KR100639959B1 - 인체 영상 처리 시스템 및 그 방법 - Google Patents
인체 영상 처리 시스템 및 그 방법 Download PDFInfo
- Publication number
- KR100639959B1 KR100639959B1 KR1020030082639A KR20030082639A KR100639959B1 KR 100639959 B1 KR100639959 B1 KR 100639959B1 KR 1020030082639 A KR1020030082639 A KR 1020030082639A KR 20030082639 A KR20030082639 A KR 20030082639A KR 100639959 B1 KR100639959 B1 KR 100639959B1
- Authority
- KR
- South Korea
- Prior art keywords
- image
- human body
- image processing
- zoned
- unit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 238000013316 zoning Methods 0.000 claims abstract description 48
- 230000002596 correlated effect Effects 0.000 claims abstract description 10
- 230000000875 corresponding effect Effects 0.000 claims abstract description 10
- 238000003708 edge detection Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 5
- 238000002595 magnetic resonance imaging Methods 0.000 description 11
- 238000002591 computed tomography Methods 0.000 description 9
- 238000003672 processing method Methods 0.000 description 5
- 230000010339 dilation Effects 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 239000003086 colorant Substances 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20036—Morphological image processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- High Energy & Nuclear Physics (AREA)
- Quality & Reliability (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Geometry (AREA)
- Optics & Photonics (AREA)
- Computer Graphics (AREA)
- Software Systems (AREA)
- Image Processing (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Image Analysis (AREA)
Abstract
반자동화 인체 영상 처리 시스템 및 그 방법이 개시된다. 구역화부는 인체 영상에 존재하는 서로 상관성이 있는 부분을 적어도 하나 이상의 영상 처리 기능을 이용하여 구역화한다. 피드백부는 구역화된 영상의 정밀도를 향상시키기 위해 구역화된 영상에 대해 영상 처리 기능을 반복하여 수행한다. 분류부는 구역화된 영상의 각 조직에 해당하는 색을 입히고, 구역화된 영상을 하나의 영상으로 통합하여 조직 분류가 완성된 영상을 생성한다. 표시부는 구역화부, 피드백부 및 분류부에 의한 처리 결과 영상들을 각각 독립적으로 표시한다. 이로써, 인체의 모든 조직에 대한 구역화 및 분류화가 가능하고 고정밀의 인체모델을 얻을 수 있으며, FCC의 인체 조직 분류표를 사용함으로써 전자기파에 의한 인체조직의 영향을 분석할 수 있는 인체 영상의 생성이 가능하다.
인체 영상, 영상 처리 기능, 구역화
Description
도 1은 본 발명에 따른 인체 영상 처리 시스템의 일 실시예의 구성을 도시한 도면,
도 2 내지 도 5는 본 발명에 따른 인체 영상 처리 시스템의 화면 구성의 일 실시예를 도시한 도면, 그리고,
도 6은 본 발명에 따른 인체 영상 처리 방법의 일 실시예의 흐름을 도시한 흐름도이다.
본 발명은 인체 영상 처리 시스템 및 그 방법에 관한 것으로써, 보다 상세하게는 특정 인체 조직이나 특정 영상에 구속되지 않고 인체 모든 조직의 영상을 처리할 수 있는 반자동화 인체 영상 처리 시스템 및 그 방법에 관한 것이다.
첨단 정보통신 단말기에 의한 전자파 인체 영향을 해석하려면 고정밀 인체 모델이 필요하다. 고정밀 인체 모델은 MRI(Magnetic Resonance Imaging, 자기공명영상법) 영상과 CT(Computed Tomography, 컴퓨터단층촬영법) 영상을 취득하여 인체 조직을 구역화(Segmentation)하고, 이를 이용하여 3차원으로 만들어 줌으로써 인체 내부 구조까지 정확히 구축할 수 있다.
그러나 MRI 영상이나 CT 영상에서 의미있는 조직들의 구역화는 매우 필요한 작업임에도 불구하고 이들 영상의 특성상 모든 조직을 완벽하게 보여주지는 못하기 때문에 완전한 구역화를 자동적으로 해주는 프로그램이 존재하지 않는다.
일반적으로 고정밀 인체 모델을 제작하기 위한 MRI와 CT 영상 구역화는 수작업을 통해 이루어져왔으며, 그 과정으로는 MRI, CT 영상에 일일이 손으로 구역화 영역을 그리고 그 그려진 결과를 토대로 범용의 그래픽 소프트웨어를 사용하여 컴퓨터에 입력을 하는 과정을 거친다.
수동 분할 방식은 결과의 신뢰성이 매우 높은 반면에 작업량과 작업시간이 상당히 많이 소요되고 특히 구역화하는 사람의 능력에 따라 구역화 결과가 많은 차이를 보일 수 있는 단점이 있다. 즉 영상 한장 한장의 조직들을 각각 눈으로 확인하고 일일이 손으로 조직의 경계를 그려야 하는 매우 노동 및 시간 집약적인 고도의 숙련이 필요한 작업이기 때문에 사람에 대한 의존성이 절대적이다.
또한 수동 분할 작업은 고도의 집중이 요구되기 때문에 아무리 전문가라 할지라도 하루에 처리할 수 있는 양이 제한될 수밖에 없다. 그리고 범용의 상용화된 영상처리 소프트웨어를 사용할 경우에 사용자가 원하는 기능이 없거나 사용하기 불편한 점이 많다.
컴퓨터 알고리즘에 의한 완전 자동화된 영상처리 시스템이 존재하기는 하지만 뇌, 위 또는 간 등의 특정 인체 부위에 국한되거나 T1 강조 자기공명 영상, T2 강조 자기공명 영상 등 특정 부위를 강조해 보여주는 특정 영상을 적용하여야 하는 한계가 있다. 또한 자동화 영상처리 시스템의 경우 수동화 시스템의 단점인 사용자의 시간과 노력을 줄일 수는 있으나 결과의 정밀도는 떨어지는 단점이 있다. 이러한 자동화 시스템의 한계는 수동과 자동화 시스템의 장점을 혼합한 반자동화 시스템으로 극복할 수 있다.
따라서 사용자의 시간과 노력을 줄일 수 있는 장점과 MRI 영상 및 CT 영상을 분할하는데 필요한 기능을 고루 갖추고 있으며 특정 인체 조직이나 특정 영상에 독립적인 새로운 영상처리 시스템의 개발이 절실히 요구된다.
본 발명이 이루고자 하는 기술적 과제는, 인체의 특정 조직이나 영상에 한하지 않고 모든 인체 조직의 영상을 처리하고 고정밀의 인체 모델을 제공하는 반자동화 인체 영상 처리 시스템 및 그 방법을 제공하는 데 있다.
본 발명이 이루고자 하는 다른 기술적 과제는, 인체의 특정 조직이나 영상에 한하지 않고 모든 인체 조직의 영상을 처리하고 고정밀의 인체 모델을 제공하는 반자동화 인체 영상 처리 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체를 제공하는 데 있다.
상기의 기술적 과제를 달성하기 위한, 본 발명에 따른 인체 영상 처리 시스템의 일 실시예는, 인체 영상에 존재하는 서로 상관성이 있는 부분을 적어도 하나 이상의 영상 처리 기능을 이용하여 구역화하는 구역화부; 상기 구역화된 영상의 정밀도를 향상시키기 위해 상기 구역화된 영상에 대해 영상 처리 기능을 수행하는 피드백부; 상기 구역화된 영상의 각 조직에 해당하는 색을 입히고, 구역화된 영상을 하나의 영상으로 통합하여 조직 분류가 완성된 영상을 생성하는 분류부; 및 상기 구역화부, 상기 피드백부 및 상기 분류부에 의한 처리 결과 영상들을 각각 독립적으로 표시하는 표시부;를 포함한다.
상기의 기술적 과제를 달성하기 위한, 본 발명에 따른 인체 영상 처리 방법의 일 실시예는, 인체 영상에 존재하는 서로 상관성이 있는 부분을 적어도 하나 이상의 영상 처리 기능을 이용하여 구역화하는 단계; 상기 구역화된 영상의 정밀도를 향상시키기 위해 상기 구역화된 영상에 대해 영상 처리 기능을 수행하는 피드백 단계; 상기 구역화된 영상의 각 조직에 해당하는 색을 입히고, 구역화된 영상을 하나의 영상으로 통합하여 조직 분류가 완성된 영상을 생성하는 단계; 및 상기 각 단계의 결과 영상들을 각각 독립적으로 표시하는 단계;를 포함한다.
이로써, 인체의 모든 조직에 대한 구역화 및 분류화가 가능하고 고정밀의 인체모델을 얻을 수 있으며, FCC의 인체 조직 분류표를 사용함으로써 전자기파에 의한 인체조직의 영향을 분석할 수 있는 고정밀의 인체 모델의 생성이 가능하다.
이하에서, 첨부된 도면들을 참조하여 본 발명에 따른 인체 영상 처리 시스템 및 그 방법에 대하여 상세히 설명한다.
도 1은 본 발명에 따른 인체 영상 처리 시스템의 일 실시예의 구성을 도시한 도면이다.
도 1을 참조하면, 본 발명에 따른 인체 영상 처리 시스템은 구역화부(100), 피드백부(110), 분류부(120) 및 표시부(130)로 구성된다.
표시부(130)는 본 발명에 따른 인체 영상 처리를 수행할 디지털 영상 및 본 발명에 따른 구역화부(100), 피드백부(110) 및 분류부(120)에 의한 영상 처리 결과를 표시한다. 표시부(130)는 구역화부(100), 피드백부(110) 및 분류부(120)에 의해 처리된 결과를 각각 독립된 창으로 화면에 표시한다.
이로써, 사용자는 각 단계에 따른 인체 영상 처리 결과를 시각적으로 쉽게 비교 검토할 수 있으며 각각의 독립된 창으로 표시된 인체 영상에 대해 피드백과정 및 분류과정을 수행할 경우에 컴퓨터 마우스 등의 입출력 장치를 통하여 쉽게 대상 화면을 선택하여 수행할 수 있다.
본 발명은 완전 자동화 인체 영상 처리 시스템이 가지는 인체 영상 처리의 불완전성 및 정밀도가 떨어지는 단점을 극복하고, 수동작업의 장점인 고정밀도를 달성하기 위한 반자동화 인체 영상 처리 시스템이다. 이를 위해 본 발명은 인체 영상에 대해 소정의 구역화 및 피드백과정을 디지털 영상 처리 기능의 다양한 조합으로 처리할 수 있도록 하므로 각 단계에서의 인체 영상 처리 결과를 독립된 창으로 표시하는 것은 중요하다. 예를 들어, 디지털 영상 처리 기능이 A 부터 E 까지 5개가 존재하는 경우에 사용자는 이 중 A만을 선택하거나 A,C 또는 A 부터 E 까지 기능을 모두 적용한 인체 영상을 얻을 수 있으며 이들 각각을 각각 독립된 창으로 표시함으로써 각각의 처리 결과를 비교하고 이에 대해 피드백과정을 수행하여 더 정밀한 인체영상의 처리 결과를 얻을 수 있다.
이하에서 인체 영상을 처리하는 각 구성을 살펴본다.
구역화부(100)는 MRI, CT, 초음파, X선 등으로 획득한 디지털 인체 영상을 이용하여 영상 내부에 존재하는 서로 상관성이 있는 부분들을 묶어 그룹으로 만드는 작업을 수행한다. 구역화부(100)는 영상 내부의 상관성 있는 물체 또는 물체의 일부분으로 묶어 그룹으로 만드는 작업을 수행하기 위하여 소정의 디지털 영상 처리 기능을 사용한다.
이러한 디저털 영상 처리 기능은 Thresholding(Multi, Single), Boolean Operation, Image Inversion, Edge Detection, Histogram Eaualization, Region Growing, Mathematical Morpholohy(Erosion, Dilation, Opening, Closing) 등을 포함한다. 이하에서 각 기능에 대하여 살펴본다.
Thresholding(Multi, Single): 영상의 이진화는 임의의 임계값(Threshold Value)을 정하면 화소의 밝기가 임계값보다 낮으면 검정색(0)으로 임계값보다 높으면 흰색(255)으로 영상을 변환시키는 기능이다. 임계값이 하나인 경우(Single thresholding)와 두 개인 경우(Multi thresholding)의 기능이 있다.
Boolean Operation: MRI 원영상과 그 영상에서 구역화 또는 특정 기능 구현을 통해서 처리된 영상을 병합함으로써 영역의 정확한 구역화를 확인할 수 있도록 돕는 기능이다.
Image Inversion: 원 영상을 반전시켜 영상의 대비가 반대인 영상을 만드는 기능이다.
Edge Detection: 구역화할 영역의 경계를 경계 연산자(Edge Operator)을 적용하여 찾게 하는 기능이다.
Histogram Equalization: 일정한 분포를 가진 히스토그램을 생성하여 한 곳에 집중되어 있는 명암 값을 펼쳐서 밝기가 균일한 분포를 갖도록 하는 기능이다.
Region Growing: 영상에서 기준값과 상관성이 높은 인접한 영역들을 합쳐줌으로써 분할하고자 하는 대상물체에 해당하는 영역을 분리해 내는 기능이다.
Mathematical Morphology (Erosion, Dilation, Opening, Closing): 구역화하려는 조직 영역을 보정하거나 필요 없는 부분을 제거하기 위해 Erosion, Dilation, Opening, Closing 등의 Mathematical Morphology기능을 두어 영상을 수정하는 기능이다.
상술한 디지털 영상 처리 기능은 영상 처리 기능의 일 실시예를 기술한 것이며 이 외의 영상 처리 알고리즘이 존재하면 이를 채용하여 본 발명에 따른 인체 영상 처리 시스템에 적용할 수 있다.
구역화부(100)는 상술한 영상 처리 기능을 사용자가 직관적으로 볼 수 있고 쉽게 조작할 수 있도록 하나의 그룹으로 묶어 화면에 표시한다. 구역화부(100)의 화면 구성은 도 3에 도시되어 있다. 구역화부(100)는 하나의 인체 영상에 대해 적어도 하나 이상의 영상 처리 기능을 수행한다. 수행된 영상 처리 결과는 표시부(130)에 의해 독립된 창으로 표시된다.
피드백부(110)는 구역화부(100)에 의해 얻은 인체 영상에 대해 고정밀의 결과를 얻기 위하여 디지털 영상 처리 기능을 재 수행한다. 즉 구역화부(100)에 의해 생성된 인체 영상에 대해 상술한 영상 처리 기능을 적어도 하나 이상 적용하여 더 정밀한 인체 영상을 생성한다. 피드백부(110)는 구역화부(100)에 의해 생성된 영상 에 어떠한 영상 처리 기능을 적용하여 더 정밀한 영상을 얻을 수 있는지에 관한 정보를 제공하는 참고영상(240)을 함께 제공한다.
구역화의 과정에서 의료영상의 특성상 특정 영역의 경계가 모호함으로 인해 사용자의 주관적인 판단이 요구될 경우가 자주 발생한다. 따라서 종래에는 이러한 모호한 영역의 판단이 인체 영상 처리 결과에 상당히 중요한 변수로 작용하므로 보통 의학 서적을 참고하여 구역화(Segmentation)를 하였다. 이로 인해 사용자가 컴퓨터 작업을 중단하고 서적을 보아야 하는 불편함이 있다.
따라서, 본 발명에서는 피드백 과정에서 해부학 전문가에 의해 구역화된 영상을 참고영상(240)으로 이용할 수 있게 제공함으로써 컴퓨터 상에서 모든 작업을 수행할 수 있다. 이러한 참고영상(240)은 주관적인 판단에서 오는 문제 발생을 최소한으로 줄이는 동시에 사용자가 편리하게 사용할 수 있는 장점이 있다.
피드백부(110)는 구역화부(100)에 의해 인체 영상에 대해 만족하는 결과를 얻을 때까지 인체 영상 처리 기능을 반복하여 수행할 수 있다. 피드백부에 의한 처리 결과는 하나의 창으로 표시되거나 각각 독립된 창으로 표시할 수 있다. 각각 독립된 창으로 표시되는 경우에 피드백 과정을 이전의 인체 영상으로 부터 다시 시작할 수 있는 장점이 있다.
분류부(120)는 구역화부(100) 및 피드백부(110)에 의해 인체 영상이 서로 상관성있는 부분으로 그룹화되면, 각각 그룹화된 각 인체영상의 각 조직에 해당하는 색을 입힌다. 그리고 각각의 구룹화된 인체영상을 하나의 영상으로 합쳐서 조직분류가 완성된 영상을 얻는다.
분류부(120)는 미국 FCC(Federal Communicatin Commission, 연방통신위원회)에서 권고한 43가지 인체 조직 분류표(230)에서 본 발명에 따라 구역화된 인체 영상의 각 조직과 일치하는 조직을 선택하고 인체 영상의 조직에 해당하는 색을 입힌다. FCC에서 권고한 43가지 인체 조직 분류표(230)는 인체 조직의 전자기적인 특성을 표현하는 상수인 유전율 및 도전율 값을 제공한다. 따라서 FCC 권고안의 조직 분류표를 사용하여 인체 영상의 각 조직에 색을 입힘으로써 전자파에 의한 인체 영향을 분석할 수 있다.
도 2 내지 도 5는 본 발명에 따른 인체 영상 처리 시스템의 화면 구성의 일 실시예를 도시한 도면이다.
도 2를 참조하면, 본 발명에 따른 인체 영상 처리 시스템의 화면구성(200)은 표시부에 의해 각각 독립된 창으로 표시된 인체 영상(210), 구역화부에 의해 처리되는 각각의 디지털 영상 처리 기능을 모아 놓은 구역화패널(220), 피드백부에 의한 디지털 영상 처리 기능의 선택을 돕기 위한 참고영상(240) 및 FCC의 43가지 인체 조직 분류표(230)가 표시되어 있다.
표시부(130)에 의해 표시된 각 인체 영상들은 인체 영상 처리를 수행하기 위하여 읽어 들인 디지털 인체 영상부터 구역화부(100) 및 피드백부(110)에 의한 각각의 처리 결과를 나타낸다. 사용자는 각 단계별로 표시된 인체 영상을 비교 검토할 수 있고 각 단계의 처리 결과를 임의로 선택하여 피드백부(110)에 의한 영상 처리 기능을 수행할 수 있다.
도 3을 참조하면, 영상 처리 기능은 하나의 패널로 모아져 표시되어 있다. 각각의 영상 처리 기능은 사용자로 하여금 마우스, 펜등의 컴퓨터 입출력 장치를 통하여 선택될 수 있도록 구성되어 있다. 구역화부(100)는 이 중에 적어도 하나 이상의 영상 처리 기능을 선택되고 표시부(130)에 의해 표시된 각 창(210)에서 적어도 하나 이상의 창이 선택되면 선택된 영상 처리 기능을 선택된 창에 적용하여 영상 처리 결과를 얻는다. 그리고 표시부(130)는 독립된 창으로 영상 처리 결과를 표시한다.
도 4에 도시된 참고영상을 기초로 표시부에 표시된 각각의 영상 처리 결과를 비교하여 특정 처리 결과 영상에 적용할 영상 처리 기능이 선택되면 피드백부(110)는 선택된 영상 처리 기능을 선택된 선택된 영상에 적용하여 더 정밀한 영상을 생성한다. 그리고 표시부(130)는 결과 영상을 독립된 창(210)으로 표시한다.
도 5를 참조하면, FCC의 43가지 인체 조직 분류표가 도시되어 있다. 분류부는 FCC의 43가지 인체 조직 분류표를 참고하여 표시부(130)에 의해 표시된 구역화된 인체 영상에 적용할 인체 조직 분류표상의 조직을 선택한다. 그리고 조직 분류표상의 색을 인체 영상의 각 조직에 입힌다. 이로써 각 조직별로 구역화되고 전자기적 특성이 반영된 색으로 반영된 인체 영상이 생성된다. 분류부(120)는 구역화되어 각각 독립된 창으로 표시된 인체 영상을 하나의 영상으로 통합하여 조직 분류가 완성된 인체 영상을 생성한다.
도 6은 본 발명에 따른 인체 영상 처리 방법의 일 실시예의 흐름을 도시한 흐름도이다.
도 6을 참조하면, 구역화부(100)는 MRI, CT 등으로 얻은 디지털 인체 영상에 존재하는 서로 상관성 있는 부분들을 소정의 영상 처리 기능을 수행하여 구역화한다(S600). 구역화부(100)는 원하는 조직을 분할(segmentation)하는 영상처리를 하기 위해서 구역화부의 조작 패널(220)을 활성화시킨다.
구역화부(100)의 조작 패널(220)은 영상 처리 기능으로 Thresholding(Multi, Single), Boolean Operation, Image Inversion, Edge Detection, Histogram Equalization, Region Grwoing, Mathematical Morpholgy(Erosion, Dilation, Opention, Closion), 지우기, 채우기 기능을 포함한다.
영상 처리 기능의 선택과 적용순서는 사용자가 대상 영상의 종류와 영상처리의 목적을 고려하여 자유로이 결정할 수 있으며 중복 선택도 가능하다. 즉 영상 처리 기능의 선택과 적용 순서를 달리하여 사용자는 독창적인 영상 처리 알고리즘을 자유로이 만들 수 있다.
피드백부(110)는 구역화된 각 영상들의 정밀도를 향상시키기 위해 참고영상(240)을 토대로 선택된 영상 처리 기능을 구역화된 영상에 적용한다(S610). 사용자는 구역화부(100)의 조작 패널(220)의 여러 기능들을 조합하여 적용한 인체 영상 처리 결과를 전문가에 의해 제작된 참고영상(240)과 비교하여 영상의 분할이 정확히 되었는지 비교 분석한 후 피드백부(100)에 의한 피드백 과정을 수행한다.
일반적으로 영상의 밝기값(Grey Level)을 활용한 영상 처리 방법은 인체 영상(MRI 영상)과 같이 영상의 밝기값의 변화량이 불규칙적인 영상에서는 원하는 물체를 정확히 구분해 내지 못하는 한계를 갖는다. 비교 분석을 한 결과가 만족스럽 지 못한 경우에는 만족스러운 결과가 나올 때까지 구역화부(100)의 조작 패널(220)의 여러 가지 영상 처리 기능을 적용한다.
구역화부(100) 및 피드백부(110)에 의해 생성된 영상은 사용자가 목적했던 특정 조직으로 인식되는 과정을 거쳐 저장장치에 저장이 된다. 사용자에 의해 분할 된 조직은 미국 연방통신위원회에서 권고한 43가지 인체 조직 분류표(230)를 참고하여 일치하는 조직을 찾고 결정된 조직에 해당하는 색을 입력하여 최종 결과 영상을 만든다. 전자파에 의한 인체 영향을 분석하는데 인체 조직의 전자기적인 특성을 표현하는 상수인 유전율과 도전율 값에 대한 정보가 필요하고 미국연방통신위원회에서 분류한 43가지 인체 조직의 경우 전자기 상수 값이 알려져 있다.
표시부(130)는 MRI, CT 등으로 얻은 디지털 인체 영상, 구역화부(100)에 의해 구역화된 인체 영상, 피드백부(110)에 의한 수행 결과 영상 및 분류부(120)에 의한 인체 영상 등을 각각 독립된 창으로 제공한다(S630). 표시부(130)가 각각 독립된 창(210)으로 인체 영상을 제공함으로써, 사용자는 각 단계에서의 인체 영상 처리 결과를 비교 검토할 수 있고 임의 단계의 인체 영상 처리 결과에 대해 구역화, 피드백, 분류 등의 과정을 수행할 수 있다.
본 발명은 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
본 발명에 따르면, 인체 영상의 각 처리 단계에서의 결과를 각각 독립된 창으로 표시하고 각각의 독립된 창에 대해 영상 처리 과정을 반복하여 수행할 수 있게 함으로써 완전 자동화 인체 영상 처리 시스템이 가지는 인체 영상 처리의 불완전성 및 정밀도가 떨어지는 단점을 극복한다. 또한, 참고영상을 토대로 한 인체 영상 처리 기능의 반복 수행을 통하여 수동작업의 장점인 고정밀도를 달성한다.
그리고 어떤 특정 조직이나 특정 영상의 처리만을 수행하는 종래의 자동화 인체 영상 처리 시스템과 달리 모든 조직에 대하여 구역화 및 분류화 과정을 수행하여 인체 영상을 생성할 수 있다. 특히, 분류화 과정에서 FCC의 인체 분류 조직표를 사용함으로써, 전자기파에 의한 인체조직의 영향을 분석할 수 있는 인체 영상을 얻을 수 있다.
Claims (10)
- 인체 영상에 존재하는 서로 상관성이 있는 부분을 적어도 하나 이상의 디지털 영상 처리 알고리즘을 이용하여 구역화하는 구역화부;상기 구역화된 영상의 정밀도를 향상시키기 위해 상기 구역화된 영상에 대해 영상 처리 기능을 수행하는 피드백부;상기 구역화된 영상의 각 조직에 해당하는 색을 입히고, 구역화된 영상을 하나의 영상으로 통합하여 조직 분류가 완성된 영상을 생성하는 분류부; 및상기 구역화부, 상기 피드백부 및 상기 분류부에 의한 처리 결과 영상들을 각각 독립적으로 표시하는 표시부;를 포함하는 것을 특징으로 하는 인체 영상 처리 시스템.
- 제 1항에 있어서,상기 구역화부는 Thesholding, Boolean operation, Image inversion, Edge detection, Histogram Equalization, Region Grwoing, Mathematical morphology 등을 포함하는 디지털 영상 처리 알고리즘 중에서 적어도 하나 이상의 알고리즘을 적용하여 상기 인체영상을 구역화하는 것을 특징으로 하는 인체 영상 처리 시스템.
- 제 1항에 있어서,상기 피드백부는 상기 표시부에 의해 각각 독립된 창으로 표시된 인체 영상 중에서 어느 하나를 선택하여 영상 처리 기능을 수행하는 것을 특징으로 하는 인체 영상 처리 시스템.
- 제 1항에 있어서,상기 인체 영상의 구역화 및 피드백 과정에서 필요한 영상 처리 기능의 선택을 돕기 위한 참고 영상을 제공하는 참고 영상부;를 더 포함하는 것을 특징으로 하는 인체 영상 처리 시스템.
- 삭제
- 인체 영상에 존재하는 서로 상관성이 있는 부분을 적어도 하나 이상의 디지털 영상 처리 알고리즘을 이용하여 구역화하는 단계;상기 구역화된 영상의 정밀도를 향상시키기 위해 상기 구역화된 영상에 대해 영상 처리 기능을 수행하는 피드백 단계;상기 구역화된 영상의 각 조직에 해당하는 색을 입히고, 구역화된 영상을 하나의 영상으로 통합하여 조직 분류가 완성된 영상을 생성하는 단계; 및상기 각 단계의 결과 영상들을 각각 독립적으로 표시하는 단계;를 포함하는 것을 특징으로 하는 인체 영상 처리 방법.
- 제 6항에 있어서,상기 인체 영상의 구역화 및 피드백 과정에서 필요한 영상 처리 기능의 선택을 돕기 위하여 전문가에 의해 미리 생성된 참고 영상을 제공하는 단계;를 더 포함하는 것을 특징으로 하는 인체 영상 처리 방법.
- 제 6항에 있어서,상기 피드백 단계는 상기 표시단계에 의해 각각 독립된 창으로 표시된 인체 영상 중에서 어느 하나를 선택하여 영상 처리 기능을 수행하는 단계를 포함하는 것을 특징으로 하는 인체 영상 처리 방법.
- 삭제
- 인체 영상에 존재하는 서로 상관성이 있는 부분을 적어도 하나 이상의 영상 처리 기능을 이용하여 구역화하는 단계;상기 구역화된 영상의 정밀도를 향상시키기 위해 상기 구역화된 영상에 대해 영상 처리 기능을 수행하는 피드백 단계;상기 구역화된 영상의 각 조직에 해당하는 색을 입히고, 구역화된 영상을 하나의 영상으로 통합하여 조직 분류가 완성된 영상을 생성하는 단계; 및상기 각 단계의 결과 영상들을 각각 독립적으로 실시간 표시하는 단계;를 포함하는 것을 특징으로 하는 인체 영상 처리 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030082639A KR100639959B1 (ko) | 2003-11-20 | 2003-11-20 | 인체 영상 처리 시스템 및 그 방법 |
US10/987,227 US7539333B2 (en) | 2003-11-20 | 2004-11-12 | System and method for processing human body image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030082639A KR100639959B1 (ko) | 2003-11-20 | 2003-11-20 | 인체 영상 처리 시스템 및 그 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050048897A KR20050048897A (ko) | 2005-05-25 |
KR100639959B1 true KR100639959B1 (ko) | 2006-10-31 |
Family
ID=34587936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030082639A KR100639959B1 (ko) | 2003-11-20 | 2003-11-20 | 인체 영상 처리 시스템 및 그 방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US7539333B2 (ko) |
KR (1) | KR100639959B1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101321908B1 (ko) | 2012-10-16 | 2013-10-28 | 한국과학기술정보연구원 | 인체 절단면 영상 정보 제작 방법 및 시스템 |
US9183627B2 (en) | 2013-05-03 | 2015-11-10 | Samsung Electronics Co., Ltd. | Medical imaging apparatus and method of controlling the same |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7903851B2 (en) * | 2005-10-17 | 2011-03-08 | Siemens Medical Solutions Usa, Inc. | Method and system for vertebrae and intervertebral disc localization in magnetic resonance images |
WO2007079207A2 (en) * | 2005-12-30 | 2007-07-12 | Yeda Research & Development Co. Ltd. | An integrated segmentation and classification approach applied to medical applications analysis |
US7394251B2 (en) * | 2006-04-20 | 2008-07-01 | General Hospital Corporation | Dynamic magnetic resonance inverse imaging |
US7835569B2 (en) * | 2006-10-13 | 2010-11-16 | Apple Inc. | System and method for raw image processing using conversion matrix interpolated from predetermined camera characterization matrices |
US7773127B2 (en) * | 2006-10-13 | 2010-08-10 | Apple Inc. | System and method for RAW image processing |
US7893975B2 (en) * | 2006-10-13 | 2011-02-22 | Apple Inc. | System and method for processing images using predetermined tone reproduction curves |
US8385657B2 (en) | 2007-08-01 | 2013-02-26 | Yeda Research And Development Co. Ltd. | Multiscale edge detection and fiber enhancement using differences of oriented means |
KR101046510B1 (ko) * | 2008-11-07 | 2011-07-04 | 금오공과대학교 산학협력단 | 에지 분류 및 영역 확장 기법을 통한 심실 자동 분할 방법 |
WO2010062989A2 (en) | 2008-11-28 | 2010-06-03 | Fujifilm Medical Systems Usa, Inc. | System and method for propagation of spine labeling |
KR101030169B1 (ko) * | 2009-04-17 | 2011-04-18 | 금오공과대학교 산학협력단 | 방사형 임계치 결정법을 통한 심실 자동 분할방법 |
KR101154355B1 (ko) * | 2010-11-11 | 2012-06-14 | 금오공과대학교 산학협력단 | 좌심실 자동 분할 방법 |
KR20150108701A (ko) * | 2014-03-18 | 2015-09-30 | 삼성전자주식회사 | 의료 영상 내 해부학적 요소 시각화 시스템 및 방법 |
US10521429B2 (en) | 2015-06-09 | 2019-12-31 | Microsoft Technology Licensing, Llc. | Interactive graphical system for estimating body measurements |
US20180260759A1 (en) * | 2017-03-07 | 2018-09-13 | Mighty AI, Inc. | Segmentation of Images |
EP3664034B1 (en) * | 2019-03-26 | 2021-09-01 | Siemens Healthcare GmbH | Method and data processing system for providing lymph node information |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5450546A (en) * | 1992-01-31 | 1995-09-12 | Adaptec, Inc. | Intelligent hardware for automatically controlling buffer memory storage space in a disk drive |
US5799100A (en) * | 1996-06-03 | 1998-08-25 | University Of South Florida | Computer-assisted method and apparatus for analysis of x-ray images using wavelet transforms |
US7079674B2 (en) * | 2001-05-17 | 2006-07-18 | Siemens Corporate Research, Inc. | Variational approach for the segmentation of the left ventricle in MR cardiac images |
KR100450278B1 (ko) | 2001-08-31 | 2004-09-24 | 버츄얼아이테크 주식회사 | 의료영상 처리 시스템 및 처리방법 |
US7158692B2 (en) * | 2001-10-15 | 2007-01-02 | Insightful Corporation | System and method for mining quantitive information from medical images |
US6956373B1 (en) * | 2002-01-02 | 2005-10-18 | Hugh Keith Brown | Opposed orthogonal fusion system and method for generating color segmented MRI voxel matrices |
-
2003
- 2003-11-20 KR KR1020030082639A patent/KR100639959B1/ko not_active IP Right Cessation
-
2004
- 2004-11-12 US US10/987,227 patent/US7539333B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101321908B1 (ko) | 2012-10-16 | 2013-10-28 | 한국과학기술정보연구원 | 인체 절단면 영상 정보 제작 방법 및 시스템 |
US9183627B2 (en) | 2013-05-03 | 2015-11-10 | Samsung Electronics Co., Ltd. | Medical imaging apparatus and method of controlling the same |
Also Published As
Publication number | Publication date |
---|---|
US7539333B2 (en) | 2009-05-26 |
KR20050048897A (ko) | 2005-05-25 |
US20050111715A1 (en) | 2005-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100639959B1 (ko) | 인체 영상 처리 시스템 및 그 방법 | |
Mohamed et al. | An automated glaucoma screening system using cup-to-disc ratio via simple linear iterative clustering superpixel approach | |
Kumar et al. | Review on image segmentation techniques | |
Yang et al. | Multifocus image fusion based on NSCT and focused area detection | |
Li et al. | Robust retinal image enhancement via dual-tree complex wavelet transform and morphology-based method | |
Jamil et al. | Melanoma segmentation using bio-medical image analysis for smarter mobile healthcare | |
Prasath et al. | Multiscale structure tensor for improved feature extraction and image regularization | |
Naseem et al. | Cross-modality guided contrast enhancement for improved liver tumor image segmentation | |
KR20040053337A (ko) | 개연적인 프레임워크를 사용하는 블롭-기반의 분석용컴퓨터 비전 방법 및 시스템 | |
Nyemeesha et al. | Implementation of noise and hair removals from dermoscopy images using hybrid Gaussian filter | |
Abdel-Hamid et al. | No-reference quality index for color retinal images | |
Chi et al. | Enhancement of textural differences based on morphological component analysis | |
Kavitha et al. | Detection of brain tumour from MRI image using modified region growing and neural network | |
Gudise et al. | Segmentation of MR Images of the Brain to Detect WM, GM, and CSF Tissues in the Presence of Noise and Intensity Inhomogeneity | |
Rodríguez et al. | Color segmentation applied to study of the angiogenesis. Part I | |
Ibrahim et al. | Texture and pixel intensity characterization-based image segmentation with morphology and watershed techniques | |
Vijayalakshmi et al. | Liver tumor detection using CNN | |
Singh et al. | Multiclass variance based variational decomposition system for image segmentation | |
Höwing et al. | Tracking of non-rigid articulatory organs in X-ray image sequences | |
Srivastava et al. | A semi-automated statistical algorithm for object separation | |
Kulshreshtha et al. | ANALYSIS OF MORPHOLOGICAL OPERATIONS ON IMAGE SEGMENTATION TECHNIQUES. | |
Al-abayechi et al. | Image enhancement based on fractional Poisson for segmentation of skin lesions using the watershed transform | |
Jaworek-Korjakowska et al. | Skin_Hair Dataset: Setting the Benchmark for Effective Hair Inpainting Methods for Improving the Image Quality of Dermoscopic Images | |
Wirth et al. | Combination of color and focus segmentation for medical images with low depth-of-field | |
Lee et al. | Extraction of tumor region in color images using wavelets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
AMND | Amendment | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |