430 nm, 400 nm, 160 nm, and 100 nm.
[실시예 9-10]Example 9-10
실시예 9-10은 실시예 4와 동일한 조건으로 단지 반응온도를 25℃에서 40℃, 60℃로 올렸을 때 실리카 입자의 형상 및 크기에 미치는 영향을 조사하였다. 반응온도가 증가할수록 입자는 점진적으로 감소하였다.Example 9-10 examined the effect on the shape and size of the silica particles when the reaction temperature was raised from 25 ° C. to 40 ° C. and 60 ° C. under the same conditions as in Example 4. As the reaction temperature increased, the particles gradually decreased.
이상 설명한 바와 같은 본 발명에 의하면, 다양한 조건하에서 합성된 실리카 나노입자는 실리콘 알콕사이드 및 알콜의 종류, 반응물/물/알콜의 혼합비율, 반응물 농도, 반응온도에 따라 10~800㎚ 범위에서 제조되었으며, 입자의 분포가 2중으로 분포된 것 또는 단일상으로 좁은 입도를 나타내었다. According to the present invention as described above, the silica nanoparticles synthesized under various conditions were prepared in the range of 10 to 800 nm according to the type of silicon alkoxide and alcohol, the reactant / water / alcohol mixing ratio, the reactant concentration, and the reaction temperature. The distribution of the particles was distributed in two or showed a narrow particle size in a single phase.
또한, 본 발명에 의해 제조된 구형 실리카 입자는 500~800℃에서 12시간 소성하여도 형상이 유지되는 것을 알 수가 있었다. In addition, it was found that the spherical silica particles produced according to the present invention retain their shape even after firing at 500 to 800 ° C for 12 hours.
이상에서 설명되지 않은 도 1은 본 발명의 일실시예에 의해 제조된 구형 실리카 입자의 SEM 사진을 도시한 것이다. FIG. 1, which is not described above, illustrates a SEM photograph of spherical silica particles prepared by one embodiment of the present invention.
이상 설명한 바와 같이 본 발명은 기존의 기상법으로 제조하기 어려운 구형의 실리카를 제조할 수 있고 입자의 분포도도 조절할 수 있다. 이러한 입자는 트랜지스터 및 다이오드와 같은 미세회로 IC 등의 기판이 되는 실리콘 웨이퍼 및 배선이 설치된 반도체 디바이스 표면을 평탄화하는 화학적, 기계적 연마(Chemical and Mechanical Polishing) 과정의 연마제에 사용될 수 있다. 연마제로 기존의 단점이었던 웨이퍼의 평탄도를 향상시킬 수 있어 중요한 원료로 사용될 수 있다. As described above, the present invention can produce spherical silica, which is difficult to prepare by the conventional gas phase method, and can control the distribution of particles. Such particles can be used in abrasives of chemical and mechanical polishing processes to planarize the surface of semiconductor devices on which silicon wafers and wirings, which are substrates such as microcircuit ICs such as transistors and diodes, are planarized. As an abrasive, it is possible to improve the flatness of the wafer, which has been a drawback, and thus can be used as an important raw material.
본 발명에서 사용된 졸-겔 법을 활용하면 비교적 저온에서 일정한 크기를 갖는 좁은 분포의 실리카 구를 제조할 수 있고, 소성 후 기계적/화학적으로 안정한 실리카 구를 제조할 수 있다는 장점이 있다. By using the sol-gel method used in the present invention it is possible to produce a narrow distribution of silica spheres having a constant size at a relatively low temperature, there is an advantage that can be prepared mechanically and chemically stable silica spheres after firing.
또한, 본 발명에 의해 제조된 구형 실리카 입자는 500~800℃에서 12시간 소성하여도 형상이 유지되는 장점이 있다. In addition, the spherical silica particles produced by the present invention has the advantage that the shape is maintained even after firing at 500 ~ 800 ℃ for 12 hours.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050095780A KR100759841B1 (en) | 2005-10-12 | 2005-10-12 | Method for producing spherical silica nanoparticles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050095780A KR100759841B1 (en) | 2005-10-12 | 2005-10-12 | Method for producing spherical silica nanoparticles |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070040428A KR20070040428A (en) | 2007-04-17 |
KR100759841B1 true KR100759841B1 (en) | 2007-09-18 |
Family
ID=38176131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050095780A Expired - Fee Related KR100759841B1 (en) | 2005-10-12 | 2005-10-12 | Method for producing spherical silica nanoparticles |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100759841B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101279924B1 (en) * | 2010-10-14 | 2013-07-04 | 주식회사 이에스티 | The fabrication method of nano-silica coated with the organic catalyst to removal of aldehyde gas |
KR20170012632A (en) | 2015-07-21 | 2017-02-03 | 고려대학교 산학협력단 | Method for preparing nanofibrous gelatin/silica hybrid microspheres and nanofibrous microspheres manufactured thereby |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101119466B1 (en) * | 2010-01-08 | 2012-03-20 | 전남대학교산학협력단 | Organic silica particles and Method of manufacturing the same |
CN102646756B (en) * | 2012-04-26 | 2015-02-18 | 深圳市科聚新材料有限公司 | Preparation method for silicon dioxide block layer used for I-III-IV compound solar cell |
KR101983027B1 (en) * | 2013-01-31 | 2019-05-28 | 서울대학교산학협력단 | Process for Preparing Water Dispersible Silica Nanoparticle |
KR101582109B1 (en) * | 2013-12-27 | 2016-01-04 | 한양대학교 산학협력단 | preparation method for silica particles containing single or multiple functional groups and silica particles prepared thereby |
CN107337424B (en) * | 2017-08-30 | 2020-08-14 | 湖南天欣科技股份有限公司 | Preparation method of fiber-reinforced silica aerogel |
KR102485136B1 (en) | 2020-03-31 | 2023-01-06 | 한밭대학교 산학협력단 | Manufacturing method of silicon beads |
CN116284802A (en) * | 2023-02-02 | 2023-06-23 | 青岛科技大学 | A kind of method utilizing Stöber method to prepare polysilazane nano microsphere |
KR20240159126A (en) * | 2023-04-28 | 2024-11-05 | 에스케이엔펄스 주식회사 | Polishing composition for semiconductor process and polishing method of substrate using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62230609A (en) | 1986-04-01 | 1987-10-09 | Asahi Glass Co Ltd | Silica particle |
KR20030055270A (en) * | 2000-09-27 | 2003-07-02 | 미츠비시 레이온 가부시키가이샤 | Non-porous spherical silica and method for production thereof |
KR20040094584A (en) * | 2003-05-03 | 2004-11-10 | 송석호 | Preparation of monodisperse silica spheres and guarantee of its reappearance by sol-gel method |
KR20050001887A (en) * | 2003-06-26 | 2005-01-07 | 한국생산기술연구원 | Method to product silica powder having huge particle, high purity and globular shape |
-
2005
- 2005-10-12 KR KR1020050095780A patent/KR100759841B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62230609A (en) | 1986-04-01 | 1987-10-09 | Asahi Glass Co Ltd | Silica particle |
KR20030055270A (en) * | 2000-09-27 | 2003-07-02 | 미츠비시 레이온 가부시키가이샤 | Non-porous spherical silica and method for production thereof |
KR20040094584A (en) * | 2003-05-03 | 2004-11-10 | 송석호 | Preparation of monodisperse silica spheres and guarantee of its reappearance by sol-gel method |
KR20050001887A (en) * | 2003-06-26 | 2005-01-07 | 한국생산기술연구원 | Method to product silica powder having huge particle, high purity and globular shape |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101279924B1 (en) * | 2010-10-14 | 2013-07-04 | 주식회사 이에스티 | The fabrication method of nano-silica coated with the organic catalyst to removal of aldehyde gas |
KR20170012632A (en) | 2015-07-21 | 2017-02-03 | 고려대학교 산학협력단 | Method for preparing nanofibrous gelatin/silica hybrid microspheres and nanofibrous microspheres manufactured thereby |
Also Published As
Publication number | Publication date |
---|---|
KR20070040428A (en) | 2007-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101641288B (en) | Colloidal silica, and method for production thereof | |
KR101050136B1 (en) | Method for producing cerium oxide powder using organic solvent and CPM slurry containing the powder | |
KR100812052B1 (en) | Cerium carbonate powder, cerium oxide powder, method for preparing the same, and cmp slurry comprising the same | |
CN101547860B (en) | How to make silicone | |
CN100567150C (en) | Zeolite sol and method for producing same, composition for forming porous film, porous film and method for producing same, interlayer insulating film and semiconductor device | |
KR100759841B1 (en) | Method for producing spherical silica nanoparticles | |
KR102563801B1 (en) | Silica particle dispersion and method for producing same | |
JP2010526433A (en) | Cerium oxide powder for abrasives and CMP slurry containing the same | |
CN107078054A (en) | Nanoparticle-based cerium oxide slurries | |
KR100329123B1 (en) | Preparations of silica slurry for wafer polishing | |
KR101121576B1 (en) | A manufacturing method of colloidal silica for chemical mechenical polishing | |
EP2896672A2 (en) | Manufacturing method of polishing agent, polishing method, and manufacturing method of semiconductor integrated circuit device | |
CN1368529A (en) | Composition and method for synthesizing cerium oxide abrasive particles | |
KR102622058B1 (en) | Manufacturing method of high purity quartz powder | |
CN114525003B (en) | Optical film and preparation method thereof | |
TWI607969B (en) | Method for manufacturing cerium dioxide powders and cerium dioxide powders | |
KR100417529B1 (en) | Synthesis of nano size Cerium Oxide by Glycothermal Processing | |
JP4380011B2 (en) | Method for producing spherical silica | |
TW202313474A (en) | Synthesis technology of cerium oxide powders | |
KR101168154B1 (en) | Method for preparing cerium carbonate | |
KR101184732B1 (en) | Method for preparing cerium carbonate | |
KR20090027824A (en) | Method for producing high purity spherical silica particles | |
CN116768220A (en) | Method for rapidly synthesizing high-concentration non-spherical silica sol | |
KR100894795B1 (en) | Method for producing colloidal silica by direct oxidation from metal silicon | |
CN119750592A (en) | Colloidal silicon dioxide with low metal impurity content and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20051012 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20060929 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20070711 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20070912 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20070913 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
G170 | Re-publication after modification of scope of protection [patent] | ||
PG1701 | Publication of correction | ||
PR1001 | Payment of annual fee |
Payment date: 20100910 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20110907 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20120913 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20120913 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20130912 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20130912 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140911 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20140911 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150911 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20150911 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160912 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20160912 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20170912 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20170912 Start annual number: 11 End annual number: 11 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20190623 |