KR100706714B1 - Hybrid battery - Google Patents
Hybrid battery Download PDFInfo
- Publication number
- KR100706714B1 KR100706714B1 KR1020050112679A KR20050112679A KR100706714B1 KR 100706714 B1 KR100706714 B1 KR 100706714B1 KR 1020050112679 A KR1020050112679 A KR 1020050112679A KR 20050112679 A KR20050112679 A KR 20050112679A KR 100706714 B1 KR100706714 B1 KR 100706714B1
- Authority
- KR
- South Korea
- Prior art keywords
- salt
- positive electrode
- lithium
- negative electrode
- hybrid battery
- Prior art date
Links
- -1 imide salt Chemical class 0.000 claims abstract description 44
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 13
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 13
- 239000002904 solvent Substances 0.000 claims abstract description 11
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims abstract description 10
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims abstract description 9
- 150000003863 ammonium salts Chemical class 0.000 claims abstract description 9
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 16
- 239000003792 electrolyte Substances 0.000 claims description 16
- 229910052744 lithium Inorganic materials 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- 239000011149 active material Substances 0.000 claims description 5
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 4
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 claims description 4
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims description 4
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 claims 1
- 239000003990 capacitor Substances 0.000 abstract description 22
- 210000004754 hybrid cell Anatomy 0.000 abstract 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 238000010494 dissociation reaction Methods 0.000 description 7
- 230000005593 dissociations Effects 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 239000007774 positive electrode material Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229940105329 carboxymethylcellulose Drugs 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 229910013075 LiBF Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002388 carbon-based active material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
Abstract
하이브리드 전지가 제공된다. 하이브리드 전지는 양전극 및 음전극으로 구성되는 전극부, 양전극과 음전극을 전기적으로 분리하는 세퍼레이터, 및 소정의 전압이 인가되었을 때 양전극와 음전극의 표면에서 전기이중층이 형성되도록 양전극와 음전극 사이의 이격공간에 채워지며, 프로필렌 카보네이트, 에틸렌 카보네이트를 포함하는 용매와, 리튬염, 이미드염, 암모늄염을 포함하는 용질이 혼합되어 있는 전해질 용액을 포함한다.A hybrid cell is provided. The hybrid battery is filled in an electrode space consisting of a positive electrode and a negative electrode, a separator for electrically separating the positive electrode and the negative electrode, and a space between the positive electrode and the negative electrode so that an electric double layer is formed on the surface of the positive electrode and the negative electrode when a predetermined voltage is applied. An electrolyte solution in which a solvent containing propylene carbonate and ethylene carbonate and a solute containing lithium salt, imide salt and ammonium salt are mixed.
하이브리드, 전지, 캐패시터, 이미드염 Hybrid, battery, capacitor, imide salt
Description
본 발명은 하이브리드 전지에 관한 것으로서, 보다 상세하게는 양전극으로 금속산화물을 사용하고 음전극으로 활성탄을 사용하는 하이브리드 전지에 있어서 전해질의 용매와 용질을 특정함으로써 고온특성 및 수명을 개선시킬 수 있도록 한 하이브리드 전지에 관한 것이다.The present invention relates to a hybrid battery, and more particularly, in a hybrid battery using a metal oxide as a positive electrode and activated carbon as a negative electrode, a hybrid battery capable of improving high temperature characteristics and lifetime by specifying a solvent and a solute of an electrolyte. It is about.
슈퍼캐패시터(supercapacitor)는 그 사용되는 전극의 종류에 따라서 전기이중층캐패시터(Electric Double Layer Capacitor; EDLC)와 의사캐패시터(Pseudocapacitor)로 구분할 수 있다.Supercapacitors can be classified into Electric Double Layer Capacitors (EDLC) and Pseudocapacitors according to the type of electrode used.
전기이중층캐패시터는 양극와 음극을 모두 활성탄을 사용하여 양전극에서 모두 전기이중층을 형성하여 이에 의한 축전현상으로 에너지를 저장하는 캐패시터를 말한다.An electric double layer capacitor refers to a capacitor which stores energy in the storage due to the formation of an electric double layer at both electrodes using activated carbon in both the positive electrode and the negative electrode.
의사캐패시터는 양극으로는 리튬2차전지에서 사용되는 산화니켈(NiO), 이산화루세늄(RuO2), 산화코발트(Co3O4), 이산화망간(MnO2)와 같은 금속산화물을 사용하 고 음극으로는 전기이중층캐패시터에서 사용되는 활성탄을 사용하는 캐패시터를 말하며, 이를 하이브리드 캐패시터라고도 한다.The pseudocapacitor uses a metal oxide such as nickel oxide (NiO), ruthenium dioxide (RuO 2 ), cobalt oxide (Co 3 O 4 ), and manganese dioxide (MnO 2 ) as a positive electrode. The term "capacitor" refers to a capacitor using activated carbon used in an electric double layer capacitor, which is also referred to as a hybrid capacitor.
전기이중층캐패시터의 경우에는 축전 및 방전이 전위에 따른 이온의 물리적 탈·흡착에 의해서 발생하기 때문에 반응속도가 상당히 빠르고 충방전 수명이 매우 긴 반면에, 저장용량(storage capacity)이 적다는 단점이 있다.In the case of the electric double layer capacitor, since the electrical storage and discharge are caused by the physical desorption and adsorption of ions according to the potential, the reaction rate is considerably fast and the charge and discharge life is very long, but the storage capacity is low. .
이에 비해 하이브리드 캐패시터는 양극은 2차전지에서 사용되는 전극재료를 사용하고, 음극에는 전기이중층이 형성될 수 있는 물질을 사용함으로써, 저장용량이 적은 전기이중층캐패시터와 사이클 수명과 출력밀도(power density)에 한계가 있는 2차전지의 약점을 극복하고자 하는 에너지 저장장치이다.In comparison, the hybrid capacitor uses the electrode material used in the secondary battery as the positive electrode and the material capable of forming the electric double layer at the negative electrode. Thus, the electric double layer capacitor with low storage capacity, cycle life and power density are used. It is an energy storage device that attempts to overcome the weaknesses of secondary batteries with limitations.
현재까지의 기술수준으로는 하이브리드 캐패시터 형태로 전기이중층캐패시터에 비해서 약 2배 이상의 저장용량과 10,000 사이클 이상의 수명을 확보하고 있는 실정이다.The technology level up to now is about 2 times the storage capacity and 10,000 cycles longer than the electric double layer capacitor in the form of a hybrid capacitor.
이러한 하이브리드 캐패시터는 기존의 전기이중층 캐패시터보다 두배 이상의 용량을 가지는데, 이를 위해서는 적절한 전해질의 농도 조절이 필수이다.Such a hybrid capacitor has a capacity more than twice that of a conventional electric double layer capacitor. For this purpose, it is necessary to control the concentration of an appropriate electrolyte.
특히, 하이브리드 캐패시터의 양극은 리튬의 삽입 및 탈리에 의해 용량이 구현되고, 음극은 전기이중층의 형성정도에 따라서 용량이 구현되기 때문에 충분한 용량구현을 위해서는 전해질의 용질로 사용되는 리튬이온의 원활한 이동과, 양이온의 적절한 농도조절이 필요하다.In particular, since the capacity of the hybrid capacitor is realized by the insertion and desorption of lithium, and the capacity of the cathode is implemented according to the degree of formation of the electric double layer, the smooth movement of lithium ions used as the solute of the electrolyte and Proper concentration control of the cations is necessary.
특히, 리튬 이온은 암모늄 이온에 비해서 양이온과 음이온이 분리되는 해리도가 낮아 전도도가 작기 때문에 저항을 줄이고 고전류 특성을 증가시키기 위해서 는 다른 이온과의 관계에서 조절이 매우 중요하다.In particular, lithium ions have a low dissociation degree due to the low dissociation rate between cations and anions, compared to ammonium ions. Therefore, in order to reduce resistance and increase high current characteristics, control is very important in relation to other ions.
리튬염의 용해도와 이동도가 우수해야만 사이클 특성이 좋아지는데, 리튬염의 용해도와 이동도는 짝이 되는 음이온과 밀접한 관련을 가진다.The cycle characteristics improve only when the solubility and mobility of the lithium salt are excellent, but the solubility and mobility of the lithium salt are closely related to the paired anions.
일반적으로 캐패시터에서는 리튬염의 짝음이온으로 헥사플루오르포스페이트를 많이 사용한다. 헥사플로오르포스페이트는 리튬염의 용해도와 이동도를 높일 수 있고 해리도가 높기 때문에 파워특성을 증가시키기에 매우 유리하다.In general, hexafluorophosphate is often used as a counter ion of a lithium salt in a capacitor. Hexafluorophosphate can increase the solubility and mobility of lithium salts and has a high dissociation degree, which is very advantageous for increasing power characteristics.
그러나, 하이브리드 캐패시터에서는 헥사플루오르포스페이트 음이온을 사용하는데 문제가 있는데, 그 이유는 하이브리드 캐패시터는 음전극으로 활성탄을 사용하기 때문에 수분이 흡착량이 많은 편인데, 헥사플루오르포스페이트 음이온은 특히 수분에 민감하기 때문이다.However, there is a problem in using hexafluorophosphate anion in the hybrid capacitor, because the hybrid capacitor uses activated carbon as the negative electrode, so that the water has a high adsorption amount, because the hexafluorophosphate anion is particularly sensitive to water.
또한, 고온에서 1000시간 이상의 수명시험을 하는 경우, 수분 등의 불순물과의 반응에 취약하게 되는 문제로 헥사플루오르포스페이트 음이온을 사용하는데 제약을 받게 된다. 따라서, 헥사플루오르포스페이트 대신에 테트라플루오르보레이트 음이온이 많이 사용되기도 하는데, 이는 테트라알킬암모늄 양이온과 짝을 이룰 경우에는 용해도와 이동도가 우수하지만 리튬 이온과 짝을 이룰 경우에는 용해도와 이동도가 떨어지는 약점을 가진다.In addition, when the life test for 1000 hours or more at high temperature, the use of hexafluorophosphate anion is restricted due to the problem of being vulnerable to the reaction with impurities such as moisture. Therefore, tetrafluoroborate anions are often used in place of hexafluorophosphate, which has excellent solubility and mobility when paired with tetraalkylammonium cations, but weak solubility and mobility when paired with lithium ions. Has
특히, 사이클특성 및 저온특성을 향상시키기 위해서는 리튬 이온의 해리도가 높아야만 하기 때문에 용해도와 이동도가 우수한 이온을 첨가해야만 하는데, 이러한 이온을 찾기 위한 노력이 다 각도로 진행되고 있다.In particular, in order to improve the cycle characteristics and low temperature characteristics, the dissociation degree of lithium ions must be high, so that ions excellent in solubility and mobility must be added.
본 발명이 이루고자 하는 기술적 과제는 독성이 없을 뿐만 아니라 고온 및 저온에서 용량의 감소가 적고 안정성이 뛰어나며, 사이클 특성이 뛰어난 전해질 조성 및 이에 적합한 양극물질과 음극물질을 가지는 하이브리드 전지를 제안하는데에 있다.The technical problem to be achieved by the present invention is to propose a hybrid battery having an electrolyte composition excellent in cycle characteristics, excellent electrolyte composition, and a cathode material and a cathode material, which are not only toxic but also have a low capacity and excellent stability at high and low temperatures.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved by the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기의 기술적 과제를 해결하기 위한 본 발명의 실시예에 따른 하이브리드 전지는 양전극 및 음전극으로 구성되는 전극부, 양전극과 음전극을 전기적으로 분리하는 세퍼레이터, 및 소정의 전압이 인가되었을 때 양전극와 음전극의 표면에서 전기이중층이 형성되도록 양전극와 음전극 사이의 이격공간에 채워지며, 프로필렌 카보네이트, 에틸렌 카보네이트를 포함하는 용매와, 리튬염, 이미드염, 암모늄염을 포함하는 용질이 혼합되어 있는 전해질 용액을 포함한다.The hybrid battery according to the embodiment of the present invention for solving the above technical problem, a separator for electrically separating the positive electrode and the negative electrode, a separator for electrically separating the positive electrode and the negative electrode, and when a predetermined voltage is applied on the surface of the positive electrode and the negative electrode Filled in the separation space between the positive electrode and the negative electrode to form an electric double layer, and includes an electrolyte solution containing a solvent containing propylene carbonate, ethylene carbonate and a solute containing lithium salt, imide salt, ammonium salt.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 첨부 도면들에 포함되어 있다.Specific details of other embodiments are included in the detailed description and the accompanying drawings.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, only the present embodiments to make the disclosure of the present invention complete, and common knowledge in the art to which the present invention pertains. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
본 특허에서 제안하고자 하는 전해질은 종래에 하이브리드 전지에 많이 사용되던 리튬염, 암모늄염에 고전압 안정성을 강화하기 위해서 이미드계 음이온을 발생시킬 수 있는 염을 추가한다.The electrolyte proposed in the present patent adds a salt capable of generating an imide-based anion in order to enhance high voltage stability to lithium salt and ammonium salt, which are conventionally used in hybrid batteries.
N(CnF2n +1SO2)2 -로 표현되는 이미드염은 음전하의 비편재(delocalizing) 정도가 크기 때문에 상당히 안정적이고, 전해질내에서 용해도가 크고 유동성도 우수하다.The imide salt represented by N (C n F 2n +1 SO 2 ) 2 − is very stable because of the large degree of delocalizing of negative charges, and is very stable in the electrolyte and excellent in fluidity.
이러한 이미드염은 아래와 같은 특성 때문에 하이브리드 전지에 첨가하게 되면 매우 유리하다.Such imide salt is very advantageous when added to a hybrid battery because of the following characteristics.
첫째, 양극의 표면에서 우수한 피막을 형성함으로써 고온에서의 안정성이 증가되고, 내전압특성이 향상되며 자가방전율을 감소시킨다.First, by forming an excellent film on the surface of the anode, the stability at high temperatures is increased, the breakdown voltage characteristics are improved, and the self-discharge rate is reduced.
둘째, 용매 내에서 용해도가 높고 테트라알킬 암모늄과 함께 이온성 액체를 구성할 정도로 해리도가 우수하기 때문에 전해액 내에서의 용해도를 높일 수 있는 장점이 있다. 그리고, 리튬이온과 함께 존재할 경우 리튬이온으로 LiBF4를 사용하는 경우 Li+와 BF4-이온 사이의 결합력이 강해서 용매 내에서도 잘 해리가 되지 아니하는데, 이러한 리튬이온에 대해서 해리도가 상당히 높은 장점이 있다. Second, since the solubility is high in the solvent and the dissociation degree is excellent enough to form an ionic liquid together with tetraalkyl ammonium, there is an advantage to increase the solubility in the electrolyte. In addition, when LiBF4 is used as lithium ion when present with lithium ions, the bonding force between Li + and BF 4-ions is not so strong that it dissociates well in a solvent. However, the dissociation degree of lithium ions is considerably high.
따라서, 이미드염을 적정양을 전해질의 용질로서 첨가함으로써 전해질의 안정성과 파워특성을 향상시킬 수 있다.Therefore, by adding an appropriate amount of an imide salt as the solute of the electrolyte, the stability and power characteristics of the electrolyte can be improved.
하이브리드 전지에서 양극으로 주로 사용되는 망간산화물이 용해되는 이유는 표면의 수분들과 염들의 부반응으로 형성되는 불화수소(HF)에 의한 반응 때문인데, 이미드염은 이러한 반응을 억제하기 때문에 LiMnO4나 LiMnxM1 - xO2(M= Co, Ni, Li)를 양극활물질로 사용할 경우 더욱 효과적이다.The reason for dissolving manganese oxide, which is mainly used as a positive electrode in a hybrid battery, is due to the reaction by hydrogen fluoride (HF) formed by side reaction of water and salts on the surface, and because the imide salt inhibits this reaction, LiMnO 4 or LiMn It is more effective when x M 1 - x O 2 (M = Co, Ni, Li) is used as the positive electrode active material.
이미드 음이온을 첨가하는 경우에는 적절한 양을 첨가해야 하는데, 그 이유는 이미드염으로서 예컨대, LiN(CF3SO2)2 염을 첨가하는 경우엔 양극에서 알루미늄 집전체를 부식시키기 때문에 최대 0.1M을 넘지 않는 양을 첨가해야만 한다. 또한, 이미드염을 많이 첨가하게 되면 양극 표면에서의 부반응으로 인해 기체들이 많이 발생하기 때문에 전체 농도는 최대 0.1M을 넘지 않도록 해야한다.When an imide anion is added, an appropriate amount should be added, because when adding an imide salt, for example, LiN (CF 3 SO 2 ) 2 salt, the aluminum current collector at the positive electrode is corroded to a maximum of 0.1 M. The amount must not be exceeded. In addition, if a large amount of imide salt is added, a lot of gases are generated due to side reactions on the surface of the anode, so the total concentration should not exceed 0.1M.
용매(solvent)로는 안정성이 뛰어나고 독성이 없는 프로필렌 카보네이트(PC)를 주로 사용하며, 용해도 및 Li+의 해리능을 증가시키거나 고온, 저온 안정성을 증가시키기 위해서 에틸렌 카보네이트를 더 첨가시킬 수 있다.As a solvent, propylene carbonate (PC) which is excellent in stability and nontoxic is mainly used, and ethylene carbonate may be further added to increase solubility and dissociation ability of Li + or to increase high temperature and low temperature stability.
다만, 프로필렌 카보네이트와 에틸렌카보네이트는 부피를 기준으로 8:2의 비율로 첨가하여 사용된다.However, propylene carbonate and ethylene carbonate are added in an amount of 8: 2 based on the volume.
본 발명의 하이브리드 전지의 전해질의 용질로서 사용되는 리튬염으로는 일반적으로 하이브리드 전지 내지는 전기이중층 캐패시터에서 사용되는 리튬염을 사용하여도 무방하나, 리튬 테트라플루오르보레이트(LiBF4)를 사용하는 것이 바람직하 다. 또한, 암모늄염도 일반적으로 하이브리드 전지 내지는 전기이중층 캐패시터에서 사용되는 암모늄염을 사용하여도 무방하나, 테트라에틸암모늄 테트라플루오르보레이트((C2H5)4NBF4)를 사용하는 것이 바람직하다.As the lithium salt used as the solute of the electrolyte of the hybrid battery of the present invention, a lithium salt generally used in a hybrid battery or an electric double layer capacitor may be used, but lithium tetrafluoroborate (LiBF 4 ) is preferably used. All. In addition, ammonium salts may be generally used ammonium salts used in hybrid batteries or electric double layer capacitors, but tetraethylammonium tetrafluoroborate ((C 2 H 5 ) 4 NBF 4 ) is preferably used.
본 발명에 사용되는 용질로서의 리튬염, 암모늄염, 이미드염의 혼합비율은 몰농도를 기준으로 7:7:1의 비율로 첨가하는 것이 바람직하다. 또한, 전체 전해질의 농도는 1.0~2.5mol/L로 해주는 것이 바람직하다.The mixing ratio of lithium salt, ammonium salt and imide salt as the solute used in the present invention is preferably added in a ratio of 7: 7: 1 based on the molar concentration. In addition, the concentration of the total electrolyte is preferably set to 1.0 ~ 2.5 mol / L.
양전극에 사용되는 활물질로는 층상구조를 가지는 물질로 LiMO2(M=Li, Co, Mn, Ni, 단, Co는 0.33이하)를 사용할 수 있으며, 바람직하게는 LiMn2O4가 사용된다. 음전극에 사용되는 활물질로는 축전용량이 100~300F/g을 가지는 활성탄이 사용된다. 다만, 양전극 활물질로는 금속산화물로서 하이브리드 전지에 일반적으로 사용되는 것을 사용하여도 무방하다.As the active material used for the positive electrode, LiMO 2 (M = Li, Co, Mn, Ni, where Co is 0.33 or less) may be used as a material having a layered structure, and preferably LiMn 2 O 4 is used. As the active material used for the negative electrode, activated carbon having a storage capacity of 100 to 300 F / g is used. However, as the positive electrode active material, a metal oxide generally used in a hybrid battery may be used.
이하에서는 하이브리드 전지에서 이미드염의 첨가에 따라 고온부하특성 및 사이클 특성과 같이 신뢰성이 향상된다는 것을 구체적인 실시예들을 들어 설명한다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략한다.Hereinafter, specific embodiments will be described that reliability is improved, such as high temperature load characteristics and cycle characteristics, according to the addition of the imide salt in the hybrid battery. Details not described herein are omitted because they can be sufficiently inferred by those skilled in the art.
<< 실시예Example 1~3> 1 ~ 3>
실시예 1~3은 양극활물질을 달리 했을 경우에 대한 초기특성을 알아보기 위한 실시예이다. 실시예 1은 양극활물질로 LiMn2O4, 실시예 2는 양극 활물질로서 Li(Ni0.37Co0.16Mn0.37Li0.1)O2, 실시예 3은 양극활물질로 Li(Ni1 /3Co1 /3Mn1 /3)O2를 사용하 고, 음극 활물질로는 용량 140F/g, 비표면적 2,000m2/g의 활성탄을 사용하여 캐패시터를 제조하였다. 양극에는 활물질을 75%, 카본블랙 15%, CMC(Carboxy Methyl Cellulose) 및 PTFE(PolyTetraFluoroEthylene) 바인더 10%로 하여서 전극을 제작하여, 각각 20㎛ 알루미늄 호일(foil)에 코팅하였다.Examples 1 to 3 are examples for checking the initial characteristics of the case where the positive electrode active material is different. Example 1 is a LiMn 2 O 4, the second embodiment has a positive electrode active material in the positive electrode active material Li (Ni 0.37 Co 0.16 Mn 0.37 Li 0.1) O 2, in Example 3, Li (Ni 1/3 Co 1 /3 as a cathode active material using Mn 1/3) O 2, and, as a negative electrode active material was prepared in the capacitor using the activated carbon of the capacity 140F / g, a specific surface area of 2,000m 2 / g. The positive electrode was made of 75% of an active material, 15% of carbon black, 10% of CMC (Carboxy Methyl Cellulose) and 10% of Polytetrafluoroethylene (PTFE) binder, and coated on 20 μm aluminum foil.
양전극과 음전극은 각각 50㎛씩 코팅하여 호일을 포함한 총 두께가 120㎛가 되도록 하였으며, 음극은 양면으로 각각 100㎛씩 코팅하여 총 두께가 220㎛가 되도록 하였다.The positive electrode and the negative electrode were coated 50 μm each so that the total thickness including the foil was 120 μm, and the negative electrode was coated on both sides with 100 μm each so that the total thickness was 220 μm.
전해질의 용질로는 리튬테트라플루오르보레이트(LiBF4) 0.7몰, 리튬트리플루오르에틸술폰이미드(LiN(CF3SO2)2) 0.1몰, 테트라에틸암모늄 테트라플루오르보레이트((C2H5)4NBF4) 0.7몰로 구성된다.As the solute of the electrolyte, 0.7 mol of lithium tetrafluoroborate (LiBF 4 ), 0.1 mol of lithium trifluoroethylsulfonimide (LiN (CF 3 SO 2 ) 2 ), and tetraethylammonium tetrafluoroborate ((C 2 H 5 ) 4 NBF 4 ) 0.7 moles.
전해질의 용매로는 프로필렌카보네이트(PC)와 에틸렌 카보네이트(EC)를 8:2의 비율로 각각 혼합한 용매를 사용하여 구성된다.As the solvent of the electrolyte, a solvent in which propylene carbonate (PC) and ethylene carbonate (EC) are mixed at a ratio of 8: 2 is used.
각각의 전극은 30mm*400mm의 크기로 재단하여 원통형으로 감은 뒤 직경18mm, 높이 40mm의 캔에 넣은 뒤 측정하였다. 용량은 2.3V 인가전압과 1mA/F를 기준으로 측정하였고, 저항은 1kHz에서 측정하였으며, 상기의 조건으로 초기특성을 측정한 결과를 나타내면 표 1과 같다.Each electrode was cut to a size of 30mm * 400mm, wound into a cylindrical shape and placed in a can of 18mm in diameter and 40mm in height. Capacitance was measured based on 2.3V applied voltage and 1mA / F, resistance was measured at 1kHz, and the results of initial characteristic measurement under the above conditions are shown in Table 1.
<실시예 4~6><Examples 4-6>
실시예 4 내지 실시예 6은 오니움(onium)염의 첨가에 따른 특성으로 양극을 LiMn2O4로, 음극을 활성탄으로 고정하여 전극을 제작하였고, 용매는 프로필렌 카보네이트 80mol%와 에틸렌카보네이트 20mol%, 용질은 LiBF4 0.7M로 고정시킨 후, 실시예 4에서는 테트라에틸암모늄테트라플루오르보레이트((C2H5)4NBF4), 실시예 5에서는 부틸메틸피롤리디늄테트라플루오르보레이트((CH3)(C4H9)(cyc-C4H8N)BF4), 실시예 6에서는 에틸메틸이미다졸륨테트라플루오르보레이트((C2H5)(CH3)(cyc-C3H3N2)BF4) 오니움염을 0.7M 사용하여 실시예 1과 같은 조건으로 셀을 제작하였다.Examples 4 to 6 were prepared by fixing the positive electrode to LiMn2O4 and the negative electrode to activated carbon as a characteristic of the addition of the onium salt, the solvent is 80 mol% propylene carbonate and 20 mol% ethylene carbonate, solute LiBF After fixing to 4 0.7M, in Example 4 tetraethylammonium tetrafluoroborate ((C 2 H 5 ) 4 NBF 4 ), in Example 5 butylmethylpyrrolidiniumtetrafluoroborate ((CH 3 ) (C 4 H 9 ) (cyc-C 4 H 8 N) BF 4 ), in Example 6 ethylmethylimidazoliumtetrafluoroborate ((C 2 H 5 ) (CH 3 ) (cyc-C 3 H 3 N 2 ) BF 4 ) A cell was prepared under the same conditions as in Example 1 using 0.7 M of onium salt.
용량은 2.3V 전압과 1mA/F을 기준으로 측정하였고, 저항은 1kHz에서 측정하였다. 측정항목으로는, 초기특성, 고온부하(1000시간), 사이클특성(20,000회)을 측정하였으며, 그 측정결과를 표 2에 나타내었다.Capacity was measured based on 2.3V voltage and 1mA / F, and resistance was measured at 1kHz. As measurement items, initial characteristics, high temperature load (1000 hours), and cycle characteristics (20,000 times) were measured, and the measurement results are shown in Table 2.
<< 실시예Example 7~9> 7-9
실시예 7 ~ 실시예 9는 이미드염 첨가에 따라 신뢰성이 향상된 결과를 설명하기 위한 것으로, 실시예 4 내지 실시예 6과 동일한 방법으로 셀을 제작하였으며, 이미드염 0.1M을 첨가하여 특성변화를 확인하였다. 이때 사용된 이미드염은 리튬 트리플루오르메틸술폰이미드(LiN(SO2CF3)2)(3M사의 HQ-115)를 사용하였고 실시예 1과 같은 조건으로 셀을 제조하였다.Examples 7 to 9 are for explaining the results of the improved reliability according to the addition of the imide salt, the cells were prepared in the same manner as in Examples 4 to 6, and the change in properties by adding 0.1M imide salt was confirmed. It was. In this case, the imide salt used was lithium trifluoromethylsulfonimide (LiN (SO 2 CF 3 ) 2 ) (HQ-115 manufactured by 3M), and a cell was prepared under the same conditions as in Example 1.
용량은 2.3V 인가전압과 1mA/F를 기준으로 측정하였고, 저항은 1kHz에서 측정하였다. 측정항목으로는 초기특성, 고온부하(1000시간), 사이클특성(20,000회)을 측정하였으며 결과는 표 3에 나타내었다.Capacity was measured based on 2.3V applied voltage and 1mA / F, and resistance was measured at 1kHz. Initial characteristics, high temperature load (1000 hours), and cycle characteristics (20,000 cycles) were measured. The results are shown in Table 3.
상기 표 3에 나타낸 바와 같이 이미드염을 전해질의 용질로 첨가하게 되면 전체적인 고온부하특성과 사이클 특성이 향상됨을 알 수 있다.As shown in Table 3, it can be seen that when the imide salt is added as the solute of the electrolyte, the overall high temperature load characteristics and the cycle characteristics are improved.
<< 실시예Example 10 ~ 11> 10 to 11
실시예 10과 실시예 11은 각각의 이미드 염의 첨가에 따른 특성을 알아보기 위한 것으로 양극을 LiMn2O4로 음극을 활성탄으로 활물질로 하여 전극을 제작하였고, 용매는 프로필렌카보네이트 80mol%와 에틸렌카보네이트 20mol%, 용질은 LiBF4 0.7M, 테트라에틸암모늄테트라플루오르보레이트(Et4NBF4) 0.7M을 고정시킨 후, 각각에 이미드염을 0.1M 사용하여 실시예 1과 같은 조건으로 셀을 제조하였다. 이때 사용된 이미드염은 실시예 10의 경우에는 LiN(CF3SO2)2을 사용하였고, 실시예 11의 경우에는 LiN(C2F5SO2)2(3M사의 FC-130)를 사용하였다.Example 10 and Example 11 were to investigate the characteristics of the addition of each imide salt, the electrode was prepared by using the positive electrode as LiMn 2 O 4 and the negative electrode as the active carbon active material, the solvent is propylene carbonate 80mol% and ethylene carbonate 20 mol%, the solute was fixed with LiBF 4 0.7M, tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) 0.7M, and then 0.1M imide salt was used to prepare a cell under the same conditions as in Example 1. In this case, the imide salt used was LiN (CF 3 SO 2 ) 2 in Example 10, and LiN (C 2 F 5 SO 2 ) 2 (3M FC-130) was used in Example 11. .
용량은 2.3V 인가전압과 1mA/F을 기준으로 측정하였고, 저항은 1kHz에서 측정하였다. 측정항목으로는 초기특성, 고온부하(1,000시간), 사이클특성(20,000회)을 측정하였으며 그 결과는 표 4에 나타내었다.Capacity was measured based on 2.3V applied voltage and 1mA / F, and resistance was measured at 1kHz. As the measurement items, initial characteristics, high temperature load (1,000 hours), and cycle characteristics (20,000 times) were measured, and the results are shown in Table 4.
표 4에 나타난 바와 같이 이미드염을 사용한 경우에는 고온에서의 용량변화율이 양호하나, 분자의 크기가 커지고, 이동도가 떨어기지 때문에 저항이 더 커지며 사이클특성의 개선이 다소 떨어지는 특성을 보인다.As shown in Table 4, when the imide salt is used, the capacity change rate at a high temperature is good, but since the size of the molecule is increased and mobility is reduced, the resistance is increased and the improvement of cycle characteristics is slightly decreased.
본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described, the present invention is not limited to the above embodiments and can be manufactured in various forms, and a person of ordinary skill in the art to which the present invention belongs may have It will be understood that other specific forms may be practiced without changing the essential features. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
본 발명의 실시예에 따른 하이브리드 전지에 의하면 다음의 효과가 하나 또는 그 이상 존재한다.According to the hybrid battery according to the embodiment of the present invention, one or more of the following effects exist.
첫째, 양극물질이 4.3V 이상의 고전압에서도 안정한 충방전이 가능해지므로 사용전압을 더욱 높일 수 있고, 이로 인한 에너지 밀도의 상승효과가 있다.First, since the anode material is stable charging and discharging even at a high voltage of 4.3V or more, the use voltage can be further increased, thereby increasing the energy density.
둘째, 이미드염의 사용으로 사이클특성의 개선 효과가 있다.Second, the use of the imide salt has an effect of improving the cycle characteristics.
셋째, 이미드염의 사용으로 고온특성의 개선 효과가 있다.Third, the use of the imide salt has an effect of improving the high temperature characteristics.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050112679A KR100706714B1 (en) | 2005-11-24 | 2005-11-24 | Hybrid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050112679A KR100706714B1 (en) | 2005-11-24 | 2005-11-24 | Hybrid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100706714B1 true KR100706714B1 (en) | 2007-04-13 |
Family
ID=38161660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050112679A KR100706714B1 (en) | 2005-11-24 | 2005-11-24 | Hybrid battery |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100706714B1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001229730A (en) | 2000-02-21 | 2001-08-24 | Showa Denko Kk | Electrolyte material and its use |
KR20020017947A (en) | 2000-07-17 | 2002-03-07 | 마츠시타 덴끼 산교 가부시키가이샤 | Non-aqueous electrochemical apparatus |
KR20020022622A (en) | 2000-09-19 | 2002-03-27 | 모치즈키 아키히로 | Ion-conductive composition, gel electrolyte, non-aqueous electrolyte battery, and electrical double-layer capacitor |
KR20020041506A (en) | 2000-11-28 | 2002-06-03 | 김선욱 | Metal Oxide Electrochemical Psedocapacitor Employing Organic Electrolyte |
KR20040055796A (en) * | 2001-12-21 | 2004-06-26 | 산요덴키가부시키가이샤 | Non-aqueous electrolytic secondary battery |
KR20050008446A (en) * | 2003-07-15 | 2005-01-21 | 삼성에스디아이 주식회사 | An electrolyte for lithium secondary battery and a lithium secondary battery comprising the same |
-
2005
- 2005-11-24 KR KR1020050112679A patent/KR100706714B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001229730A (en) | 2000-02-21 | 2001-08-24 | Showa Denko Kk | Electrolyte material and its use |
KR20020017947A (en) | 2000-07-17 | 2002-03-07 | 마츠시타 덴끼 산교 가부시키가이샤 | Non-aqueous electrochemical apparatus |
KR20020022622A (en) | 2000-09-19 | 2002-03-27 | 모치즈키 아키히로 | Ion-conductive composition, gel electrolyte, non-aqueous electrolyte battery, and electrical double-layer capacitor |
KR20020041506A (en) | 2000-11-28 | 2002-06-03 | 김선욱 | Metal Oxide Electrochemical Psedocapacitor Employing Organic Electrolyte |
KR20040055796A (en) * | 2001-12-21 | 2004-06-26 | 산요덴키가부시키가이샤 | Non-aqueous electrolytic secondary battery |
KR20050008446A (en) * | 2003-07-15 | 2005-01-21 | 삼성에스디아이 주식회사 | An electrolyte for lithium secondary battery and a lithium secondary battery comprising the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8057937B2 (en) | Hybrid battery | |
US7825634B2 (en) | Charge accumulating system and charge accumulating method | |
US8288032B2 (en) | Energy storage device cell and control method thereof | |
KR101366981B1 (en) | Lithium ion battery | |
US11551878B2 (en) | Electricity storage device | |
JP5001508B2 (en) | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte electric double layer capacitor | |
KR101546251B1 (en) | Electrolyte for electrochemical device and the electrochemical device thereof | |
US20120212879A1 (en) | High energy hybrid supercapacitors using lithium metal powders | |
JPWO2005096333A1 (en) | Organic electrolyte capacitor using mesopore carbon material for negative electrode | |
US20070223178A1 (en) | Electric double layer capacitor | |
JP6765857B2 (en) | Lithium ion capacitor | |
WO2007058421A1 (en) | Hybrid battery | |
JP6818723B2 (en) | Electrolyte for electrochemical devices and electrochemical devices | |
US20140085773A1 (en) | Hybrid electrochemical energy storage device | |
JP3648176B2 (en) | Metal oxide electrochemical pseudocapacitor using organic electrolyte | |
US20100021807A1 (en) | Energy storage device | |
US10115535B2 (en) | Electric storage device | |
JP2006024611A (en) | Electric double layer capacitor | |
JP2012028366A (en) | Power storage device | |
JP6587579B2 (en) | Lithium ion capacitor | |
KR101008795B1 (en) | Energy storage device | |
WO2021205750A1 (en) | Electrolytic solution for electrochemical device, and electrochemical device | |
KR20190036478A (en) | Electrolyte for electrochemical device and electrochemical device | |
KR100706714B1 (en) | Hybrid battery | |
JP2014195018A (en) | Electric power storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130506 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140407 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20160401 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20170405 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20180405 Year of fee payment: 12 |