[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100672670B1 - 씨모스 이미지 센서의 제조방법 - Google Patents

씨모스 이미지 센서의 제조방법 Download PDF

Info

Publication number
KR100672670B1
KR100672670B1 KR1020040114787A KR20040114787A KR100672670B1 KR 100672670 B1 KR100672670 B1 KR 100672670B1 KR 1020040114787 A KR1020040114787 A KR 1020040114787A KR 20040114787 A KR20040114787 A KR 20040114787A KR 100672670 B1 KR100672670 B1 KR 100672670B1
Authority
KR
South Korea
Prior art keywords
region
device isolation
semiconductor substrate
image sensor
photodiode
Prior art date
Application number
KR1020040114787A
Other languages
English (en)
Other versions
KR20060076392A (ko
Inventor
한창훈
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020040114787A priority Critical patent/KR100672670B1/ko
Priority to CNA2005101351400A priority patent/CN1819232A/zh
Priority to US11/319,067 priority patent/US7241671B2/en
Publication of KR20060076392A publication Critical patent/KR20060076392A/ko
Application granted granted Critical
Publication of KR100672670B1 publication Critical patent/KR100672670B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

본 발명은 소자 격리막과 포토 다이오드 영역 사이의 암전류 발생을 방지하여 소자의 특성을 향상시키도록 한 씨모스 이미지 센서 및 그 제조방법에 관한 것으로서, 액티브 영역과 소자 분리 영역으로 정의된 제 1 도전형 반도체 기판과, 상기 반도체 기판의 소자 격리 영역에 형성되는 소자 격리막과, 상기 반도체 기판의 액티브 영역에 형성되는 제 2 도전형 확산 영역과, 상기 소자 격리막과 제 2 도전형 확산 영역 사이의 경계부분을 포함한 상기 소자 격리막의 주위에 형성되는 이온주입 방지층을 포함하여 구성됨을 특징으로 한다.
이미지 센서, 소자 격리막, 포토다이오드, 이온주입

Description

씨모스 이미지 센서의 제조방법{method for manufacturing of CMOS image sensor}
도 1은 일반적인 3T형 CMOS 이미지 센서의 단위화소를 나타낸 레이아웃도
도 2는 도 1의 Ⅱ-Ⅱ'선에 따른 종래 기술에 의한 CMOS 이미지 센서의 포토다이오드와 트랜스퍼 트랜지스터를 나타낸 단면도
도 3은 도 1의 Ⅱ-Ⅱ'선에 따른 본 발명에 의한 CMOS 이미지 센서의 포토다이오드와 트랜스퍼 트랜지스터를 나타낸 단면도
도 4a 내지 도 4h는 본 발명에 의한 씨모스 이미지 센서의 제조방법을 나타낸 공정단면도
도면의 주요 부분에 대한 설명
200 : 반도체 기판 201 : 에피층
202 : 산화막 203 : 질화막
204 : 포토레지스트 205 : 폴리머
206 : 트랜치 210 : 이온주입 방지층
220 : 소자 격리막 231 : n-형 확산 영역
본 발명은 씨모스 이미지 센서의 제조방법에 관한 것으로서, 특히 암전류의 발생을 방지하여 이미지 센서의 특성을 향상하도록 한 씨모스 이미지 센서의 제조방법에 관한 것이다.
일반적으로, 이미지 센서(Image sensor)는 광학적 영상(optical image)을 전기적 신호로 변환시키는 반도체 소자로써, 크게, 전하 결합 소자(charge coupled device: CCD)와 씨모스(CMOS; Complementary Metal Oxide Silicon) 이미지 센서(Image Sensor)로 구분된다.
상기 전하 결합 소자(charge coupled device: CCD)는 빛의 신호를 전기적 신호로 변환하는 복수개의 포토 다이오드(Photo diode; PD)가 매트릭스 형태로 배열되고, 상기 매트릭스 형태로 배열된 각 수직 방향의 포토 다이오드 사이에 형성되어 상기 각 포토 다이오드에서 생성된 전하를 수직방향으로 전송하는 복수개의 수직 방향 전하 전송 영역(Vertical charge coupled device; VCCD)과, 상기 각 수직 방향 전하 전송 영역에 의해 전송된 전하를 수평방향으로 전송하는 수평방향 전하전송영역(Horizontal charge coupled device; HCCD) 및 상기 수평방향으로 전송된 전하를 센싱하여 전기적인 신호를 출력하는 센스 증폭기(Sense Amplifier)를 구비하여 구성된 것이다.
그러나, 이와 같은 CCD는 구동 방식이 복잡하고, 전력 소비가 클 뿐만 아니라, 다단계의 포토 공정이 요구되므로 제조 공정이 복잡한 단점을 갖고 있다.
또한, 상기 전하 결합 소자는 제어회로, 신호처리회로, 아날로그/디지털 변환회로(A/D converter) 등을 전하 결합 소자 칩에 집적시키기가 어려워 제품의 소형화가 곤란한 단점을 갖는다.
최근에는 상기 전하 결합 소자의 단점을 극복하기 위한 차세대 이미지 센서로서 씨모스 이미지 센서가 주목을 받고 있다.
상기 씨모스 이미지 센서는 제어회로 및 신호처리회로 등을 주변회로로 사용하는 씨모스 기술을 이용하여 단위 화소의 수량에 해당하는 모스 트랜지스터들을 반도체 기판에 형성함으로써 상기 모스 트랜지스터들에 의해 각 단위 화소의 출력을 순차적으로 검출하는 스위칭 방식을 채용한 소자이다.
즉, 상기 씨모스 이미지 센서는 단위 화소 내에 포토 다이오드와 모스 트랜지스터를 형성시킴으로써 스위칭 방식으로 각 단위 화소의 전기적 신호를 순차적으로 검출하여 영상을 구현한다.
상기 씨모스 이미지 센서는 씨모스 제조 기술을 이용하므로 적은 전력 소모, 적은 포토공정 스텝에 따른 단순한 제조공정 등과 같은 장점을 갖는다.
또한, 상기 씨모스 이미지 센서는 제어회로, 신호처리회로, 아날로그/디지털 변환회로 등을 씨모스 이미지 센서 칩에 집적시킬 수가 있으므로 제품의 소형화가 용이하다는 장점을 갖고 있다.
따라서, 상기 씨모스 이미지 센서는 현재 디지털 정지 카메라(digital still camera), 디지털 비디오 카메라 등과 같은 다양한 응용 부분에 널리 사용되고 있다.
한편, CMOS 이미지 센서는 트랜지스터의 개수에 따라 3T형, 4T형, 5T형 등으로 구분된다. 3T형은 1개의 포토다이오드와 3개의 트랜지스터로 구성되며, 4T형은 1개의 포토다이오드와 4개의 트랜지스터로 구성된다. 상기 3T형 CMOS 이미지 센서의 단위화소에 대한 레이아웃(lay-out)을 살펴보면 다음과 같다.
도 1은 일반적인 3T형 CMOS 이미지 센서의 단위화소를 나타낸 레이아웃도이다.
도 1에 도시한 바와 같이, 액티브 영역(10)이 정의되어 액티브 영역(10) 중 폭이 넓은 부분에 1개의 포토다이오드(20)가 형성되고, 상기 나머지 부분의 액티브 영역(10)에 각각 오버랩되는 3개의 트랜지스터의 게이트 전극(120, 130, 140)이 형성된다.
즉, 상기 게이트 전극(120)에 의해 리셋 트랜지스터(Rx)가 형성되고, 상기 게이트 전극(130)에 의해 드라이브 트랜지스터(Dx)가 형성되며, 상기 게이트 전극(140)에 의해 선택 트랜지스터(Sx)가 형성된다.
여기서, 상기 각 트랜지스터의 액티브 영역(10)에는 각 게이트 전극(120, 130, 140) 하측부를 제외한 부분에 불순물 이온이 주입되어 각 트랜지스터의 소오스/드레인 영역이 형성된다.
따라서, 상기 리셋 트랜지스터(Rx)와 상기 드라이브 트랜지스터(Dx) 사이의 소오스/드레인 영역에는 전원전압(Vdd)이 인가되고, 상기 셀렉트 트랜지스터(Sx) 일측의 소오스/드레인 영역은 판독회로(도면에는 도시되지 않음)에 접속된다.
상기에서 설명한 각 게이트 전극(120, 130, 140)들은, 도면에는 도시되지 않 았지만, 각 신호 라인에 연결되고, 상기 각 신호 라인들은 일측 끝단에 패드를 구비하여 외부의 구동회로에 연결된다.
이하, 첨부된 도면을 참고하여 종래의 CMOS 이미지 센서를 설명하면 다음과 같다.
도 2는 도 1의 Ⅱ-Ⅱ'선에 따른 종래 기술에 의한 CMOS 이미지 센서의 포토다이오드와 트랜스퍼 트랜지스터를 나타낸 단면도이다.
도 2에 도시된 바와 같이, P++형 반도체 기판(100) 상에 P-형 에피층(101)이 형성된다. 그리고, 액티브 영역(도 1의 10)과 소자 분리 영역으로 정의된 상기 반도체 기판(100)의 소자 분리 영역에 소자 분리막(103)이 형성된다.
도 2의 트랜스퍼 트랜지스터(120)를 위한 에피층(101)의 부분 상에 게이트 절연막(121)을 개재하여 게이트(123)가 형성되고, 상기 게이트(123)의 양측면에 절연막 측벽(125)이 형성된다.
그리고, 상기 포토 다이오드 영역(PD)의 상기 에피층(101)에는 n-형 확산 영역(131) 및 P°형 확산 영역(132)이 형성된다.
여기서, 상기 P°형 확산 영역(132)은 상기 n-형 확산 영역(131) 상에 형성된다. 또한, 상기 소오스/드레인 영역(S/D)은 고농도 n형 확산 영역(n+)과 저농도 n형 확산영역(n-)이 형성된다.
그러나, 이와 같은 구조를 갖는 종래의 씨모스 이미지 센서에서는 암전류 (dark current)의 증가로 인하여 소자의 성능 저하와 전하 저장능력 저하와 같은 문제점을 갖는다.
즉, 상기 암전류는 광이 포토 다이오드에 입사되지 않는 상태에서 상기 포토 다이오드에서 다른 영역으로 이동하는 전자에 의해 생성된다. 상기 암전류는 주로 반도체 기판의 표면 인접부, 소자 분리막과 P°형 확산 영역의 경계부, 소자 분리막과 n-형 확산 영역의 경계부, P°형 확산 영역과 n- 확산 영역의 경계부 및 P°형 확산 영역과 n- 확산 영역에 분포하는 각종 결함이나 댕글링 본드(dangling bond)등에서 비롯되는 것으로 보고되고 있다. 상기 암전류는 저조도(low illumination) 환경에서 씨모스 이미지 센서의 성능 저하와 전하저장 능력 저하와 같은 심각한 문제를 야기할 수 있다.
따라서, 종래의 씨모스 이미지 센서는 상기 암전류, 특히 실리콘 기판의 표면 인접부에서 발생하는 암전류를 감소시키기 위해 상기 포토 다이오드의 표면에 P°형 확산 영역을 형성하였다.
하지만, 종래의 씨모스 이미지 센서는 상기 소자 분리막(13)과 상기 포토 다이오드의 P°형 확산 영역 경계부 및 상기 소자 분리막(13)과 상기 포토다이오드의 n-형 확산 영역 경계부에서 발생하는 암전류에 의해 큰 영향을 받는다.
이를 좀 더 상세히 언급하면, 도 2에서 알 수 있는 바와 같이, 포토 다이오드(PD)의 n-형 확산 영역(131) 및 P°형 확산 영역(132)을 형성하기 위한, 이온주입 마스크층으로서의 감광막 패턴(미도시)이 상기 반도체 기판(100)상에 형성될 때, 상기 포토 다이오드(PD)를 위한 액티브 영역 전체가 상기 감광막 패턴의 개구부 내에서 노출된다. 이러한 상태에서 상기 포토 다이오드(PD)의 액티브 영역에 상기 n-형 확산 영역(131) 및 P°형 확산 영역(132)을 위한 불순물이 이온주입되면, 상기 포토 다이오드(PD)의 액티브 영역과 소자 분리막(103) 사이의 경계부에도 상기 n-형 확산 영역(131) 및 P°형 확산 영역(132)을 위한 불순물이 이온주입된다.
따라서, 상기 n-/P°형 확산 영역(131),(132)과 상기 소자 분리막(103) 사이의 경계부에서는 상기 불순물의 이온주입에 의한 손상이 유발되고 나아가 결함이 발생한다. 상기 결함은 전자 및 정공 캐리어의 발생을 야기하고, 또한 상기 전자 의 재결합을 제공한다. 그 결과, 상기 포토 다이오드의 누설 전류가 증가하고 나아가 씨모스 이미지 센서의 암전류(dark current)가 증가한다.
상기에서 설명한 바와 같이, 종래의 씨모스 이미지 센서는 포토 다이오드의 확산 영역을 형성하기 위한 불순물의 이온주입 때에 소자 분리막과 포토 다이오드를 위한 액티브 영역 사이의 경계부에 상기 불순물이 이온주입되는 구조를 갖고 있다. 그 결과, 종래의 씨모스 이미지 센서는 소자 분리막과 포토 다이오드를 위한 액티브 영역 사이의 경계부에 발생하는 암전류의 증가를 억제하기가 어려워서 암전류 특성을 향상시키는데 한계가 있다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위한 것으로, 소자 격리막 형성 공정시 그 측벽에 자동 정렬되게 이온 주입 방지층을 형성하여 포토다이오드 영역을 형성할 때 이온주입이 소자 분리막 경계에 주입되는 것을 방지함으로써 암전류의 발생없이 소자의 특성을 향상시키도록 한 씨모스 이미지 센서의 제조방법을 제공하는데 그 목적이 있다.
삭제
상기와 같은 목적을 달성하기 위한 것으로서 본 발명에 의한 씨모스 이미지 센서의 제조방법은 액티브 영역과 소자 분리 영역으로 정의된 제 1 도전형 반도체 기판에 산화막과 질화막을 차례로 형성하는 단계와, 상기 반도체 기판의 소자 분리 영역이 노출되도록 개구부를 갖는 마스크층을 이용하여 상기 질화막과 산화막을 선택적으로 식각하면서 식각된 측면에 폴리머를 형성하는 단계와, 상기 마스크층 및 폴리머를 마스크로 이용하여 상기 노출된 반도체 기판의 표면에 트랜치를 형성하는 단계와, 상기 마스크층 및 폴리머를 제거하는 단계와, 상기 질화막 및 산화막을 마스크로 이용하여 전면에 제 1 도전형 불순물 이온을 주입하여 상기 트랜치가 형성된 부분의 반도체 기판 표면내에 제 1 도전형 확산 영역을 형성하는 단계와, 상기 트랜치의 내부에 소자 격리막을 형성하는 단계와, 상기 질화막 및 산화막을 제거하는 단계와, 상기 제 1 도전형 확산영역에 의해 상기 소자 격리막과 일정한 간격을 갖도록 상기 반도체 기판의 액티브 영역에 제 2 도전형 확산 영역을 형성하는 단계를 포함하여 형성함을 특징으로 한다.
이하, 첨부된 도면을 참고하여 본 발명에 의한 씨모스 이미지 센서의 제조방법을 보다 상세히 설명하면 다음과 같다.
도 3은 도 1의 Ⅱ-Ⅱ'선에 따른 본 발명에 의한 CMOS 이미지 센서의 포토다이오드와 트랜스퍼 트랜지스터를 나타낸 단면도이다.
도 3에 도시된 바와 같이, P++형 반도체 기판(200) 상에 P-형 에피층(P-EPI)(201)이 형성된다. 그리고, 액티브 영역(도 1의 10)과 소자 분리 영역으로 정의된 상기 반도체 기판(200)의 소자 분리 영역에 소자 분리막(220)이 형성된다.
여기서, 상기 반도체 기판(200)의 액티브 영역은 포토 다이오드 영역과 트랜지스터 영역으로 정의되어 있다.
도 1의 트랜스퍼 트랜지스터(120)를 위한 에피층(101)의 부분 상에 게이트 절연막(221)을 개재하여 게이트(223)가 형성되고, 상기 게이트(223)의 양측면에 절연막 측벽(225)이 형성된다.
그리고, 상기 포토 다이오드 영역(PD)의 상기 에피층(201)에는 n-형 확산 영역(231)이 형성된다.
또한, 상기 게이트(223) 일측의 반도체 기판(200) 표면내에 소오스/드레인 영역(S/D)이 형성되는데, 상기 소오스/드레인 영역(S/D)은 고농도 n형 확산 영역 (n+)(226)과 저농도 n형 확산영역(n-)(224)으로 형성된다.
한편, 본 발명은 종래와 같은 소자 격리막(220)과 포토 다이오드영역인 n-형 확산 영역(231)과 접하여 발생하는 암전류 발생을 방지하기 위하여 상기 소자 격리막(220)의 측면에 셀프 얼라인(self align)으로 이온주입 방지층(210)이 형성되어 있다.
여기서, 상기 소자 격리막(220)의 측면에 형성된 이온주입 방지층(210)에 의해 포토다이오드 영역을 형성할 때, 주입되는 n-형 이온이 상기 소자 격리막(220)의 경계에 주입되는 것을 방지하여 n-형 확산 영역(231)이 소자 격리막(220)과 접하는 것을 방지하고 있다.
한편, 상기 이온주입 방지층(210)은 상기 소자 격리막(220)의 주위에 B 또는 BF2 이온을 주입하여 형성된다.
도 4a 내지 도 4i는 본 발명에 의한 씨모스 이미지 센서의 제조방법을 나타낸 공정단면도이다.
여기서, 본 발명은 CMOS 이미지 센서에서 소자 격리 영역과 액티브 영역으로 정의된 반도체 기판에 소자 격리막과 포토다이오드 영역을 형성하는 방법을 중심으로 설명한다.
도 4a에 도시한 바와 같이, 고농도 제 1 도전형(P++형) 단결정 실리콘 등의 반도체 기판(200)에 에피택셜(epitaxial) 공정으로 저농도 제 1 도전형(P-형) 에피층(201)을 형성한다.
여기서, 상기 에피층(201)은 포토 다이오드에서 공핍 영역(depletion region)을 크고 깊게 형성하여 광 전하를 모으기 위한 저전압 포토 다이오드의 능력을 증가시키고 나아가 광 감도를 향상시키기 위함이다.
이어, 상기 에피층(201)을 포함한 반도체 기판(200)상에 산화막(202)을 형성하고, 상기 산화막(202)상에 질화막(203)을 형성한다.
이어, 상기 질화막(203)상에 포토레지스트(204)를 도포한 후, 노광 및 현상공정으로 패터닝하여 소자격리영역을 정의한다.
도 4b에 도시한 바와 같이, 상기 패터닝된 포토레지스트(204)를 마스크로 이용한 식각공정으로 상기 질화막(203)과 산화막(202)을 차례로 선택적으로 식각하여 반도체 기판(200)의 표면을 노출시킨다.
이때 상기 포토레지스트(204)를 마스크로 이용하여 상기 질화막(203)을 식각할 때 식각된 면의 측면에는 폴리머(polymer)(205)가 발생한다.
여기서, 상기 폴리머(205)를 발생시키기 위해 상기 질화막(203)을 식각할 때 CF4 가스 계열을 사용한다.
한편, 상기 폴리머(205)의 형성 두께는 200 ~ 500Å의 두께로 형성한다.
도 4c에 도시한 바와 같이, 상기 패터닝된 포토레지스트(204) 및 폴리머(205)를 마스크로 이용하여 상기 노출된 반도체 기판(200)의 선택적으로 식각하여 표면으로부터 소정깊이를 갖는 트랜치(206)를 형성한다.
여기서, 상기 폴리머(205)에 의해 반도체 기판(200)의 소자 격리 영역에 트랜치(206)를 형성할 때 액티브 영역은 보호되고, 상기 폴리머(205)의 형성 두께만큼 떨어진 곳에 트랜치(206)가 형성된다.
도 4d에 도시한 바와 같이, 상기 트랜치(206)를 형성하기 위해 마스크로 사용된 포토레지스트(204) 및 폴리머(205)를 제거한다.
여기서, 상기 폴리머(205)가 제거되어 상기 반도체 기판(200)의 액티브 영역이 셀프 얼라인으로 노출된다.
도 4e에 도시한 바와 같이, 상기 질화막(203) 및 산화막(202)을 마스크로 이용하여 상기 반도체 기판(200)의 전면에 B 또는 BF2 이온을 주입하여 상기 트랜치(206)가 형성된 반도체 기판(200)의 표면내에 이온주입 방지층(210)을 형성한다.
여기서, 상기 반도체 기판(200)의 표면내에 형성된 이온주입 방지층(210)은 상기 트랜치(206)의 형태에 따라 주위에 형성된다.
한편, 상기 B 또는 BF2 이온을 주입하기 전에 상기 트랜치(206)의 표면에 산화막(도시되지 않음)을 형성하여 불순물 이온이 주입시 버퍼층으로 사용함으로써 반도체 기판(200)의 손상(damage)을 방지하고, 이후에 형성되는 소자 격리막의 코너(corner) 부위를 둥글게 하여 누설 전류의 발생을 완화할 수도 있다.
또한, 상기 B 또는 BF2 이온은 상기 반도체 기판(200)이 P++형이고 이후에 포 토다이오드 영역에 n-형 불순물이 주입되므로 이에 한정하지 않고 p형 불순물을 갖는 어느 것도 사용할 수 있다.
도 4f에 도시한 바와 같이, 상기 트랜치(206)를 포함한 반도체 기판(200)전면에 SOG(Spin On Glass) 또는 USG(Undoped Silicate Glass) 등의 절연막을 증착한다.
이어, 전면에 화학기계적경면연마(CMP : Chemical Mechanical Polishing)법 또는 에치 백(etch back) 공정을 실시하여 상기 트랜치(206)의 내부에 소자 격리막(220)을 형성한다.
도 4g에 도시한 바와 같이, 상기 질화막(203) 및 산화막(202)을 제거하고 클리닝 공정 및 평탄화 공정을 실시하여 상기 트랜치(206)에 매립되는 소자 격리막(220)을 형성한다.
도 4h에 도시한 바와 같이, 상기 반도체 기판(200)에 포토레지스트(도시되지 않음)를 도포한 후, 노광 및 현상 공정으로 패터닝하여 포토다이오드 영역을 오픈하고, 상기 패터닝된 포토레지스트를 마스크로 이용하여 n-형 불순물 이온을 주입하여 상기 포토다이오드 영역에 n-형 확산 영역(231)을 형성한다.
여기서, 도면에는 도시하지 않았지만, 상기 n-형 확산 영역(231)을 형성하기 전에 상기 반도체 기판(200)의 액티브 영역에 통상적인 공정을 통해 게이트 절연막을 개재하여 각 게이트를 형성한다.
따라서, 상기 이온주입 방지층(210)은 상기 n-형 확산 영역(231)을 형성할 때 n-형 확산 영역(231)과 소자 분리막(220) 사이에 배치되므로 상기 포토다이오드와 소자 분리막(220)의 경계부에서 발생하는 암전류를 저감시킨다.
따라서, 상기 n-형 확산 영역(231)상에 P0 확산 영역(도시되지 않음)을 추가로 형성할 수도 있다.
이상 설명한 내용을 통해 당업자라면 본 발명의 기술 사상을 이탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 실시예에 기재된 내용으로 한정하는 것이 아니라 특허 청구범위에 의해서 정해져야 한다.
이상에서 설명한 바와 같은 본 발명에 따른 씨모스 이미지 센서의 제조방법은 다음과 같은 효과가 있다.
첫째, 포토 다이오드 영역과 소자 분리막 사이의 경계부에는 포토 다이오드 형성용 불순물 이온이 주입되지 않도록 하므로 상기 포토 다이오드 영역과 상기 소자 분리막 사이의 경계면에 이온 주입에 의한 결함을 방지할 수 있다.
둘째, 상기 포토 다이오드 영역과 상기 소자 분리막 사이의 경계부에 이온주입 방지층을 형성함으로써 상기 포토 다이오드 영역과 소자 분리막 사이 경계부에서 발생 가능한 암전류를 최소화하여 씨모스 이미지 센서의 동작 신뢰성을 향상시킬 수 있다.

Claims (10)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 액티브 영역과 소자 분리 영역으로 정의된 제 1 도전형 반도체 기판에 산화막과 질화막을 차례로 형성하는 단계;
    상기 반도체 기판의 소자 분리 영역이 노출되도록 개구부를 갖는 마스크층을 이용하여 상기 질화막과 산화막을 선택적으로 식각하면서 식각된 측면에 폴리머를 형성하는 단계;
    상기 마스크층 및 폴리머를 마스크로 이용하여 상기 노출된 반도체 기판의 표면에 트랜치를 형성하는 단계;
    상기 마스크층 및 폴리머를 제거하는 단계;
    상기 질화막 및 산화막을 마스크로 이용하여 전면에 제 1 도전형 불순물 이온을 주입하여 상기 트랜치가 형성된 부분의 반도체 기판 표면내에 제 1 도전형 확산 영역을 형성하는 단계;
    상기 트랜치의 내부에 소자 격리막을 형성하는 단계;
    상기 질화막 및 산화막을 제거하는 단계;
    상기 제 1 도전형 확산영역에 의해 상기 소자 격리막과 일정한 간격을 갖도록 상기 반도체 기판의 액티브 영역에 제 2 도전형 확산 영역을 형성하는 단계를 포함하여 형성함을 특징으로 하는 씨모스 이미지 센서의 제조방법.
  7. 제 6 항에 있어서, 상기 폴리머는 200 ~ 500Å의 두께로 형성하는 것을 특징 으로 하는 씨모스 이미지 센서의 제조방법.
  8. 제 6 항에 있어서, 상기 트랜치의 표면에 산화막을 형성하는 단계를 더 포함하여 형성함을 특징으로 하는 씨모스 이미지 센서의 제조방법.
  9. 제 6 항에 있어서, 상기 질화막은 CF4 가스 계열을 사용하여 식각하는 것을 특징으로 하는 씨모스 이미지 센서의 제조방법.
  10. 제 6 항에 있어서, 상기 제 1 도전형 불순물 영역은 B 또는 BF2를 주입하여 형성하는 것을 특징으로 하는 씨모스 이미지 센서의 제조방법.
KR1020040114787A 2004-12-29 2004-12-29 씨모스 이미지 센서의 제조방법 KR100672670B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020040114787A KR100672670B1 (ko) 2004-12-29 2004-12-29 씨모스 이미지 센서의 제조방법
CNA2005101351400A CN1819232A (zh) 2004-12-29 2005-12-27 Cmos图像传感器及其制造方法
US11/319,067 US7241671B2 (en) 2004-12-29 2005-12-28 CMOS image sensor and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040114787A KR100672670B1 (ko) 2004-12-29 2004-12-29 씨모스 이미지 센서의 제조방법

Publications (2)

Publication Number Publication Date
KR20060076392A KR20060076392A (ko) 2006-07-04
KR100672670B1 true KR100672670B1 (ko) 2007-01-24

Family

ID=36919074

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040114787A KR100672670B1 (ko) 2004-12-29 2004-12-29 씨모스 이미지 센서의 제조방법

Country Status (2)

Country Link
KR (1) KR100672670B1 (ko)
CN (1) CN1819232A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840103B1 (ko) 2006-06-02 2008-06-19 박은희 동적시스템의 실시간 해석을 위한 정확한 저주파수 및 푸리에스펙트럼 위상 추정 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4746639B2 (ja) * 2008-02-22 2011-08-10 株式会社東芝 半導体デバイス
CN101625996B (zh) * 2008-07-08 2011-03-23 中芯国际集成电路制造(上海)有限公司 用以减少暗电流的ono侧墙刻蚀工艺
CN103872064B (zh) * 2014-03-06 2016-08-24 中国航天科技集团公司第九研究院第七七一研究所 一种抗辐照的4t有源像素及制备方法
CN105529340A (zh) * 2014-10-21 2016-04-27 中芯国际集成电路制造(上海)有限公司 传导控制晶体管及其制备方法以及cis芯片结构
CN107910343A (zh) * 2017-12-11 2018-04-13 上海华力微电子有限公司 Cmos图像传感器及其制造方法
CN109065556A (zh) * 2018-08-08 2018-12-21 上海华力微电子有限公司 一种通过优化sab制程改善cis白色像素的方法
CN112768574B (zh) * 2021-04-08 2021-06-18 度亘激光技术(苏州)有限公司 半导体结构的形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840103B1 (ko) 2006-06-02 2008-06-19 박은희 동적시스템의 실시간 해석을 위한 정확한 저주파수 및 푸리에스펙트럼 위상 추정 방법

Also Published As

Publication number Publication date
KR20060076392A (ko) 2006-07-04
CN1819232A (zh) 2006-08-16

Similar Documents

Publication Publication Date Title
KR100461975B1 (ko) 이미지센서의 트렌치 소자분리막 형성방법
US7838917B2 (en) CMOS image sensor and method of fabricating the same
KR100672701B1 (ko) 씨모스(cmos) 이미지 센서 및 그의 제조 방법
KR100672666B1 (ko) 씨모스 이미지 센서의 제조방법
KR20060076390A (ko) Cmos 이미지 센서 및 그의 제조 방법
KR100760913B1 (ko) 씨모스 이미지 센서 및 이의 제조 방법
KR100778856B1 (ko) 씨모스 이미지 센서의 제조방법
KR100672670B1 (ko) 씨모스 이미지 센서의 제조방법
KR100606910B1 (ko) Cmos 이미지 센서 및 그의 제조 방법
KR100640980B1 (ko) 씨모스 이미지 센서의 제조방법
US7241671B2 (en) CMOS image sensor and method for fabricating the same
KR100720505B1 (ko) 씨모스 이미지 센서 및 그 제조방법
KR100672668B1 (ko) Cmos 이미지 센서 및 그의 제조 방법
US7732245B2 (en) Photodiode of CMOS image sensor and method for manufacturing the same
KR100606912B1 (ko) 씨모스 이미지 센서의 제조방법
KR100660345B1 (ko) 씨모스 이미지 센서 및 그의 제조방법
KR100606911B1 (ko) 씨모스 이미지 센서의 제조방법
KR100760914B1 (ko) 씨모스 이미지 센서의 제조 방법
KR100752182B1 (ko) 씨모스 이미지 센서 및 그 제조방법
KR100731099B1 (ko) 씨모스 이미지 센서 및 그 제조방법
KR100672665B1 (ko) 씨모스 이미지 센서의 제조 방법
KR100649001B1 (ko) 씨모스 이미지 센서의 제조방법
KR100672700B1 (ko) Cmos 이미지 센서의 제조 방법
KR100752183B1 (ko) 씨모스 이미지 센서의 제조방법
KR100935764B1 (ko) 이미지 센서 및 그 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130308

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131217

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141217

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151208

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181221

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191219

Year of fee payment: 14