[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100699739B1 - Iii-v compound semiconductor - Google Patents

Iii-v compound semiconductor Download PDF

Info

Publication number
KR100699739B1
KR100699739B1 KR1020000012525A KR20000012525A KR100699739B1 KR 100699739 B1 KR100699739 B1 KR 100699739B1 KR 1020000012525 A KR1020000012525 A KR 1020000012525A KR 20000012525 A KR20000012525 A KR 20000012525A KR 100699739 B1 KR100699739 B1 KR 100699739B1
Authority
KR
South Korea
Prior art keywords
compound semiconductor
group iii
pattern
layer
regrowth
Prior art date
Application number
KR1020000012525A
Other languages
Korean (ko)
Other versions
KR20000076838A (en
Inventor
히라마쯔가즈마사
미야께히데또
마에다다까요시
이예찌까야스시
Original Assignee
스미또모 가가꾸 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미또모 가가꾸 가부시끼가이샤 filed Critical 스미또모 가가꾸 가부시끼가이샤
Publication of KR20000076838A publication Critical patent/KR20000076838A/en
Application granted granted Critical
Publication of KR100699739B1 publication Critical patent/KR100699739B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03543Mice or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02642Mask materials other than SiO2 or SiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

일반식 InuGavAlwN (u+v+w=1, 0

Figure 112004058376984-pat00001
u
Figure 112004058376984-pat00002
1, 0
Figure 112004058376984-pat00003
v
Figure 112004058376984-pat00004
1, 0
Figure 112004058376984-pat00005
w
Figure 112004058376984-pat00006
1) 로 표현되는 제 1 의 III-V 족 화합물 반도체로부터 형성된 층, 상기 제 1 의 III-V 족 화합물 반도체 뿐만 아니라 후술할 제 2 의 III-V 족 화합물 반도체와도 다른 재료로부터 상기 층 상에 형성된 패턴 (pattern), 및 상기 제 1 의 III-V 족 화합물 반도체와 상기 패턴상에, 일반식 InxGayAlzN (x+y+z=1, 0
Figure 112004058376984-pat00007
x
Figure 112004058376984-pat00008
1, 0
Figure 112004058376984-pat00009
y
Figure 112004058376984-pat00010
1, 0
Figure 112004058376984-pat00011
z
Figure 112004058376984-pat00012
1) 로 표현되는 제 2 의 III-V 족 화합물 반도체로부터 형성되는 층을 구비하는 III-V 족 화합물 반도체로서, 상기 제 2 의 III-V 족 화합물 반도체의 (0004) 반사 X-ray 로킹커브 (reflection X-ray rocking curve) 의 반치폭 (FWHM) 이 X-ray 입사방향에 무관하게 700 초 이하인 것을 특징으로 하는 III-V 족 화합물 반도체가 제공된다. 고품질 반도체인 상기 III-V 족 화합물 반도체는 저각 입계 (low angle grain boundaries) 의 발생이 억제된다.Formula In u Ga v Al w N (u + v + w = 1, 0
Figure 112004058376984-pat00001
u
Figure 112004058376984-pat00002
1, 0
Figure 112004058376984-pat00003
v
Figure 112004058376984-pat00004
1, 0
Figure 112004058376984-pat00005
w
Figure 112004058376984-pat00006
A layer formed from the first group III-V compound semiconductor represented by 1) and the layer III-V compound semiconductor as well as the second group III-V compound semiconductor, which will be described later, on the layer. On the formed pattern and the first group III-V compound semiconductor and the pattern, the general formula In x Ga y Al z N (x + y + z = 1, 0
Figure 112004058376984-pat00007
x
Figure 112004058376984-pat00008
1, 0
Figure 112004058376984-pat00009
y
Figure 112004058376984-pat00010
1, 0
Figure 112004058376984-pat00011
z
Figure 112004058376984-pat00012
A group III-V compound semiconductor having a layer formed from a second group III-V compound semiconductor represented by 1), wherein the reflection X-ray locking curve of the group III-V compound semiconductor ( A group III-V compound semiconductor is provided, characterized in that the full width at half maximum (FWHM) of the reflection X-ray rocking curve) is 700 seconds or less regardless of the X-ray incident direction. The group III-V compound semiconductor, which is a high quality semiconductor, is suppressed from generating low angle grain boundaries.

Description

Ⅲ-Ⅴ족 화합물 반도체{III-V COMPOUND SEMICONDUCTOR}III-V compound semiconductors {III-V COMPOUND SEMICONDUCTOR}

도 1 은 종래 기술에 따른 패턴상의 재성장 진행 방법을 나타낸 도면.1 is a view showing a regrowth progress method on a pattern according to the prior art.

도 2a 는 실시예 1 에서 패턴 줄무늬에 대한 입사방향이 평행일 때, X-ray 로킹커브를 나타낸 도면FIG. 2A is a view showing an X-ray rocking curve when the incident direction of the pattern stripes is parallel in Example 1; FIG.

도 2b 는 실시예 1 에서 패턴 줄무늬에 대한 입사방향이 직교일 때, X-ray 로킹커브 (rocking curve) 를 나타낸 도면.FIG. 2B is a view showing an X-ray rocking curve when the incident direction to the pattern stripes in Example 1 is orthogonal. FIG.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 제 1 의 III-V 족 화합물 반도체로부터 형성되는 기저층.1: Base layer formed from the first group III-V compound semiconductor.

2 : 제 1 및 제 2 의 III-V 족 화합물 반도체와 다른 재료로 형성되는 패턴.2: A pattern formed of a material different from that of the first and second group III-V compound semiconductors.

3 : 제 2 의 III-V 족 화합물 반도체로 형성되는 재성장 층.3: A regrowth layer formed of a second III-V compound semiconductor.

본 발명은 일반식 InaGabAlcN (a+b+c=1, 0

Figure 112000004806024-pat00013
a
Figure 112000004806024-pat00014
1, 0
Figure 112000004806024-pat00015
b
Figure 112000004806024-pat00016
1, 0
Figure 112000004806024-pat00017
c
Figure 112000004806024-pat00018
1) 로 표현되는 III-V 족 화합물 반도체에 관한 것이다.The present invention is a general formula In a Ga b Al c N (a + b + c = 1, 0
Figure 112000004806024-pat00013
a
Figure 112000004806024-pat00014
1, 0
Figure 112000004806024-pat00015
b
Figure 112000004806024-pat00016
1, 0
Figure 112000004806024-pat00017
c
Figure 112000004806024-pat00018
It relates to a III-V compound semiconductor represented by 1).

일반식 InaGabAlcN (a+b+c=1, 0

Figure 112004058376984-pat00019
a
Figure 112004058376984-pat00020
1, 0
Figure 112004058376984-pat00021
b
Figure 112004058376984-pat00022
1, 0
Figure 112004058376984-pat00023
c
Figure 112004058376984-pat00024
1) 로 표현되는 III-V 족 화합물 반도체는, III 족 원소의 조성을 변경함으로써 전자기 스펙트럼의 자외선에서 가시광선 영역에 해당하는 직접형 대역간극 (direct band gap) 의 조정이 가능하므로, 자외선에서 가시광선 영역에서의 고효율 발광소자 재료로 쓰인다. 또한, 이 화합물 반도체들은 통상 사용되는 Si, GaAs 등의 반도체들과 비교하여 큰 대역간극을 가지므로, 이론적으로는, 종래의 반도체들이 동작할 수 없는 고온에서도 반도체의 성질을 유지할 수 있는 특성을 활용하여 우수한 환경 변화에 대한 저항성을 갖는 전자 소자를 제작할 수 있다.Formula In a Ga b Al c N (a + b + c = 1, 0
Figure 112004058376984-pat00019
a
Figure 112004058376984-pat00020
1, 0
Figure 112004058376984-pat00021
b
Figure 112004058376984-pat00022
1, 0
Figure 112004058376984-pat00023
c
Figure 112004058376984-pat00024
In the group III-V compound semiconductor represented by 1), the direct band gap corresponding to the visible light region in the ultraviolet light of the electromagnetic spectrum can be adjusted by changing the composition of the group III element. It is used as a high efficiency light emitting device material in the area. In addition, these compound semiconductors have a large band gap compared to conventional semiconductors such as Si, GaAs, and so on, in theory, they utilize properties that can maintain the properties of the semiconductor even at high temperatures where conventional semiconductors cannot operate. Thus, an electronic device having excellent resistance to environmental changes can be manufactured.

그러나, III-V 화합물 반도체들에서, 용융점 근처에서의 매우 높은 증기압으로 인해 큰 결정을 성장시키기가 매우 어려우므로, 반도체 소자의 제작 기판으로 사용할 만큼 실용적인 크기의 결정을 얻기가 불가능하다. 따라서, III-V 족 화합물 반도체 제작에 있어서, 주로 사파이어 (sapphire), 탄화규소 (SiC), 또는 화합물 반도체와 동일한 결정구조를 갖고 큰 결정의 제작이 가능한 다른 재료들이, 화합물 반도체가 에피탁시 성장되는 상층의 기판으로 사용되었다. 그러한 방법으로, 비교적 좋은 품질의 화합물 반도체 결정을 획득할 수 있게 되었다. 그럼에도, 화합물 반도체와 기판 재료간의 격자 상수 또는 열팽창 계수의 차이로 인한 결정결함을 줄이는 것은 불가능하며, 주로 108 cm-2 이상의 결함 밀도가 생긴다.However, in III-V compound semiconductors, it is very difficult to grow large crystals due to the very high vapor pressure near the melting point, and thus it is impossible to obtain a crystal of practical size enough to be used as a fabrication substrate for semiconductor devices. Therefore, in the fabrication of group III-V compound semiconductors, sapphire, silicon carbide (SiC), or other materials having the same crystal structure as that of the compound semiconductor and capable of producing large crystals can be grown. It was used as the substrate of the upper layer. In this way, it is possible to obtain a compound semiconductor crystal of relatively good quality. Nevertheless, it is not possible to reduce crystal defects due to differences in lattice constants or coefficients of thermal expansion between compound semiconductors and substrate materials, resulting mainly in defect densities of 10 8 cm −2 or more.

반면, 상기의 높은 결정 결함 밀도를 갖는 화합물 반도체를 기저 (base) 로 사용하여 결함 밀도를 줄인 화합물 반도체를 획득하는 기술이 공지되었다 (Jpn. J. Appl. Phys., Vol. 36, page L899, 1997). 즉, 높은 결함 밀도의 화합물 반도 체 (이하, 기저 결정) 가 미세 규모의 개구부 (microscopic openings) 를 남기고 SiO2 패턴으로 덮여지고, 그 상층에서 2 차 결정성장이 수행된다 (이하, 2 차 결정성장은 재성장이라 함). 이 방식의 개요는 도 1 을 참조하여 후술할 것이다.On the other hand, a technique of obtaining a compound semiconductor with reduced defect density by using the compound semiconductor having a high crystal defect density as a base is known (Jpn. J. Appl. Phys., Vol. 36, page L899, 1997). That is, a compound semiconductor of high defect density (hereinafter, base crystal) is covered with SiO 2 pattern leaving microscopic openings, and secondary crystal growth is performed on the upper layer (hereinafter, secondary crystal growth). Is called regrowth). An overview of this scheme will be described later with reference to FIG. 1.

먼저, 재성장의 초기단계에서는, 개구부에서만 결정성장이 일어나고, 패턴상에서는 아무런 결정성장이 일어나지 않는 선택 성장이 일어난다. 이 단계에서 결정성장이 더 계속될 경우, 각 개구부의 결정성장이 전 패턴에 퍼지게되어, 패턴이 그 하부에 묻힌 구조 (매몰구조) 를 얻는다. 패턴이 묻히고 난 후 당장은 재성장 결정 표면에 단층이 남지만, 결정성장이 진행함에 따라 재성장된 표면의 단층은 점차 부드러워지고, 결국 평탄한 결정 표면이 얻어질 수 있다.First, in the initial stage of regrowth, crystal growth occurs only in the openings, and selective growth occurs in which no crystal growth occurs on the pattern. If crystal growth continues at this stage, crystal growth of each opening spreads over the previous pattern, thereby obtaining a structure (burying structure) in which the pattern is buried beneath it. Immediately after the pattern is buried, a monolayer remains on the regrowth crystal surface, but as the crystal growth progresses, the monolayer of the regrown surface gradually becomes smooth, resulting in a flat crystal surface.

현재, 상기 매몰 구조 (buried structure) 의 화합물 반도체의 결정결함을 줄이는 가능한 방법으로 다음 두 가지 방법이 공지되었다. 두 가지 방법은 HVPE 방법 (Hydride Vapor Phase Epitaxy) 과 MOVPE 방법 (Metal Organic Vapor Phase Epitaxy) 이다. 그러나, 이들 방법은 다음의 문제점을 갖고 있다.Currently, the following two methods are known as possible methods for reducing the crystal defects of the compound semiconductors of the buried structure. Two methods are HVPE method (Hydride Vapor Phase Epitaxy) and MOVPE method (Metal Organic Vapor Phase Epitaxy). However, these methods have the following problems.

먼저, HVPE 방법에 있어, 개구부 위에 성장된 화합물 반도체는 기저 결정의 결정방향과 같은 결정방향을 갖는 반면, 패턴위에 성장된 화합물 반도체는 기저 결정의 결정방향과 다소 다른 각도의 결정방향을 갖는다 (Appl. Phys. Lett., Vol. 73, page 481, 1998). 따라서, 패턴위에 성장된 결정과 개구부 위에 성장된 결정의 결정방향이 정렬되지 않으므로, 많은 단층의 경계부에서 소위 저각 입계 (low angle grain boundary) 가 함유된다. 재성장 결정의 두께가 증가함에 따라, 결 정방향은 점차 정렬되지만, 입계면이 발생하지 않는 필름 두께는 약 60 ㎛ 이상 될 것이 요구된다. 그렇게 두꺼운 필름을 성장시키는 것은 많은 시간을 소비할 뿐 아니라, 재성장 결정과 기판 결정간의 열팽창 계수의 차이에 기인한 변형도 증가된다. 기판의 내부 변형 (distortion) 은 기판의 기형 (deformation) 을 야기하며, 이는 다시 결정성장의 문제를 일으키며, 따라서, 통상의 반도체 공정상에서 문제를 야기한다.First, in the HVPE method, the compound semiconductor grown on the opening has the same crystal direction as the crystal direction of the base crystal, whereas the compound semiconductor grown on the pattern has a crystal direction of an angle slightly different from that of the base crystal (Appl Phys. Lett., Vol. 73, page 481, 1998). Therefore, since the crystal directions of the crystals grown on the pattern and the crystals grown on the opening are not aligned, so-called low angle grain boundaries are contained at the boundaries of many monolayers. As the thickness of the regrowth crystals increases, the crystallization direction gradually aligns, but the film thickness where no grain boundary occurs is required to be about 60 µm or more. Growing such a thick film not only takes a lot of time, but also increases the strain due to the difference in the coefficient of thermal expansion between the regrowth crystal and the substrate crystal. Internal distortion of the substrate causes deformation of the substrate, which in turn causes problems of crystal growth, and thus problems in conventional semiconductor processes.

본 발명의 목적은 저각 입계의 발생을 억제시킨 III-V 족 화합물 반도체를 제공하는 것이다.An object of the present invention is to provide a group III-V compound semiconductor which suppresses the generation of low angle grain boundaries.

본 발명은 The present invention

(1) 일반식 InuGavAlwN (u+v+w=1, 0

Figure 112004058376984-pat00025
u
Figure 112004058376984-pat00026
1, 0
Figure 112004058376984-pat00027
v
Figure 112004058376984-pat00028
1, 0
Figure 112004058376984-pat00029
w
Figure 112004058376984-pat00030
1) 로 표현되는 제 1 의 III-V 족 화합물 반도체로부터 형성된 층 (layer), 상기 제 1 의 III-V 족 화합물 반도체 뿐만 아니라 후술할 제 2 의 III-V 족 화합물 반도체와도 다른 재료로부터 이 층상에 형성된 패턴 (pattern), 및 상기 제 1 의 화합물 반도체와 상기 패턴상에, 일반식 InxGayAlzN (x+y+z=1, 0
Figure 112004058376984-pat00031
x
Figure 112004058376984-pat00032
1, 0
Figure 112004058376984-pat00033
y
Figure 112004058376984-pat00034
1, 0
Figure 112004058376984-pat00035
z
Figure 112004058376984-pat00036
1) 로 표현되는 제 2 의 III-V 족 화합물 반도체로부터 형성된 층을 구비하는 III-V 족 화합물 반도체로서, 상기 제 2 의 III-V 족 화합물 반도체의 (0004) 반사 X-ray 로킹커브 (reflection X-ray rocking curve) 의 반치폭 (FWHM : full width at half maximum) 이 X-ray 입사방향에 무관하게 700 초 이하인 것을 특징으로 하는 III-V 족 화합물 반도체에 관한 것이며,(1) general formula In u Ga v Al w N (u + v + w = 1, 0
Figure 112004058376984-pat00025
u
Figure 112004058376984-pat00026
1, 0
Figure 112004058376984-pat00027
v
Figure 112004058376984-pat00028
1, 0
Figure 112004058376984-pat00029
w
Figure 112004058376984-pat00030
A layer formed from the first group III-V compound semiconductor represented by 1), from the material other than the first group III-V compound semiconductor as well as the second group III-V compound semiconductor to be described later. A pattern formed on a layer, and on the first compound semiconductor and the pattern, a general formula In x Ga y Al z N (x + y + z = 1, 0
Figure 112004058376984-pat00031
x
Figure 112004058376984-pat00032
1, 0
Figure 112004058376984-pat00033
y
Figure 112004058376984-pat00034
1, 0
Figure 112004058376984-pat00035
z
Figure 112004058376984-pat00036
A group III-V compound semiconductor having a layer formed from a second group III-V compound semiconductor represented by 1), wherein the second group III-V compound semiconductor has a reflection X-ray locking curve A full width at half maximum (FWHM) of the X-ray rocking curve (FWHM) relates to a group III-V compound semiconductor, characterized in that less than 700 seconds, regardless of the X-ray incident direction,

(2) 일반식 InuGavAlwN (u+v+w=1, 0

Figure 112004058376984-pat00037
u
Figure 112004058376984-pat00038
1, 0
Figure 112004058376984-pat00039
v
Figure 112004058376984-pat00040
1, 0
Figure 112004058376984-pat00041
w
Figure 112004058376984-pat00042
1) 로 표현되는 제 1 의 III-V 족 화합물 반도체로부터 형성되는 층, 상기 제 1 의 III-V 족 화합물 반도체 뿐 아니라 후술할 제 2 의 III-V 족 화합물 반도체와도 다른 재료로부터 상기 층상에 형성되는 패턴, 및 상기 제 1 의 III-V 족 화합물 반도체 및 상기 패턴상에, 일반식 InxGayAlzN (x+y+z=1, 0
Figure 112004058376984-pat00043
x
Figure 112004058376984-pat00044
1, 0
Figure 112004058376984-pat00045
y
Figure 112004058376984-pat00046
1, 0
Figure 112004058376984-pat00047
z
Figure 112004058376984-pat00048
1) 으로 표현되는 제 2 의 III-V 족 화합물 반도체로부터 형성되는 층을 구비하는 III-V 족 화합물 반도체로서, 상기 패턴의 상부면이 상기 제 2 의 III-V 족 화합물 반도체와 접촉하지 않는 것을 특징으로 하는 화합물 반도체에 관한 것이며, 또한(2) General Formula In u Ga v Al w N (u + v + w = 1, 0
Figure 112004058376984-pat00037
u
Figure 112004058376984-pat00038
1, 0
Figure 112004058376984-pat00039
v
Figure 112004058376984-pat00040
1, 0
Figure 112004058376984-pat00041
w
Figure 112004058376984-pat00042
A layer formed from the first group III-V compound semiconductor represented by 1), the layer III-V compound semiconductor as well as the second group III-V compound semiconductor to be described later On the pattern to be formed, and on the first group III-V compound semiconductor and the pattern, a general formula In x Ga y Al z N (x + y + z = 1, 0
Figure 112004058376984-pat00043
x
Figure 112004058376984-pat00044
1, 0
Figure 112004058376984-pat00045
y
Figure 112004058376984-pat00046
1, 0
Figure 112004058376984-pat00047
z
Figure 112004058376984-pat00048
A group III-V compound semiconductor having a layer formed from a second group III-V compound semiconductor represented by 1), wherein an upper surface of the pattern does not contact the group III-V compound semiconductor. To a compound semiconductor characterized by

(3) (1) 및 (2) 의 III-V 족 화합물 반도체로서, 패턴이 텅스텐 (W) 으로부터 형성되는 III-V 족 화합물 반도체에 관한 것이다. 본 발명에 따른 반도체 장치 및 동등의 것을 포함할 수 반도체 장치의 실시예는, 발광 다이오드 (LED), 레이저 다이오드 (LD) 등이 있으며, 이에 한하지는 않는다.(3) The group III-V compound semiconductor of (1) and (2), wherein the pattern relates to a group III-V compound semiconductor formed from tungsten (W). Examples of the semiconductor device and the semiconductor device according to the present invention may include, but are not limited to, a light emitting diode (LED), a laser diode (LD), and the like.

본 발명의 반도체에서 사용되는 III-V 족 화합물 반도체는, 제 2 의 III-V 족 화합물 반도체의 (0004) 반사 X-ray 로킹커브의 반치폭이 X-ray 입사방향에 무관하게 700 초 이하인 것이 특징이다.Group III-V compound semiconductors used in the semiconductor of the present invention are characterized in that the half width of the (0004) reflection X-ray rocking curve of the second group III-V compound semiconductor is 700 seconds or less regardless of the X-ray incidence direction. to be.

또한, 본 발명은, 제 1 및 제 2 의 III-V 족 화합물 반도체와 다른 재료로 형성된 패턴의 상부면이, 이 패턴위에 성장되는 결정과 거의 접촉하지 않는 것이 특징이다. 현재로서는 그 이유가 분명치 않지만, 패턴이 그 위에 재성장되는 결정과 접촉하지 않을 경우, 저각 입계의 생성이 억제되는 것으로 믿어진다.In addition, the present invention is characterized in that the upper surface of the pattern formed of a material different from the first and second group III-V compound semiconductors is hardly in contact with crystals grown on the pattern. The reason for this is not clear at present, but it is believed that when the pattern does not come into contact with the crystal regrown thereon, the formation of the low angle grain boundary is suppressed.

몇몇 종래 실시예들에서는, 패턴위에 빈 공간이 형성되고, 패턴과 재성장 층 사이의 간극을 만들지만, 그러한 경우라도 소위 과도성장 (overgrowth) 후에, 즉 재성장 층이 패턴과 접촉하도록 다소 과도성장된 후에, 공간이 형성된다. 이에 비하여, 본 발명은 재성장 층의 과도성장이 패턴상에서 거의 관측되지 않는다는 것이 특징이다.In some conventional embodiments, an empty space is formed on the pattern and creates a gap between the pattern and the regrowth layer, but even then after so-called overgrowth, ie after the regrowth layer is somewhat overgrown to contact the pattern , Space is formed. In contrast, the present invention is characterized in that almost no overgrowth of the regrowth layer is observed on the pattern.

이하, 본 발명에 대하여 더 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에서 사용되는 패턴의 재료로써는, 화합물 반도체의 재성장중 소정의 내구력 (durability) 을 갖는 재료를 사용하는 것이 바람직하다. 즉, 증착 (evaporation) 에 의해 재료가 소실되거나, 패턴이 형성된 표본상에서 재성장이 개시되기도 전에 재성장 분위기 또는 재성장 온도에서의 용융에 의해 재료가 기형이 된다면, 의도한 재성장을 양호한 재현성 (reproducibility) 을 갖도록 수행하는 것이 어렵다. 반면, 본 발명의 패턴상에서 재성장 층은 과도성장되지 않으므로, 적어도 재성장의 초기 단계에서 패턴 표면이 거칠어진다거나, 기저층으로부터 분리된다거나 하는 일이 발생하지 않고, 본 발명의 효과에 심각한 손상은 없을 수 있다.As the material of the pattern used in the present invention, it is preferable to use a material having a predetermined durability during regrowth of the compound semiconductor. That is, if the material is lost by evaporation, or if the material is deformed by melting in a regrowth atmosphere or regrowth temperature before regrowth is initiated on the patterned specimen, the intended regrowth may have good reproducibility. It is difficult to carry out. On the other hand, since the regrowth layer is not overgrown on the pattern of the present invention, at least in the initial stage of the regrowth, the pattern surface is not roughened or separated from the base layer, and there is no serious damage to the effect of the present invention. have.

더 자세하게는, 재성장중 표본은 암모늄 (ammonium) 과 같은 분위기에 노출되며, 그러한 조건에서 사용될 수 있는 재료로서는 (W, Re, Mo, Cr, Co, Si, Au, Zr, Ta, Ti, Nb, Ni, Pt, V, Hf, 및 Pd 와 같은 원소), 및 (BN 및 Si3N4 을 포함한 SiNx 와 같은 화합물), 및 (텅스텐 질화물, 티타늄 질화물, 지르코늄 질화물, 하프늄 질화물, 바나듐 질화물, 니오븀 질화물, 탄탈럼 질화물, 크롬 질화물, 몰리브덴 질화물, 레늄 질화물, 및 철 질화물과 같은 질화물) 등이 포함된다.More specifically, the sample during regrowth is exposed to an atmosphere such as ammonium, and materials that can be used in such conditions include (W, Re, Mo, Cr, Co, Si, Au, Zr, Ta, Ti, Nb, Elements such as Ni, Pt, V, Hf, and Pd), and (compounds such as SiNx including BN and Si 3 N 4 ), and (tungsten nitride, titanium nitride, zirconium nitride, hafnium nitride, vanadium nitride, niobium nitride , Nitrides such as tantalum nitride, chromium nitride, molybdenum nitride, rhenium nitride, and iron nitride).

적어도 2 개 층을 갖는 적층 층에서, 접촉하는 적층의 층들이 서로 다른 재료로 이루어지는 적층 형태가 본 발명에 사용될 수 있다. 특히, 텅스텐으로 된 층과 텅스텐 이외의 재료로 된 층을 포함하는 적층 형태가 사용될 수 있다. 또한, 본 발명의 구조를 제작하기 어려운 재료, 예를 들어 SiO2 또는 재성장 상태에서 안정하지 않는 재료가, 텅스텐과 다른 적층 층의 재료로써 사용될 수 있다.In a laminate layer having at least two layers, a laminate form in which the layers of the laminate in contact are made of different materials can be used in the present invention. In particular, a laminated form comprising a layer made of tungsten and a layer made of a material other than tungsten may be used. In addition, materials that are difficult to fabricate the structure of the present invention, such as SiO 2 or a material that is not stable in a regrowth state, may be used as the material of the tungsten and other laminated layers.

공지의 패턴 형태 (pattern geometries) 들이 본 발명의 패턴으로 사용될 수 있다. 그러한 특정의 예로서는, 소정의 폭의 줄무늬가 서로 평행하게 배열되어 있는 줄무늬 (line/space) 패턴, 소정의 폭의 개구부에 의해 서로 분리된 패턴, 및 원형 또는 다각형의 개구부를 통하여 기저층을 부분 노출시킨 패턴 등이 있다. 이러한 패턴 형태들은 재성장 상태, 패턴 재료 등을 고려하여 선택될 수 있다.Known pattern geometries can be used in the pattern of the present invention. As such specific examples, the base layer is partially exposed through a line / space pattern in which stripes of a predetermined width are arranged in parallel with each other, a pattern separated from each other by an opening of a predetermined width, and a circular or polygonal opening. Patterns and the like. Such pattern shapes may be selected in consideration of regrowth conditions, pattern materials, and the like.

줄무늬 패턴의 경우, 패턴폭이 0.05 ㎛ 보다 작지 않고 20 ㎛ 보다 크지 않는 것이 바람직하다. 패턴폭이 0.05 ㎛ 보다 작다면, 결함밀도를 줄이고자한 본 발명의 효과가 충분히 발휘될 수 없다. 반면, 20 ㎛ 보다 크다면, 패턴을 매몰하기 위해 요구되는 시간이 너무 길어져 실용적이지 못하다. 동일한 이유로, 원형 또는 다각형의 개구부를 갖는 패턴의 경우, 개구부간 거리는 0.05 ㎛ 보다 작지 않고, 20 ㎛ 보다 크지 않는 것이 바람직하다.In the case of the striped pattern, it is preferable that the pattern width is not smaller than 0.05 mu m and not larger than 20 mu m. If the pattern width is smaller than 0.05 mu m, the effect of the present invention for reducing the defect density cannot be sufficiently exhibited. On the other hand, if it is larger than 20 mu m, the time required to bury the pattern is too long and not practical. For the same reason, in the case of a pattern having an opening of a circular or polygonal shape, the distance between the openings is preferably not smaller than 0.05 mu m and not larger than 20 mu m.

줄무늬 패턴의 경우, 공간폭 (기저층이 노출되는 개구부의 폭) 이 0.01 ㎛ 보다 작지 않고 20 ㎛ 보다 크지 않는 것이 바람직하다. 공간폭이 0.01 ㎛ 보다 작다면, 현 반도체 공정으로는 정확한 형상을 실용적으로 제작할 수 없어, 바람직하지 않다. 반면, 20 ㎛ 보다 크다면, 결함을 줄이고자한 본 발명의 효과가 충분히 발휘될 수 없다. 동일한 이유로, 원형 또는 다각형의 개구부를 갖는 패턴의 경우, 개구부 크기는 0.01 ㎛ 보다 작지 않고 20 ㎛ 보다 크지 않는 것이 바람직하다.In the case of the striped pattern, it is preferable that the space width (width of the opening to which the base layer is exposed) is not smaller than 0.01 µm and not larger than 20 µm. If the space width is smaller than 0.01 µm, the accurate shape cannot be practically produced by the current semiconductor process, which is not preferable. On the other hand, if it is larger than 20 mu m, the effect of the present invention for reducing defects cannot be sufficiently exerted. For the same reason, in the case of a pattern having a circular or polygonal opening, the opening size is preferably not smaller than 0.01 μm and not larger than 20 μm.

줄무늬 패턴 형태에 있어, 줄무늬 방향에 특별한 제약은 없지만, 재성장에 의한 결함 감소의 효과가 줄무늬 방향에 따라 변하는 경우가 있다. 그러한 경우, 패턴 형태, 패턴 재료, 재성장 상태, 등을 고려하여 적절한 방향이 선택될 수 있다.In the stripe pattern shape, there is no particular restriction on the stripe direction, but the effect of defect reduction due to regrowth may vary depending on the stripe direction. In such a case, an appropriate direction may be selected in consideration of the pattern shape, the pattern material, the regrowth state, and the like.

증착 (evaporation), 스퍼터링, 화학기상증착 (CVD), 또는 플레이팅 (plating) 과 같은 공지 기술들이 패턴의 형성에 사용될 수 있다. 또한, 화합물 패턴이 화학 반응전에 형성된 필름의 화학반응에 의해 형성될 수 있다. 이 기술의 예는 암모니아 분위기에서 텅스텐 필름을 어닐링 시킴으로써 텅스텐 질화물 필름을 형성하는 것이다. 패턴의 필름 두께는 실제적인 내구성 및 생산성 등을 고려하여 결정될 수 있다. 텅스텐의 경우, 두께가 2 ㎚ 보다 작지 않고 5 ㎛ 보다 크지 않다.Known techniques, such as evaporation, sputtering, chemical vapor deposition (CVD), or plating, can be used to form the pattern. In addition, the compound pattern may be formed by chemical reaction of the film formed before the chemical reaction. An example of this technique is to form a tungsten nitride film by annealing the tungsten film in an ammonia atmosphere. The film thickness of the pattern may be determined in consideration of practical durability and productivity. In the case of tungsten, the thickness is not smaller than 2 nm and no larger than 5 μm.

본 발명의 재성장에 사용되는 결정성장 방법으로, HVPE 또는 MOVPE 방법이 사용될 수 있다. HVPE 방법은, 높은 성장율을 제공하고, 단기간에 양호한 결정을 생산할 수 있으므로, 본 발명에서 유익하게 사용될 수 있다. MOVPE 방법 또한 다수의 기판상에서 균일한 결정성장이 수행될 수 있기 때문에 본 발명에서 유익하게 사용될 수 있다.As the crystal growth method used for the regrowth of the present invention, an HVPE or MOVPE method may be used. The HVPE method can be advantageously used in the present invention because it provides a high growth rate and can produce good crystals in a short time. The MOVPE method can also be advantageously used in the present invention because uniform crystal growth can be performed on multiple substrates.

재성장 조건들로는 온도, 압력, 캐리어 가스, 및 원료재료 등이 있다. 공지의 조건들이 재성장에 사용될 수 있다. 더 자세하게는, 인듐 (In) 이 성분원소로 포함되지 않으면, 성장될 화합물 반도체의 성질에 따라 다르지만, 재성장 온도는 600 ℃ 보다 낮지 않고, 1200 ℃ 보다 높지 않는 것이 바람직하다. 재성장 온도가 600 ℃ 보다 낮거나, 1200 ℃ 보다 높다면, 재성장에 의해 양호한 결정을 획득하기 어렵다. 또한, 화합물 반도체가 성분원소로 인듐 (In) 을 포함한다면, 온도 안정성이 악화되어, 재성장 온도는 600 ℃ 보다 낮지 않고 900 ℃ 보다 높지 않는 것이 바람직하다.Regrowth conditions include temperature, pressure, carrier gas, and raw materials. Known conditions can be used for regrowth. More specifically, if indium (In) is not included as a component element, depending on the nature of the compound semiconductor to be grown, the regrowth temperature is preferably not lower than 600 ° C and not higher than 1200 ° C. If the regrowth temperature is lower than 600 ° C or higher than 1200 ° C, it is difficult to obtain good crystals by regrowth. In addition, if the compound semiconductor contains indium (In) as a component element, the temperature stability deteriorates, and the regrowth temperature is preferably not lower than 600 ° C and not higher than 900 ° C.

본 발명의 재성장에 사용될 수 있는 성장 압력 (growth pressure) 이 100 Pa 미만이라면, 양호한 결정을 획득하기 어렵다. 압력은 500 Pa 이상이 바람직하며, 1000 Pa 이상이라면 더욱 바람직하다. 성장 기압이 증가함에 따라, 결정성 (crystallinity) 은 향상되기 마련이지만, 일반적으로 재성장에 사용되는 MOVPE 장비 또는 HVPE 장비는 공업적으로 높은 성장 압력에서 사용되지 않으므로, 재성장의 성장압력은 10 기압 이하가 바람직하다.If the growth pressure that can be used for the regrowth of the present invention is less than 100 Pa, it is difficult to obtain good crystals. The pressure is preferably 500 Pa or more, and more preferably 1000 Pa or more. As the growth pressure increases, crystallinity tends to improve, but since MOVPE equipment or HVPE equipment that is generally used for regrowth is not used at industrially high growth pressure, the growth pressure of regrowth is less than 10 atm. desirable.

본 발명의 재성장에 사용될 수 있는 캐리어 가스로는, 종래의 MOVPE 또는 HVPE 방법에서 사용되는 수소, 질소, 헬륨, 아르곤, 등이 있다.Carrier gases that can be used for the regrowth of the present invention include hydrogen, nitrogen, helium, argon, and the like used in conventional MOVPE or HVPE processes.

다음의 원료재료들이 MOVPE 방법에 의한 본 발명의 III-V 족 화합물 반도체의 제작에 사용될 수 있다.The following raw materials can be used for fabricating the group III-V compound semiconductor of the present invention by the MOVPE method.

사용될 수 있는 III 족의 재료로는,Group III materials that can be used include

(1) 트리메틸 갈륨 (trimethyl gallium ((CH3)3Ga, 이하 TMG)), 트리에틸 갈륨 (triethyl gallium ((C2H5)3Ga, 이하 TEG)) 과 같은 일반식 R1R2R3Ga (R1, R2, R3 는 알킬기의 순서) 로 표현되는 트리알킬 갈륨 (trialkyl gallium), (1) general formula R 1 R 2 R such as trimethyl gallium ((CH 3 ) 3 Ga, TMG), triethyl gallium ((C 2 H 5 ) 3 Ga, TEG) Trialkyl gallium represented by 3 Ga (R 1 , R 2 , R 3 is an order of an alkyl group),

(2) 트리메틸 알미늄 (trimethyl aluminum ((CH3)3Al)), 트리에틸 알미늄 (triethyl aluminum ((C2H5)3Al, 이하 TEA)) 과 같은 일반식 R1R 2R3Al (R1, R2, R3 는 알킬기의 순서) 로 표현되는 트리알킬 알미늄 (trialkyl aluminum), (2) general formula R 1 R 2 R 3 Al (trimethyl aluminum ((CH 3 ) 3 Al)), triethyl aluminum (triethyl aluminum ((C 2 H 5 ) 3 Al, hereinafter TEA)) R 1 , R 2 , R 3 are trialkyl aluminum represented by the order of the alkyl group),

(3) 트리메틸아미닐란 (trimethylaminealane ((CH3)3N:AlH3)), 및(3) trimethylaminealane ((CH 3 ) 3 N: AlH 3 )), and

(4) 트리메틸 인듐 (trimethyl indium ((CH3)3In, 이하 TMI)), 트리에틸 인듐 (triethyl indium ((C2H5)3In)) 과 같은 일반식 R1R2R3In (R1, R2, R3 는 알킬기의 순서) 로 표현되는 트리알킬 인듐 (trialkyl indium) 등이 포함된다. 이러한 재료들은 독립적으로 혹은 결합되어 사용될 수 있다.(4) general formula R 1 R 2 R 3 In (trimethyl indium ((CH 3 ) 3 In, hereinafter referred to as TMI)), triethyl indium ((C 2 H 5 ) 3 In); R <1> , R <2> , R <3> is a trialkyl indium etc. which are represented by the order of an alkyl group), etc. are contained. These materials may be used independently or in combination.

V 족 재료로는, 예를 들어, 암모늄 (ammonium), 하이드라진 (hydrazine), 메틸하이드라진 (methylhydrazine), 1,1-디메틸하이드라진 (1,1-dimethylhydrazine), 1,2-디메틸하이드라진 (1,2-dimethylhydrazine), t-부틸아민 (t-butylamine), 및 에틸렌디아민 (ethylenediamine) 등이 있다. 이러한 재료들은 독립적으로 혹은 결합되어 사용된다. 이러한 재료 가운데, 암모늄 및 수소가 탄소원자를 함유하지 않아 반도체의 탄소오염을 최소화하므로 유리하며, 암모늄은 다루기가 쉬어 더욱 바람직하다.Examples of Group V materials include ammonium, hydrazine, methylhydrazine, 1,1-dimethylhydrazine, and 1,2-dimethylhydrazine (1,2). -dimethylhydrazine), t-butylamine, and ethylenediamine. These materials are used independently or in combination. Among these materials, ammonium and hydrogen are advantageous because they contain no carbon atoms, thus minimizing carbon contamination of semiconductors, and ammonium is more preferred because it is easier to handle.

III-V 족 화합물 반도체의 n 형 도펀트로써, Si, Ge, 또는 O 가 사용된다. 이러한 도펀트중, Si 가 n 형 재료에 대한 저항이 낮고, 고순도의 원료재료가 얻어질 수 있으므로 바람직하다. Si 도핑에 사용될 수 있는 원료재료로는 SiH4, Si2H6, 및 Si(CH3)H3 이 포함된다.As the n-type dopant of the III-V compound semiconductor, Si, Ge, or O is used. Of these dopants, Si is preferable because of low resistance to n-type materials and high purity raw materials can be obtained. Raw materials that can be used for Si doping include SiH 4 , Si 2 H 6 , and Si (CH 3 ) H 3 .

다음의 원료재료들이 MVPE 방법에 의한 본 발명의 III-V 족 화합물 반도체의 제작에 사용될 수 있다.The following raw materials can be used for fabricating the group III-V compound semiconductor of the present invention by the MVPE method.

III 족의 재료로는, 염화수소 (hydrogen chloride) 가스를 갈륨, 인듐 에 각각 반응시켜, 염화갈륨 (GaCl) 및 염화인듐 (InCl) 이 만들어질 수 있다. 또한, 고온에서 염화수소 가스를, TMG 또는 TEG 와 같은 일반식 R1R2R3Ga (R1, R2, R3 는 알킬기의 순서) 으로 표현되는 트리알킬 갈륨 (trialkyl gallium), 및 TMI 또는 에틸 인듐 (ehthyl induim) 과 같은 R1R2R3In (R1, R2, R3 는 알킬기의 순서) 로 표현되는 트리알킬 인듐 (trialkyl indium) 과 반응시켜, 염화 갈륨 및 염화 인듐이 만들어질 수 있다. 더욱이, 디메틸 갈륨 클로라이드 (dimethyl gallium chloride (Ga(CH3)2Cl)), 디에틸 갈륨 클로라이드 (diehthyl gallium chloride (Ga(C2H5)2Cl)), 디메틸 인듐 클로라이드 (dimethyl indium chloride (In(CH3)2Cl)), 디에틸 인듐 클로라이드 (diethyl indium chloride (In(C2H5)2Cl)), 등이 염화 갈륨 및 염화 인듐을 만들기 위해 고온에서 분해될 수 있다. 또한, 캐리어 가스 버블을 상온에서 안정한 GaCl2, InCl2, 등과 반응시키는 것도 가능하다. 이 재료들은 독립적으로 혹은 혼합하여 사용될 수 있다.As a material of group III, hydrogen chloride gas can be reacted with gallium and indium, respectively, to produce gallium chloride (GaCl) and indium chloride (InCl). Hydrogen chloride gas at high temperature is also represented by trialkyl gallium, represented by the general formula R 1 R 2 R 3 Ga (R 1 , R 2 , R 3 is an order of alkyl group) such as TMG or TEG, and TMI or Reaction with trialkyl indium, represented by R 1 R 2 R 3 In (R 1 , R 2 , R 3 is an order of alkyl groups) such as ethyl induim, produces gallium chloride and indium chloride. Can lose. Moreover, dimethyl gallium chloride (Ga (CH 3 ) 2 Cl), diethylthium gallium chloride (Ga (C 2 H 5 ) 2 Cl)), dimethyl indium chloride (In (CH 3 ) 2 Cl)), diethyl indium chloride (In (C 2 H 5 ) 2 Cl), and the like can be decomposed at high temperatures to make gallium chloride and indium chloride. It is also possible to react the carrier gas bubbles with GaCl 2 , InCl 2 , etc., which are stable at room temperature. These materials can be used independently or in combination.

Ⅴ 족 재료로는 암모늄, 하이드라진, 메틸 하이드라진 (methylhydrazine), 1,1-디메틸 하이드라진 (1,1-dimethylhydrazine), 1,2-디메틸 하이드라진 (1,2-dimethylhydrazine), t-부틸아민 (t-butylamine), 및 에틸렌디아민 (ehtylenediamine) 등이 있다. 이러한 재료들은 독립적으로 혹은 혼합하여 사용될 수 있다. 이 재료들 가운데, 암모늄 및 하이드라진이 탄소원자를 함유하지 않아, 반도체의 탄소오염을 최소화할 수 있으므로 유리하며, 암모늄은 다루기가 쉬워 더욱 선호된다.Group V materials include ammonium, hydrazine, methyl hydrazine (methylhydrazine), 1,1-dimethyl hydrazine (1,1-dimethylhydrazine), 1,2-dimethyl hydrazine (1,2-dimethylhydrazine), t-butylamine (t- butylamine), and ethylenediamine. These materials can be used independently or in combination. Among these materials, ammonium and hydrazine do not contain carbon atoms, which is advantageous because they can minimize carbon contamination of semiconductors, and ammonium is preferred because of its ease of handling.

규소 (Si), 게르마늄 (Ge), 또는 산소 (O) 등은 III-V 족 화합물 반도체의 n 형 도펀트로 사용된다. 이들 도펀트 가운데, Si 가 저저항의 n 형 재료를 만들 수 있고, 고순도의 원료재료 획득이 가능하므로 선호된다. Si 도핑에 사용될 수 있는 원료 재료로는, 모노클로로실란 (monochlorosilane, (SiH3Cl)) 및 디클로로실란 (dichlorosilane (SiH2Cl2)) 등이 있다.Silicon (Si), germanium (Ge), oxygen (O), or the like is used as the n-type dopant of the III-V compound semiconductor. Among these dopants, Si is preferred because it can make a low resistance n-type material and obtain a high purity raw material. Raw materials that may be used for Si doping include monochlorosilane (SiH 3 Cl) and dichlorosilane (SiH 2 Cl 2 ).

본 발명에서는, 패턴 형성 조건 및 재성장 조건에 따라, 재성장후 제 1 의 III-V 족 화합물 반도체 층의 표면상에 침하 (depression) 가 발생하는 경우도 있다. 그러한 침하는 제 1 의 III-V 족 화합물 반도체로 일반식 InuGavAlwN (u+v+w=1, 0

Figure 112004058376984-pat00049
u<1, 0
Figure 112004058376984-pat00051
v<1, 0<w
Figure 112004058376984-pat00054
1) 로 표현되는 III-V 족 화합물 반도체를 사용함으로써 억제될 수 있는 경우도 있다. 고유값에 있어서는, AlN 의 구성비 (상기 일반식에서 W 의 값) 가 1% 이상이어야하고, 5% 이상이 바람직하다. 다른 고유값에 있어서는, 제 1 의 III-V 족 화합물 반도체 층의 두께가 0.3 ㎚ 이상이어야 하며, 1 ㎚ 이상이 바람직하다. 일반적으로, 재성장중 침하의 형성을 억제하는 효과는, AlN 의 조성비 또는 제 1 의 III-V 족 화합물 반도체 층의 두께가 증가함에 따라 증가하지만, 동시에 제 1 의 III-V 족 화합물 반도체의 결정성은 감소하기 쉬우므로, 제 1 의 III-V 족 화합물 반도체 층의 두께는 AlN 의 조성비에 따라 조정되어야 한다.In the present invention, depending on the pattern formation conditions and the regrowth conditions, depression may occur on the surface of the first group III-V compound semiconductor layer after regrowth. Such a settlement is the first group III-V compound semiconductor, and the general formula In u Ga v Al w N (u + v + w = 1, 0
Figure 112004058376984-pat00049
u <1, 0
Figure 112004058376984-pat00051
v <1, 0 <w
Figure 112004058376984-pat00054
It may be suppressed by using the group III-V compound semiconductor represented by 1). In the intrinsic value, the composition ratio of AlN (the value of W in the general formula) should be 1% or more, and 5% or more is preferable. In other eigenvalues, the thickness of the first group III-V compound semiconductor layer must be 0.3 nm or more, preferably 1 nm or more. In general, the effect of inhibiting the formation of settlement during regrowth increases with increasing the composition ratio of AlN or the thickness of the first III-V compound semiconductor layer, but at the same time the crystallinity of the first III-V compound semiconductor Since it is easy to decrease, the thickness of the first group III-V compound semiconductor layer must be adjusted according to the composition ratio of AlN.

<제 1 실시예><First Embodiment>

먼저, 기저 결정 (base crystal) 이 다음의 방법으로 준비된다. GaN 의 버퍼 층이, MOVPE 법을 사용하여 550 ℃ 에서 50 ㎚ 의 두께까지 사파이어 기판상에 성장되고, GaN 이, 1100 ℃ 에서 4 ㎛ 의 두께까지 더 성장된다. 다음, 텅스텐 (W) 이 기저 층 상에 30 ㎚ 의 두께까지 스퍼터링에 의해 증착되고, 줄무늬 패턴이, 종래의 포토리소그라피를 사용하여 5 ㎛ 의 개구부와 5 ㎛ 의 줄무늬를 갖도록 형성된다. 줄무늬 방향은 <1-100> 방향이다. 다음, 이 결정을 사용하여, 재성장이 HVPE 방법으로 33 ㎛ 의 두께까지 수행된다. 또한, 제 1 실시예의 대비예로서, 텅스텐 대신 이산화 규소 (SiO2) 를 사용하여 패턴이 형성되고, 같은 방법으로 재성장이 수행된다. 두 가지 경우 모두, 재성장으로 얻은 결정이 거울 표면 (specular surface) 을 갖는다.First, a base crystal is prepared by the following method. A buffer layer of GaN is grown on the sapphire substrate to a thickness of 50 nm at 550 ° C. using the MOVPE method, and GaN is further grown to a thickness of 4 μm at 1100 ° C. Next, tungsten (W) is deposited on the base layer by sputtering to a thickness of 30 nm, and a stripe pattern is formed to have an opening of 5 mu m and stripes of 5 mu m using conventional photolithography. The stripe direction is the <1-100> direction. Next, using this crystal, regrowth is carried out to a thickness of 33 μm by the HVPE method. Further, as a comparative example of the first embodiment, a pattern is formed using silicon dioxide (SiO 2 ) instead of tungsten, and regrowth is performed in the same manner. In both cases, the crystals obtained by regrowth have a specular surface.

그렇게 얻은 결정의 결정방향 (orientation) 의 변동을 조사하기 위해서, 줄무늬 방향에 직교하는 방향과 평행한 방향에서 X-ray 로킹커브가 측정되었다. 도 2a 및 2b 는 그 결과를 나타낸다. 재성장이 텅스텐 패턴상에서 수행되는 경우, 로킹커브의 반치폭은, X-ray 입사방향과 무관하게 200 초 이하로 일정하였으며, 어떠한 결정 방향의 변동도 관측되지 않았다. 반면, 이산화규소 (SiO2) 패턴의 경우 (대비예의 경우), 로킹커브의 반치폭 (FWHM) 이 패턴 줄무늬에 평행한 방향에서는 좁지만, 줄무늬에 직교한 방향에서는 750 초 이상으로 증가되었다 (도 2b 참조). 이것은, 패턴상에서 재성장된 결정이 기저 결정에 대한 결정방향의 변동을 가지며, 텅스텐 패턴의 경우와 비교하여 결정성이 충분치 못하다는 것을 의미한다.In order to investigate the variation in the orientation of the crystal thus obtained, an X-ray rocking curve was measured in a direction parallel to the direction orthogonal to the stripe direction. 2A and 2B show the results. When the regrowth was performed on the tungsten pattern, the half width of the rocking curve was constant at 200 seconds or less regardless of the X-ray incidence direction, and no variation in the crystal direction was observed. On the other hand, for the silicon dioxide (SiO 2 ) pattern (for contrast), the half width (FWHM) of the rocking curve was narrow in the direction parallel to the pattern stripes, but increased to over 750 seconds in the direction orthogonal to the stripes (FIG. 2B). Reference). This means that the crystals regrown on the pattern have variations in the crystal direction relative to the base crystals, and the crystallinity is not sufficient as compared to the case of the tungsten pattern.

제 1 실시예에서 얻어진 표본은 패턴에 법선 (normal) 방향으로 단층이 생기며 (cleaved), 투과 전자 현미경 (transmission electron microscope) 에서 전단면을 관측한 결과, 재성장 필름이 텅스텐 패턴 이상으로 과도성장 되지 않음이 확증되었다.The specimen obtained in Example 1 was cleaved in the normal direction of the pattern, and the shear plane was observed from a transmission electron microscope, so that the regrown film did not overgrow beyond the tungsten pattern. This was confirmed.

<제 2 실시예>Second Embodiment

본 발명에 따른 결함이 감소된 GaAlN 필름이 제 1 실시예와 같은 방법으로 줄무늬 패턴상에서의 재성장에 의해 형성된다. GaAlN 필름 상부에 적정의 층이 형성되고, 에칭 및 전극 증착 (electrode deposition) 과 같은 반도체 공정이 반복되어, HEMT (High Electron Mobility Transistors) 또는 FET (Field Effect Transistors) 와 같은 전자 소자가 얻어진다. 이러한 전자 소자들은 소자로서 기능하는 결정에 포함된 결정 결함의 수가 감소되므로, 우수한 전기적 특성과 신뢰성을 갖는다.A GaAlN film having reduced defects according to the present invention is formed by regrowth on a stripe pattern in the same manner as in the first embodiment. An appropriate layer is formed over the GaAlN film, and semiconductor processes such as etching and electrode deposition are repeated to obtain an electronic device such as HEMT (High Electron Mobility Transistors) or FET (Field Effect Transistors). These electronic devices have excellent electrical properties and reliability because the number of crystal defects included in the crystals functioning as devices is reduced.

<제 3 실시예>Third Embodiment

본 발명에 따른 결함이 감소된 GaAlN 필름이 제 1 실시예와 같은 방법으로 줄무늬 패턴상에서의 재성장에 의해 형성된다. 이 GaAlN 필름 상부에 n 형 층, n 형 층 보다 대역간극이 작은 층 (발광 층), 및 p 형 층이, 설명된 순서대로 화합물 반도체로부터 형성되며, 에칭 및 전극 증착과 같은 반도체 공정이 반복되어 발광 다이오드 또는 반도체 레이저와 같은 발광소자를 얻는다. 이러한 발광소자들은 소자로서 기능하는 결정에 포함된 결정결함의 수가 감소되므로, 우수한 발광 특성 및 신뢰성, 특히 우수한 수명을 갖는다.A GaAlN film having reduced defects according to the present invention is formed by regrowth on a stripe pattern in the same manner as in the first embodiment. On top of this GaAlN film, an n-type layer, a layer having a smaller band gap than the n-type layer (light emitting layer), and a p-type layer are formed from the compound semiconductor in the order described, and semiconductor processes such as etching and electrode deposition are repeated. A light emitting device such as a light emitting diode or a semiconductor laser is obtained. These light emitting devices have excellent luminescent properties and reliability, particularly good lifespan, since the number of crystal defects contained in the crystal functioning as the device is reduced.

<제 4 실시예>Fourth Embodiment

GaN 가 4 ㎛ 의 두께로 제 1 실시예와 같은 방법으로 재성장되며, 그 상부에, GaAlN 이 성장된다. 이 층의 AlN 조성비는 약 15% 이며, 두께는 30 ㎚ 이다. 이 층의 상부에 20 ㎚ 두께의 W 필름이 전자빔 증착 (electron beam evaporation) 에 의해 형성되고, 종래의 포토리소그라피에 의해 줄무늬 패턴이 형성된다. 줄무늬 방향은 <1-100> 방향이며, 줄무늬 폭과 줄무늬 간격은 모두 5 ㎛ 이다. 다음, MOVPE 방법으로 재성장이 수행된다. 성장 압력은 40k Pa 이며, 재성장 층의 두께는 3 ㎛ 이다. 재성장에 의해 얻어지는 결정은 거울 표면 (specular surface) 을 갖는다. 제 1 및 제 4 실시예에서 얻어진 표본은 줄무늬 패턴에 직교한 방향으로 단층이 생기며, 그 전단면이 전자현미경으로 관측되었다. 그 결과, 제 1 실시예에서 얻어진 표본의 기저 결정상에 손상이 다소 관측 되지만, 제 4 실시예에서 얻어진 표본상에서는 기저 결정상에 아무런 결함이 관측되지 않는다.GaN is regrown in the same manner as in the first embodiment to a thickness of 4 m, and on top of it, GaAlN is grown. The AlN composition ratio of this layer is about 15% and the thickness is 30 nm. On top of this layer, a 20 nm thick W film is formed by electron beam evaporation, and a stripe pattern is formed by conventional photolithography. The stripe direction is the <1-100> direction, and both the stripe width and the stripe spacing are 5 m. Next, regrowth is performed by the MOVPE method. The growth pressure is 40 k Pa and the thickness of the regrowth layer is 3 μm. Crystals obtained by regrowth have a specular surface. The specimens obtained in the first and fourth examples had a monolayer in a direction orthogonal to the stripe pattern, and the shear surface thereof was observed with an electron microscope. As a result, some damage is observed on the base crystal of the sample obtained in the first embodiment, but no defect is observed on the base crystal on the sample obtained in the fourth embodiment.

<제 5 실시예>Fifth Embodiment

GaN 가 4 ㎛ 의 두께로 제 1 실시예와 같은 방법으로 재성장된다. 텅스텐 필름이 스퍼터링에 의해 50 ㎚ 의 두께로 증착되고, 이 기저 결정상에 SiO2 필름이 스퍼터링에 의해 50 ∼ 70 ㎚ 두께로 증착된다. 다음, 종래의 포토리소그라피로, 그 위에 줄무늬 패턴이 형성된다. 줄무늬 방향은 <1-100> 및 <11-20> 방향이다. 다음, 저압 MOVPE 법으로 재성장이 수행된다. 재성장 필름의 두께는 약 8 ㎛ 이다. 여기서 얻어진 샘플과 상기 제 1 실시예에서 얻어진 필름은 줄무늬 패턴에 직교한 방향으로 단층이 형성되고, 그 단면부를 전자 현미경으로 관측한 결과, 제 1 실시예의 샘플에서 마스크 아래 침하가 형성된 것이 관측되었고, 제 5 실시예의 샘플의 경우는 침하의 형성이 크게 줄었다.GaN is regrown in the same manner as in the first embodiment to a thickness of 4 mu m. A tungsten film is deposited to a thickness of 50 nm by sputtering, and a SiO 2 film is deposited to a thickness of 50 to 70 nm by sputtering on the base crystal. Next, with conventional photolithography, a stripe pattern is formed thereon. The stripes are in the <1-100> and <11-20> directions. Next, regrowth is performed by low pressure MOVPE method. The thickness of the regrowth film is about 8 μm. In the sample obtained here and the film obtained in the first example, a monolayer was formed in a direction orthogonal to the stripe pattern, and when the cross section was observed under an electron microscope, it was observed that settlement was formed under the mask in the sample of the first example, In the case of the sample of Example 5, the formation of settlements was greatly reduced.

<제 6 실시예>Sixth Embodiment

GaN 가 4 ㎛ 의 두께로 제 1 실시예와 같은 방법으로 재성장된다. 이 기저결정 상부에 텅스텐 필름이 전자빔 증착법에 의해 20 ㎚ 의 두께로 증착된다. 이 샘플을 400 ℃ 의 수소 분위기에서 10 분간 둔 다음, 600 ℃ 의 수소 가스와 암모니아 가스의 혼합 가스 분위기에서 5 분간 둔 다음, 수소 가스와 암모니아 가스의 혼합가스 분위기의 온도를 950 ℃ 로 올린다. 다음, 즉시 샘플을 냉각시킨다. X-ray 광전 분광분석에 의해, 텅스텐 층에 텅스텐 질화물 (tungsten nitride) 이 균일하게 형성됨이 발견되었다. 이렇게 얻어진 마스크 재료에 패턴이 형성되고 제 1 실시예와 동일한 방법으로 재성장이 수행된다. 이렇게 하여 제 1 실시예와 같은 양호한 매몰구조가 형성된다. 암모니아를 포함하는 분위기에서의 열처리에서, 본 실시예에서 사용된 암모니아 가스와 수소 가스의 혼합가스와는 다른 암모니아 가스와 불활성 가스의 혼합가스도 사용될 수 있다.GaN is regrown in the same manner as in the first embodiment to a thickness of 4 mu m. A tungsten film is deposited on the base crystal to a thickness of 20 nm by the electron beam evaporation method. The sample was placed in a hydrogen atmosphere of 400 ° C for 10 minutes, and then placed in a mixed gas atmosphere of 600 ° C hydrogen gas and ammonia gas for 5 minutes, and then the temperature of the mixed gas atmosphere of hydrogen gas and ammonia gas was raised to 950 ° C. The sample is then cooled immediately. X-ray photoelectric spectroscopy has found that tungsten nitride is uniformly formed in the tungsten layer. A pattern is formed on the mask material thus obtained and regrowth is performed in the same manner as in the first embodiment. In this way, the same good buried structure as in the first embodiment is formed. In the heat treatment in an atmosphere containing ammonia, a mixed gas of ammonia gas and an inert gas other than the mixed gas of ammonia gas and hydrogen gas used in this embodiment may also be used.

상기 설명한 바와 같이 본 발명에서는, 저각 입계의 발생을 줄인 III-V 족 반도체 화합물을 얻을 수 있고, 결정성을 향상시킬 수 있으므로, 상기 실시예에 따라 제작된 전자 소자들은 결정 결함의 수가 감소되고, 우수한 전기적 특성과 신뢰성을 갖는다. 또한, 발광소자에 사용될 경우, 우수한 발광 특성 및 우수한 수명을 갖는다.As described above, in the present invention, it is possible to obtain a group III-V semiconductor compound having reduced generation of low angle grain boundaries, and to improve crystallinity. It has excellent electrical characteristics and reliability. In addition, when used in a light emitting device, it has excellent light emission characteristics and good lifespan.

Claims (9)

일반식 InuGavAlwN (u+v+w=1, 0
Figure 112006068305068-pat00055
u
Figure 112006068305068-pat00056
1, 0
Figure 112006068305068-pat00057
v
Figure 112006068305068-pat00058
1, 0
Figure 112006068305068-pat00059
w
Figure 112006068305068-pat00060
1) 로 표현되는 제 1 의 III-V 족 화합물 반도체로부터 형성된 층,
Formula In u Ga v Al w N (u + v + w = 1, 0
Figure 112006068305068-pat00055
u
Figure 112006068305068-pat00056
1, 0
Figure 112006068305068-pat00057
v
Figure 112006068305068-pat00058
1, 0
Figure 112006068305068-pat00059
w
Figure 112006068305068-pat00060
A layer formed from the first group III-V compound semiconductor represented by 1),
상기 제 1 의 III-V 족 화합물 반도체 뿐만 아니라 후술할 제 2 의 III-V 족 화합물 반도체와도 다른 재료로부터 상기 층 상에 형성된 패턴, 및A pattern formed on the layer from a material other than the first group III-V compound semiconductor as well as the second group III-V compound semiconductor to be described later, and 상기 제 1 의 III-V 족 화합물 반도체와 상기 패턴상에, 일반식 InxGayAlzN (x+y+z=1, 0
Figure 112006068305068-pat00086
x
Figure 112006068305068-pat00087
1, 0
Figure 112006068305068-pat00088
y
Figure 112006068305068-pat00089
1, 0
Figure 112006068305068-pat00090
z
Figure 112006068305068-pat00091
1) 로 표현되는 제 2 의 III-V 족 화합물 반도체로부터 형성된 층을 구비하는 III-V 족 화합물 반도체로서,
On the first group III-V compound semiconductor and the pattern, a general formula In x Ga y Al z N (x + y + z = 1, 0
Figure 112006068305068-pat00086
x
Figure 112006068305068-pat00087
1, 0
Figure 112006068305068-pat00088
y
Figure 112006068305068-pat00089
1, 0
Figure 112006068305068-pat00090
z
Figure 112006068305068-pat00091
A group III-V compound semiconductor having a layer formed from a second group III-V compound semiconductor represented by 1),
상기 제 2 의 III-V 족 화합물 반도체의 (0004) 반사 X-ray 로킹커브의 반치폭 (FWHM) 이 X-ray 입사방향에 무관하게 700 초 이하인 것을 특징으로 하는 III-V 족 화합물 반도체.And a half width (FWHM) of the (0004) reflection X-ray locking curve of the second group III-V compound semiconductor is 700 seconds or less, regardless of the X-ray incident direction.
일반식 InuGavAlwN (u+v+w=1, 0
Figure 112004058376984-pat00067
u
Figure 112004058376984-pat00068
1, 0
Figure 112004058376984-pat00069
v
Figure 112004058376984-pat00070
1, 0
Figure 112004058376984-pat00071
w
Figure 112004058376984-pat00072
1) 로 표현되는 제 1 의 III-V 족 화합물 반도체로부터 형성된 층,
Formula In u Ga v Al w N (u + v + w = 1, 0
Figure 112004058376984-pat00067
u
Figure 112004058376984-pat00068
1, 0
Figure 112004058376984-pat00069
v
Figure 112004058376984-pat00070
1, 0
Figure 112004058376984-pat00071
w
Figure 112004058376984-pat00072
A layer formed from the first group III-V compound semiconductor represented by 1),
상기 제 1 의 III-V 족 화합물 반도체 뿐만 아니라 후술할 제 2 의 III-V 족 화합물 반도체와도 다른 재료로부터 상기 층 상에 형성된 패턴, 및A pattern formed on the layer from a material other than the first group III-V compound semiconductor as well as the second group III-V compound semiconductor to be described later, and 상기 제 1 의 III-V 족 화합물 반도체와 상기 패턴상에, 일반식 InxGayAlzN (x+y+z=1, 0
Figure 112004058376984-pat00073
x
Figure 112004058376984-pat00074
1, 0
Figure 112004058376984-pat00075
y
Figure 112004058376984-pat00076
1, 0
Figure 112004058376984-pat00077
z
Figure 112004058376984-pat00078
1) 로 표현되는 제 2 의 III-V 족 화합물 반도체로부터 형성되는 층을 구비하는 III-V 족 화합물 반도체로서,
On the first group III-V compound semiconductor and the pattern, a general formula In x Ga y Al z N (x + y + z = 1, 0
Figure 112004058376984-pat00073
x
Figure 112004058376984-pat00074
1, 0
Figure 112004058376984-pat00075
y
Figure 112004058376984-pat00076
1, 0
Figure 112004058376984-pat00077
z
Figure 112004058376984-pat00078
A group III-V compound semiconductor comprising a layer formed from a second group III-V compound semiconductor represented by 1),
상기 패턴의 상부면이 상기 제 2 의 III-V 족 화합물 반도체와 접촉하지 않는 것을 특징으로 하는 III-V 족 화합물 반도체.The group III-V compound semiconductor, wherein the upper surface of the pattern does not contact the second group III-V compound semiconductor.
제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 패턴은 텅스텐 (W) 으로부터 형성되는 것을 특징으로 하는 III-V 족 화합물 반도체.The pattern III-V compound semiconductor, characterized in that formed from tungsten (W). 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 제 1 의 III-V 족 화합물 반도체가 일반식 InuGavAlwN (u+v+w=1, 0
Figure 112004058376984-pat00079
u
Figure 112004058376984-pat00080
1, 0
Figure 112004058376984-pat00081
v
Figure 112004058376984-pat00082
1, 0.01
Figure 112004058376984-pat00083
w
Figure 112004058376984-pat00084
1) 로 표현되는 것을 특징으로 하는 III-V 족 화합물 반도체.
The first group III-V compound semiconductor is represented by general formula In u Ga v Al w N (u + v + w = 1, 0
Figure 112004058376984-pat00079
u
Figure 112004058376984-pat00080
1, 0
Figure 112004058376984-pat00081
v
Figure 112004058376984-pat00082
1, 0.01
Figure 112004058376984-pat00083
w
Figure 112004058376984-pat00084
A group III-V compound semiconductor, characterized in that 1).
제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2, 상기 패턴은 서로 다른 재료로 이루어져서 접촉하고 있는, 둘 이상의 층을 포함하는 적층 형태인 것을 특징으로 하는 III-V 족 화합물 반도체.The pattern group III-V compound semiconductor, characterized in that the laminated form comprising two or more layers, which are made of different materials in contact with each other. 제 5 항에 있어서, The method of claim 5, 상기 패턴은 텅스텐으로 이루어진 층 및 텅스텐과 다른 재료로 이루어진 층을 적어도 포함하는 적층 형태인 것을 특징으로 하는 III-V 족 화합물 반도체.The pattern III-V group compound semiconductor, characterized in that the laminated form including at least a layer made of tungsten and a layer made of a material other than tungsten. 제 5 항에 있어서, The method of claim 5, 상기 패턴은 텅스텐으로 이루어진 층 및 SiO2 로 이루어진 층을 적어도 포함하는 적층 형태인 것을 특징으로 하는 III-V 족 화합물 반도체.The pattern is a group III-V compound semiconductor, characterized in that the laminated form including at least a layer made of tungsten and a layer made of SiO 2 . 제 1 항 또는 제 2 항의 III-V 족 화합물 반도체를 포함하는 것을 특징으로 하는 전자 소자.An electronic device comprising the group III-V compound semiconductor according to claim 1 or 2. 제 1 항 또는 제 2 항의 III-V 족 화합물 반도체를 포함하는 것을 특징으로 하는 발광 소자.A light emitting device comprising the group III-V compound semiconductor according to claim 1 or 2.
KR1020000012525A 1999-03-12 2000-03-13 Iii-v compound semiconductor KR100699739B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP6674399 1999-03-12
JP1999-066743 1999-03-12
JP1999-236979 1999-08-24
JP23697999 1999-08-24
JP2000033293A JP2001135575A (en) 1999-03-12 2000-02-10 Iii-v compound semiconductor
JP2000-033293 2000-02-10

Publications (2)

Publication Number Publication Date
KR20000076838A KR20000076838A (en) 2000-12-26
KR100699739B1 true KR100699739B1 (en) 2007-03-27

Family

ID=27299227

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000012525A KR100699739B1 (en) 1999-03-12 2000-03-13 Iii-v compound semiconductor

Country Status (4)

Country Link
JP (1) JP2001135575A (en)
KR (1) KR100699739B1 (en)
DE (1) DE10011876A1 (en)
TW (1) TW472299B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437768B1 (en) 2012-03-26 2014-09-03 후지쯔 가부시끼가이샤 Semiconductor device, nitride semiconductor crystal, method for manufacturing semiconductor device, and method for manufacturing nitride semiconductor crystal

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3631724B2 (en) * 2001-03-27 2005-03-23 日本電気株式会社 Group III nitride semiconductor substrate and manufacturing method thereof
DE102005041643A1 (en) 2005-08-29 2007-03-01 Forschungsverbund Berlin E.V. Semiconductor method for producing an isolated semiconductor substrate uses a masking layer with holes and an output layer
JP4783686B2 (en) * 2006-07-07 2011-09-28 独立行政法人科学技術振興機構 III-V group nitride semiconductor, photocatalytic semiconductor element, photocatalytic oxidation-reduction reaction apparatus, and photoelectrochemical reaction execution method
JP4783869B2 (en) * 2011-03-03 2011-09-28 独立行政法人科学技術振興機構 III-V group nitride semiconductor, photocatalytic semiconductor element, photocatalytic oxidation-reduction reaction apparatus, and photoelectrochemical reaction execution method
JP2014076928A (en) * 2012-10-12 2014-05-01 Waseda Univ Template substrate
FR3018629B1 (en) * 2014-03-14 2022-10-28 Ommic SEMICONDUCTOR STRUCTURE FORMING TRANSISTOR HEMT
DE202014103180U1 (en) 2014-07-10 2014-07-28 Zonkas Electronic Co., Ltd. passive component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139414A (en) * 1994-11-08 1996-05-31 Mitsubishi Cable Ind Ltd Semiconductor laser
JPH0927640A (en) * 1995-07-13 1997-01-28 Sumitomo Chem Co Ltd Iii-v compound semiconductor and light-emitting element
JPH10341059A (en) * 1998-05-15 1998-12-22 Sharp Corp Gallium nitride semiconductor laser element and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139414A (en) * 1994-11-08 1996-05-31 Mitsubishi Cable Ind Ltd Semiconductor laser
JPH0927640A (en) * 1995-07-13 1997-01-28 Sumitomo Chem Co Ltd Iii-v compound semiconductor and light-emitting element
JPH10341059A (en) * 1998-05-15 1998-12-22 Sharp Corp Gallium nitride semiconductor laser element and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437768B1 (en) 2012-03-26 2014-09-03 후지쯔 가부시끼가이샤 Semiconductor device, nitride semiconductor crystal, method for manufacturing semiconductor device, and method for manufacturing nitride semiconductor crystal
KR101468364B1 (en) * 2012-03-26 2014-12-03 후지쯔 가부시끼가이샤 Semiconductor device, nitride semiconductor crystal, method for manufacturing semiconductor device, and method for manufacturing nitride semiconductor crystal

Also Published As

Publication number Publication date
JP2001135575A (en) 2001-05-18
TW472299B (en) 2002-01-11
KR20000076838A (en) 2000-12-26
DE10011876A1 (en) 2000-09-14

Similar Documents

Publication Publication Date Title
US6756246B2 (en) Method for fabricating III-V group compound semiconductor
KR100761673B1 (en) Group III-V compound semiconductor and method of producing the same
US7674699B2 (en) III group nitride semiconductor substrate, substrate for group III nitride semiconductor device, and fabrication methods thereof
JP5276852B2 (en) Method for manufacturing group III nitride semiconductor epitaxial substrate
EP1299900B1 (en) METHOD FOR ACHIEVING IMPROVED EPITAXY QUALITY (SURFACE TEXTURE AND DEFECT DENSITY) ON FREE-STANDING (ALUMINUM, INDIUM, GALLIUM) NITRIDE ((Al,In,Ga)N) SUBSTRATES FOR OPTO-ELECTRONIC AND ELECTRONIC DEVICES
US6924159B2 (en) Semiconductor substrate made of group III nitride, and process for manufacture thereof
US6809351B2 (en) Group III-V compound semiconductor crystal structure and method of epitaxial growth of the same as well as semiconductor device including the same
US8882910B2 (en) AlGaN substrate and production method thereof
JP5638198B2 (en) Laser diode orientation on miscut substrates
KR101380717B1 (en) Semi-conductor substrate and method and masking layer for producing a free-standing semi-conductor substrate by means of hydride-gas phase epitaxy
US9472720B2 (en) Nitride semiconductor wafer, nitride semiconductor element, and method for manufacturing nitride semiconductor wafer
US7118934B2 (en) Porous substrate for epitaxial growth, method for manufacturing same, and method for manufacturing III-nitride semiconductor substrate
GB2440484A (en) Group 3-5 nitride semiconductor multilayer substrate, method for manufacturing group 3-5 nitride semiconductor free-standing substrate
US6534791B1 (en) Epitaxial aluminium-gallium nitride semiconductor substrate
EP1298709B1 (en) Method for producing a iii nitride element comprising a iii nitride epitaxial substrate
US6911084B2 (en) Low temperature epitaxial growth of quaternary wide bandgap semiconductors
JPH1079501A (en) Method for forming quantum dot and quantum dot structure
KR100699739B1 (en) Iii-v compound semiconductor
KR20020065892A (en) Method of fabricating group-ⅲ nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
US6844574B1 (en) III-V compound semiconductor
JP4535935B2 (en) Nitride semiconductor thin film and manufacturing method thereof
JP2001308464A (en) Nitride semiconductor element, method for manufacturing nitride semiconductor crystal, and nitride semiconductor substrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130221

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140220

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160219

Year of fee payment: 10